ANALISI MATEMATICA 1 – Primo Appello		23 gennaio 2017
Cognome:	Nome:	Matricola:
Corso di Laurea in FISICA		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $F: \mathbf{R} \to \mathbf{R}$ definita da $F(x) := \int_{2}^{2x^{2}} \sin(\pi t^{2}) dt$. Il polinomio di Taylor di secondo grado, con centro in $x_{0} = 1$ di F è: $a = 4(x 1) + 32\pi(x 1)^{2}$; $b = 4(x 1) + 64\pi(x 1)^{2}$; $c = 32\pi(x 1)^{2}$; $d = 64\pi(x 1)^{2}$.
- 2. L'insieme dei β per i quali l'equazione $\frac{2}{x} = \beta x^4 x$ ha una soluzione è: $a \beta < 0$; $b 1 < \beta < 1$; $c \beta \neq 0$; $d \beta > 0$.
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ continua e strettamente decrescente. Se $F(x) := \int_0^x f(t) \, dt$ allora necessariamente: a F ha un punto di massimo; b un punto di massimo relativo di F è anche di massimo assoluto; c F è decrescente solo per x > 0; d F è strettamente decrescente in \mathbf{R} .
- 4. Sia I un intervallo e sia $f: I \to \mathbf{R}$ invertibile. Indichiamo con f^{-1} la funzione inversa. Quale delle seguenti affermazioni è necessariamente vera? a Il dominio di f^{-1} è un intervallo; b f è strettamente monotona in I; c Se f è strettamente monotona e derivabile in I allora f^{-1} è derivabile; a Se f è derivabile in a e se a a per ogni a e a allora a derivabile.
- 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora

$$\int_{-1}^{1} x f(2x^2 + 1) \, dx =$$

$$\boxed{a} \ 4 \int_{-3}^{3} f(t) \, dt; \quad \boxed{b} \ 0; \quad \boxed{c} \ \frac{1}{4} \int_{-3}^{3} f(t) \, dt; \quad \boxed{d} \ \frac{1}{2} \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \sqrt{t^2 + 1} f(t) \, dt.$$

- 6. L'insieme degli $\alpha \in \mathbf{R}$ per i quali $\sum_{n=1}^{+\infty} \frac{n^{\alpha}}{n^{2\alpha} + n}$ converge è: $\boxed{a} \{-1 < \alpha < 1\}; \boxed{b} \{2 < \alpha\};$ $\boxed{c} \{\alpha \neq 0\}; \boxed{d} \{\alpha < 0\} \cup \{\alpha > 1\}.$
- 7. Determinate l'insieme degli $z \in \mathbf{C}$ che sono soluzione dell'equazione $z\bar{z} + 2Re(z(1+i)) = 0$.

 [a] La circonferenza di centro -1 i e raggio $\sqrt{2}$; [b] La circonferenza di centro -1 + i e raggio $\sqrt{2}$; [c] La retta $\{z = i\}$; [d] La retta $\{\bar{z} = i\}$.
- 8. L'insieme degli $\alpha \in \mathbf{R}$ per i quali $\lim_{x \to 0^+} \frac{\sin x x \cos x}{x^{\alpha} \sin x} = +\infty$ è: $\boxed{a} \quad \alpha < 1; \quad \boxed{b} \quad \alpha > 1;$ $\boxed{c} \quad \alpha > 2; \quad \boxed{d} \quad \alpha < 2.$

ANALISI MATEMATICA 1 – Primo Appello		23 gennaio 2017
Cognome:	Nome:	Matricola:
Corso di Laurea in FISICA		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme degli $\alpha \in \mathbf{R}$ per i quali $\sum_{n=1}^{+\infty} \frac{n^{\alpha}}{n^{2\alpha} + n}$ converge è: \boxed{a} $\{2 < \alpha\}; \boxed{b}$ $\{\alpha \neq 0\};$ \boxed{c} $\{\alpha < 0\} \cup \{\alpha > 1\}; \boxed{d}$ $\{-1 < \alpha < 1\}.$
- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ continua e strettamente decrescente. Se $F(x) := \int_0^x f(t) dt$ allora necessariamente: a un punto di massimo relativo di F è anche di massimo assoluto; b F è decrescente solo per x > 0; c F è strettamente decrescente in \mathbf{R} ; d F ha un punto di massimo.
- 3. Sia I un intervallo e sia $f: I \to \mathbf{R}$ invertibile. Indichiamo con f^{-1} la funzione inversa. Quale delle seguenti affermazioni è necessariamente vera? a f è strettamente monotona in I; b Se f è strettamente monotona e derivabile in I allora f^{-1} è derivabile; c Se f è derivabile in I e se $f'(x) \neq 0$ per ogni $x \in I$ allora f^{-1} è derivabile; d Il dominio di f^{-1} è un intervallo.
- 4. Determinate l'insieme degli $z \in \mathbb{C}$ che sono soluzione dell'equazione $2z\bar{z} + 4Re(z(1+i)) = 0$. \boxed{a} La circonferenza di centro -1+i e raggio $\sqrt{2}$; \boxed{b} La retta $\{z=i\}$; \boxed{c} La retta $\{\bar{z}=i\}$; \boxed{d} La circonferenza di centro -1-i e raggio $\sqrt{2}$.
- 5. Sia $F : \mathbf{R} \to \mathbf{R}$ definita da $F(x) := \int_{2}^{2x^{2}} \sin(\pi t^{2}) dt$. Il polinomio di Taylor di secondo grado, con centro in $x_{0} = -1$ di F è: $a = 4(x+1) + 64\pi(x+1)^{2}$; $b = 32\pi(x+1)^{2}$; $c = 64\pi(x+1)^{2}$; $d = 4(x+1) + 32\pi(x+1)^{2}$.
- 6. L'insieme dei β per i quali l'equazione $\frac{3}{x} = \beta x^4 x$ ha una soluzione positiva è: $a 1 < \beta < 1$; $b \beta \neq 0$; $c \beta > 0$; $d \beta < 0$.
- 7. L'insieme degli $\alpha \in \mathbf{R}$ per i quali $\lim_{x \to 0^+} \frac{\sin x x \cos x}{x^{\alpha} \sin^2 x} = +\infty$ è: $\boxed{a} \quad \alpha > 1; \quad \boxed{b} \quad \alpha > 2;$ $\boxed{c} \quad \alpha < 2; \quad \boxed{d} \quad \alpha < 1.$
- 8. Sia $g: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora

$$\int_{-1}^{1} x \, g(2x^2 + 1) \, dx =$$

$$\boxed{a} \ 0; \ \boxed{b} \ \frac{1}{4} \int_{-3}^{3} g(t) \, dt; \ \boxed{c} \ \frac{1}{2} \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \sqrt{t^2 + 1} g(t) \, dt; \ \boxed{d} \ 4 \int_{-3}^{3} g(t) \, dt.$$