Complete permutation polynomials of monomial type

Giovanni Zini

(joint works with D. Bartoli, M. Giulietti and L. Quoos) (based on the work of thesis of E. Franzè)

Università di Perugia

Workshop BunnyTN 7

Trento, 16 novembre 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

Permutation polynomials: an introduction

1 Permutation polynomials: an introduction

Ø Monomial complete permutation polynomials: our results

Permutation polynomials: an introduction

Ø Monomial complete permutation polynomials: our results

Particular cases: degree 8 and 9 in characteristic 2 and 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Some definitions

 \mathbb{F}_{ℓ} : finite field with $\ell = p^{h}$ elements Plane curve C : F(X, Y, T) = 0 \mathbb{F}_{ℓ} -rational point of C: $P = (x, y, z) \in PG(2, \ell)$ such that F(x, y, z) = 0

Definition

 $f(x) \in \mathbb{F}_{\ell}[x]$ is a permutation polynomial (shorly, a PP) of \mathbb{F}_{ℓ} if $x \mapsto f(x)$ is a bijection of \mathbb{F}_{ℓ} (iff $x \mapsto f(x)$ is injective over \mathbb{F}_{ℓ})

Definition

 $f(x) \in \mathbb{F}_{\ell}[x]$ is a complete permutation polynomial (shorly, a CPP) of \mathbb{F}_{ℓ} if both f(x) and f(x) + x are PPs of \mathbb{F}_{ℓ}

Definition

 $f(x) \in \mathbb{F}_{\ell}[x]$ is an exceptional polynomial over \mathbb{F}_{ℓ} if f(x) is a PP of an infinite number of extensions of \mathbb{F}_{ℓ}

CPPs and Cryptography

Definition

 $f(x) \in \mathbb{F}_{\ell}[x]$ is a permutation polynomial (shorly, a PP) of \mathbb{F}_{ℓ} if $x \mapsto f(x)$ is a bijection of \mathbb{F}_{ℓ} (iff $x \mapsto f(x)$ is injective over \mathbb{F}_{ℓ}).

 $f(x) \in \mathbb{F}_{\ell}[x]$ is a complete permutation polynomial (shorly, a CPP) of \mathbb{F}_{ℓ} if both f(x) and f(x) + x are PPs of \mathbb{F}_{ℓ}

Definition

- $f: \mathbb{F}_2^n \to \mathbb{F}_2$ Boolean function is
 - **bent** if $x \mapsto f(x + a) + f(x)$ is balanced $\forall a \in \mathbb{F}_2^n$ ($\Leftrightarrow f$ is PNF)
 - **bent-negabent** if both $x \mapsto f(x+a) + f(x)$ and $x \mapsto f(x+a) + f(x) + Tr(ax)$ are balanced $\forall a \in \mathbb{F}_2^n$

LINK:

any PP of \mathbb{F}_{2^n} gives rise to a bent function over \mathbb{F}_2^n any CPP of \mathbb{F}_{2^n} gives rise to a bent-negabent function over \mathbb{F}_2^n

Link with curves

$$f(x) \in \mathbb{F}_{\ell}[x] \qquad \mapsto \qquad \mathcal{C}_f: \frac{f(x)-f(y)}{x-y} = 0$$

f(x) is a PP of $\mathbb{F}_{\ell} \Longrightarrow C_{f}$ has no affine \mathbb{F}_{ℓ} -rational points (a, b) with $a \neq b$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Link with curves

$$f(x) \in \mathbb{F}_{\ell}[x] \qquad \mapsto \qquad \mathcal{C}_f: \frac{f(x)-f(y)}{x-y} = 0$$

f(x) is a PP of $\mathbb{F}_{\ell} \Longrightarrow C_f$ has no affine \mathbb{F}_{ℓ} -rational points (a, b) with $a \neq b$

Theorem

 \mathcal{C} absolutely irreducible curve of degree d defined over \mathbb{F}_{ℓ} The number N_{ℓ} of \mathbb{F}_{ℓ} -rational points satisfies

$$N_\ell \geq \ell + 1 - (d-1)(d-2)\sqrt{\ell}$$

$$\int_{for \ \ell \ large \ enough:} for \ \ell \ large \ enough: f(x) \ is \ a \ PP \ of \ \mathbb{F}_{\ell} \\ \downarrow \\ \mathcal{C}_{f} \ has \ no \ \mathbb{F}_{\ell}\text{-rat. abs. irr. components distinct from } X = Y$$

・ロト ・ 日子・ ・ ヨト・

Conversely:

Theorem (Cohen 1970)

 \mathcal{C}_{f} contains no \mathbb{F}_{ℓ} -rational abs. irr. component distinct from X = Y $\downarrow \downarrow$

f(x) is an exceptional polynomial over \mathbb{F}_{ℓ}

・ロト ・御ト ・モト ・モト

æ

Conversely:

Theorem (Cohen 1970)

 C_f contains no \mathbb{F}_{ℓ} -rational abs. irr. component distinct from X = Y \Downarrow f(x) is an exceptional polynomial over \mathbb{F}_{ℓ}

It is not difficult to construct PP without any prescribed structure

Remark f(x) is a PP of $\mathbb{F}_{\ell} \iff$ $\alpha f(\gamma x + \delta) + \beta$ is a PP of \mathbb{F}_{ℓ} $(\alpha, \beta, \gamma, \delta \in \mathbb{F}_{\ell}, \alpha, \gamma \neq 0)$

PP-equivalence :

$$f(x) \approx lpha f(\gamma x + \delta) + eta, \quad lpha, eta, \gamma, \delta \in \mathbb{F}_{\ell}, \ lpha, \gamma \neq 0$$

< □ > < @ > < 注 > < 注 > ... 注

- $b^{-1}x^d$ is a PP of $\mathbb{F}_\ell \iff (d, \ell 1) = 1$
- $b^{-1}x^d$ is a CPP of $\mathbb{F}_\ell \iff (d, \ell 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_ℓ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

•
$$b^{-1}x^d$$
 is a PP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$
• $b^{-1}x^d$ is a CPP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_{ℓ}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

 $f_{b}(x) = b^{-1}x^{\frac{q^{n}-1}{q-1}+1}$ has been studied as CPP of $\mathbb{F}_{q^{n}}$ for n = 2, 3, 4 and partially for n = 6

•
$$b^{-1}x^d$$
 is a PP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$
• $b^{-1}x^d$ is a CPP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_{ℓ}

 $f_{b}(x) = b^{-1}x^{\frac{q^{n}-1}{q-1}+1}$ has been studied as CPP of $\mathbb{F}_{q^{n}}$ for n = 2, 3, 4 and partially for n = 6

EXPLICIT LIST of all $b \in \mathbb{F}_{q^n}$ such that f_b is a CPP of \mathbb{F}_{q^n} , in the cases:

◆□▶ ◆□▶ ◆□▶ ◆□▶

- n = 7, for arbitrary q (E. Franzè, Master Thesis)
- n = 6, for arbitrary q (Bartoli-Giulietti-Z., FFA 2016)

•
$$b^{-1}x^d$$
 is a PP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$
• $b^{-1}x^d$ is a CPP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_{ℓ}

 $f_b(x) = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ has been studied as CPP of \mathbb{F}_{q^n} for n = 2, 3, 4 and partially for n = 6

EXPLICIT LIST of all $b \in \mathbb{F}_{q^n}$ such that f_b is a CPP of \mathbb{F}_{q^n} , in the cases:

- n = 7, for arbitrary q (E. Franzè, Master Thesis)
- n = 6, for arbitrary q (Bartoli-Giulietti-Z., FFA 2016)

Conjecture (Wu-Li-Helleseth-Zhang 2015)

If
$$n + 1$$
 is prime, $n + 1 \neq p$, $gcd(n + 1, q^2 - 1) = 1$, then:
there exist CPPs of \mathbb{F}_{q^n} of type $b^{-1}x^{\frac{q^n-1}{q-1}+1}$

•
$$b^{-1}x^d$$
 is a PP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$
• $b^{-1}x^d$ is a CPP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_{ℓ}

 $f_{b}(x) = b^{-1}x^{\frac{q^{n}-1}{q-1}+1}$ has been studied as CPP of $\mathbb{F}_{q^{n}}$ for n = 2, 3, 4 and partially for n = 6

GOAL : to characterize for any n the $b \in \mathbb{F}_{q^n}$ such that $f_b = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ is a CPP of \mathbb{F}_{q^n}

æ

•
$$b^{-1}x^d$$
 is a PP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$
• $b^{-1}x^d$ is a CPP of $\mathbb{F}_{\ell} \iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_{ℓ}

$$f_b(x) = b^{-1}x^{\frac{q^n-1}{q-1}+1}$$
 has been studied as CPP of \mathbb{F}_{q^n} for $n = 2, 3, 4$ and partially for $n = 6$

GOAL : to characterize for any n the $b \in \mathbb{F}_{q^n}$ such that $f_b = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ is a CPP of \mathbb{F}_{q^n}

WE OBTAIN : complete classification for $n^4 < q = p^m$ with the exception of the cases

•
$$n + 1 = p^r$$
, with $r > 1$

•
$$n+1 = p^r(p^r - 1)/2$$
, with $p \in \{2,3\}$, $r > 1$, $gcd(r, 2m) = 1$

$$\boldsymbol{b} \in \mathbb{F}_{q^n} \Longrightarrow A_i(\boldsymbol{b}) := \sum_{0 \le j_1 < j_2 < \ldots < j_i \le n-1} \boldsymbol{b}^{q^{j_1} + q^{j_2} + \ldots + q^{j_i}} \in \mathbb{F}_q$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

i-th elementary symmetrical polynomial in $b, b^q, \ldots, b^{q^{n-1}}$

$$\boldsymbol{b} \in \mathbb{F}_{q^n} \Longrightarrow A_i(\boldsymbol{b}) := \sum_{0 \le j_1 < j_2 < \ldots < j_i \le n-1} \boldsymbol{b}^{q^{j_1} + q^{j_2} + \ldots + q^{j_i}} \in \mathbb{F}_q$$

<ロト <四ト <注入 <注下 <注下 <

i-th elementary symmetrical polynomial in ${\color{black} b}, {\color{black} b}^q, \dots, {\color{black} b}^{q^{n-1}}$

Proposition (Wu-Li-Helleseth-Zhang 2013) If $n^4 < q$, then: $b^{-1}x^{\frac{q^n-1}{q-1}+1}$ is a CPP of \mathbb{F}_{q^n} \iff gcd(n+1, q-1) = 1, $x^{n+1} + A_1(b)x^n + \dots + A_n(b)x$ is an exceptional polynomial over \mathbb{F}_q

$$\boldsymbol{b} \in \mathbb{F}_{q^n} \Longrightarrow A_i(\boldsymbol{b}) := \sum_{0 \le j_1 < j_2 < \ldots < j_i \le n-1} \boldsymbol{b}^{q^{j_1} + q^{j_2} + \ldots + q^{j_i}} \in \mathbb{F}_q$$

i-th elementary symmetrical polynomial in $b, b^q, \ldots, b^{q^{n-1}}$

Proposition (Wu-Li-Helleseth-Zhang 2013)
If
$$n^4 < q$$
, then:
 $b^{-1}x^{\frac{q^n-1}{q-1}+1}$
is a CPP of \mathbb{F}_{q^n} \iff $x^{n+1} + A_1(b)x^n + \dots + A_n(b)x$
is an exceptional polynomial over \mathbb{F}_q

Remark

$$b^{-1}x^{\frac{q^n-1}{q-1}+1}$$
 is a CPP of $\mathbb{F}_{q^n}\iff b^{-q^i}x^{\frac{q^n-1}{q-1}+1}$ is a CPP of \mathbb{F}_{q^n}

(=) (

Proposition (Wu-Li-Helleseth-Zhang 2013)

Definition

Let

$$g(x) = x^{n+1} + \lambda_1 x^n + \cdots + \lambda_{n-1} x^2 + \lambda_n x \in \mathbb{F}_q[x], \ \lambda_n \neq 0$$

be a PP of \mathbb{F}_q . g(x) is good if the roots of

$$v_{g}(x) := \frac{g(-x)}{-x} = x^{n} - \lambda_{1}x^{n-1} + \dots + (-1)^{n-1}\lambda_{n-1}x + (-1)^{n}\lambda_{n}$$

form a unique orbit under the Frobenius map $z \mapsto z^q$.

Proposition

If $n^4 < q$, then:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proposition

If $n^4 < q$, then:

$$b \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q \text{ is such that} \qquad \qquad b \text{ is a root of } v_g(x) = \frac{g(-x)}{-x}$$
for some g
$$good \text{ exceptional pol.}$$
of degree $n + 1$ over \mathbb{F}_q
with $g(0) = 0$ and $g'(0) \neq 0$

Definition

An exceptional polynomial g is decomposable if

 $g(x) = g_1(g_2(x))$ with g_1, g_2 exceptional pol., deg $(g_1),$ deg $(g_2) > 1$

Proposition

 $g \text{ good exceptional polynomial} \Longrightarrow g \text{ indecomposable}$

Idea

In order to classify all CPPs of type $f(x) = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ take all the good indecomposable exceptional polynomials and determine the roots of $v_g(x)$

<ロト <四ト <注入 <注下 <注下 <

Idea

In order to classify all CPPs of type $f(x) = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ take all the good indecomposable exceptional polynomials and determine the roots of $v_g(x)$

Unfortunately:

the complete classification of indecomposable exceptional polynomials is not known!

<ロト <四ト <注入 <注下 <注下 <

Remark f(x) is a good PP of $\mathbb{F}_{\ell} \iff$ $\alpha f(\gamma x) + \beta$ is a good PP of \mathbb{F}_{ℓ} $(\alpha, \beta, \gamma \in \mathbb{F}_{\ell}, \alpha, \gamma \neq 0)$

CPP-equivalence :

$$f(x) \approx \alpha f(\gamma x) + \beta, \quad \alpha, \beta, \gamma \in \mathbb{F}_{\ell}, \, \alpha, \gamma \neq 0$$

(=) (

Remark f(x) is a good PP of $\mathbb{F}_{\ell} \iff$ $\alpha f(\gamma x) + \beta$ is a good PP of \mathbb{F}_{ℓ} $(\alpha, \beta, \gamma \in \mathbb{F}_{\ell}, \alpha, \gamma \neq 0)$

CPP-equivalence :

$$f(x) \approx lpha f(\gamma x) + eta \,, \quad lpha, eta, \gamma \in \mathbb{F}_{\ell} \,, \, lpha, \gamma
eq 0$$

₩

We use the known partial classification of indecomposable exceptional polynomial, up to CPP-equivalence

Classification of indecomposable exceptional polynomials, up to CPP-equivalence

A)
$$n+1 \nmid q-1$$
 is a prime different from p and
A1) $g(t) = (t+e)^{n+1} - e^{n+1}$, $e \in \mathbb{F}_q$
A2) $g(t) = D_{n+1}(t+e, a) - D_{n+1}(e, a)$,
 $a, e \in \mathbb{F}_q$, $a \neq 0$, $n+1 \nmid q^2 - 1$
 $D_{n+1}(t, a)$ Dickson polynomial of degree $n+1$

B)
$$n+1 = p$$
 and $g(t) = (t+e)\left((t+e)^{\frac{p-1}{r}} - a\right)^r - e\left(e^{\frac{p-1}{r}} - a\right)^r$
 $r \mid p-1, a, e \in \mathbb{F}_q, a^{r(q-1)/(p-1)} \neq 1.$

C)
$$n+1 = s(s-1)/2$$

 $p \in \{2,3\}, q = p^m, r > 1, s = p^r > 3 \text{ and } (r, 2m) = 1.$

D) $n + 1 = p^r$ with r > 1.

Case A1

n + 1 is prime, $n + 1 \neq p$, n + 1 does not divide q - 1 $\zeta_{n+1} := (n + 1)$ -th primitive root of unity

Proposition Let $e \in \mathbb{F}_q^*$. Then $g(t) = (t + e)^{n+1} - e^{n+1}$ is good exceptional over \mathbb{F}_q \iff $ord_{n+1}(q) = n$ If $ord_{n+1}(q) = n$, then for each $e \in \mathbb{F}_q^*$ and $i \in \{1, ..., n\}$ $\left(e(\zeta_{n+1}^i - 1)\right)^{-1} x^{\frac{q^n-1}{q-1}+1}$ is a CPP of \mathbb{F}_{q^n}

Case A2

n+1 is prime, $n+1 \neq p$, n+1 does not divide q^2-1

(Dickson polynomials)

$$D_{n+1}(t,a) = \sum_{k=0}^{n/2} \frac{n+1}{n+1-k} \binom{n+1-k}{k} (-a)^k t^{n+1-2k}$$

Proposition

 $g(x) = D_{n+1}(x + e, a) - D_{n+1}(e, a)$, $e, a \in \mathbb{F}_q$, $a \neq 0$, $D'_{n+1}(e, a) \neq 0$, is good exceptional over \mathbb{F}_q if and only if one of the following cases occurs:

i)
$$4 \mid n \text{ and } ord_{n+1}(q) = n$$

ii) $4 \nmid n$ and
$$\begin{cases} e^2 - 4a \notin \Box_q, & ord_{n+1}(q) = n/2\\ e^2 - 4a \in \Box_q, & ord_{n+1}(q) = n \end{cases}$$

Case B

n+1=p $\mathbb{N}_{\mathbb{F}_q/\mathbb{F}_p}$: the norm map $\mathbb{F}_q \to \mathbb{F}_p$, $x \mapsto x^{1+p+p^2+\dots+q/p}$. Theorem

Let $n^4 < q$. Then

$$b^{-1}x^{\frac{q^n-1}{q-1}+1}$$
 is a CPP of \mathbb{F}_{q^n}
 \uparrow
for some $r \mid n$, one of the following cases occurs:

i)
$$b \in \{\zeta_{q-1}^{i} \mid \gcd(r, i) = 1\}$$

ii) $b \in \{(v_{0} - \lambda u_{0})^{r} - e \mid \lambda \in \mathbb{F}_{p}^{*}, e, u_{0}^{p-1} \in \mathbb{F}_{q}^{*}, u_{0}^{\frac{q-1}{r}} \neq 1, v_{0}^{r} = e, \text{ ord } \left(\mathbb{N}_{\mathbb{F}_{q}/\mathbb{F}_{p}}\left(\frac{u_{0}^{p-1}}{e^{(p-1)/r}}\right)\right) = p-1\}$

 $F(x) \in \mathbb{F}_q[x]$ monic of degree 8

Proposition

F(x) is good exceptional over \mathbb{F}_q if and only if $F(x) = x^8 + ax^4 + bx^2 + cx$ is additive and $x^7 + ax^3 + bx + c$ is irreducible over \mathbb{F}_q .

(日) (四) (문) (문) (문)

n + 1 = 9, p = 3

No classification is known!

When is $F(x) = x^9 + A_1 x^8 + A_2 x^7 + A_3 x^6 + A_4 x^5 + A_5 x^4 + A_6 x^3 + A_7 x^2 + A_8 x$ good exceptional?

Theorem (Cohen 1970)

Determine when

$$\mathcal{C}_{F} := \frac{F(x) - F(y)}{x - y} = 0$$

has only non-rational components (other than x - y)

• Study when the roots of $v_F(x)$ are in a unique orbit under Frobenius

n + 1 = 9, p = 3

Proposition

F(x) is good exceptional over \mathbb{F}_q if and only if

- i) $F(x) = x^9 + A_6 x^3 + A_8 x$ and $x^8 + A_6 x^2 + A_8$ irreducible over \mathbb{F}_q ; ii) $F(x) = x^9 + A_3 x^6 + A_4 x^5 + A_5 x^4 + \left(A_2^3 + A_3 \frac{A_5^3}{A_4^3} + \frac{A_5^2}{A_4}\right) x^3$ $+ \left(2A_3A_4 + 2\frac{A_5^3}{A_4^2}\right) x^2 + \left(2A_3A_5 + A_4^2 + 2\frac{A_5^4}{A_4^3}\right) x$, • $A_4 \neq 0$,
 - **2** the polynomial $x^8 + 2A_3x^2 + 2A_4 \in \mathbb{F}_q[x]$ has no roots in \mathbb{F}_{q^4} ;

iii)
$$F(x) = x^9 + A_2 x^7 + A_3 x^6 + A_5 x^4 + \left(A_2^3 + \frac{A_3 A_5}{A_2}\right) x^3 + \left(2A_2A_5 + 2\frac{A_3^3}{A_2}\right) x^2 + \left(A_2^4 + A_3A_5 + \frac{A_5^2}{A_2} + \frac{A_3^4}{A_2^2}\right) x,$$

2A₂ is not a square in 𝔽_q,
 the polynomial v_F(x) = F(-x)/(-x) is irreducible over 𝔽_q.

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで