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Some definitions

F`: finite field with ` = ph elements
Plane curve C : F (X ,Y ,T ) = 0
F`-rational point of C: P = (x , y , z) ∈ PG (2, `) such that F (x , y , z) = 0

Definition

f (x) ∈ F`[x ] is a permutation polynomial (shorlty, a PP) of F`

if x 7→ f (x) is a bijection of F` (iff x 7→ f (x) is injective over F`)

Definition

f (x) ∈ F`[x ] is a complete permutation polynomial (shorlty, a CPP) of F`

if both f (x) and f (x) + x are PPs of F`

Definition

f (x) ∈ F`[x ] is an exceptional polynomial over F`

if f (x) is a PP of an infinite number of extensions of F`



CPPs and Cryptography

Definition

f (x) ∈ F`[x ] is a permutation polynomial (shorlty, a PP) of F`

if x 7→ f (x) is a bijection of F` (iff x 7→ f (x) is injective over F`).

f (x) ∈ F`[x ] is a complete permutation polynomial (shorlty, a CPP) of F`

if both f (x) and f (x) + x are PPs of F`

Definition

f : Fn
2 → F2 Boolean function is

bent if x 7→ f (x + a) + f (x) is balanced ∀a ∈ Fn
2 (⇔ f is PNF)

bent-negabent if both x 7→ f (x + a) + f (x) and
x 7→ f (x + a) + f (x) + Tr(ax) are balanced ∀a ∈ Fn

2

LINK:

any PP of F2n gives rise to a bent function over Fn
2

any CPP of F2n gives rise to a bent-negabent function over Fn
2



Link with curves

f (x) ∈ F`[x ] 7→ Cf :
f (x)− f (y)

x − y
= 0

f (x) is a PP of F` =⇒ Cf has no affine F`-rational points (a, b) with a 6= b

Theorem

C absolutely irreducible curve of degree d defined over F`

The number N` of F`-rational points satisfies

N` ≥ `+ 1− (d − 1)(d − 2)
√
`

⇓
for ` large enough:
f (x) is a PP of F`

⇓
Cf has no F`-rat. abs. irr. components distinct from X = Y
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Conversely:

Theorem (Cohen 1970)

Cf contains no F`-rational abs. irr. component distinct from X = Y
⇓

f (x) is an exceptional polynomial over F`

It is not difficult to construct PP without any prescribed structure

Remark

f (x) is a PP of F` ⇐⇒
αf (γx + δ) + β is a PP of F` (α, β, γ, δ ∈ F`, α, γ 6= 0)

PP-equivalence :

f (x) ≈ αf (γx + δ) + β , α, β, γ, δ ∈ F` , α, γ 6= 0
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The monomial case

b−1xd is a PP of F` ⇐⇒ (d , `− 1) = 1

b−1xd is a CPP of F` ⇐⇒ (d , `− 1) = 1 and xd + bx is a PP of F`

fb(x) = b−1x
qn−1
q−1

+1 has been studied as CPP of Fqn

for n = 2, 3, 4 and partially for n = 6

EXPLICIT LIST of all b ∈ Fqn such that fb is a CPP of Fqn , in the cases:

n = 7, for arbitrary q (E. Franzè, Master Thesis)

n = 6, for arbitrary q (Bartoli-Giulietti-Z., FFA 2016)

Conjecture (Wu-Li-Helleseth-Zhang 2015)

If n + 1 is prime, n + 1 6= p, gcd(n + 1, q2 − 1) = 1, then:

there exist CPPs of Fqn of type b−1x
qn−1
q−1

+1
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GOAL : to characterize for any n the b ∈ Fqn such that fb = b−1x
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q−1

+1

is a CPP of Fqn

WE OBTAIN : complete classification for n4 < q = pm with the exception
of the cases

n + 1 = pr , with r > 1

n + 1 = pr (pr − 1)/2, with p ∈ {2, 3}, r > 1, gcd(r , 2m) = 1
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b ∈ Fqn =⇒ Ai (b) :=
∑

0≤j1<j2<...<ji≤n−1
bq

j1+qj2+...+qji ∈ Fq

i-th elementary symmetrical polynomial in b, bq, . . . , bq
n−1

Proposition (Wu-Li-Helleseth-Zhang 2013)

If n4 < q, then:

b−1x
qn−1
q−1

+1

is a CPP of Fqn
⇐⇒

gcd(n + 1, q − 1) = 1 ,

xn+1 + A1(b)xn + · · ·+ An(b)x
is an exceptional polynomial over Fq

Remark

b−1x
qn−1
q−1

+1 is a CPP of Fqn ⇐⇒ b−q
i
x

qn−1
q−1

+1 is a CPP of Fqn
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Proposition (Wu-Li-Helleseth-Zhang 2013)

If n4 < q, then:

b−1x
qn−1
q−1

+1

is a CPP of Fqn
⇐⇒

gcd(n + 1, q − 1) = 1 ,

xn+1 + A1(b)xn + · · ·+ An(b)x
is an exceptional polynomial over Fq

Definition

Let
g(x) = xn+1 + λ1x

n + · · ·λn−1x2 + λnx ∈ Fq[x ], λn 6= 0 ,

be a PP of Fq.
g(x) is good if the roots of

vg (x) :=
g(−x)

−x
= xn − λ1xn−1 + · · ·+ (−1)n−1λn−1x + (−1)nλn

form a unique orbit under the Frobenius map z 7→ zq.



Proposition

If n4 < q, then:

b ∈ Fqn \ Fq is such that

b−1x
qn−1
q−1

+1 is a CPP of Fqn
⇐⇒

b is a root of vg (x) = g(−x)
−x

for some g
good exceptional pol.

of degree n + 1 over Fq

with g(0) = 0 and g ′(0) 6= 0

Definition

An exceptional polynomial g is decomposable if

g(x) = g1(g2(x)) with g1, g2 exceptional pol., deg(g1), deg(g2) > 1

Proposition

g good exceptional polynomial =⇒ g indecomposable
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Idea

In order to classify all CPPs of type f (x) = b−1x
qn−1
q−1

+1

take all the good indecomposable exceptional polynomials

and determine the roots of vg (x)

Unfortunately:

the complete classification of indecomposable exceptional polynomials

is not known!
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Classification of indecomposable exceptional polynomials,
up to CPP-equivalence

A) n + 1 - q − 1 is a prime different from p and

A1) g(t) = (t + e)n+1 − en+1, e ∈ Fq

A2) g(t) = Dn+1(t + e, a)− Dn+1(e, a),

a, e ∈ Fq, a 6= 0, n + 1 - q2 − 1

Dn+1(t, a) Dickson polynomial of degree n + 1

B) n + 1 = p and g(t) = (t + e)
(

(t + e)
p−1
r − a

)r
− e

(
e

p−1
r − a

)r
r | p − 1, a, e ∈ Fq, ar(q−1)/(p−1) 6= 1.

C) n + 1 = s(s − 1)/2

p ∈ {2, 3}, q = pm, r > 1, s = pr > 3 and (r , 2m) = 1.

D) n + 1 = pr with r > 1.



Case A1

n + 1 is prime, n + 1 6= p, n + 1 does not divide q − 1

ζn+1 := (n + 1)-th primitive root of unity

Proposition

Let e ∈ F∗q. Then

g(t) = (t + e)n+1 − en+1

is good exceptional over Fq
⇐⇒ ordn+1(q) = n

If ordn+1(q) = n, then for each e ∈ F∗q and i ∈ {1, . . . , n}(
e(ζ in+1 − 1)

)−1
x

qn−1
q−1

+1 is a CPP of Fqn



Case A2

n + 1 is prime, n + 1 6= p, n + 1 does not divide q2 − 1

(Dickson polynomials)

Dn+1(t, a) =

n/2∑
k=0

n + 1

n + 1− k

(
n + 1− k

k

)
(−a)ktn+1−2k

Proposition

g(x) = Dn+1(x + e, a)−Dn+1(e, a), e, a ∈ Fq, a 6= 0, D ′n+1(e, a) 6= 0,
is good exceptional over Fq if and only if one of the following cases occurs:

i) 4 | n and ordn+1(q) = n

ii) 4 - n and

{
e2 − 4a /∈ �q, ordn+1(q) = n/2

e2 − 4a ∈ �q, ordn+1(q) = n



Case B

n + 1 = p

NFq/Fp
: the norm map Fq → Fp, x 7→ x1+p+p2+···+q/p.

Theorem

Let n4 < q. Then

b−1x
qn−1
q−1

+1 is a CPP of Fqn

m
for some r | n, one of the following cases occurs:

i) b ∈ {ζ iq−1 | gcd(r , i) = 1}

ii) b ∈ {(v0 − λu0)r − e | λ ∈ F∗p, e, u
p−1
0 ∈ F∗q, u

q−1
r

0 6= 1,

v r0 = e, ord

(
NFq/Fp

(
up−10

e(p−1)/r

))
= p − 1}



n + 1 = 8, p = 2

F (x) ∈ Fq[x ] monic of degree 8

Proposition

F (x) is good exceptional over Fq if and only if

F (x) = x8 + ax4 + bx2 + cx is additive and

x7 + ax3 + bx + c is irreducible over Fq.



n + 1 = 9, p = 3

No classification is known!

When is

F (x) = x9 + A1x
8 + A2x

7 + A3x
6 + A4x

5 + A5x
4 + A6x

3 + A7x
2 + A8x

good exceptional?

Theorem (Cohen 1970)

CF contains no F`-rational component distinct from X = Y

⇓
F (x) is an exceptional polynomial over F`

Determine when

CF :=
F (x)− F (y)

x − y
= 0

has only non-rational components (other than x − y)

Study when the roots of vF (x) are in a unique orbit under Frobenius



n + 1 = 9, p = 3

Proposition

F (x) is good exceptional over Fq if and only if

i) F (x) = x9 + A6x
3 + A8x

and x8 + A6x
2 + A8 irreducible over Fq;

ii) F (x) = x9 + A3x
6 + A4x

5 + A5x
4 +

(
A3
2 + A3

A3
5

A3
4

+
A2
5

A4

)
x3

+
(

2A3A4 + 2
A3
5

A2
4

)
x2 +

(
2A3A5 + A2

4 + 2
A4
5

A3
4

)
x ,

1 A4 6= 0,
2 the polynomial x8 + 2A3x

2 + 2A4 ∈ Fq[x ] has no roots in Fq4 ;

iii) F (x) = x9 + A2x
7 + A3x

6 + A5x
4 +

(
A3
2 + A3A5

A2

)
x3+(

2A2A5 + 2
A3
3

A2

)
x2 +

(
A4
2 + A3A5 +

A2
5

A2
+

A4
3

A2
2

)
x ,

1 2A2 is not a square in Fq,
2 the polynomial vF (x) = F (−x)/(−x) is irreducible over Fq.



Thank you for your attention!


