BUNNYTN 7 2016

Monero vs Bitcoin

Francesco Romeo

Università degli Studi di Messina

16 November 2016, Trento

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

Summary of Presentation

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

BUNNYTN 7 2016

- Reasons and Reviews
- Monero

- Reasons and Reviews
- Monero
- Monero vs Bitcoin

 Francesco Romeo (Unime)
 BUNNYTN 7 2016
 16 November 2016, Trento
 3

Digital Signatures

Francesco Romeo (Unime)

BUNNYTN 7 2016

3 / 22 16 November 2016, Trento

э

A B >
 A B >
 A

Digital Signatures

The document is signed through the Signing Algorithm.

Digital Signatures

The document is signed through the Signing Algorithm. The Signature is verified through the Verification Algorithm

Digital Signatures

The document is signed through the Signing Algorithm. The Signature is verified through the Verification Algorithm

 Francesco Romeo (Unime)
 BUNNYTN 7 2016
 16 November 2016, Trento
 4 /

Hash Functions

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} o \{0,1\}^k$$
 k fixed

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} \to \{0,1\}^k$$
 k fixed

• Not possible to recover D from H(D)

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \ \mathcal{D} o \{0,1\}^k$$
 k fixed

• Not possible to recover D from $H(D) \Rightarrow$ **One-Way Function**

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} o \{0,1\}^k$$
 k fixed

Not possible to recover D from H(D) ⇒ One-Way Function
If D ≠ D',

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} o \{0,1\}^k$$
 k fixed

• Not possible to recover D from $H(D) \Rightarrow$ **One-Way Function** • If $D \neq D'$, then

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} o \{0,1\}^k$$
 k fixed

• Not possible to recover D from $H(D) \Rightarrow$ **One-Way Function** • If $D \neq D'$, then $H(D) \neq H(D')$

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} \to \{0,1\}^k$$
 k fixed

• Not possible to recover D from $H(D) \Rightarrow$ **One-Way Function** • If $D \neq D'$, then $H(D) \neq H(D')$

There are some Hash Algorithms that take as input an Elliptic Curve Point and return another point. (i. e. a Keccak Algorithm)

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} \to \{0,1\}^k$$
 k fixed

• Not possible to recover D from $H(D) \Rightarrow$ **One-Way Function** • If $D \neq D'$, then $H(D) \neq H(D')$

There are some Hash Algorithms that take as input an Elliptic Curve Point and return another point. (i. e. a Keccak Algorithm)

Kinds of Signatures

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} \to \{0,1\}^k$$
 k fixed

• Not possible to recover D from $H(D) \Rightarrow$ **One-Way Function** • If $D \neq D'$, then $H(D) \neq H(D')$

There are some Hash Algorithms that take as input an Elliptic Curve Point and return another point. (i. e. a Keccak Algorithm)

Kinds of Signatures

• Elliptic Curve Digital Signature Algorithm (ECDSA):

Francesco Romeo (Unime)

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} \to \{0,1\}^k$$
 k fixed

• Not possible to recover D from $H(D) \Rightarrow$ **One-Way Function** • If $D \neq D'$, then $H(D) \neq H(D')$

There are some Hash Algorithms that take as input an Elliptic Curve Point and return another point. (i. e. a Keccak Algorithm)

Kinds of Signatures

• Elliptic Curve Digital Signature Algorithm (ECDSA): important in Cryptocurrencies transactions

Francesco Romeo (Unime)

Hash Functions

Let $\ensuremath{\mathcal{D}}$ be the set of the documents,

$$H: \mathcal{D} \to \{0,1\}^k$$
 k fixed

Not possible to recover D from H(D) ⇒ One-Way Function
If D ≠ D', then H(D) ≠ H(D')

There are some Hash Algorithms that take as input an Elliptic Curve Point and return another point. (i. e. a Keccak Algorithm)

Kinds of Signatures

- Elliptic Curve Digital Signature Algorithm (ECDSA): important in Cryptocurrencies transactions
- Ring Signatures

Francesco Romeo (Unime) BUNNYTN 7 2016 16 November 2016, Trento 5

• Performed by a group of people

- Performed by a group of people
- n members

- Performed by a group of people
- *n* members \Rightarrow *n* pairs (P_i, S_i)

- Performed by a group of people
- *n* members \Rightarrow *n* pairs (P_i , S_i) Public and Secret Keys

- Performed by a group of people
- *n* members \Rightarrow *n* pairs (P_i , S_i) Public and Secret Keys
- Only one member produces the signature on the document,

- Performed by a group of people
- *n* members \Rightarrow *n* pairs (P_i, S_i) Public and Secret Keys
- Only one member produces the signature on the document, but it contains all the public parameters *P_i*.

- Performed by a group of people
- *n* members \Rightarrow *n* pairs (P_i , S_i) Public and Secret Keys
- Only one member produces the signature on the document, but it contains all the public parameters *P_i*.

In application, i.e. in Monero, we use **One-Time** keys to perform Ring Signatures:

- Performed by a group of people
- *n* members \Rightarrow *n* pairs (P_i , S_i) Public and Secret Keys
- Only one member produces the signature on the document, but it contains all the public parameters *P_i*.

In application, i.e. in Monero, we use **One-Time** keys to perform Ring Signatures: the private key used to sign the transaction generates a **Residue Image**, that is unique.

 Francesco Romeo (Unime)
 BUNNYTN 7 2016
 16 November 2016, Trento
 6 /

Centralization Problem

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento
The necessity of a central authority that controls money is a potential weakness of this system.

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth.

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth.

It would lead to runaway inflation.

New Frontier: Crytpocurrencies

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

New Frontier: Crytpocurrencies

-They are decentralized: Peer-to-Peer system

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

New Frontier: Crytpocurrencies

-They are decentralized: **Peer-to-Peer** system -**Blockchain**: transactions in blocks linked each other

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

New Frontier: Crytpocurrencies

-They are decentralized: **Peer-to-Peer** system

-Blockchain: transactions in blocks linked each other

-Blocksize: "weight" in byte of block

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

New Frontier: Crytpocurrencies

-They are decentralized: **Peer-to-Peer** system

- -Blockchain: transactions in blocks linked each other
- -Blocksize: "weight" in byte of block
- -Mining: activity of Nodes that add transactions solving Hash Algorithms

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

New Frontier: Crytpocurrencies

-They are decentralized: **Peer-to-Peer** system

- -Blockchain: transactions in blocks linked each other
- -Blocksize: "weight" in byte of block
- -**Mining**: activity of Nodes that add transactions solving Hash Algorithms -**Wallet**: where money are saved.

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

New Frontier: Crytpocurrencies

-They are decentralized: **Peer-to-Peer** system

- -Blockchain: transactions in blocks linked each other
- -Blocksize: "weight" in byte of block
- -**Mining**: activity of Nodes that add transactions solving Hash Algorithms -**Wallet**: where money are saved.

Each Cryptocurrency has a specific Elliptic Curve to perform ECDSA on Transactions.

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

New Frontier: Crytpocurrencies

-They are decentralized: **Peer-to-Peer** system

- -Blockchain: transactions in blocks linked each other
- -Blocksize: "weight" in byte of block
- -**Mining**: activity of Nodes that add transactions solving Hash Algorithms -**Wallet**: where money are saved.
- Each Cryptocurrency has a specific Elliptic Curve to perform ECDSA on Transactions. In general we need a curve over a Finite Field

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

New Frontier: Crytpocurrencies

-They are decentralized: **Peer-to-Peer** system

- -Blockchain: transactions in blocks linked each other
- -Blocksize: "weight" in byte of block
- -**Mining**: activity of Nodes that add transactions solving Hash Algorithms -**Wallet**: where money are saved.

Each Cryptocurrency has a specific Elliptic Curve to perform ECDSA on Transactions. In general we need a curve over a Finite Field and a **base point** G

The necessity of a central authority that controls money is a potential weakness of this system.

The authority could double existing cash, halving everyone's wealth. It would lead to runaway inflation.

New Frontier: Crytpocurrencies

-They are decentralized: **Peer-to-Peer** system

- -Blockchain: transactions in blocks linked each other
- -Blocksize: "weight" in byte of block

-**Mining**: activity of Nodes that add transactions solving Hash Algorithms -**Wallet**: where money are saved.

Each Cryptocurrency has a specific Elliptic Curve to perform ECDSA on Transactions. In general we need a curve over a Finite Field and a **base point** G of **prime** order I.

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

ъ

< • • • • • •

Definition

In Esperanto, mono (money)

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

In Esperanto, mono (money) and ero (bit),

In Esperanto, mono (money) and ero (bit), it is a Cryptocurrency born in 2014.

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

Monero Parameters

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

Monero Parameters

Monero uses Curve25519

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

Monero Parameters

Monero uses Curve25519 with the following parameters:

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

Monero Parameters

Monero uses **Curve25519** with the following parameters: -Defined on \mathbb{F}_q ,

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

Monero Parameters

Monero uses **Curve25519** with the following parameters: -Defined on \mathbb{F}_q , with $q = 2^{255} - 19$;

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

Monero Parameters

Monero uses **Curve25519** with the following parameters: -Defined on \mathbb{F}_q , with $q = 2^{255} - 19$; -It has Equation $y^2 = x^3 + 486662x^2 + x$

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

Monero Parameters

Monero uses **Curve25519** with the following parameters: -Defined on \mathbb{F}_q , with $q = 2^{255} - 19$; -It has Equation $y^2 = x^3 + 486662x^2 + x$ so it's a Montgomery Elliptic Curve;

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

Monero Parameters

Monero uses Curve25519 with the following parameters:

-Defined on \mathbb{F}_q , with $q = 2^{255} - 19$;

-It has Equation $y^2 = x^3 + 486662x^2 + x$ so it's a Montgomery Elliptic Curve;

-Base Point G = (9, 14781619447589544791020593568409986887264606134616475288964881837755586237401);

In Esperanto, **mono** (money) and **ero** (bit), it is a Cryptocurrency born in 2014.

It is based on CryptoNote a digital protocol that powers decentralized privacy oriented digital currencies.

Monero Parameters

Monero uses Curve25519 with the following parameters:

```
-Defined on \mathbb{F}_q, with q = 2^{255} - 19;
```

-It has Equation $y^2 = x^3 + 486662x^2 + x$ so it's a Montgomery Elliptic Curve;

-Base Point G = (9, 14781619447589544791020593568409986887264606134616475288964881837755586237401);

-Order of G, $I = 2^{252} + 2774231777737235353535851937790883648493$.

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

Transactions in Monero

3

8 / 22

э

Transactions in Monero

It uses Ring Confidential Transactions

Transactions in Monero

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

Transactions in Monero

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature,

Transactions in Monero

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

Transactions in Monero

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys

Transactions in Monero

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG),
It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

MLSAG Protocol is divided in 4 algorithms:

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

MLSAG Protocol is divided in 4 algorithms: -**KEYGEN**:

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

MLSAG Protocol is divided in 4 algorithms:

-KEYGEN: generation of the keys and computation of the Keys Images;

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

MLSAG Protocol is divided in 4 algorithms:

-**KEYGEN**: generation of the keys and computation of the Keys Images; -**SIGN**:

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

MLSAG Protocol is divided in 4 algorithms:

-**KEYGEN**: generation of the keys and computation of the Keys Images; -**SIGN**: producing the signature;

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

MLSAG Protocol is divided in 4 algorithms: -KEYGEN: generation of the keys and computation of the Keys Images; -SIGN: producing the signature; -VER:

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

MLSAG Protocol is divided in 4 algorithms: -**KEYGEN**: generation of the keys and computation of the Keys Images; -**SIGN**: producing the signature; -**VER**: verification of the signature;

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

MLSAG Protocol is divided in 4 algorithms: -KEYGEN: generation of the keys and computation of the Keys Images; -SIGN: producing the signature; -VER: verification of the signature; -LNK:

It uses **Ring Confidential Transactions** and we want the amount of transactions to be hidden.

This is achieved by using the **Multilayered Linkable Spontaneous Anonimous Group** (MLSAG) Ring Signature, based on the previous LSAG.

The main difference is that MLSAG uses n vectors of m Public Keys instead of n Public Keys (for LSAG), where n are the users of the group.

MLSAG Protocol is divided in 4 algorithms:

-KEYGEN: generation of the keys and computation of the Keys Images;

- -SIGN: producing the signature;
- -VER: verification of the signature;
- -LNK: check of the uniqueness of the Keys Images.

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

MLSAG

Francesco	Romeo (Unime
in runeebee		o mine

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• KEYGEN:

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$\forall j = 1...m$$

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$\forall j = 1...m \quad x_j G = P^j_\pi \pmod{q}$$

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

 $\forall j = 1...m$

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$\forall j = 1...m \quad \mathbf{I}_j = x_j H_P(P_\pi^j)$$

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$\forall j = 1...m$$
 $I_j = x_j H_P(P_\pi^j)$ with $H_P(P) = Keccak(P)$

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$\forall j = 1...m$$
 $I_j = x_j H_P(P^j_\pi)$ with $H_P(P) = Keccak(P)$

Let \mathfrak{m} be the message.

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$\forall j = 1...m$$
 $I_j = x_j H_P(P^j_\pi)$ with $H_P(P) = Keccak(P)$

Let \mathfrak{m} be the message.

SIGN:

Francesco Romeo (Unime)

< □ > < ---->

3

MLSAG

Let $\{P_i^j\}_{i=1,\dots,m}^{j=1,\dots,m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$\forall j = 1...m$$
 $I_j = x_j H_P(P^j_\pi)$ with $H_P(P) = Keccak(P)$

Let \mathfrak{m} be the message.

• SIGN: $\forall i = 1..n$

Francesco Romeo (Unime)

MLSAG

Let $\{P_i^j\}_{i=1,\dots,m}^{j=1,\dots,m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$\forall j = 1...m$$
 $I_j = x_j H_P(P^j_\pi)$ with $H_P(P) = Keccak(P)$

Let \mathfrak{m} be the message.

• SIGN: $\forall i = 1..n \quad i \neq \pi$

< □ > < ---->

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$\forall j = 1...m$$
 $I_j = x_j H_P(P^j_\pi)$ with $H_P(P) = Keccak(P)$

Let \mathfrak{m} be the message.

• **SIGN**:
$$\forall i = 1..n$$
 $i \neq \pi$ and $\forall j = 1..m$

Francesco Romeo (Unime)

< □ > < ---->

3

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$orall j = 1...m$$
 $\mathrm{I}_j = x_j H_{\mathcal{P}}(\mathcal{P}^j_\pi)$ with $H_{\mathcal{P}}(\mathcal{P}) = Keccak(\mathcal{P})$

Let \mathfrak{m} be the message.

• SIGN: $\forall i = 1..n$ $i \neq \pi$ and $\forall j = 1..m$ select random scalars (in Z_q) s_i^j

Image: A matrix

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$orall j = 1...m$$
 $\mathrm{I}_j = x_j H_{\mathcal{P}}(\mathcal{P}^j_\pi)$ with $H_{\mathcal{P}}(\mathcal{P}) = Keccak(\mathcal{P})$

Let \mathfrak{m} be the message.

• SIGN: $\forall i = 1..n$ $i \neq \pi$ and $\forall j = 1..m$ select random scalars (in Z_q) s_i^j and a_j .

Image: A matrix

MLSAG

Let $\{P_i^j\}_{i=1...n}^{j=1...m}$ the group public keys.

• **KEYGEN**: Let π the secret index such that

$$orall j=1...m$$
 $x_j G=P^j_\pi \ (mod \ q)$

and compute the Keys Images

$$orall j = 1...m$$
 $\mathrm{I}_j = x_j H_{\mathcal{P}}(\mathcal{P}^j_\pi)$ with $H_{\mathcal{P}}(\mathcal{P}) = Keccak(\mathcal{P})$

Let \mathfrak{m} be the message.

• SIGN: $\forall i = 1..n$ $i \neq \pi$ and $\forall j = 1..m$ select random scalars (in Z_q) s_i^j and a_j . Let h be the hash function.

< □ > < ---->

MLSAG

Compute:

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

10 / 22

MLSAG

Compute:

$$L^j_{\pi} = a_j G$$

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

10 / 22

MLSAG

Compute:

$$L^j_{\pi} = a_j G$$

$$R^j_{\pi} = a_j H(P^j_{\pi})$$

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

10 / 22

MLSAG Compute:

$$L^j_{\pi} = a_j G$$

$$R^j_\pi = a_j H(P^j_\pi)$$

$$c_{\pi+1} = h(\mathfrak{m}, L^1_{\pi}, R^1_{\pi}, ..., L^m_{\pi}, R^m_{\pi})$$

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

10 / 22

MLSAG Compute:

$$L^j_{\pi} = a_j G$$

$$R^j_{\pi} = a_j H(P^j_{\pi})$$

$$c_{\pi+1} = h(\mathfrak{m}, L^1_{\pi}, R^1_{\pi}, ..., L^m_{\pi}, R^m_{\pi})$$

and $orall i = \pi + 1...\pi - 1 \mod n$

Francesco Romeo (Unime)

MLSAG

Compute:

$$L^j_{\pi} = a_j G$$

$$R^j_{\pi} = a_j H(P^j_{\pi})$$

$$c_{\pi+1} = h(\mathfrak{m}, L^{1}_{\pi}, R^{1}_{\pi}, ..., L^{m}_{\pi}, R^{m}_{\pi})$$

and $\forall i = \pi + 1...\pi - 1 \mod n$

$$L_i^j = s_i^j G + c_i P_i^j$$

Francesco Romeo (Unime)

10 / 22

MLSAG

Compute:

$$L^j_{\pi} = a_j G$$

$$R^j_{\pi} = a_j H(P^j_{\pi})$$

$$c_{\pi+1} = h(\mathfrak{m}, L^{1}_{\pi}, R^{1}_{\pi}, ..., L^{m}_{\pi}, R^{m}_{\pi})$$

and $orall i = \pi + 1...\pi - 1 \mod n$
 $L^{j}_{i} = s^{j}_{i}G + c_{i}P^{j}_{i}$
 $R^{j}_{i} = s^{j}_{i}H(P^{j}_{i}) + c_{i}\mathrm{I}_{j}$

Francesco Romeo (Unime)

) / 22
MLSAG

Compute:

$$L^j_{\pi} = a_j G$$

$$R^j_{\pi} = a_j H(P^j_{\pi})$$

$$c_{\pi+1} = h(\mathfrak{m}, L^{1}_{\pi}, R^{1}_{\pi}, ..., L^{m}_{\pi}, R^{m}_{\pi})$$

and $\forall i = \pi + 1...\pi - 1 \mod n$

$$L_i^j = s_i^j G + c_i P_i^j$$
$$R_i^j = s_i^j H(P_i^j) + c_i I_j$$

$$c_{i+1} = h(\mathfrak{m}, L_i^1, R_i^1, ..., L_i^m, R_i^m)$$

Francesco Romeo (Unime)

э

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{j} = a_{j} - c_{\pi}x_{j} \mod I$.

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{j} = a_{j} - c_{\pi}x_{j} \mod I$. A signature for the message \mathfrak{m} is

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{j} = a_{j} - c_{\pi}x_{j} \mod I$. A signature for the message \mathfrak{m} is

 $\sigma = (I_1, ..., I_m, c_1, s_1^1, ..., s_1^m, ..., s_n^m)$

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{j} = a_{j} - c_{\pi}x_{j} \mod I$. A signature for the message \mathfrak{m} is

$$\sigma = (I_1, ..., I_m, c_1, s_1^1, ..., s_1^m, ..., s_n^m)$$

The complexity is $\mathcal{O}(m \cdot (n+1))$.

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{j} = a_{j} - c_{\pi}x_{j} \mod I$. A signature for the message \mathfrak{m} is

$$\sigma = (I_1, ..., I_m, c_1, s_1^1, ..., s_1^m, ..., s_n^m)$$

The complexity is $\mathcal{O}(m \cdot (n+1))$. • **VER**:

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{J} = a_{i} - c_{\pi}x_{i} \mod I$. A signature for the message \mathfrak{m} is

$$\sigma = (I_1, ..., I_m, c_1, s_1^1, ..., s_1^m, ..., s_n^m)$$

The complexity is $\mathcal{O}(m \cdot (n+1))$.

• **VER**: Everyone could regenerate all L_i^j, R_i^j

< □ > < ---->

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{j} = a_{j} - c_{\pi}x_{j} \mod I$. A signature for the message \mathfrak{m} is

$$\sigma = (I_1, ..., I_m, c_1, s_1^1, ..., s_1^m, ..., s_n^m)$$

The complexity is $\mathcal{O}(m \cdot (n+1))$.

• **VER**: Everyone could regenerate all L_i^j, R_i^j and verify the hash

$$c_{n+1}=c_1$$

< □ > < ---->

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{j} = a_{j} - c_{\pi}x_{j} \mod I$. A signature for the message \mathfrak{m} is

$$\sigma = (I_1, ..., I_m, c_1, s_1^1, ..., s_1^m, ..., s_n^m)$$

The complexity is $\mathcal{O}(m \cdot (n+1))$.

• **VER**: Everyone could regenerate all L_i^j, R_i^j and verify the hash

$$c_{n+1}=c_1$$

• LNK:

Francesco Romeo (Unime)

< □ > < ---->

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{j} = a_{j} - c_{\pi}x_{j} \mod I$. A signature for the message \mathfrak{m} is

$$\sigma = (I_1, ..., I_m, c_1, s_1^1, ..., s_1^m, ..., s_n^m)$$

The complexity is $\mathcal{O}(m \cdot (n+1))$.

• **VER**: Everyone could regenerate all L_i^j, R_i^j and verify the hash

$$c_{n+1}=c_1$$

• LNK: If any of the I_i was already used,

Francesco Romeo (Unime)

< □ > < ---->

MLSAG

Where

$$c_{\pi} = h(\mathfrak{m}, L^{1}_{\pi-1}, R^{1}_{\pi-1}, ..., L^{m}_{\pi-1}, R^{m}_{\pi-1})$$

Then we define $s_{\pi}^{j} = a_{j} - c_{\pi}x_{j} \mod I$. A signature for the message \mathfrak{m} is

$$\sigma = (I_1, ..., I_m, c_1, s_1^1, ..., s_1^m, ..., s_n^m)$$

The complexity is $\mathcal{O}(m \cdot (n+1))$.

• **VER**: Everyone could regenerate all L_i^j, R_i^j and verify the hash

$$c_{n+1}=c_1$$

• LNK: If any of the I_i was already used, the signature is rejected.

Francesco Romeo (Unime)

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

ъ

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

Let A be a Probabilistic Polynomial Time (PPT) Adversary(Algorithm).

BUNNYTN 7 2016

16 November 2016, Trento

Let A be a **Probabilistic Polynomial Time** (*PPT*) Adversary(Algorithm). Then the probability that A forges a verifying MLSAG Signature is **Negligible** under the (EC)DLOG Assumption.

Let A be a **Probabilistic Polynomial Time** (PPT) Adversary(Algorithm). Then the probability that A forges a verifying MLSAG Signature is **Negligible** under the (EC)DLOG Assumption.

Theorem (MLSAG Linkability)

Let A be a **Probabilistic Polynomial Time** (*PPT*) Adversary(Algorithm). Then the probability that A forges a verifying MLSAG Signature is **Negligible** under the (EC)DLOG Assumption.

Theorem (MLSAG Linkability)

The probability that a PPT Algorithm \mathcal{A} can create two verifying signatures σ and σ' signed with the vectors \bar{y} and \bar{y}' such that there exists the same public key y in both \bar{y} and \bar{y}' is **Negligible**

Let \mathcal{A} be a **Probabilistic Polynomial Time** (PPT) Adversary(Algorithm). Then the probability that A forges a verifying MLSAG Signature is **Negligible** under the (EC)DLOG Assumption.

Theorem (MLSAG Linkability)

The probability that a PPT Algorithm \mathcal{A} can create two verifying signatures σ and σ' signed with the vectors \bar{y} and \bar{y}' such that there exists the same public key y in both \bar{y} and \bar{y}' is **Negligible**

Theorem (MLSAG Anonimity)

Image: A matrix

Let A be a **Probabilistic Polynomial Time** (*PPT*) Adversary(Algorithm). Then the probability that A forges a verifying MLSAG Signature is **Negligible** under the (EC)DLOG Assumption.

Theorem (MLSAG Linkability)

The probability that a PPT Algorithm \mathcal{A} can create two verifying signatures σ and σ' signed with the vectors \bar{y} and \bar{y}' such that there exists the same public key y in both \bar{y} and \bar{y}' is **Negligible**

Theorem (MLSAG Anonimity)

The MLSAG protocol is Signer Ambiguous under the Decisional Diffie Hellman Assumption.

Francesco Romeo (Unime)

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

ъ

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Commitments

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

Commitments

Let G be the Curve25519 Base Point

Commitments

Let G be the Curve25519 Base Point and H a hash

Commitments

Let G be the Curve25519 Base Point and H a hash such that $H = \gamma G$, with γ unknown.

Let G be the Curve25519 Base Point and H a hash such that $H = \gamma G$, with γ unknown. Let's define

Commitments

Let G be the Curve25519 Base Point and H a hash such that $H = \gamma G$, with γ unknown. Let's define

C(a,x) = xG + aH

Commitments

Let G be the Curve25519 Base Point and H a hash such that $H = \gamma G$, with γ unknown. Let's define

$$C(a,x) = xG + aH$$

Commitment to the value *a* with mask *x*.

Commitments

Let G be the Curve25519 Base Point and H a hash such that $H = \gamma G$, with γ unknown. Let's define

$$C(a,x) = xG + aH$$

Commitment to the value *a* with mask *x*. If a = 0, *C* is a commitment to 0

Commitments

Let G be the Curve25519 Base Point and H a hash such that $H = \gamma G$, with γ unknown. Let's define

$$C(a,x) = xG + aH$$

Commitment to the value *a* with mask *x*.

If a = 0, C is a commitment to 0 such that $x = \log_G C$ and one can sign with the pair (x, C(0, x)).

Let G be the Curve25519 Base Point and H a hash such that $H = \gamma G$, with γ unknown. Let's define

$$C(a,x) = xG + aH$$

Commitment to the value *a* with mask *x*.

If a = 0, C is a commitment to 0 such that $x = \log_G C$ and one can sign with the pair (x, C(0, x)).In Bitcoin: $\sum C_{in} - \sum C_{out} = 0$

Let G be the Curve25519 Base Point and H a hash such that $H = \gamma G$, with γ unknown. Let's define

$$C(a,x) = xG + aH$$

Commitment to the value *a* with mask *x*.

If a = 0, C is a commitment to 0 such that $x = \log_G C$ and one can sign with the pair (x, C(0, x)). In Bitcoin: $\sum C_{in} - \sum C_{out} = 0$ while in Monero: $\sum C_{in} - \sum C_{out} = C(0, z)$.

Let G be the Curve25519 Base Point and H a hash such that $H = \gamma G$, with γ unknown. Let's define

$$C(a,x) = xG + aH$$

Commitment to the value *a* with mask *x*.

If a = 0, C is a commitment to 0 such that $x = \log_G C$ and one can sign with the pair (x, C(0, x)). In Bitcoin: $\sum C_{in} - \sum C_{out} = 0$ while in Monero: $\sum C_{in} - \sum C_{out} = C(0, z)$. If i.e. there are 1 input and 2 outputs:

$$C_{in} = x_C G + aH$$
$$C_{out-1} = y_1 G + b_1 H$$
$$C_{out-2} = y_2 G + b_2 H$$

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

.4 / 22

Commitments

with:

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

.4 / 22

Commitments

with:

- $x_C y_1 y_2 = z$
- $a = b_1 + b_2$

Commitments

with:

•
$$x_C - y_1 - y_2 = z_1$$

•
$$a = b_1 + b_2$$

SO

Commitments

with:

SO

$$C_{in} - C_{out-1} - C_{out-2} = zG = C(0, z)$$

14 / 22

Commitments

with:

*x*_C − *y*₁ − *y*₂ = *z a* = *b*₁ + *b*₂

so

$$C_{in} - C_{out-1} - C_{out-2} = zG = C(0, z)$$
 with z unknown.

14 / 22

Commitments

with:

- $x_C y_1 y_2 = z$ • $a = b_1 + b_2$

SO

$$C_{in} - C_{out-1} - C_{out-2} = zG = C(0, z)$$
 with z unknown.

Ring Confidential Transactions

Commitments

with:

- $x_C y_1 y_2 = z$
- $a = b_1 + b_2$

SO

$$C_{in} - C_{out-1} - C_{out-2} = zG = C(0, z)$$
 with z unknown.

Ring Confidential Transactions

In practice C_i i = 1...n are the input commitments.

Commitments

with:

- $x_C y_1 y_2 = z$ • $a = b_1 + b_2$

SO

$$C_{in} - C_{out-1} - C_{out-2} = zG = C(0, z)$$
 with z unknown.

Ring Confidential Transactions

In practice C_i i = 1...n are the input commitments. With the pairs (P_i, C_i)

Commitments

with:

- $x_C y_1 y_2 = z$ • $a = b_1 + b_2$

SO

$$C_{in} - C_{out-1} - C_{out-2} = zG = C(0, z)$$
 with z unknown.

Ring Confidential Transactions

In practice C_i i = 1...n are the input commitments. With the pairs (P_i, C_i) we create a Ring Signature of the form:

Commitments

with:

- $x_C y_1 y_2 = z$ • $a = b_1 + b_2$

SO

$$C_{in} - C_{out-1} - C_{out-2} = zG = C(0, z)$$
 with z unknown.

Ring Confidential Transactions

In practice C_i i = 1...n are the input commitments. With the pairs (P_i, C_i) we create a Ring Signature of the form:

$$\left\{P_{1}+C_{1}-\sum_{j}C_{j,out},...,P_{s}+C_{s}-\sum_{j}C_{j,out},...,P_{n}+C_{n}-\sum_{j}C_{j,out}\right\}$$

Commitments

with:

- $x_C y_1 y_2 = z$ • $a = b_1 + b_2$

SO

$$C_{in} - C_{out-1} - C_{out-2} = zG = C(0, z)$$
 with z unknown.

Ring Confidential Transactions

In practice C_i i = 1...n are the input commitments. With the pairs (P_i, C_i) we create a Ring Signature of the form:

$$\left\{P_{1}+C_{1}-\sum_{j}C_{j,out},...,P_{s}+C_{s}-\sum_{j}C_{j,out},...,P_{n}+C_{n}-\sum_{j}C_{j,out}\right\}$$

with private key z + x'

Commitments

with:

- $x_C y_1 y_2 = z$ • $a = b_1 + b_2$

SO

$$C_{in} - C_{out-1} - C_{out-2} = zG = C(0, z)$$
 with z unknown.

Ring Confidential Transactions

In practice C_i i = 1...n are the input commitments. With the pairs (P_i, C_i) we create a Ring Signature of the form:

$$\left\{P_{1}+C_{1}-\sum_{j}C_{j,out},...,P_{s}+C_{s}-\sum_{j}C_{j,out},...,P_{n}+C_{n}-\sum_{j}C_{j,out}\right\}$$

with private key z + x' with $x'G = P_s$

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

15 / 22

• Let $\left\{(P_{\pi}^{1}, C_{\pi}^{1}), ..., (P_{\pi}^{m}, C_{\pi}^{m})\right\}$ be pairs of PubKeys/Commitments

• Let $\{(P_{\pi}^{1}, C_{\pi}^{1}), ..., (P_{\pi}^{m}, C_{\pi}^{m})\}$ be pairs of PubKeys/Commitments with private keys $x_{j} \ j = 1...m$.

• Let $\{(P_{\pi}^{1}, C_{\pi}^{1}), ..., (P_{\pi}^{m}, C_{\pi}^{m})\}$ be pairs of PubKeys/Commitments with private keys $x_{j} \ j = 1...m$.

• Find
$$q+1$$
 collections $\left\{(P_i^1, C_i^1), ..., (P_i^m, C_i^m)\right\}$, $i=1..q+1$

- Let $\{(P_{\pi}^{1}, C_{\pi}^{1}), ..., (P_{\pi}^{m}, C_{\pi}^{m})\}$ be pairs of PubKeys/Commitments with private keys x_{j} j = 1...m.
- Find q + 1 collections $\{(P_i^1, C_i^1), ..., (P_i^m, C_i^m)\}$, i = 1..q + 1 not already **Tag-Linked**.

- Let $\{(P_{\pi}^{1}, C_{\pi}^{1}), ..., (P_{\pi}^{m}, C_{\pi}^{m})\}$ be pairs of PubKeys/Commitments with private keys x_{j} j = 1...m.
- Find q + 1 collections $\{(P_i^1, C_i^1), ..., (P_i^m, C_i^m)\}$, i = 1..q + 1 not already **Tag-Linked**.

• Choose a set of outputs $(Q_i, C_{i,out})$ such that $\sum_{j=1}^m C_{\pi}^j - \sum_i C_{i,out}$

- Let $\{(P_{\pi}^{1}, C_{\pi}^{1}), ..., (P_{\pi}^{m}, C_{\pi}^{m})\}$ be pairs of PubKeys/Commitments with private keys $x_{j} \quad j = 1...m$.
- Find q + 1 collections $\{(P_i^1, C_i^1), ..., (P_i^m, C_i^m)\}$, i = 1..q + 1 not already **Tag-Linked**.
- Choose a set of outputs $(Q_i, C_{i,out})$ such that $\sum_{j=1}^{m} C_{\pi}^j \sum_i C_{i,out}$ is a commitment to 0.

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

A B >
A B >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

16 / 22

Let

Tag-Linkable Ring-CT with Multiple Inputs and OneTime Keys

Let

$$\mathfrak{R} := \left\{ \left\{ (P_1^1, C_1^1), ..., (P_1^m, C_1^m), \left(\sum_j P_1^j + \sum_{j=1}^m C_1^j - \sum_i C_{i,out} \right) \right\},\$$

$$\left\{ (P_{q+1}^1, C_{q+1}^1), ..., (P_{q+1}^m, C_{q+1}^m), \left(\sum_{j} P_{q+1}^j + \sum_{j=1}^m C_{q+1}^j - \sum_{i} C_{i,out} \right) \right\} \right\}$$

· · · ,

Tag-Linkable Ring-CT with Multiple Inputs and OneTime Keys

Let

$$\mathfrak{R} := \left\{ \left\{ (P_1^1, C_1^1), ..., (P_1^m, C_1^m), \left(\sum_j P_1^j + \sum_{j=1}^m C_1^j - \sum_i C_{i,out} \right) \right\},\$$

$$\left\{ (P_{q+1}^1, C_{q+1}^1), ..., (P_{q+1}^m, C_{q+1}^m), \left(\sum_{j} P_{q+1}^j + \sum_{j=1}^m C_{q+1}^j - \sum_{i} C_{i,out} \right) \right\} \right\}$$

...,

be the Generalized Ring which we wish to sign.

Tag-Linkable Ring-CT with Multiple Inputs and OneTime Keys

Let

$$\mathfrak{R} := \left\{ \left\{ (P_1^1, C_1^1), ..., (P_1^m, C_1^m), \left(\sum_j P_1^j + \sum_{j=1}^m C_1^j - \sum_i C_{i,out} \right) \right\},\$$

$$\left\{ (P_{q+1}^1, C_{q+1}^1), ..., (P_{q+1}^m, C_{q+1}^m), \left(\sum_{j} P_{q+1}^j + \sum_{j=1}^m C_{q+1}^j - \sum_{i} C_{i,out} \right) \right\} \right\}$$

...,

be the Generalized Ring which we wish to sign.

• Compute MLSAG signature Σ on $\mathfrak R$

Tag-Linkable Ring-CT with Multiple Inputs and OneTime Keys

Let

$$\mathfrak{R} := \left\{ \left\{ (P_1^1, C_1^1), ..., (P_1^m, C_1^m), \left(\sum_j P_1^j + \sum_{j=1}^m C_1^j - \sum_i C_{i,out} \right) \right\},\$$

$$\left\{ (P_{q+1}^1, C_{q+1}^1), ..., (P_{q+1}^m, C_{q+1}^m), \left(\sum_{j} P_{q+1}^j + \sum_{j=1}^m C_{q+1}^j - \sum_{i} C_{i,out} \right) \right\} \right\}$$

...,

be the Generalized Ring which we wish to sign.

• Compute MLSAG signature Σ on $\mathfrak R$

Conclusions on RCT

16 / 22

Tag-Linkable Ring-CT with Multiple Inputs and OneTime Keys

Let

$$\mathfrak{R} := \left\{ \left\{ (P_1^1, C_1^1), ..., (P_1^m, C_1^m), \left(\sum_j P_1^j + \sum_{j=1}^m C_1^j - \sum_i C_{i,out} \right) \right\},\$$

$$\left\{ (P_{q+1}^1, C_{q+1}^1), ..., (P_{q+1}^m, C_{q+1}^m), \left(\sum_{j} P_{q+1}^j + \sum_{j=1}^m C_{q+1}^j - \sum_{i} C_{i,out} \right) \right\} \right\}$$

...,

be the Generalized Ring which we wish to sign.

• Compute MLSAG signature Σ on \mathfrak{R}

Conclusions on RCT

RCTs ensure hiding of amount, origins and destination.

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 / 22

Tag-Linkable Ring-CT with Multiple Inputs and OneTime Keys

Let

$$\mathfrak{R} := \left\{ \left\{ (P_1^1, C_1^1), ..., (P_1^m, C_1^m), \left(\sum_j P_1^j + \sum_{j=1}^m C_1^j - \sum_i C_{i,out} \right) \right\},\$$

$$\left\{ (P_{q+1}^1, C_{q+1}^1), ..., (P_{q+1}^m, C_{q+1}^m), \left(\sum_{j} P_{q+1}^j + \sum_{j=1}^m C_{q+1}^j - \sum_{i} C_{i,out} \right) \right\} \right\}$$

...,

be the Generalized Ring which we wish to sign.

• Compute MLSAG signature Σ on $\mathfrak R$

Conclusions on RCT

RCTs ensure hiding of amount, origins and destination. In additon coin generation is trustless and verifyable secure.

Francesco Romeo (Unime)

BUNNYTN 7 2016

Monero vs Bitcoin

Bitcoin and Monero are just similar as they are different.

Bitcoin and Monero are just similar as they are different. Main differences:

Bitcoin and Monero are just similar as they are different. Main differences: -**Blocksize Limit**

Bitcoin and Monero are just similar as they are different. Main differences: -Blocksize Limit -Transaction Time

Bitcoin and Monero are just similar as they are different. Main differences: -Blocksize Limit

- -BIOCKSIZE LIMIT
- -Transaction Time
- -Untraceability

Bitcoin and Monero are just similar as they are different. Main differences: -Blocksize Limit

- -Transaction Time
- -Untraceability
- -Safe Elliptic Curves

Monero vs Bitcoin

Monero vs Bitcoin

Blocksize Limit

Francesco Romeo (Unime)

3 / 22

э
Crypto	Monero	Bitcoin
Blocksize limit	None	1 MB

э

Crypto	Monero	Bitcoin
Blocksize limit	None	1 MB

Bitcoin:

A D > A A P > A

э

1

Crypto	Monero	Bitcoin
Blocksize limit	None	1 MB

Bitcoin: has limit at 1MB.

Image: Image:

Crypto	Monero	Bitcoin
Blocksize limit	None	1 MB

Bitcoin: has limit at 1MB. Some people agree to remove the Limit, but it could overload the nodes.

Crypto	Monero	Bitcoin
Blocksize limit	None	1 MB

Bitcoin: has limit at 1MB. Some people agree to remove the Limit, but it could overload the nodes. **Monero**:

Crypto	Monero	Bitcoin
Blocksize limit	None	1 MB

Bitcoin: has limit at 1MB. Some people agree to remove the Limit, but it could overload the nodes. **Monero**: has **Scalability**,

Crypto	Monero	Bitcoin
Blocksize limit	None	1 MB

Bitcoin: has limit at 1MB. Some people agree to remove the Limit, but it could overload the nodes.

Monero: has **Scalability**, it modify its size in scale with respect to memory requested.

Crypto	Monero	Bitcoin
Transaction time	1 minute	10 minutes

Crypto	Monero	Bitcoin
Transaction time	1 minute	10 minutes

Bitcoin:

Crypto	Monero	Bitcoin
Transaction time	1 minute	10 minutes

Bitcoin: about 10 min.;

Crypto	Monero	Bitcoin
Transaction time	1 minute	10 minutes

Bitcoin: about 10 min.; Hash Algorithm is CPU-bound.

Crypto	Monero	Bitcoin
Transaction time	1 minute	10 minutes

Bitcoin: about 10 min.; Hash Algorithm is CPU-bound. **Monero**:

Crypto	Monero	Bitcoin
Transaction time	1 minute	10 minutes

Bitcoin: about 10 min.; Hash Algorithm is CPU-bound. **Monero**: about 1 min;

Crypto	Monero	Bitcoin
Transaction time	1 minute	10 minutes

Bitcoin: about 10 min.; Hash Algorithm is CPU-bound. **Monero**: about 1 min; Hash Algorithm is Memory-bound.

Monero vs Bitcoin

Crypto	Monero	Bitcoin
Untraceable	Yes	No

Crypto	Monero	Bitcoin
Untraceable	Yes	No

Bitcoin:

Crypto	Monero	Bitcoin
Untraceable	Yes	No

Bitcoin: most trasparent currency,

Crypto	Monero	Bitcoin
Untraceable	Yes	No

Bitcoin: most trasparent currency, all transactions are public

Crypto	Monero	Bitcoin
Untraceable	Yes	No

Bitcoin: most trasparent currency, all transactions are public **Monero**:

Crypto	Monero	Bitcoin
Untraceable	Yes	No

Bitcoin: most trasparent currency, all transactions are public **Monero**: Untraceable thanks to Ring Confidential Transactions.

Crypto	Monero	Bitcoin
Untraceable	Yes	No

Bitcoin: most trasparent currency, all transactions are public **Monero**: Untraceable thanks to Ring Confidential Transactions. It is optionally transparent.

Monero vs Bitcoin

Crypto	Monero	Bitcoin
Safe elliptic	Yes	No
curve	(Curve25519)	(Secp256k1)

Crypto	Monero	Bitcoin
Safe elliptic	Yes	No
curve	(Curve25519)	(Secp256k1)

Bitcoin Curve:

Crypto	Monero	Bitcoin
Safe elliptic	Yes	No
curve	(Curve25519)	(Secp256k1)

Bitcoin Curve: Secp256k1

Crypto	Monero	Bitcoin		
Safe elliptic	Yes	No		
curve	(Curve25519)	(Secp256k1)		

Bitcoin Curve: Secp256k1 Unsafe

Crypto	Monero	Bitcoin		
Safe elliptic	Yes	No		
curve	(Curve25519)	(Secp256k1)		

Bitcoin Curve: Secp256k1 Unsafe Monero Curve:

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

Crypto	Monero	Bitcoin			
Safe elliptic	Yes	No			
curve	(Curve25519)	(Secp256k1)			

Bitcoin Curve: Secp256k1 Unsafe Monero Curve: Curve25519

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

Crypto	Monero	Bitcoin			
Safe elliptic	Yes	No			
curve	(Curve25519)	(Secp256k1)			

Bitcoin Curve: Secp256k1 Unsafe Monero Curve: Curve25519 Safe

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento

Crypto	Monero	Bitcoin		
Safe elliptic	Yes	No		
curve	(Curve25519)	(Secp256k1)		

Bitcoin Curve: Secp256k1 Unsafe Monero Curve: Curve25519 Safe

Curve	Field	Equation	Base	ρ	Transfer	CM Discr.	Rigid.	Ladder	Twist	Complete	Indistin.	Safe?
Curve25519	v	 Image: A set of the set of the	 Image: A set of the set of the	~	\checkmark	✓	 Image: A set of the set of the	<	<	\checkmark	 Image: A set of the set of the	 Image: A set of the set of the
Secp256k1	 Image: A second s	 ✓ 	<	√	<	×	 Image: A set of the set of the	x	 Image: A set of the set of the	×	x	x

GRAZIE PER L'ATTENZIONE!!

Francesco Romeo (Unime)

BUNNYTN 7 2016

16 November 2016, Trento