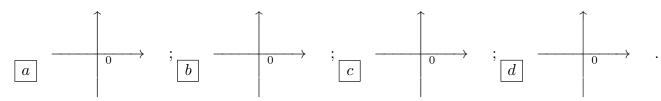
ANALISI MATEMATICA 1 - Quinto appello		5 settembre 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

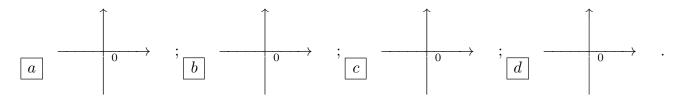
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{x+1}{x-1}$ nel punto (2, g(2)) è: $a \quad y = -x + 7; \quad b \quad y = -\frac{2}{3}x + \frac{19}{3}; \quad c \quad y = -2x + 7; \quad d \quad y = -x + 6.$
- 2. Quale delle seguenti figure rappresenta il grafico della funzione $q(x) = \frac{\tan(x^2)}{x^4}$ vicino all'origine?



- 3. Sia $\{a_n\}_{n=0}^{\infty}$ una successione di numeri reali strettamente decrescente. Se ciò non è sufficiente per la convergenza della serie $\sum_{n=0}^{\infty} (-1)^n a_n$, quale delle seguenti altre proprietà garantisce la convergenza? $a_n \geq 1/n^2$ per ogni n>0; b la successione tende ad un limite finito ; c le proprietà elencate sono già sufficienti per la convergenza della serie ; d la successione è infinitesima .
- 4. L'area della regione di piano compresa fra il grafico della funzione f(x) = 3x(x-2) e l'asse delle ascisse per $x \in [1,3]$ è: $a \mid 9$; $b \mid 3$; $c \mid 6$; $d \mid 4$.
- 5. Sia $\varphi : [a, b] \to \mathbf{R}$ una funzione derivabile con $\varphi(b) = \varphi(a) + 2$. In quale intervallo [a, b] esiste $c \in (a, b)$ con $\varphi'(c) = \frac{1}{2}$, qualunque sia φ con le proprietà descritte? \boxed{a} [a, b] = [1, 9]; \boxed{b} [a, b] = [1, 16]; \boxed{c} [a, b] = [1, 5]; \boxed{d} [a, b] = [1, 10].
- 6. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale improprio $\int_0^1 \frac{\sin(x^{2\alpha})}{\sqrt{x}(x+x^2)} dx$ è convergente è: $a \mid \alpha > \frac{1}{3}$; $b \mid \alpha > \frac{1}{12}$; $c \mid \alpha > \frac{1}{4}$; $d \mid \alpha > \frac{1}{2}$.
- 7. La funzione $f(x) = \begin{cases} x^3 2x^2 + 2 & \text{per } x \leq 0 \\ \frac{\sin(x^2 + 2\alpha x)}{4x} & \text{per } x > 0 \end{cases}$ è continua per: $\boxed{a} \ \alpha = 5; \ \boxed{b} \ \alpha = 4;$ $\boxed{c} \ \alpha = -1; \ \boxed{d} \ \alpha = -3.$
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile e convessa (cioè con la concavità rivolta verso l'alto). Allora è sempre vero che: $\boxed{a} f'(100) \geq f'(0)$; $\boxed{b} f(x) \geq x$ per x abbastanza grande ; $\boxed{c} \lim_{x \to +\infty} f(x) = +\infty$; $\boxed{d} f(100) \geq f(0)$.

ANALISI MATEMATICA 1 - Quinto appello		5 settembre 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

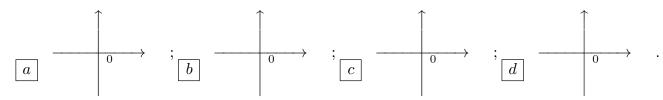
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale improprio $\int_0^1 \frac{\log(1+x^\alpha)}{\sqrt{x}(x+x^3)} dx \ ext{è}$ convergente \(\epsilon\): \(a \) \(a > \frac{1}{12}; \quad b \) \(\alpha > \frac{1}{4}; \quad \(c \) \(\alpha > \frac{1}{2}; \quad \dagger \dagger \frac{1}{3}.
- 2. Sia $\{a_n\}_{n=0}^{\infty}$ una successione di numeri reali infinitesima. Se ciò non è sufficiente per la convergenza della serie $\sum_{n=0}^{\infty} (-1)^n a_n$, quale delle seguenti altre proprietà garantisce la convergenza? \boxed{a} $a_n \leq 1/n$ per ogni n>0; \boxed{b} le proprietà elencate sono già sufficienti per la convergenza della serie ; \boxed{c} la successione è strettamente decrescente ; \boxed{d} $a_n \geq 1/n^2$ per ogni n>0.
- 3. L'area della regione di piano compresa fra il grafico della funzione f(x) = 2x(x-2) e l'asse delle ascisse per $x \in [1,3]$ è: $a \in [b]$ 6; $c \in [c]$ 4; $a \in [c]$ 9.
- 4. La funzione $f(x) = \begin{cases} x^4 + 2x^3 + 1 & \text{per } x \leq 0 \\ \frac{\sin(3x^2 \alpha x)}{3x} & \text{per } x > 0 \end{cases}$ è continua per: $\boxed{a} \ \alpha = 4; \ \boxed{b} \ \alpha = -1;$ $\boxed{c} \ \alpha = -3; \ \boxed{d} \ \alpha = 5.$
- 5. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{x+3}{x-1}$ nel punto (3, g(3)) è: $a y = -\frac{2}{3}x + \frac{19}{3}$; b y = -2x + 7; c y = -x + 6; d y = -x + 7.
- 6. Quale delle seguenti figure rappresenta il grafico della funzione $q(x) = \frac{\tan(x^2)}{x^3}$ vicino all'origine?



- 7. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile e concava (cioè con la concavità rivolta verso il basso). Allora è sempre vero che: $a f(x) \le -x$ per x abbastanza grande ; $b \lim_{x \to +\infty} f(x) = -\infty$; $c f(100) \le f(0)$; $d f'(100) \le f'(0)$.
- 8. Sia $\varphi : [a, b] \to \mathbf{R}$ una funzione derivabile con $\varphi(b) = \varphi(a) + 3$. In quale intervallo [a, b] esiste $c \in (a, b)$ con $\varphi'(c) = \frac{1}{3}$, qualunque sia φ con le proprietà descritte? \boxed{a} [a, b] = [1, 16]; \boxed{b} [a, b] = [1, 5]; \boxed{c} [a, b] = [1, 10]; \boxed{d} [a, b] = [1, 9].

ANALISI MATEMATICA 1 - Quinto appello		5 settembre 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Quale delle seguenti figure rappresenta il grafico della funzione $q(x) = \frac{\cos x 1}{x^4}$ vicino all'origine?

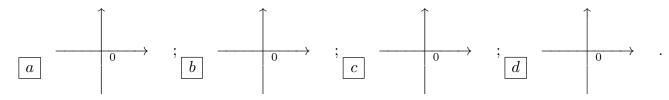


- 2. L'area della regione di piano compresa fra il grafico della funzione f(x) = 3x(x-3) e l'asse delle ascisse per $x \in [2,4]$ è: $a \in [b]$ 4; $a \in [b]$ 4; $a \in [b]$ 3.
- 3. La funzione $f(x) = \begin{cases} x^3 2x^2 + 1 & \text{per } x \ge 0 \\ \frac{\sin(2x^2 + \alpha x)}{5x} & \text{per } x < 0 \end{cases}$ è continua per: $\boxed{a} \ \alpha = -1; \ \boxed{b} \ \alpha = -3;$ $\boxed{c} \ \alpha = 5; \ \boxed{d} \ \alpha = 4.$
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile e convessa (cioè con la concavità rivolta verso l'alto). Allora è sempre vero che: $\boxed{a} \lim_{x \to +\infty} f(x) = +\infty$; $\boxed{b} f(100) \ge f(0)$; $\boxed{c} f'(100) \ge f'(0)$; $\boxed{d} f(x) \ge x$ per x abbastanza grande .
- 5. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale improprio $\int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x 1)^{3\alpha}}{x^2(\sqrt{x} + 1)} dx \ ext{``entroprion } \int_0^1 \frac{(e^x$
- 6. Sia $\{a_n\}_{n=0}^{\infty}$ una successione di numeri reali positiva. Se ciò non è sufficiente per la convergenza della serie $\sum_{n=0}^{\infty} (-1)^n a_n$, quale delle seguenti altre proprietà garantisce la convergenza?

 [a] la proprietà elencata è già sufficiente per la convergenza della serie; [b] la successione è infinitesima e strettamente decrescente; [c] $a_n \ge 1/n^2$ per ogni n > 0; [d] la successione tende ad un limite finito.
- 7. Sia $\varphi:[a,b]\to \mathbf{R}$ una funzione derivabile con $\varphi(b)=\varphi(a)+4$. In quale intervallo [a,b] esiste $c\in(a,b)$ con $\varphi'(c)=\frac{1}{2}$, qualunque sia φ con le proprietà descritte? \boxed{a} [a,b]=[1,5]; \boxed{b} [a,b]=[1,10]; \boxed{c} [a,b]=[1,9]; \boxed{d} [a,b]=[1,16].
- 8. L'equazione della retta tangente al grafico della funzione $g(x)=\frac{x+2}{x-2}$ nel punto (4,g(4)) è: $a \ y=-2x+7; \ b \ y=-x+6; \ c \ y=-x+7; \ d \ y=-\frac{2}{3}x+\frac{19}{3}.$

ANALISI MATEMATICA 1 - Quinto appello		5 settembre 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

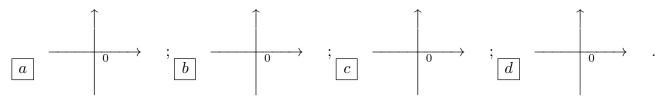
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $\{a_n\}_{n=0}^{\infty}$ una successione di numeri reali strettamente decrescente e infinitesima. Se ciò non è sufficiente per la convergenza della serie $\sum_{n=0}^{\infty} (-1)^n a_n$, quale delle seguenti altre proprietà garantisce la convergenza? $a \frac{a_{n+1}}{a_n} \geq \frac{1}{2}$ per ogni $n \geq 0$; $a_n \geq 1/n^2$ per ogni n > 0; $a_n \leq 1/n$ per ogni $n \geq 1/n$ per
- 2. La funzione $f(x) = \begin{cases} x^4 + x^3 + 2 & \text{per } x \ge 0 \\ \frac{\sin(4x^2 4\alpha x)}{2x} & \text{per } x < 0 \end{cases}$ è continua per: $\boxed{a} \ \alpha = -3; \ \boxed{b} \ \alpha = 5;$ $\boxed{c} \ \alpha = 4; \ \boxed{d} \ \alpha = -1.$
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile e concava (cioè con la concavità rivolta verso il basso). Allora è sempre vero che: $a f(100) \le f(0)$; $b f'(100) \le f'(0)$; $c f(x) \le -x$ per x abbastanza grande ; $d \lim_{x \to +\infty} f(x) = -\infty$.
- 4. Sia $\varphi:[a,b]\to \mathbf{R}$ una funzione derivabile con $\varphi(b)=\varphi(a)+5$. In quale intervallo [a,b] esiste $c\in(a,b)$ con $\varphi'(c)=\frac{1}{3}$, qualunque sia φ con le proprietà descritte? \boxed{a} [a,b]=[1,10]; \boxed{b} [a,b]=[1,9]; \boxed{c} [a,b]=[1,16]; \boxed{d} [a,b]=[1,5].
- 5. Quale delle seguenti figure rappresenta il grafico della funzione $q(x) = \frac{\cos x 1}{x^3}$ vicino all'origine?



- 6. L'area della regione di piano compresa fra il grafico della funzione f(x) = x(x-3) e l'asse delle ascisse per $x \in [2,4]$ è: $a \mid 4$; $b \mid 9$; $c \mid 3$; $d \mid 6$.
- 7. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{x+4}{x-2}$ nel punto (5, g(5)) è: $a \ y = -x + 6; \ b \ y = -x + 7; \ c \ y = -\frac{2}{3}x + \frac{19}{3}; \ d \ y = -2x + 7.$
- 8. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale improprio $\int_0^1 \frac{(1 \cos x)^{3\alpha}}{x(x + \sqrt{x})} dx \ ext{è}$ convergente \(\epsilon\): \[alpha > \frac{1}{2}; \quad b \quad \alpha > \frac{1}{3}; \quad \cap \alpha > \frac{1}{12}; \quad \dag \alpha > \frac{1}{4}.\]

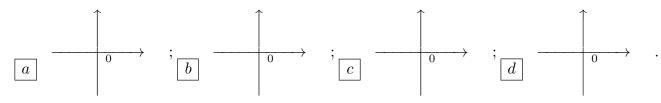
ANALISI MATEMATICA 1 - Quinto appello		5 settembre 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. L'area della regione di piano compresa fra il grafico della funzione f(x) = 3x(x-2) e l'asse delle ascisse per $x \in [1,3]$ è: $a \mid 9$; $b \mid 3$; $c \mid 6$; $d \mid 4$.
- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile e convessa (cioè con la concavità rivolta verso l'alto). Allora è sempre vero che: $a f'(100) \ge f'(0)$; $b f(x) \ge x$ per x abbastanza grande ; $c \lim_{x \to +\infty} f(x) = +\infty$; $d f(100) \ge f(0)$.
- 3. Sia $\varphi : [a, b] \to \mathbf{R}$ una funzione derivabile con $\varphi(b) = \varphi(a) + 2$. In quale intervallo [a, b] esiste $c \in (a, b)$ con $\varphi'(c) = \frac{1}{2}$, qualunque sia φ con le proprietà descritte? \boxed{a} [a, b] = [1, 9]; \boxed{b} [a, b] = [1, 16]; \boxed{c} [a, b] = [1, 5]; \boxed{d} [a, b] = [1, 10].
- 4. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{x+3}{x-1}$ nel punto (3, g(3)) è: $a \quad y = -x + 7; \quad b \quad y = -\frac{2}{3}x + \frac{19}{3}; \quad c \quad y = -2x + 7; \quad d \quad y = -x + 6.$
- 5. Sia $\{a_n\}_{n=0}^{\infty}$ una successione di numeri reali strettamente decrescente. Se ciò non è sufficiente per la convergenza della serie $\sum_{n=0}^{\infty} (-1)^n a_n$, quale delle seguenti altre proprietà garantisce la convergenza? a $a_n \geq 1/n^2$ per ogni n > 0; b la successione tende ad un limite finito; c le proprietà elencate sono già sufficienti per la convergenza della serie; d la successione è infinitesima .
- 6. La funzione $f(x) = \begin{cases} x^4 + 2x^3 + 1 & \text{per } x \leq 0 \\ \frac{\sin(3x^2 \alpha x)}{3x} & \text{per } x > 0 \end{cases}$ è continua per: $\boxed{a} \ \alpha = 5; \ \boxed{b} \ \alpha = 4;$ $\boxed{c} \ \alpha = -1; \ \boxed{d} \ \alpha = -3.$
- 7. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale improprio $\int_0^1 \frac{\sin(x^{2\alpha})}{\sqrt{x}(x+x^2)} dx \ ext{è}$ convergente \(\epsilon\): \(a \) \(a > \frac{1}{3}; \quad \(b \) \(\alpha > \frac{1}{12}; \quad \(c \) \(\alpha > \frac{1}{4}; \quad \(d \) \(\alpha > \frac{1}{2}.\)
- 8. Quale delle seguenti figure rappresenta il grafico della funzione $q(x) = \frac{\tan(x^2)}{x^3}$ vicino all'origine?



ANALISI MATEMATICA 1 - Quinto appello		5 settembre 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

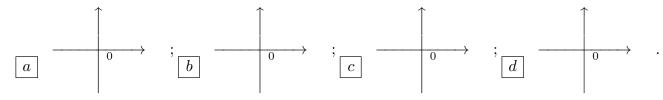
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. La funzione $f(x) = \begin{cases} x^4 + x^3 + 2 & \text{per } x \ge 0 \\ \frac{\sin(4x^2 4\alpha x)}{2x} & \text{per } x < 0 \end{cases}$ è continua per: $\boxed{a} \ \alpha = 4; \ \boxed{b} \ \alpha = -1;$ $\boxed{c} \ \alpha = -3; \ \boxed{d} \ \alpha = 5.$
- 2. Sia $\varphi : [a, b] \to \mathbf{R}$ una funzione derivabile con $\varphi(b) = \varphi(a) + 5$. In quale intervallo [a, b] esiste $c \in (a, b)$ con $\varphi'(c) = \frac{1}{3}$, qualunque sia φ con le proprietà descritte? \boxed{a} [a, b] = [1, 16]; \boxed{b} [a, b] = [1, 5]; \boxed{c} [a, b] = [1, 10]; \boxed{d} [a, b] = [1, 9].
- 3. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{x+4}{x-2}$ nel punto (5, g(5)) è: $a \quad y = -\frac{2}{3}x + \frac{19}{3}$; $b \quad y = -2x + 7$; $c \quad y = -x + 6$; $d \quad y = -x + 7$.
- 4. L'insieme dei valori del parametro $\alpha>0$ per cui l'integrale improprio $\int_0^1 \frac{(e^x-1)^{3\alpha}}{x^2(\sqrt{x}+1)} dx \ ext{è}$ convergente \(\epsilon:\) \(a \) \(a \) \(\frac{1}{12};\) \(b \) \(\alpha > \frac{1}{4};\) \(c \) \(\alpha > \frac{1}{2};\) \(d \) \(\alpha > \frac{1}{3}.\)
- 5. L'area della regione di piano compresa fra il grafico della funzione f(x) = 3x(x-3) e l'asse delle ascisse per $x \in [2,4]$ è: $a \mid 3$; $b \mid 6$; $c \mid 4$; $d \mid 9$.
- 6. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile e concava (cioè con la concavità rivolta verso il basso). Allora è sempre vero che: \boxed{a} $f(x) \le -x$ per x abbastanza grande ; \boxed{b} $\lim_{x \to +\infty} f(x) = -\infty$; \boxed{c} $f(100) \le f(0)$; \boxed{d} $f'(100) \le f'(0)$.
- 7. Quale delle seguenti figure rappresenta il grafico della funzione $q(x) = \frac{\tan(x^2)}{x^4}$ vicino all'origine?



8. Sia $\{a_n\}_{n=0}^{\infty}$ una successione di numeri reali infinitesima. Se ciò non è sufficiente per la convergenza della serie $\sum_{n=0}^{\infty} (-1)^n a_n$, quale delle seguenti altre proprietà garantisce la convergenza? \boxed{a} $a_n \leq 1/n$ per ogni n>0; \boxed{b} le proprietà elencate sono già sufficienti per la convergenza della serie ; \boxed{c} la successione è strettamente decrescente ; \boxed{d} $a_n \geq 1/n^2$ per ogni n>0.

ANALISI MATEMATICA 1 - Quinto appello		5 settembre 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile e convessa (cioè con la concavità rivolta verso l'alto). Allora è sempre vero che: $\boxed{a} \lim_{x \to +\infty} f(x) = +\infty$; $\boxed{b} f(100) \ge f(0)$; $\boxed{c} f'(100) \ge f'(0)$; $\boxed{d} f(x) \ge x$ per x abbastanza grande .
- 2. L'equazione della retta tangente al grafico della funzione $g(x)=\frac{x+1}{x-1}$ nel punto (2,g(2)) è: $\boxed{a} \ y=-2x+7; \ \boxed{b} \ y=-x+6; \ \boxed{c} \ y=-x+7; \ \boxed{d} \ y=-\frac{2}{3}x+\frac{19}{3}.$
- 3. L'insieme dei valori del parametro $\alpha>0$ per cui l'integrale improprio $\int_0^1 \frac{(1-\cos x)^{3\alpha}}{x(x+\sqrt{x})} dx \ ext{è}$ convergente \(\epsilon:\) \[alpha>\frac{1}{4}; \quad b \quad \alpha > \frac{1}{2}; \quad \cap \alpha > \frac{1}{3}; \quad \dag d \quad \alpha > \frac{1}{12}.
- 4. Quale delle seguenti figure rappresenta il grafico della funzione $q(x) = \frac{\cos x 1}{x^4}$ vicino all'origine?

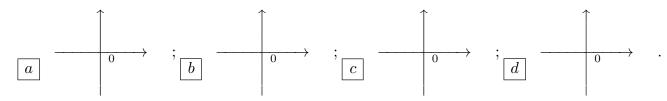


- 5. La funzione $f(x) = \begin{cases} x^3 2x^2 + 2 & \text{per } x \leq 0 \\ \frac{\sin(x^2 + 2\alpha x)}{4x} & \text{per } x > 0 \end{cases}$ è continua per: $\boxed{a} \quad \alpha = -1; \quad \boxed{b} \quad \alpha = -3;$ $\boxed{c} \quad \alpha = 5; \quad \boxed{d} \quad \alpha = 4.$
- 6. Sia $\varphi : [a, b] \to \mathbf{R}$ una funzione derivabile con $\varphi(b) = \varphi(a) + 4$. In quale intervallo [a, b] esiste $c \in (a, b)$ con $\varphi'(c) = \frac{1}{2}$, qualunque sia φ con le proprietà descritte? \boxed{a} [a, b] = [1, 5]; \boxed{b} [a, b] = [1, 10]; \boxed{c} [a, b] = [1, 9]; \boxed{d} [a, b] = [1, 16].
- 7. Sia $\{a_n\}_{n=0}^{\infty}$ una successione di numeri reali positiva. Se ciò non è sufficiente per la convergenza della serie $\sum_{n=0}^{\infty} (-1)^n a_n$, quale delle seguenti altre proprietà garantisce la convergenza?

 [a] la proprietà elencata è già sufficiente per la convergenza della serie; [b] la successione è infinitesima e strettamente decrescente; [c] $a_n \geq 1/n^2$ per ogni n > 0; [d] la successione tende ad un limite finito.
- 8. L'area della regione di piano compresa fra il grafico della funzione f(x) = x(x-3) e l'asse delle ascisse per $x \in [2,4]$ è: $a \in [2,4]$ b 4; $a \in [2,4]$ d 3.

ANALISI MATEMATICA 1 - Quinto appello		5 settembre 2017
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $\varphi:[a,b]\to \mathbf{R}$ una funzione derivabile con $\varphi(b)=\varphi(a)+3$. In quale intervallo [a,b] esiste $c\in(a,b)$ con $\varphi'(c)=\frac{1}{3}$, qualunque sia φ con le proprietà descritte? \boxed{a} [a,b]=[1,10]; \boxed{b} [a,b]=[1,9]; \boxed{c} [a,b]=[1,16]; \boxed{d} [a,b]=[1,5].
- 2. L'insieme dei valori del parametro $\alpha > 0$ per cui l'integrale improprio $\int_0^1 \frac{\log(1+x^\alpha)}{\sqrt{x}(x+x^3)} dx \ ext{è}$ convergente \(\epsilon\): \(a \) \(a \) \(\frac{1}{2}\); \(b \) \(\alpha > \frac{1}{12}\); \(d \) \(\alpha > \frac{1}{4}\).
- 3. Quale delle seguenti figure rappresenta il grafico della funzione $q(x) = \frac{\cos x 1}{x^3}$ vicino all'origine?



- 4. Sia $\{a_n\}_{n=0}^{\infty}$ una successione di numeri reali strettamente decrescente e infinitesima. Se ciò non è sufficiente per la convergenza della serie $\sum_{n=0}^{\infty} (-1)^n a_n$, quale delle seguenti altre proprietà garantisce la convergenza? $a \frac{a_{n+1}}{a_n} \geq \frac{1}{2}$ per ogni $n \geq 0$; $a_n \geq 1/n^2$ per ogni n > 0; $a_n \leq 1/n$ per ogni n > 0 per ogni $n \geq 1/n$ pe
- 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione derivabile e concava (cioè con la concavità rivolta verso il basso). Allora è sempre vero che: $a f(100) \le f(0)$; $b f'(100) \le f'(0)$; $c f(x) \le -x$ per x abbastanza grande; $d \lim_{x \to +\infty} f(x) = -\infty$.
- 6. L'equazione della retta tangente al grafico della funzione $g(x) = \frac{x+2}{x-2}$ nel punto (4, g(4)) è: $a \ y = -x + 6; \ b \ y = -x + 7; \ c \ y = -\frac{2}{3}x + \frac{19}{3}; \ d \ y = -2x + 7.$
- 7. L'area della regione di piano compresa fra il grafico della funzione f(x) = 2x(x-2) e l'asse delle ascisse per $x \in [1,3]$ è: $a \mid 4$; $b \mid 9$; $c \mid 3$; $d \mid 6$.
- 8. La funzione $f(x) = \begin{cases} x^3 2x^2 + 1 & \text{per } x \ge 0 \\ \frac{\sin(2x^2 + \alpha x)}{5x} & \text{per } x < 0 \end{cases}$ è continua per: $\boxed{a} \quad \alpha = -3; \quad \boxed{b} \quad \alpha = 5;$ $\boxed{c} \quad \alpha = 4; \quad \boxed{d} \quad \alpha = -1.$