Complete permutation polynomials of monomial type

Giovanni Zini

(joint works with D. Bartoli, M. Giulietti and L. Quoos) (based on the work of thesis of E . Franzè)

Università di Perugia

Workshop BunnyTN 7

Trento, 16 novembre 2016

Outline

(1) Permutation polynomials: an introduction

Outline

(1) Permutation polynomials: an introduction
(2) Monomial complete permutation polynomials: our results

Outline

(1) Permutation polynomials: an introduction
(2) Monomial complete permutation polynomials: our results
(3) Particular cases: degree 8 and 9 in characteristic 2 and 3

Some definitions

\mathbb{F}_{ℓ} : finite field with $\ell=p^{h}$ elements
Plane curve \mathcal{C} : $F(X, Y, T)=0$
$\mathbb{F}_{\ell \text {-rational point of } \mathcal{C}: ~} P=(x, y, z) \in P G(2, \ell)$ such that $F(x, y, z)=0$

Definition
$f(x) \in \mathbb{F}_{\ell}[x]$ is a permutation polynomial (shorlty, a PP) of \mathbb{F}_{ℓ} if $x \mapsto f(x)$ is a bijection of \mathbb{F}_{ℓ} (iff $x \mapsto f(x)$ is injective over \mathbb{F}_{ℓ})

Definition

$f(x) \in \mathbb{F}_{\ell}[x]$ is a complete permutation polynomial (shorlty, a CPP) of \mathbb{F}_{ℓ} if both $f(x)$ and $f(x)+x$ are PPs of \mathbb{F}_{ℓ}

Definition

$f(x) \in \mathbb{F}_{\ell}[x]$ is an exceptional polynomial over \mathbb{F}_{ℓ}
if $f(x)$ is a PP of an infinite number of extensions of \mathbb{F}_{ℓ}

CPPs and Cryptography

Definition

$f(x) \in \mathbb{F}_{\ell}[x]$ is a permutation polynomial (shorlty, a PP) of \mathbb{F}_{ℓ} if $x \mapsto f(x)$ is a bijection of \mathbb{F}_{ℓ} (iff $x \mapsto f(x)$ is injective over \mathbb{F}_{ℓ}).
$f(x) \in \mathbb{F}_{\ell}[x]$ is a complete permutation polynomial (shorlty, a CPP) of \mathbb{F}_{ℓ} if both $f(x)$ and $f(x)+x$ are PPs of \mathbb{F}_{ℓ}

Definition

$f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ Boolean function is

- bent if $x \mapsto f(x+a)+f(x)$ is balanced $\forall a \in \mathbb{F}_{2}^{n}$ ($\Leftrightarrow f$ is PNF)
- bent-negabent if both $x \mapsto f(x+a)+f(x)$ and $x \mapsto f(x+a)+f(x)+\operatorname{Tr}(a x)$ are balanced $\forall a \in \mathbb{F}_{2}^{n}$

LINK:
any $P P$ of $\mathbb{F}_{2^{n}}$ gives rise to a bent function over \mathbb{F}_{2}^{n}
any $C P P$ of $\mathbb{F}_{2^{n}}$ gives rise to a bent-negabent function over \mathbb{F}_{2}^{n}

Link with curves

$$
f(x) \in \mathbb{F}_{\ell}[x] \quad \mapsto \quad \mathcal{C}_{f}: \frac{f(x)-f(y)}{x-y}=0
$$

$f(x)$ is a $P P$ of $\mathbb{F}_{\ell} \Longrightarrow \mathcal{C}_{f}$ has no affine \mathbb{F}_{ℓ}-rational points (a, b) with $a \neq b$

Link with curves

$$
f(x) \in \mathbb{F}_{\ell}[x] \quad \mapsto \quad \mathcal{C}_{f}: \frac{f(x)-f(y)}{x-y}=0
$$

$f(x)$ is a $P P$ of $\mathbb{F}_{\ell} \Longrightarrow \mathcal{C}_{f}$ has no affine \mathbb{F}_{ℓ}-rational points (a, b) with $a \neq b$

Theorem

\mathcal{C} absolutely irreducible curve of degree d defined over \mathbb{F}_{ℓ}
The number N_{ℓ} of \mathbb{F}_{ℓ}-rational points satisfies

$$
N_{\ell} \geq \ell+1-(d-1)(d-2) \sqrt{\ell}
$$

\Downarrow

$$
\text { for } \ell \text { large enough: }
$$

$$
f(x) \text { is a } P P \text { of } \mathbb{F}_{\ell}
$$

\Downarrow
\mathcal{C}_{f} has no \mathbb{F}_{ℓ}-rat. abs. irr. components distinct from $X=Y$

Conversely:

Theorem (Cohen 1970)
\mathcal{C}_{f} contains no \mathbb{F}_{ℓ}-rational abs. irr. component distinct from $X=Y$ \Downarrow
$f(x)$ is an exceptional polynomial over \mathbb{F}_{ℓ}

Conversely:
Theorem (Cohen 1970)
\mathcal{C}_{f} contains no \mathbb{F}_{ℓ}-rational abs. irr. component distinct from $X=Y$ \Downarrow $f(x)$ is an exceptional polynomial over \mathbb{F}_{ℓ}

It is not difficult to construct PP without any prescribed structure
Remark
$f(x)$ is a $P P$ of $\mathbb{F}_{\ell} \Longleftrightarrow$
$\alpha f(\gamma x+\delta)+\beta$ is a $P P$ of $\mathbb{F}_{\ell}\left(\alpha, \beta, \gamma, \delta \in \mathbb{F}_{\ell}, \alpha, \gamma \neq 0\right)$

PP-equivalence :

$$
f(x) \approx \alpha f(\gamma x+\delta)+\beta, \quad \alpha, \beta, \gamma, \delta \in \mathbb{F}_{\ell}, \alpha, \gamma \neq 0
$$

The monomial case

- $b^{-1} x^{d}$ is a PP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$
- $b^{-1} x^{d}$ is a CPP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$ and $x^{d}+b x$ is a $P P$ of \mathbb{F}_{ℓ}

The monomial case

- $b^{-1} x^{d}$ is a PP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$
- $b^{-1} x^{d}$ is a CPP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$ and $x^{d}+b x$ is a $P P$ of \mathbb{F}_{ℓ} $f_{b}(x)=b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ has been studied as CPP of $\mathbb{F}_{q^{n}}$ for $n=2,3,4$ and partially for $n=6$

The monomial case

- $b^{-1} x^{d}$ is a PP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$
- $b^{-1} x^{d}$ is a CPP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$ and $x^{d}+b x$ is a $P P$ of \mathbb{F}_{ℓ} $f_{b}(x)=b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ has been studied as CPP of $\mathbb{F}_{q^{n}}$ for $n=2,3,4$ and partially for $n=6$

EXPLICIT LIST of all $b \in \mathbb{F}_{q^{n}}$ such that f_{b} is a CPP of $\mathbb{F}_{q^{n}}$, in the cases:

- $n=7$, for arbitrary q (E. Franzè, Master Thesis)
- $n=6$, for arbitrary q (Bartoli-Giulietti-Z., FFA 2016)

The monomial case

- $b^{-1} x^{d}$ is a PP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$
- $b^{-1} x^{d}$ is a CPP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$ and $x^{d}+b x$ is a $P P$ of \mathbb{F}_{ℓ} $f_{b}(x)=b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ has been studied as CPP of $\mathbb{F}_{q^{n}}$ for $n=2,3,4$ and partially for $n=6$

EXPLICIT LIST of all $b \in \mathbb{F}_{q^{n}}$ such that f_{b} is a CPP of $\mathbb{F}_{q^{n}}$, in the cases:

- $n=7$, for arbitrary q (E. Franzè, Master Thesis)
- $n=6$, for arbitrary q (Bartoli-Giulietti-Z., FFA 2016)

Conjecture (Wu-Li-Helleseth-Zhang 2015)
If $n+1$ is prime, $n+1 \neq p, \operatorname{gcd}\left(n+1, q^{2}-1\right)=1$, then:
there exist CPPs of $\mathbb{F}_{q^{n}}$ of type $b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$

The monomial case

- $b^{-1} x^{d}$ is a PP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$
- $b^{-1} x^{d}$ is a CPP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$ and $x^{d}+b x$ is a $P P$ of \mathbb{F}_{ℓ} $f_{b}(x)=b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ has been studied as CPP of $\mathbb{F}_{q^{n}}$ for $n=2,3,4$ and partially for $n=6$

GOAL : to characterize for any n the $b \in \mathbb{F}_{q^{n}}$ such that $f_{b}=b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ is a $C P P$ of $\mathbb{F}_{q^{n}}$

The monomial case

- $b^{-1} x^{d}$ is a PP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$
- $b^{-1} x^{d}$ is a CPP of $\mathbb{F}_{\ell} \Longleftrightarrow(d, \ell-1)=1$ and $x^{d}+b x$ is a $P P$ of \mathbb{F}_{ℓ} $f_{b}(x)=b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ has been studied as CPP of $\mathbb{F}_{q^{n}}$ for $n=2,3,4$ and partially for $n=6$

GOAL : to characterize for any n the $b \in \mathbb{F}_{q^{n}}$ such that $f_{b}=b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ is a $C P P$ of $\mathbb{F}_{q^{n}}$

WE OBTAIN : complete classification for $n^{4}<q=p^{m}$ with the exception of the cases

- $n+1=p^{r}$, with $r>1$
- $n+1=p^{r}\left(p^{r}-1\right) / 2$, with $p \in\{2,3\}, r>1, \operatorname{gcd}(r, 2 m)=1$

$$
b \in \mathbb{F}_{q^{n}} \Longrightarrow A_{i}(b):=\sum_{0 \leq j_{1}<j_{2}<\ldots<j_{i} \leq n-1} b^{q^{j_{1}}+q^{j_{2}}+\ldots+q^{j_{i}}} \in \mathbb{F}_{q}
$$

i-th elementary symmetrical polynomial in $b, b^{q}, \ldots, b^{q^{n-1}}$

$$
b \in \mathbb{F}_{q^{n}} \Longrightarrow A_{i}(b):=\sum_{0 \leq j_{1}<j_{2}<\ldots<j_{i} \leq n-1} b^{q^{j_{1}}+q^{j_{2}}+\ldots+q^{j_{i}}} \in \mathbb{F}_{q}
$$

i-th elementary symmetrical polynomial in $b, b^{q}, \ldots, b^{q^{n-1}}$

Proposition (Wu-Li-Helleseth-Zhang 2013)
If $n^{4}<q$, then:

$$
b^{-1} x^{\frac{q^{n}-1}{q-1}+1}
$$

$$
\operatorname{gcd}(n+1, q-1)=1
$$

$$
\text { is a } C P P \text { of } \mathbb{F}_{q^{n}}
$$

$$
x^{n+1}+A_{1}(b) x^{n}+\cdots+A_{n}(b) x
$$

$$
\text { is an exceptional polynomial over } \mathbb{F}_{q}
$$

$$
b \in \mathbb{F}_{q^{n}} \Longrightarrow A_{i}(b):=\sum_{0 \leq j_{1}<j_{2}<\ldots<j_{i} \leq n-1} b^{q^{j_{1}}+q^{i_{2}}+\ldots+q^{j_{i}}} \in \mathbb{F}_{q}
$$

i-th elementary symmetrical polynomial in $b, b^{q}, \ldots, b^{q^{n-1}}$

Proposition (Wu-Li-Helleseth-Zhang 2013)
If $n^{4}<q$, then:

$$
b^{-1} x^{\frac{q^{n}-1}{q-1}+1}
$$

$$
\operatorname{gcd}(n+1, q-1)=1
$$

is a $C P P$ of $\mathbb{F}_{q^{n}}$
$x^{n+1}+A_{1}(b) x^{n}+\cdots+A_{n}(b) x$ is an exceptional polynomial over \mathbb{F}_{q}

Remark
$b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ is a $C P P$ of $\mathbb{F}_{q^{n}} \Longleftrightarrow b^{-q^{i}} x^{\frac{q^{n}-1}{q-1}+1}$ is a $C P P$ of $\mathbb{F}_{q^{n}}$

Proposition (Wu-Li-Helleseth-Zhang 2013)

If $n^{4}<q$, then:

$$
b^{-1} x^{\frac{q^{n}-1}{q-1}+1}
$$

is a $C P P$ of $\mathbb{F}_{q^{n}}$

$$
\begin{aligned}
& \operatorname{gcd}(n+1, q-1)=1 \\
& x^{n+1}+A_{1}(b) x^{n}+\cdots+A_{n}(b) x \\
& \text { is an exceptional polynomial over } \mathbb{F}_{q}
\end{aligned}
$$

Definition
Let

$$
g(x)=x^{n+1}+\lambda_{1} x^{n}+\cdots \lambda_{n-1} x^{2}+\lambda_{n} x \in \mathbb{F}_{q}[x], \lambda_{n} \neq 0,
$$

be a PP of \mathbb{F}_{q}.
$g(x)$ is good if the roots of

$$
v_{g}(x):=\frac{g(-x)}{-x}=x^{n}-\lambda_{1} x^{n-1}+\cdots+(-1)^{n-1} \lambda_{n-1} x+(-1)^{n} \lambda_{n}
$$

form a unique orbit under the Frobenius map $z \mapsto z^{q}$.

Proposition

If $n^{4}<q$, then:
b is a root of $v_{g}(x)=\frac{g(-x)}{-x}$

$$
\begin{array}{cc}
b \in \mathbb{F}_{q^{n}} \backslash \mathbb{F}_{q} \text { is such that } & \text { for some } g \\
b^{-1} x^{\frac{q^{-1}-1}{q-1}+1} \text { is a } C P P \text { of } \mathbb{F}_{q^{n}}
\end{array} \Longleftrightarrow \begin{gathered}
\text { good exceptional pol. } \\
\text { of degree } n+1 \text { over } \mathbb{F}_{q} \\
\text { with } g(0)=0 \text { and } g^{\prime}(0) \neq 0
\end{gathered}
$$

Proposition

If $n^{4}<q$, then:

$$
b \text { is a root of } v_{g}(x)=\frac{g(-x)}{-x}
$$

$$
\begin{gathered}
b \in \mathbb{F}_{q^{n}} \backslash \mathbb{F}_{q} \text { is such that } \\
b^{-1} x^{\frac{q}{}^{q}-1}+1
\end{gathered} \text { is a CPP of } \mathbb{F}_{q^{n}} .
$$ good exceptional pol. of degree $n+1$ over \mathbb{F}_{q} with $g(0)=0$ and $g^{\prime}(0) \neq 0$

Definition

An exceptional polynomial g is decomposable if

$$
g(x)=g_{1}\left(g_{2}(x)\right) \text { with } g_{1}, g_{2} \text { exceptional pol., } \operatorname{deg}\left(g_{1}\right), \operatorname{deg}\left(g_{2}\right)>1
$$

Proposition

g good exceptional polynomial $\Longrightarrow g$ indecomposable

Idea
In order to classify all CPPs of type $f(x)=b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ take all the good indecomposable exceptional polynomials and determine the roots of $v_{g}(x)$

Idea
In order to classify all CPPs of type $f(x)=b^{-1} x^{\frac{q^{n}-1}{q-1}+1}$ take all the good indecomposable exceptional polynomials and determine the roots of $v_{g}(x)$

Unfortunately:
the complete classification of indecomposable exceptional polynomials is not known!

Remark
$f(x)$ is a good $P P$ of $\mathbb{F}_{\ell} \Longleftrightarrow$
$\alpha f(\gamma x)+\beta$ is a good $P P$ of $\mathbb{F}_{\ell}\left(\alpha, \beta, \gamma \in \mathbb{F}_{\ell}, \alpha, \gamma \neq 0\right)$

CPP-equivalence :

$$
f(x) \approx \alpha f(\gamma x)+\beta, \quad \alpha, \beta, \gamma \in \mathbb{F}_{\ell}, \alpha, \gamma \neq 0
$$

Remark

$f(x)$ is a good $P P$ of $\mathbb{F}_{\ell} \Longleftrightarrow$
$\alpha f(\gamma x)+\beta$ is a good $P P$ of $\mathbb{F}_{\ell}\left(\alpha, \beta, \gamma \in \mathbb{F}_{\ell}, \alpha, \gamma \neq 0\right)$

CPP-equivalence :

$$
f(x) \approx \alpha f(\gamma x)+\beta, \quad \alpha, \beta, \gamma \in \mathbb{F}_{\ell}, \alpha, \gamma \neq 0
$$

\Downarrow

We use the known partial classification of indecomposable exceptional polynomial, up to CPP-equivalence

Classification of indecomposable exceptional polynomials, up to CPP-equivalence

A) $n+1 \nmid q-1$ is a prime different from p and

$$
\begin{aligned}
& \text { A1) } g(t)=(t+e)^{n+1}-e^{n+1}, e \in \mathbb{F}_{q} \\
& \text { A2) } g(t)=D_{n+1}(t+e, a)-D_{n+1}(e, a), \\
& a, e \in \mathbb{F}_{q}, a \neq 0, n+1 \nmid q^{2}-1 \\
& D_{n+1}(t, a) \quad \text { Dickson polynomial of degree } n+1
\end{aligned}
$$

B) $n+1=p$ and $g(t)=(t+e)\left((t+e)^{\frac{p-1}{r}}-a\right)^{r}-e\left(e^{\frac{p-1}{r}}-a\right)^{r}$
$r \mid p-1, a, e \in \mathbb{F}_{q}, a^{r(q-1) /(p-1)} \neq 1$.
C) $n+1=s(s-1) / 2$
$p \in\{2,3\}, q=p^{m}, r>1, s=p^{r}>3$ and $(r, 2 m)=1$.
D) $n+1=p^{r}$ with $r>1$.

Case A1

$n+1$ is prime, $n+1 \neq p, n+1$ does not divide $q-1$
$\zeta_{n+1}:=(n+1)$-th primitive root of unity

Proposition
Let $e \in \mathbb{F}_{q}^{*}$. Then

$$
g(t)=(t+e)^{n+1}-e^{n+1}
$$

is good exceptional over \mathbb{F}_{q}

$$
\Longleftrightarrow \operatorname{ord}_{n+1}(q)=n
$$

If $\operatorname{ord}_{n+1}(q)=n$, then for each $e \in \mathbb{F}_{q}^{*}$ and $i \in\{1, \ldots, n\}$

$$
\left(e\left(\zeta_{n+1}^{i}-1\right)\right)^{-1} x^{\frac{q^{n}-1}{q-1}+1} \quad \text { is a CPP of } \mathbb{F}_{q^{n}}
$$

Case A2

$n+1$ is prime, $n+1 \neq p, n+1$ does not divide $q^{2}-1$
(Dickson polynomials)

$$
D_{n+1}(t, a)=\sum_{k=0}^{n / 2} \frac{n+1}{n+1-k}\binom{n+1-k}{k}(-a)^{k} t^{n+1-2 k}
$$

Proposition

$g(x)=D_{n+1}(x+e, a)-D_{n+1}(e, a), e, a \in \mathbb{F}_{q}, a \neq 0, D_{n+1}^{\prime}(e, a) \neq 0$, is good exceptional over \mathbb{F}_{q} if and only if one of the following cases occurs:
i) $4 \mid n$ and $\operatorname{ord}_{n+1}(q)=n$
ii) $4 \nmid n$ and $\begin{cases}e^{2}-4 a \notin \square_{q}, & \operatorname{ord}_{n+1}(q)=n / 2 \\ e^{2}-4 a \in \square_{q}, & \operatorname{ord}_{n+1}(q)=n\end{cases}$

Case B

$n+1=p$
$\mathbb{N}_{\mathbb{F}_{q} / \mathbb{F}_{p}}$: the norm map $\mathbb{F}_{q} \rightarrow \mathbb{F}_{p}, x \mapsto x^{1+p+p^{2}+\cdots+q / p}$.
Theorem
Let $n^{4}<q$. Then

$$
\begin{gathered}
b^{-1} x^{\frac{q^{n}-1}{q-1}+1} \\
\text { is a } C P P \text { of } \mathbb{F}_{q^{n}} \\
\Uparrow
\end{gathered}
$$

for some $r \mid n$, one of the following cases occurs:
i) $b \in\left\{\zeta_{q-1}^{i} \mid \operatorname{gcd}(r, i)=1\right\}$
ii) $b \in\left\{\left(v_{0}-\lambda u_{0}\right)^{r}-e \mid \lambda \in \mathbb{F}_{p}^{*}, e, u_{0}^{p-1} \in \mathbb{F}_{q}^{*}, u_{0}^{\frac{q-1}{r}} \neq 1\right.$,

$$
\left.v_{0}^{r}=e, \operatorname{ord}\left(\mathbb{N}_{\mathbb{F}_{q} / \mathbb{F}_{p}}\left(\frac{u_{0}^{p-1}}{e^{(p-1) / r}}\right)\right)=p-1\right\}
$$

$n+1=8, p=2$

$F(x) \in \mathbb{F}_{q}[x]$ monic of degree 8
Proposition
$F(x)$ is good exceptional over \mathbb{F}_{q} if and only if
$F(x)=x^{8}+a x^{4}+b x^{2}+c x$ is additive and
$x^{7}+a x^{3}+b x+c$ is irreducible over \mathbb{F}_{q}.

$n+1=9, p=3$

No classification is known!

$$
\begin{gathered}
\text { When is } \\
F(x)=x^{9}+A_{1} x^{8}+A_{2} x^{7}+A_{3} x^{6}+A_{4} x^{5}+A_{5} x^{4}+A_{6} x^{3}+A_{7} x^{2}+A_{8} x \\
\text { good exceptional? }
\end{gathered}
$$

Theorem (Cohen 1970)
\mathcal{C}_{F} contains no \mathbb{F}_{ℓ}-rational component distinct from $X=Y$

$$
F(x) \text { is an exceptional polynomial over } \mathbb{F}_{\ell}
$$

- Determine when

$$
\mathcal{C}_{F}:=\frac{F(x)-F(y)}{x-y}=0
$$

has only non-rational components (other than $x-y$)

- Study when the roots of $v_{F}(x)$ are in a unique orbit under Frobenius

$n+1=9, p=3$

Proposition

$F(x)$ is good exceptional over \mathbb{F}_{q} if and only if
i) $F(x)=x^{9}+A_{6} x^{3}+A_{8} x$
and $x^{8}+A_{6} x^{2}+A_{8}$ irreducible over \mathbb{F}_{q};
ii) $F(x)=x^{9}+A_{3} x^{6}+A_{4} x^{5}+A_{5} x^{4}+\left(A_{2}^{3}+A_{3} \frac{A_{5}^{3}}{A_{4}^{3}}+\frac{A_{5}^{2}}{A_{4}}\right) x^{3}$

$$
+\left(2 A_{3} A_{4}+2 \frac{A_{5}^{3}}{A_{4}^{2}}\right) x^{2}+\left(2 A_{3} A_{5}+A_{4}^{2}+2 \frac{A_{5}^{4}}{A_{4}^{3}}\right) x,
$$

(1) $A_{4} \neq 0$,
(2) the polynomial $x^{8}+2 A_{3} x^{2}+2 A_{4} \in \mathbb{F}_{q}[x]$ has no roots in $\mathbb{F}_{q^{4}}$;
iii) $F(x)=x^{9}+A_{2} x^{7}+A_{3} x^{6}+A_{5} x^{4}+\left(A_{2}^{3}+\frac{A_{3} A_{5}}{A_{2}}\right) x^{3}+$

$$
\left(2 A_{2} A_{5}+2 \frac{A_{3}^{3}}{A_{2}}\right) x^{2}+\left(A_{2}^{4}+A_{3} A_{5}+\frac{A_{5}^{2}}{A_{2}}+\frac{A_{3}^{4}}{A_{2}^{2}}\right) x
$$

(1) $2 A_{2}$ is not a square in \mathbb{F}_{q},
(2) the polynomial $v_{F}(x)=F(-x) /(-x)$ is irreducible over \mathbb{F}_{q}.

Thank you for your attention!
\qquad

