Osservazioni sul linguaggio

Raul Paolo Serapioni

Analisi Matematica A – Secondo modulo Corso di Laurea in matematica Università di Trento

settembre 2019

Osservazioni sul linguaggio matematico Cap 1. 1.1, 1.2, 1.3, 1.4:

Sono proposizioni: A, B, \dots

- A:= "3 è un numero pari";
- \mathcal{B} := "3 + 2 = 5";
- C:="3+2=6";
- D:= "nel triangolo ABC ci sono due lati uguali";
- ℰ:= "nel triangolo ABC ci sono due angoli uguali";
- $\mathcal{F} := "x := \pi/2"$;
- G:= "P appartiene alla retta r";
- ...

I connettivi logici

"e, o, se . . . allora, non, se e solo se"

permettono di costruire proposizioni più complesse a partire da proposizioni più semplici.

- "P appartiene alla retta r e P appartiene alla retta s;
- "P appartiene alla retta r o P appartiene alla retta s;
- "se nel triangolo ABC ci sono due lati uguali allora nel triangolo ABC ci sono due angoli uguali";
- "nel triangolo ABC ci sono due lati uguali se e solo se nel triangolo ABC ci sono due angoli uguali";
- "non P appartiene alla retta r";

${\mathcal A}$ e ${\mathcal B}$	in simboli	$\mathcal{A} \wedge \mathcal{B}$
\mathcal{A} o \mathcal{B}	• • •	$\mathcal{A}\vee\mathcal{B}$
non ${\mathcal A}$		$\neg \mathcal{A}$
\int se \mathcal{A} allora \mathcal{B}		$\mathcal{A}\Rightarrow\mathcal{B}$
\mathcal{A} implica \mathcal{B}	• • •	$\mathcal{A}\Rightarrow\mathcal{B}$
$\widehat{\mathcal{A}}$ se e solo se \mathcal{B}		$\mathcal{A} \iff \mathcal{B}$

"se $\mathcal A$ implica $\mathcal B$ e se $\mathcal B$ implica $\mathcal C$ allora $\mathcal A$ implica $\mathcal C$ " che simbolicamente diventa

$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$

"se \mathcal{A} e \mathcal{B} oppure se \mathcal{C} e \mathcal{D} allora \mathcal{B} e \mathcal{C} " in simboli

$$((\mathcal{A} \wedge \mathcal{B}) \vee (\mathcal{C} \wedge \mathcal{D})) \Rightarrow (\mathcal{B} \wedge \mathcal{C})$$

All'interno di una Teoria matematica una proposizione può essere Vera o Falsa. (In gergo: è possibile assegnare un valore di verità ad una proposizione).

Example

Nell'aritmetica elementare

- A := "3 è un numero pari" e C := "3 + 2 = 6 sono False,
- \mathcal{B} := "3 + 2 = 5" è Vera.

Nella logica che noi utilizzeremo le seguenti "Tavole di verità" determinano la verità o falsità di una proposizione composta a partire dalla verità o falsità delle proposizioni componenti.

Tavole di verità

$$\begin{array}{c|cc}
\mathcal{A} & \neg \mathcal{A} \\
\hline
V & F \\
F & V
\end{array}$$

\mathcal{A}	\mathcal{B}	$\mathcal{A} \wedge \mathcal{B}$	$\mathcal{A} \lor \mathcal{B}$	$\mathcal{A}\Rightarrow\mathcal{B}$	$\mathcal{A} \iff \mathcal{B}$
V	V	V	V	V	V
V	F	F	V	F	F
F	V	F	V	V	F
F	F	F	F	V	V

Se $A \Rightarrow B$ è vera diciamo che

- A è condizione sufficiente per B oppure che
- \mathcal{B} è condizione necessaria per \mathcal{A} .

Nella logica che noi utilizzeremo le seguenti proposizioni sono Tautologie, cioè sono proposizioni vere indipendentemente dalla verità o falsità delle proposizioni \mathcal{A} , \mathcal{B} e \mathcal{C} .

- $A \lor \neg A$ (terzo escluso)
- $\neg(A \land \neg A)$ (principio di non contraddizione)
- $\bullet \ ((\mathcal{A} \Rightarrow \mathcal{B}) \land \mathcal{A}) \Rightarrow \mathcal{B} \quad \textit{(modus ponens)}$
- $(A \Rightarrow B) \iff (\neg B \Rightarrow \neg A)$ (principio di contrapposizione)
- $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$ (sillogismo ipotetico)
- $\bullet \neg (A \lor B) \iff \neg A \land \neg B$

Molte espressioni matematiche contengono una o più variabili. Sono dette **predicati**: $A(x), P(x, y), \dots$

- $A(x) := "x \ e$ un numero intero";
- $\mathcal{B}(x) := "3 + x = 5";$
- C(x, y):="x + y = 0";
- $\mathcal{D}(x) := "x^2 1 = 2x + 4";$
- $\mathcal{E}(z) := "z^5 + 2z^4 + 3z^3 + 4z^2 + 5z = 1";$
- $\mathcal{F}(x, y, z, n) := "x^n + y^n = z^n";$
- $\mathcal{G}(P)$:= "P appartiene alla retta r";
- ...

I quantificatori

- 'per ogni ...'
- 'esiste un/una ...'

sono locuzioni molto usate nel linguaggio matematico. Sono stenografati con i simboli \forall e \exists .

- "per ogni x, $\mathcal{P}(x)$ è vera" è in simboli $\forall x : \mathcal{P}(x)$
- "esiste x tale che $\mathcal{P}(x)$ è vera" è in simboli $\exists x : \mathcal{P}(x)$

∃ ha il significato di *esiste almeno uno*. Per indicare l'esistenza di *esattamente un solo* oggetto cor una certa proprietà di solito si usa il simbolo ∃!.

I quantificatori

- 'per ogni ...'
- 'esiste un/una ...'

sono locuzioni molto usate nel linguaggio matematico. Sono stenografati con i simboli \forall e \exists .

- "per ogni x, $\mathcal{P}(x)$ è vera" è in simboli $\forall x : \mathcal{P}(x)$
- "esiste x tale che $\mathcal{P}(x)$ è vera" è in simboli $\exists x : \mathcal{P}(x)$

∃ ha il significato di *esiste almeno uno*.

Per indicare l'esistenza di *esattamente un solo* oggetto con una certa proprietà di solito si usa il simbolo \exists !.

Example

Per ogni numero reale x è vero che $2^x > x$.

- La negazione di "per ogni x P(x) è vera" è esiste un x per il quale P(x) è falsa
- La negazione di "esiste x tale che P(x) è vera" è per ogni x P(x) è falsa

Negazione di proposizioni contenenti quantificatori

$$\neg(\forall x: \mathcal{P}(x)) \iff (\exists x: \neg \mathcal{P}(x))$$

- La negazione di "per ogni x P(x) è vera" è esiste un x per il quale P(x) è falsa
- La negazione di "esiste x tale che P(x) è vera" è per ogni x P(x) è falsa

Negazione di proposizioni contenenti quantificatori

$$\neg(\forall x: \mathcal{P}(x)) \iff (\exists x: \neg \mathcal{P}(x))$$

$$\neg(\exists x: \mathcal{P}(x)) \iff (\forall x: \neg \mathcal{P}(x))$$

Example

non è vero che: per ogni $x \in \mathbb{Q}$ esiste $y \in \mathbb{Q}$ tale che xy = 1

è

esiste un $x \in \mathbb{Q}$ tale che

non è vero che esiste $y \in \mathbb{Q}$ tale che xy = 1

cioè

esiste un $x \in \mathbb{Q}$ tale che

per ogni $y \in \mathbb{Q}$ non è vero che xy = 1

cioè

$$\neg(\forall x \in \mathbb{Q}, \exists y \in \mathbb{Q}, xy = 1) \iff \exists x \in \mathbb{Q}, \forall y \in \mathbb{Q}, xy \neq 1$$

Il linguaggio matematico usa parole e costruzioni della lingua italiana con un significato a volte diverso.

o, oppure: nel linguaggio matematico o/oppure non sono esclusivi. Per esempio

$$\{x \in \mathbb{R} : 0 < x < 2 \quad 0 \quad 1 < x < 3\} = \{x \in \mathbb{R} : 0 < x < 3\}.$$

e: ha lo stesso significato che nella lingua parlata.

$$\{x \in \mathbb{R} : 0 < x < 2 \text{ e } 1 < x < 3\} = \{x \in \mathbb{R} : 1 < x < 2\}.$$

il / la: individuano univocamente un oggetto. Per esempio,

la soluzione dell'equazione: $x^3 - 8 = 0$

indica che esiste esattamente una soluzione dell'equazione.

un/ una: indicano un oggetto con valore indeterminato. Per esempio

una soluzione dell'equazione: $\cos x = 0$.

Nel linguaggio matematico ha, a volte, un uso diverso di quello solito nella lingua parlata. Per esempio la frase

Giovanni è **un** colpevole

ha il significato implicito che Giovanni non sia l'unico colpevole. Questo manca nell'uso matematico. Per esempio, se dico

0 è **una** soluzione reale dell'equazione: $x^3 + 4x + \sin x = 0$

non intendo dire che, oltre alla soluzione x = 0, esistono altre soluzioni reali.

un/ una: indicano un oggetto con valore indeterminato. Per esempio

una soluzione dell'equazione: $\cos x = 0$.

Nel linguaggio matematico ha, a volte, un uso diverso di quello solito nella lingua parlata. Per esempio la frase

Giovanni è **un** colpevole

ha il significato implicito che Giovanni non sia l'unico colpevole. Questo manca nell'uso matematico. Per esempio, se dico

0 è **una** soluzione reale dell'equazione: $x^3 + 4x + \sin x = 0$

non intendo dire che, oltre alla soluzione x = 0, esistono altre soluzioni reali.

un / una: sono usati anche per dichiarare un elemento generico di un insieme. Per esempio

Sia dato un punto x appartenente ad un insieme $E \dots$

oppure

Dato un $\varepsilon > 0$ si può trovare un $\delta > 0 \dots$

Frasi di questo tipo sono equivalenti a

Per ogni punto x appartenente ad un insieme E . . .

oppure

Per ogni $\varepsilon > 0$ esiste $\delta > 0 \dots$

se: in italiano sono usate frasi del tipo

 \ldots (è vero) $\mathcal A$ **se** (è vero) $\mathcal B \ldots$

per esempio

... vado in montagna **se** c'è il sole ...

Questa frase può significare sia:

... se c'è il sole allora vado in montagna ...

che:

... se vado in montagna allora (vuol dire che) c'è il sole...

se:

Variante dell'esempio precedente: la lingua italiana ammette che la frase

 $x^n + x + 1 = 0$ ha una soluzione reale **se** n è dispari

possa voler dire sia:

se n è dispari allora $x^n + x + 1 = 0$ ha una soluzione reale

che

se $x^n + x + 1 = 0$ ha una soluzione reale allora n è dispari.

