
ANALISI FUNZIONALE — A. Visintin (2013)

Questo corso introduce gli elementi essenziali dell’Analisi Funzionale, rinviando le applicazioni

alle PDEs al relativo corso della laurea magistrale.

Prerequisiti

Calcolo differenziale ed integrale, con serie di Fourier ed ODE (Analisi I, II e III).

Teoria della misura di Lebesgue e dell’integrazione (Analisi III).

Algebra lineare (Geometria I).

Topologia generale (Geometria II).

PROGRAMMA DEL CORSO

1. Spazi di Banach

Spazi normati e di spazi di Banach. Esempi in dimensione finita. Spazi Ck.

Disuguaglianze di Young, Hölder e Minkowski. Spazi Lp e spazi di successioni. Teoremi di

rappresentazione degli spazi Lp ed `p.

Teorema di Hahn-Banach, corollari e teoremi di separazione. Lemma di Riesz e caratteriz-

zazione degli spazi di dimensione finita.

Basi algebriche e topologiche. Spazio degli operatori lineari e continui tra spazi normati.

Operatori limitati e continui.

Seminorme e spazi di Fréchet.

Spazio duale e biduale. Convergenze debole e debole star. Teorema di compattezza di Banach.

2. Spazi di funzioni continue

Funzioni continue. Convergenza uniforme. Teorema di convergenza di Dini.

Algebre di Banach e teorema di Stone-Weierstrass (enunciato).

Teorema di compattezza di Ascoli-Arzelà.

Spazi di Hölder.

3. Operatori I

Teorema di Baire.

Teorema di Banach-Steinhaus.

Teorema di Banach dell’applicazione aperta (enunciato).

Teorema del grafico chiuso.

Operatori aggiunti.

Operatori compatti ed esempi.

4. Spazi di Hilbert

Prodotto scalare. Proiezione ortogonale su un convesso chiuso.

Teorema di rappresentazione di Riesz-Fréchet. Teorema di Lax-Milgram.

Ortogonalizzazione di Gram-Schmidt. Insiemi ortonormali. Basi Hilbertiane. Serie di Fourier

in spazi di Hilbert.

5. Operatori II

Teorema di Riesz (enunciato). Teorema dell’alternativa di Fredholm.

Spettro di un operatore. Spettro di un operatore compatto.
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Esercitazioni

Queste tratteranno quesiti riguardanti la teoria sopra indicata. Particolare attenzione verrà

dedicata alla discussione di esempi e controesempi. Numerosi esercizi sono disponibili su [Br] e

[AV].

Testi di riferimento

[Br] A. Bressan: Lecture Notes on Functional Analysis with Applications to Linear Partial

Differential Equations. American Mathematical Society, 2012 (Chaps. 2–5)

[AV] Note integrative del docente disponibili in rete.

Alcuni testi di consultazione

R. Bhatia: Notes on Functional Analysis. (Lez. 1–15.) Hindustan Book Agency, New Delhi

2009 [un testo introduttivo]

H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer,

New York 2011 [un testo avanzato, con numerosi esercizi svolti]

G. Teschl: Topics in Real and Functional Analysis. (Part 1) Note disponibili in rete. [un

testo introduttivo]

Modalità di esame

Prova scritta con esercizi e quesiti di teoria, seguita da una prova orale.

Guida per una preparazione essenziale

1. Spazi di Banach. [Br]: chap. 2 + [AV]: spazi Lp, dimensione e basi.

2. Spazi di funzioni continue. [Br]: chap. 3.

3. Operatori I. [Br]: chap. 4 + [AV]: teorema di Baire.

4. Spazi di Hilbert. [Br]: chap. 5 + [AV]: proiezione sui convessi.

(Oppure: 4. Spazi di Hilbert. [AV]: Hilbert Spaces, Orthogonality and Projections, The

Representation Theorem, Orthonormal Systems and Hilbert Bases.)

5. Operatori II. [AV]: chap. Operators.
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Notes to the course of Functional Analysis (2013)

A. Visintin

These notes complement Chaps. 2–5 of Bressan’s book, and may not substitute it for the

preparation of the exam.

By [Ex] we mean that the justification of a statement is left as an exercise.

By [] we mean that the justification is omitted, and is more than just an exercise.

By [Br] we indicate Bressan’s book.

The asterisk is used to label complements in the text (in particular this applies to some slightly

technical arguments), as well as more demanding exercises.

Contents

1. Lp Spaces

2. Banach Spaces

3. Spaces of Continuous Functions

4. Weak Topologies

5. The Baire Theorem and its Consequences

6. Hilbert Spaces

7. Orthogonality and Projections

8. The Representation Theorem

9. Orthonormal Systems and Hilbert Bases

10. Operators

11. Introduction to Spectral Analysis.

1 Lp Spaces

1.1 Three fundamental inequalities for Lp spaces

Lemma 1.1 (Young Inequality) For any p, q > 1 such that 1/p+ 1/q = 1,

ab ≤ ap

p
+
bq

q
∀a, b ≥ 0. (1.1)

Proof. Without loss of generality we may assume that a, b > 0. By the concavity of the

logarithm function we have

log
(ap
p

+
bq

q

)
≥ 1

p
log(ap) +

1

q
log(bq) = log a+ log b = log(ab) .

As the exponential function is monotone, by passing to the exponentials we get (1.1). 2

Let (A,A, µ) be a measure space with µ a positive measure, and denote byM(A,A, µ), or just

M(A), the linear space of equivalence classes of µ-a.e. coinciding measurable functions A→ K.

The sets

Lp(A) := {v ∈M(A) : ‖v‖p :=
(∫

Ω
|v(x)|p dµ(x)

)1/p
<∞} (0 < p <∞),

L∞(A) :=
{
v ∈M(A) : ‖v‖∞ := ess sup

Ω
|v| <∞

}
,

(1.2)

where ess supΩ |v| := infµ(N)=0 supx∈Ω\N |v(x)|, are linear subspaces of M(A).
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Theorem 1.2 (Hölder Inequality) For any p, q ∈ [1,+∞] with 1/p+ 1/q = 1, 1

uv ∈ L1(A),

∫
A
|u(x)v(x)| dµ(x) ≤ ‖u‖p‖v‖q ∀u ∈ Lp(A),∀v ∈ Lq(A). (1.3)

Proof. We may assume that u, v 6≡ 0 (the null function) and that both p and q are finite and

different from 1, since otherwise the result is trivial. After replacing u by ũ := u/‖u‖p and v by

ṽ := v/‖v‖q, we are reduced to proving that

ũṽ ∈ L1(A),

∫
A
|ũ(x)ṽ(x)| dµ(x) ≤ 1 ∀u ∈ Lp(A),∀v ∈ Lq(A). (1.4)

The Young inequality (1.1) yields

|ũ(x)ṽ(x)| ≤ 1

p
|ũ(x)|p +

1

q
|ṽ(x)|q for a.e. x ∈ A.

Integrating over A we get ũṽ ∈ L1(A) and∫
A
|ũ(x)ṽ(x)| dµ(x) ≤ 1

p

∫
A
|ũ(x)|p dµ(x) +

1

q

∫
A
|ṽ(x)|q dµ(x) =

1

p
+

1

q
= 1 ,

that is (1.4). 2

Proposition 1.3 (Minkowski Inequality) For any p ∈ [1,+∞],

‖u+ v‖p ≤ ‖u‖p + ‖v‖p ∀u, v ∈ Lp(A). (1.5)

Proof. We may confine ourselves to the case 1 < p < +∞, for otherwise the statement is

obvious. For a.e. x ∈ A,

|u(x) + v(x)|p ≤ 2p(max{|u(x)|, |v(x)|})p ≤ 2p
(
|u(x)|p + |v(x)|p

)
;

by integrating over A we may conclude that u+v ∈ Lp(A). Setting q := p/(p−1), by the Hölder

inequality we have

‖u+ v‖pp =

∫
A
|u(x) + v(x)||u(x) + v(x)|p−1 dµ(x)

≤
∫
A
|u(x)||u(x) + v(x)|p−1 dµ(x) +

∫
A
|v(x)||u(x) + v(x)|p−1 dµ(x)

≤
(
‖u‖p + ‖v‖p

)
‖ |u+ v|p−1‖q =

(
‖u‖p + ‖v‖p

)
‖u+ v‖p−1

p .

This yields the desired inequality. 2

The Minkowski inequality is the triangular inequality for Lp spaces, which are thus normed

spaces. We shall see that these spaces are also complete, so that they are Banach spaces.

Discrete inequalities. Selecting A = {1, . . . ,M} and µ equal to the counting measure, the

Hölder inequality provides a discrete version for finite sums:

M∑
n=1

|anbn| ≤

(
M∑
n=1

|an|p
)1/p( M∑

n=1

|bn|q
)1/q

(1.6)

1Here and in the following, this means that q =∞ if p = 1, and p =∞ if q = 1.
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for any a1, ..., aM , b1, ..., bM ∈ C and any M ∈ N. Passing to the limit, one then gets the Hölder

inequality for `p spaces.

Similarly, a discrete version of the Minkowski inequality provides the triangular inequality for

`p spaces.

1.2 Nesting of Lp and `p spaces

We claim that for any µ-measurable set A of finite measure and any p, q ∈ [1,+∞]

1 ≤ p ≤ q < +∞ ⇒ Lq(A) ⊂ Lp(A). (1.7)

This inclusion is easily checked if either p or q equals either 1 or +∞. Let us then assume that

p, q ∈ ]1,+∞[. Notice that the exponents r = q/p and s = q/(q − p) are conjugate. For any

v ∈ Lq(A), the Hölder inequality then yields

‖v‖pp =

∫
A
|v(x)|p · 1 dµ(x) ≤ ‖ |v(x)|p ‖r ‖1‖s = ‖v(x)‖pq µ(A)1/s.

This proves the claim. This inequality actually shows more: the injection Lq(A) → Lp(A) is

continuous. This means that if a sequence converges in Lq(A), then it converges to the same

limit in Lp(A).

The analogous statement fails if µ(A) = +∞. For instance, let A = ] − 1,+∞[, 1 ≤ p ≤ q <

+∞ and α < 0 be such that αq < −1 ≤ αp; then xα ∈ Lq(A) \ Lp(A). Notice that there exists

always such an α, whenever p, q are as above.

For `p spaces the inclusions are reversed:

1 ≤ p ≤ q ≤ +∞ ⇒ `p ⊂ `q. [Ex] (1.8)

Why is there this reversal? This may be understood considering that functions defined on a

finite measure set may have a large Lp-norm only if somewhere they are large. On the other

hand sequences may have a large `p-norm only if they do not decay sufficiently fast. Moreover

the behaviors of powers of large real numbers is opposite to that of small values: as p increases,

xp increases for any x > 1, and instead decreases for any 0 < x < 1.

1.3 Properties of Lp and `p spaces

These spaces play an important role in functional analysis, since are a large source of examples

and counterexamples. Here we state some of their properties without proofs.

From now on, our measure space (A,A, µ) will be a (possibly unbounded) Euclidean open

set (i.e., an open subset of RN for some integer N), denoted by Ω, equipped with the standard

Lebesgue measure on the Borel σ-algebra. The following is a classical result of measure theory,

and is at the basis of the importance of these spaces for analysis. 2

Theorem 1.4 (Fischer-Riesz) For any p ∈ [1,+∞], the normed space Lp(Ω) is complete. []

Lp-spaces are thus Banach spaces.

We shall denote by C0
c (Ω) the linear space of compactly supported continuous functions Ω→ R;

this is obviously a linear subspace of Lp(Ω) for any p ∈ [1,+∞].

Theorem 1.5 (Density) For any p ∈ [1,+∞[, the linear space C0
c (Ω) is dense in Lp(Ω). This

fails for L∞(Ω). []

2For a short review of the Lebesgue measure theory see the Appendix of [Br]. A more extended treatment of
Lp spaces may be found, e.g., in Chap. 4 of [Bz].
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(This may be proved via the classical Lusin theorem.)

On the other hand, C0
c (Ω) is not dense in L∞(Ω). For instance, the sign function (S(x) = −1

if x < 0, S(x) = 1 if x > 0) cannot be approximated by continuous functions in the metric of

this space.

Theorem 1.6 For any p ∈ [1,+∞[, the space Lp(Ω) is separable (i.e., it has a countable dense

subset). 3 This fails for L∞(Ω). []

In L∞(Ω) counterexamples are easily constructed.

Theorem 1.7 (Fréchet-Riesz) Let p ∈ ]1,+∞[ and set p′ = p/(1 − p) (this is the conjugate

exponent). Then

[Φp(f)](v) :=

∫
Ω
fv dx ∀f ∈ Lp′(Ω), ∀v ∈ Lp(Ω) (1.9)

defines an isometric isomorphism Φp : Lp
′
(Ω)→ Lp(Ω)′. []

Next we consider the dual space of L1(Ω) and of L∞(Ω).

Theorem 1.8 (Steinhaus-Nikodým) Φ1 : L∞(Ω)→ L1(Ω)′ is an isometric isomorphism. []

Proposition 1.9 Define the operator Φ∞ : L1(Ω)→ L∞(Ω)′ as in (1.9), with ∞′ = 1. This is

a nonsurjective isometry. []

Conclusions. For any p ∈ [1,+∞[ (p = ∞ excluded), denoting the conjugate index by p′, we

may identify Lp(Ω)′ with Lp
′
(Ω). This fails for p =∞, since we may just identify L1(Ω) with a

proper closed subspace of L∞(Ω)′.

More generally, the same holds for any measure space (A,A, µ): 4 we may thus identify (`p)′

with `p
′

for any p ∈ [1,+∞[, but not for p =∞.

`1 has a predual. With standard notation, we shall denote by c the set of converging sequences,

by c0 the set of sequences that tend to 0, and by c00 the set the sequences that have just a finite

number of nonvanishing terms. All of these are normed subspaces of `∞.

Although in general L1(Ω) need not have a predual, the following result allows one to identify

`1 with (c0)′. (Thus `1 is the dual of a separable Banach space.)

Proposition 1.10 Let us set

[φ(u)](v) :=
∞∑
n=0

unvn ∀u = {un} ∈ `1,∀v = {vn} ∈ c0. (1.10)

This defines φ as a surjective isometry `1 → (c0)′. []

1.4 Exercises

1. (i) For any p ∈ [1, 2], prove that Lp(R) ⊂ L1(R) + L2(R).
(ii) More generally, for any p, q, r ∈ [1,+∞], prove that if p < q < r then Lq(R) ⊂
Lp(R) + Lr(R).

3 * This may be derived from the classical Weierstraß theorem, that states the linear space of polynomial
is dense in the space of continuous functions. By modifying the polynomials, one easily constructs a countable
family that approximates all compactly supported functions on Ω. By the above density theorem, and as the
Lp-norm is dominated by the uniform norm, one easily concludes that this set of functions is dense in Lp(Ω).

4for p = 1 (and just for this index) the measure should be assumed σ-finite; that is, the set A should be
representable as a countable union of sets of finite measure.
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2 Banach Spaces

*2.1 Ordered sets

Order structures are sometimes used in analysis, especially via the Zorn lemma or also via the

Hausdorff’s maximal chain theorem. Here we briefly review those structures.

A set S equipped with a binary relation ≤ is called (partially) ordered iff

x ≤ x, x ≤ y, y ≤ x⇒ x = y, x ≤ y, y ≤ z ⇒ x ≤ z ∀x, y, z ∈ S.

(If the second of these properties (i.e., the antisymmetry) is not fulfilled, ≤ is called a pre-order.

In this case an order relation is obtained by taking the quotient w.r.t. 5 the equivalence relation

defined by x ≡ y iff x ≤ y and y ≤ x.) The order is called total iff, for any x, y ∈ S, either x ≤ y
or y ≤ x. A totally ordered subset is also called a chain.

Let A be a nonempty subset of an ordered set S.

Any x ∈ A is called a maximal (minimal, resp.) element of A iff y ∈ A and x ≤ y (y ≤ x,

resp.) entail x = y.

Any x ∈ A is called the maximum (minimum, resp.) of A iff y ≤ x (x ≤ y, resp.) for any

y ∈ A.

Any x ∈ S is called an upper (lower, resp.) bound of A iff y ≤ x (y ≤ x, resp.) for any y ∈ A.

Any x ∈ S is called the supremum or least upper bound (infimum or greatest lower bound,

resp.) of A iff it is the minimum (maximum, resp.) of the set of upper (lower, resp.) bounds of

A. Such an element will be denoted by supA (inf A, resp.), if it exists.

S is called (superiorly) inductive iff any totally ordered (nonempty) subset has an upper bound.

S is called (superiorly) completely inductive iff any totally ordered (nonempty) subset has a

supremum.

S is called a lattice iff any finite (nonempty) subset has a supremum and an infimum.

S is called a complete lattice iff any (nonempty) subset has a supremum and an infimum.

Theorem 2.1 (Zorn’s Lemma) Any nonempty inductively ordered set has a maximal element.

[]

This classical result is equivalent to Zermelo’s axiom of choice (which reads “the Cartesian

product of any nonempty family of nonempty sets is nonempty”), and to the theorem of well-

ordering (“any nonempty set S can be equipped with an order relation, such that any nonempty

subset of S has a minimum element”). [] Zorn’s Lemma is often applied through the next

statement. 6

Theorem 2.2 (Hausdorff’s Maximal Chain Theorem) Let S be a partially ordered set and C ⊂
S be a chain (i.e., a totally order subset). Then there exists a chain C∗ ⊂ S that is maximal

w.r.t. inclusion and such that C ⊂ C∗.

In this statement we consider two ordered structures: that of S, and that by inclusion of

the family F of the chains C̃ such that C ⊂ C̃ ⊂ S. The maximality is referred to the latter

structure.

5w.r.t. = with respect to.
6Zorn’s lemma is often applied in alternative to the so-called principle of transfinite induction:

Let (S,≤) be a well-ordered set, and for any x ∈ S let P (x) be a statement such that
(i) P (x) is true for the minimum element of S,
(ii) for any x ∈ S, if P (y) for any y ≤ x with y 6= x, then P (x) is true.
Then P (x) is true for any x ∈ S.
(The argument is straightforward.)
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Proof. Any chain G ⊂ F is bounded above by (i.e., is included into) the union of all its elements,

which indeed is an element of F . Thus F is inductive with respect to the ordering by inclusion.

It then suffices to apply Zorn’s lemma. 2

2.2 Hahn-Banach theorem

This is just a reformulation of Theorem 2.29 of [Br].

Let X be a linear space over the field K. A functional p : X → R is called sublinear iff

p(λ1v1 + λ2v2) ≤ λ1p(v1) + λ2p(v2) ∀v1, v2 ∈ X,∀λ1, λ2 ≥ 0. (2.1)

This holds iff p is subadditive and positively homogeneous (of degree 1), that is,

p(v1 + v2) ≤ p(v1) + p(v2) ∀v1, v2 ∈ X,
p(λv) = λp(v) ∀v ∈ X,∀λ ≥ 0,

(2.2)

or equivalently p is convex and positively homogeneous. These functionals provide the natural

environment for the results of this section.

Theorem 2.3 (Hahn-Banach Theorem for real linear spaces) Let X be a real linear space, p :

X → R be a sublinear functional, M be a linear subspace of X, and f : M → R be a linear

functional such that f(v) ≤ p(v) for any v ∈M . Then there exists a linear functional f̃ : X → R
such that f̃ = f in M and f̃(v) ≤ p(v) for any v ∈ X. 7

Proof. The set

Φ :=
{
g : Dom(g)→ R |M ⊂ Dom(g) ⊂ X, g = f in M, g ≤ p

}
can be partially ordered by setting

g1 � g2 ⇔ Dom(g1) ⊂ Dom(g2), g1 = g2 in Dom(g1).

We claim that this order is inductive, that is, any totally ordered subset has an upper bound.

In fact, if {gi}i∈I is a totally ordered subset of Φ, then, setting Dom(g) :=
⋃
i Dom(gi) and

g(u) = gi(u) for any u ∈ Dom(gi), we get g ∈ Φ and gi � g for any i. By Zorn’s Lemma 2.1 then

there exists a maximal element f̃ ∈ Φ. 8 At this point it suffices to prove that Dom(f̃) = X.

By contradiction, let u0 ∈ X \Dom(f̃), and define a function h by setting

Dom(h) := {v + λu0 : v ∈ Dom(f̃), λ ∈ R},

h(v + λu0) := f̃(v) + λα ∀v ∈ Dom(f̃), ∀λ ∈ R.

We claim that a real number α may be chosen in such a way that h ≤ p. This will entail that

f̃ � h, contradicting the maximality of f̃ , and will thus complete the proof.

By the positive homogeneity of p, it suffices to prove that

h(v + λu0) ≤ p(v + λu0) ∀v, w ∈ Dom(f̃), λ = ±1. (2.3)

The linearity of f̃ , the inequality f̃ ≤ p in Dom(f̃), and the subadditivity of p yield

f̃(v) + f̃(w) = f̃(v + w) ≤ p(v + w) ≤ p(v − u0) + p(w + u0) ∀v, w ∈ Dom(f̃),

7When we drop any reference to the sublinear functional p in the theorem (and its proof), we obtain the
standard extension theorem of linear functionals in linear spaces.

8Another argument may be based on Hausdorff’s Maximal Chain Theorem, as in [Br]. Both procedures rest
on transfinite induction, and are equivalent to Zermelo’s axiom of choice.
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whence

f̃(v)− p(v − u0) ≤ p(w + u0)− f̃(w) ∀v, w ∈ Dom(f̃).

Therefore, for some α ∈ R,

f̃(v)− p(v − u0) ≤ α ≤ p(w + u0)− f̃(w) ∀v, w ∈ Dom(f̃).

Defining the function h as above, this is tantamount to the inequality (2.3). 2

Let us denote by <(z) and =(z) the real and the imaginary part of any complex number z,

and notice that =(z) = <(−iz) = −<(iz).

Lemma 2.4 The real part g of any linear functional f on a linear space VC over C is a linear

functional on the associated linear space VR over R. Viceversa any linear functional g on VR is

the real part of the linear functional f(v) = g(v)− ig(iv)) on VC. Moreover, if VC is a normed

space, then f is continuous iff so is g. [Ex]

Theorem 2.5 (Hahn-Banach theorem for complex linear spaces) 9 Let X be a linear space over

K equipped with a seminorm p, M be a linear subspace of X, and f : M → K be a linear

functional such that |f(v)| ≤ p(v) for any v ∈M . Then there exists a linear functional f̃ : X →
K such that f̃ = f in M and |f̃(v)| ≤ p(v) for any v ∈ X.

* Proof. If K = R the statement directly follows from Theorem 2.3; let us then assume that

K = C. Let us extend <(f) to a linear functional g : X → R, as we did in Theorem 2.3; thus

with g ≤ p in X. By the latter lemma the functional f̃ : X → C : v 7→ g(v) − ig(iv) is then

linear and extends f .

For any fixed v ∈ X, we have f̃(v) = reiθ for some r, θ ≥ 0 (that may depend on v). Hence

f̃(e−iθv) = e−iθf̃(v) = r ≥ 0, and therefore |f̃(e−iθv)| = f̃(e−iθv) = g(e−iθv). By the positive

homogeneity of p, we then have

|f̃(v)| = |e−iθf̃(v)| = |f̃(e−iθv)| = g(e−iθv) ≤ p(e−iθv) = |e−iθ|p(v) = p(v) (2.4)

for all v ∈ X. 2

*2.3 Some consequences of the Hahn-Banach theorem

The Hahn-Banach theorem has a number of relevant consequences in normed spaces.

By selecting any f 6≡ 0 in the statement of the Hahn-Banach theorem, we get the next result.

Corollary 2.6 The dual X ′ of any normed space X 6= {0} is not reduced to the null functional.

(This fails in Lp spaces for any 0 < p < 1, and indeed these spaces cannot be equipped with

any norm.) Thus functional analysis in normed spaces has nontrivial functionals at its disposal,

whenever the underlying space X is nontrivial (i.e., X 6= {0}, as we shall systematically assume).

Corollary 2.7 Let X be a normed space, M be a closed subspace of X, and u ∈ X \M . Then

there exists f ∈ X ′ such that f(u) = 1 and f(v) = 0 for any v ∈M . []

We infer that the dual of a normed space separates points. That is, for any x, y ∈ X such

that x 6= y, there exists f ∈ X ′ such that f(x) 6= f(y). [Ex]

9Due to Bohnenblust-Sobczyk-Soukhomlinoff.
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Corollary 2.8 A linear subspace M of a normed space X is dense in X if (and only if) f = 0

is the only element of X ′ such that f(v) = 0 for any v ∈M . []

Corollary 2.9 Let X be a normed space and M a linear subspace of X. Then any linear and

continuous functional f on M can be extended to an f̃ ∈ X ′ such that ‖f̃‖X′ ≤ sup{|f(v)| : v ∈
M} =: |||f |||. (Such an extension is said to be norm-preserving.)

Proof. Let us apply the Hahn-Banach Theorem 2.3 with p(v) = |||f ||| ‖v‖X . Thus there exists

an extension f̃ ∈ X ′ such that |f̃(v)| ≤ |||f ||| ‖v‖X for all v ∈ X; hence ‖f̃‖X′ ≤ |||f |||. As f̃

extends f , the latter is an equality. 2

Corollary 2.10 Let X be a real normed space. Then

‖u‖ = max {f(u) : f ∈ X ′, ‖f‖ ≤ 1} ∀u ∈ X. (2.5)

In other terms, for any u ∈ X, there exists f ∈ X ′ such that ‖f‖ = 1 and f(u) = ‖u‖.

Proof. We have f(u) ≤ ‖f‖X′‖u‖X ≤ ‖u‖ whenever ‖f‖ ≤ 1. In order to show the equality,

let us fix an u ∈ X and define the functional g : M = Ku → K by setting g(λu) = λ‖u‖. As

‖g‖M ′ = 1, by Corollary 2.9 there exists a norm-preserving extension g̃. Thus ‖g̃‖ = 1. 2

2.4 Some classical separation results

(This subsection and the next one may replace Sect. 2.6 of [Br].)

Linear separation is an algebraic concept. We shall say that a set H ⊂ X is a (linear)

hyperplane iff H = f−1(0), f : X → R (f 6≡ 0) being a linear functional f : X → R; f

is determined up to a factor λ 6= 0. We define an affine hyperplane as the translated of a

hyperplane: H = f−1(0)+v for any f and v ∈ X; or equivalently, setting α = f(v), H = f−1(α)

for any f and α ∈ K. By an equivalent definition, a (linear) hyperplane is any proper linear

subspace that is maximal, in the sense that X is the only linear subspace that strictly includes

it. 10

Let A,B be two nonempty subsets of a real linear space X. We say that a nonzero linear

functional f : X → R separates A and B iff f(u) ≤ f(v) for any u ∈ A and any v ∈ B, that is,

sup
u∈A

f(u) ≤ inf
v∈B

f(v). (2.6)

Any α ∈ [supA f, infB f ] defines an affine hyperplane H = f−1(α) such that A and B lie on

different sides of H. That is, A and B are respectively contained in the halfspaces f−1(]−∞, α])

and f−1([α,+∞[). However, A and/or B might intersect H or even be contained into it.

We say that the linear functional f strongly separates 11 A and B iff

sup
u∈A

f(u) < inf
v∈B

f(v). (2.7)

The notions of separation and of strong separation are trivially extended to normed spaces X

assuming that f ∈ X ′. In this case the affine hyperplane H = f−1(α) is assumed to be closed.

Notice that if M is a linear subspace, then the same holds for its closure, that however may

have a larger dimension; for instance, a linear hyperplane H = f−1(0) is dense in X iff f is not

continuous. Moreover f ∈ X ′ separates two nonempty subsets A and B of X iff it separates

their closures; the same property holds for the strong separation.

The following classical result is known as the geometric form of the Hahn-Banach the-

orem.
10After introducing the notion of codimension, we shall see that a hyperplane is a linear subspace of codimension

1.
11Here strongly does not refer to the strong topology!

10



* Theorem 2.11 (Ascoli-Mazur) Let X be a normed space over the field K, M be an affine

subspace [i.e., the translated of a linear subspace], and A be a nonempty open convex subset of

X, such that M ∩A = ∅. Then there exists a closed affine hyperplane H such that M ⊂ H and

H ∩A = ∅. (In particular H thus separates M and A.)

In other terms, we claim that there exist f ∈ X ′ and α ∈ R such that f(v) = α for any v ∈M
and f(v) > α for any v ∈ A.

The requirement that A has interior points cannot be dispensed with, since an affine subspace

may be dense. For instance, let us denote by c00 the set of the sequences that have just a finite

number of nonvanishing terms. This is a proper dense vector subspace of X = `2; so f(c00) = R
for any nonzero f ∈ X ′, and consequently no point of `2 \ c00 can be separated from c00.

Lemma 2.12 Let A and B be two nonempty subsets of a normed space X. Then:

(i) if A and B are convex, then A+B is convex;

(ii) if A is open, then A+B is open;

(iii) if A is compact and B is closed, then A+B is closed.

(The properties that are here stated for A+B also hold to A−B := A+ (−B).)

Proof. Part (i) and (ii) are straightforward. [Ex] Let us prove part (iii). For any point

w ∈ A+B, there exist sequences {un} ⊂ A and {vn} ⊂ B such that un + vn → w. As A

is compact, there exists a convergent subsequence {un′} whose limit u belongs to A. Hence

vn′ → v := w − u, and v ∈ B since B is closed. Thus w = u+ v ∈ A+B. 2

Even in R2, the set A+B need not be closed if A and B are just closed. For instance, let A±
be the graph of the real function ]0,+∞[→ R : x 7→ ±1/x, respectively. Then (0, 0) ∈ A+ +A−
although (0, 0) 6∈ A+ +A− .

Theorem 2.13 (Separation – Eidelheit) Let A and B be two disjoint nonempty convex subsets

of a real normed space X, and A be open. Then A and B can be separated by a closed affine

hyperplane.

Proof. By Lemma 2.12 the set A−B is convex and open. As 0 /∈ A−B, then by Theorem 2.11

the closed subspace {0} can be separated from A − B; that is, there exists f ∈ X ′ such that

f(A−B) ≤ f(0) = 0. As f(A)− f(B) = f(A−B), we conclude that f(A) ≤ f(B). (One may

also show that f(A) < f(B).) 2

Theorem 2.14 (Strong Separation – Tukey and Klee) Let X be a real normed space, and A

and C be two disjoint nonempty convex subsets of X, with A compact and C closed. Then A

and C can be strongly separated by a closed affine hyperplane.

Proof. As A is compact, ε := dist(A,C) = inf
{
‖u − v‖ : u ∈ A, v ∈ C

}
> 0. Thus, denoting

by Bε the open ball with radius ε centered in 0, the sets C and Aε = A + Bε are disjoint. As

by Lemma 2.12 Aε is open and convex, by Theorem 2.13 there exists f ∈ X ′ such sup f(Aε) ≤
inf f(C). By choosing u ∈ A with f(u) = max f(A) and h ∈ X with f(h) > 0, we get u+δh ∈ Aε
for a sufficiently small δ > 0. Thus max f(A) = f(u) < f(u+ δh) ≤ sup f(Aε) ≤ inf f(C). 2

Corollary 2.15 Any closed convex subset A of a real normed space X is the intersection of the

closed halfspaces that contain it.

Proof. By Theorem 2.14, any point in the complement of A can be strongly separated from

A, since singletons are compact. 2
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2.5 The Riesz characterization of finite-dimensional normed spaces

Let us first consider a simple example. Henceforth for any p ∈ [1,+∞] we shall denote by en
the nth unit vector of `p, namely the sequence (0, ..., 0, 1, 0, ...) with 1 at the nth place and 0

elsewhere.

No ball of `2 is compact: e.g., the sequence of the unit vectors {en} is not of Cauchy, hence

it has no convergent subsequence. The following classical result will allow us to extend this

example to any infinite-dimensional Banach space. (This is nontrivial, as in generic Banach

spaces there is no notion of orthogonality.)

Lemma 2.16 (F. Riesz) Let M be a proper closed subspace of a normed space X over K, and

let θ < 1. Then there exists u ∈ X such that ‖u‖ = 1 and inf
{
‖u− v‖ : v ∈M

}
≥ θ. 12

Proof. There exists u1 ∈ X such that inf
{
‖u1 − v‖ : v ∈ M

}
≥ θ. For any v1 ∈ M such that

‖u1 − v1‖ < 1, the thesis is fulfilled by u = (u1 − v1)/‖u1 − v1‖. 2

Theorem 2.17 (F. Riesz) The closed unit ball of a normed space X is compact iff the space is

finite-dimensional.

Proof. In X = KN , and hence in any finite dimensional space, a set is compact iff it is closed

and bounded. If X has infinite dimension, using the Riesz Lemma 2.16 we inductively construct

a sequence {un} ⊂ X such that ‖un‖ = 1 for any n and ‖un − um‖ > 1/2 whenever n 6= m.

This sequence is not of Cauchy, hence it has no convergent subsequence. Thus the closed unit

ball of X is not compact. 2

As a consequence of this theorem, any compact subset of an infinite-dimensional normed space

has empty interior.

* Grothendieck’s characterization of compact sets. Bounded subsets of a finite-dimensional

subspace of a Banach space are relatively compact. A relatively compact subset need not be

finite-dimensional, but is not far from being so, because of the following nice result:

A subset K of a Banach space X is relatively compact iff there exists a vanishing sequence

{un} in X such that K ⊂ co ({un}) (the closure of the convex hull of the elements of the

sequence). []

Because of this result, if K is relatively compact then for any ε > 0 there exists m ∈ N such

that

K ⊂ co
(
{u1, ..., um} ∪B(0, ε)

)
. [Ex] (2.8)

Thus, although compact subsets of a normed space need not be included into finite-dimensional

subspaces, they are not far from that — loosely speaking.

2.6 Hamel and Schauder bases and dimension

A subset S of a linear space X is called an algebraic basis (or Hamel basis) if every element

of X has a unique representation as a (finite) linear combination of elements of S. 13 This holds

iff (i) S is linearly independent (i.e., any linear combination of its elements vanishes only if all

its coefficients vanish), and (ii) S is maximal among all linearly independent subsets of X.

By the Hausdorff maximality principle, it is promptly seen that any linear space can be

equipped with a Hamel basis, and that all of these bases have the same cardinality. [Ex] We

can thus define the dimension of the space as the cardinality of any of its Hamel bases. (This is

thus a purely algebraic notion.)

12The Riesz Lemma holds for θ = 1 if M has finite dimension, but not in general.
13Without a notion of convergence, there is no natural way to define infinite linear combinations.

12



For any sequence {xn} in a normed space X, one says that the series
∑∞

n=1 xn converges iff the

sequence of its partial sums {Sm :=
∑m

n=1 xn}m∈N converges. A sequence {xn} in X is called

a topological basis (or a Schauder basis) iff every element of X has a unique representation

of the form
∑∞

n=1 anxn, with an ∈ K for any n. This may depend on the order in which the

elements xn are enumerated. [] A Schauder basis is necessarily a linearly independent subset. If

a normed space has a Schauder basis then it is separable. 14 15

2.7 * Algebraic complements and direct sums

The notion of projection somehow bridges linear, Banach and Hilbert spaces. First we address

the algebraic side. Let M1 and M2 be two linear subspaces of a linear space V , and set

V = M1 ⊕M2 ⇔ M1 +M2 = V, M1 ∩M2 = {0}. (2.9)

This holds iff for any x ∈ V there exists one and only one pair (x1, x2) ∈ M1 ×M2 such that

x = x1 + x2. We then say that

V is the algebraic direct sum of M1 and M2, or that

M1 and M2 algebraically complement (or supplement) each other, or that

M1 and M2 are algebraically complemented (or supplemented).

This holds iff M2 is (linearly) isomorphic to the linear quotient space V/M1, or equivalently

M1 is isomorphic to the quotient space V/M2:

V = M1 ⊕M2 ⇔ M1 ∼ V/M2 ⇔ M2 ∼ V/M1. (2.10)

The dimension of V/M1 is called the subspace codimension of M1. For instance, a hyperplane

is a linear subspace of codimension 1. Thus V = M1 ⊕M2 entails that

codim (M1) = dim (V/M1) = dim (M2) = codim (V/M2).

Setting ∞+∞ =∞ and ∞+ n =∞ for any n ∈ N, it is also promptly seen that

dim (V ) = dim (M1) + dim (V/M1),

but not necessarily dim (M1) = dim (V )− dim (V/M1). (Why?)

Any linear subspace A of a linear space V is algebraically complemented. (This may be proved

via transfinite induction.) [Ex]

For any operator L : V1 → V2 between linear spaces, let us set

R(L) := L(V1) (⊂ V2) (range or image of L),

N (L) := L−1(0) (⊂ V1) (kernel or nullspace of L).
(2.11)

Proposition 2.18 If V1 and V2 are linear spaces and L : V1 → V2 is a linear operator, then

codim(N (L)) = dim(R(L)). (2.12)

Proof. It suffices to notice that

V1 = N (L)⊕ V1/N (L) (by an obvious identification), (2.13)

and that the operator L induces a linear isomorphism between V1/N (L) and R(L). 2

14A topological space is called separable iff it has a countable dense subset. There is no relation between
separability, separatedness (i.e., the Hausdorff property) and separation (between convex sets)!

15Surprisingly, there exist separable Banach spaces without any Schauder basis. [] This highly nontrivial result
disproves a conjecture of Schauder himself.
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In general there is no linear isomorphism between V1/R(L) and N (L). Hence one cannot infer

that dim(N (L)) = codim(R(L)). This equality may surely fail, since any V2 may be replaced

by a larger space.

2.8 * Projections in linear spaces

A linear operator P : V → V is called a projection on V iff it is idempotent, that is,

P 2 = P (or equivalently P (I − P ) = 0).

Proposition 2.19 Let V be a linear space. If P is a projection on V , then P̃ := I − P is also

a projection, and

V = R(P )⊕N (P ) = N (P̃ )⊕R(P̃ ), P P̃ = P̃P = 0. (2.14)

Conversely, if M1,M2 are two linear subspaces of V and V = M1 ⊕M2, then there exists a

unique pair of projections P and P̃ on V such that P + P̃ = I and

M1 = R(P ) = N (P̃ ), M2 = R(P̃ ) = N (P ), P P̃ = P̃P = 0. (2.15)

Proof. If P is a projection then obviously I − P is a projection, too. For any x ∈ V ,

x = P (x) + [x− P (x)] with P (x) ∈ R(P ) = N (P̃ ) and x− P (x) ∈ R(P̃ ) = N (P ). Moreover if

x ∈ R(P ) ∩ N (P ) then x = P (x) = 0. The first formula of (2.14) thus holds; the second one is

trivial.

Let us now assume that V = M1 ⊕M2. For any x ∈ V let (x1, x2) be the unique pair of

M1 ×M2 such that x = x1 + x2, and set P (x) := x1. It is straightforward to see that P is a

projection on V , M1 = R(P ) and M2 = N (P ). By setting P̃ (x) := x2 we then get (2.15).

Finally, it is clear that P is the unique projection such that M1 = R(P ) and M2 = N (P ). 2

2.9 * Projections in Banach spaces

In normed spaces one is concerned with continuous projections.

Proposition 2.20 Any projection P on a Banach space X is continuous iff both R(P ) and

N (P ) are closed. 16

Proof. The “only if”-part is obvious, as R(P ) = N (I − P ).

Let us come to the “if”-part. Let un → u and Pun → w. As Pun ∈ R(P ) and this set is

closed, we infer that w ∈ R(P ), whence Pw = w. Similarly, as u − Pun ∈ N (P ) and this set

is closed, we have u − w ∈ N (P ), whence Pu = Pw. Thus Pu = w, that is, the graph of P is

closed. It then suffice to apply the Closed Graph Theorem 5.10. 2

If M1,M2 are closed subspaces of a Banach space X and X = M1 ⊕M2, then X is called a

topological direct sum; in this case one says that M1 and M2 topologically complement

(or topologically supplement) each other in X, and that they are topologically complemented.

Notice that then M2 is (isometrically) isomorphic to the quotient space X/M1. Thus

X = M1 ⊕X/M1 ∀ closed subspace M1 of X. (2.16)

At variance with what we saw in the purely algebraic setup,

a closed subspace of a Banach space need not be topologically complemented, (2.17)

16This may be compared with the following statement: A linear functional f : X → R is continuous if (and
only if) f−1(0) is closed. [Ex]
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i.e., it need not be either the range or the nullspace of any continuous projection. For instance,

c0 has no topological complement in `∞ (Phillips’s theorem), [] although it has an algebraic

complement. 17 However, a closed subspace of a Banach space is topologically complemented

whenever either its dimension or its codimension are finite. [] 18

2.10 Cartesian product of Banach spaces

For i = 1, ...,M , let Xi be a normed space over the field K (the same for all i). The Cartesian

product X1× ...×XM may then be canonically equipped with the following norm ‖ · ‖1 :=∑M
i=1 ‖πi · ‖i, where by πi : X1×...×XM → Xi we denote the ith canonic projection. That is,

‖u‖1 =
M∑
i=1

‖ui‖Xi ∀u = (u1, ..., uM ) ∈ X1×...×XM .

This norm is equivalent to any norm ‖ · ‖p :=
(∑M

i=1 ‖πi · ‖
p
i

)1/p
for any p ∈ ]1,+∞[, and also to

any norm ‖ · ‖∞ := maxi=1,...,M ‖πi · ‖Xi .

This may easily be extended to an infinite family of normed spaces (all over the same field).

For instance, if i ranges in N, then the following norm may be used:

‖u‖1 =
∞∑
i=1

‖ui‖Xi ∀u = (u1, ..., ui, ...) ∈ X1×...×Xi×...

Here one may also introduce the analogous p-norms for any p ∈ ]1,+∞], but these norms are

not mutually equivalent (as it is obvious).

2.11 Exercises

1. = Is Q a Banach space? 19

2. Let Ω be a Euclidean domain.

(i) Is the linear space C0
b (Ω) equipped with ‖·‖L∞(Ω) a normed space? If so, is it complete?

(ii) Is the linear space C0
c (Ω) equipped with ‖·‖L2(Ω) a normed space? If so, is it complete?

(iii) Is the linear space C1
b (Ω) equipped with ‖·‖C0

b (Ω) a normed space? If so, is it complete?

3. (i) Is there a linear and continuous operator L from a noncomplete normed space X to a
Banach space Y , such that L(X) is infinite dimensional?
(ii) Is there a linear and continuous operator L from a Banach space X to a noncomplete
normed space Y , such that L(X) is infinite dimensional?

4. (i) Is the operator L : c00 → c00 : {un} 7→ {nun} bounded?
(ii) Exhibit a sequence {uj} such that uj → 0 but Luj 6→ 0.

17Let us set C0
0 ([0, 1]) := {v ∈ C0([0, 1]) : v(0) = v(1) = 0}, C0

0 (R) := {v ∈ C0(R) : v(x) → 0 as x → ±∞},
C0

b (A) := {v : A → C continuous and bounded} for any A ⊂ R, and equip these spaces with the uniform norm.
Note the analogies:

c00 is dense in c0; c0, c are closed subspaces of `∞; (2.18)

C0
c (R) is dense in C0

0 (R); C0
0 (R), C0

b (R) are closed subspaces of L∞(R); (2.19)

C0
c (]0, 1[) is dense in C0

0 ([0, 1]); C0
0 ([0, 1]), C0

b ([0, 1]) are closed subspaces of L∞(0, 1). (2.20)

18A Banach space X is topologically isomorphic to a Hilbert space iff any closed subspace of X is topologically
complemented (Lindenstrauss-Tzafriri’s Theorem). []

19the symbol “=” at the beginning of the text is not for the reader.
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5. (i) Is c00 a closed subspace of `p for some p ∈ [1,+∞]?
(ii) Is c00 dense in `p for any p ∈ [1,+∞]?
(iii) Is `p dense in `q for any exponent 1 ≤ p, q ≤ +∞?

6. = Let {un}n∈N ⊂ c00, and use the notation un = ((un)1, (un)2, ..., (un)j , ...) for any n.
Assume that (un)j → 0 as n→ +∞, for any j ∈ N. Does then un → 0 in `∞?

7. = Let Ω be a Euclidean set, and let the space B(Ω) of bounded K-valued functions be
equipped with the uniform norm (i.e., the sup-norm, not the essential-sup norm !).

(i) Is B(Ω) a normed space? is it complete?
* (ii) Is the linear space of bounded representatives of L∞(Ω) dense in B(Ω)?

8. Establish whether the following functionals C1([0, 1]) → R are continuous, and whether
they can be extended to continuous functionals C0([0, 1])→ R:

(i) u 7→ u′(0); (ii) u 7→
∫ 1

0 u(1− x) dx; (iii) u 7→
∫ 1

0 u(ex/4) dx.

9. = Let us equip X := {v ∈ C0([0, 1]) : v(0) = 0} with the uniform norm. Notice that

f : v 7→
∫ 1

0 v(x) dx is an element of X ′.

(i) Is X a Banach space?
(ii) Is X a closed subspace of C0([0, 1])?
(iii) Does u ∈ X with ‖u‖X = 1 exist such that f(u) = ‖f‖X′?

10. (i) In the Riesz Lemma 2.16 may the closedness of M be dropped?
(ii) Show that this lemma holds with θ = 1 if M is finite dimensional.

11. = * (i) Is {v
∣∣
]0,1[

: v ∈ C0([0, 1])} a dense subspace of C0
b (]0, 1[)?

* (ii) Is C1
b (R) dense in C0

b (R)?

12. = * May every L ∈ L(c00, c00) be extended to an operator L̃ ∈ L(c0, c00)?

Hint: Consider the identity operator...

13. (i) For which p ∈ [1,+∞] is `p separable?
(ii) Is L2(0, 1) separable?
(iii) Is L2(R) separable?

14. = (i) Is c0 separable?
(ii) Is c separable?
(iii) Is C0([0, 1]) separable?
* (iv) Is C0

b (R) separable?
* (v) Is C0

b ([0, 1[) separable?

15. Show that the functional f : c → K : {un} 7→ limn un is linear and continuous, and
calculate its norm.

16. = (i) Is c isomorphic to `∞?
* (ii) Is c isomorphic to c0?

17. = Let X be a Banach space and U ⊂ X.

(i) Check that in general U + U 6= 2U , and prove that U + U = 2U if U is convex.
* (ii) Show by a counterexample that if U + U = 2U then U need not be convex.

18. (i) Let A and B be two nonempty compact subsets of a normed space X. Prove that A+B
is compact.
(ii) Show by a counterexample that A compact and B closed do not entail that A+ B is
compact.

19. (i) Is it true that two nonempty convex subsets A and B of a real linear space can be
separated iff A−B can be separated from {0}?
(ii) Does this hold for the strong separation, too?
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20. * A series
∑∞

n=1 un in a normed space X is called convergent iff the sequence formed
by its partial sums {Sm =

∑m
n=1 un} converges in X. The series is called totally (or

absolutely) convergent iff the series
∑∞

n=1 ‖un‖ converges (in K), that is, the sequence
of the norms is an element of `1.

Prove that a normed space X is complete iff any totally convergent series in X is conver-
gent.

Hint for the “if”-part: Let {uj} be a Cauchy sequence in X, and recursively construct a
subsequence {unj} as follows: for any j, nj is selected so that ‖u` − um‖ ≤ 2−j for any

`,m > nj . Therefore ‖unj+2 − unj+1‖ ≤ 2−j for any j, whence
∑∞

j=1 ‖unj+1 − unj‖ < +∞.

The subsequence {unj} then converges...

21. = * Give an example of a totally convergent series in c00 that does not converge.

22. In Banach spaces are all convergent series totally convergent?

23. = * (i) Show that the dimension of a Banach space cannot be countable.
Hint: Use the Baire theorem...
* (ii) Give an example of a normed space that has countable infinite dimension.

24. = Let X be the set of the real sequences {un} such that un = o(n−1/2) as n→ +∞.

(i) Is X ⊂ `p for some p?
(ii) Is X ⊃ `p for some p?

25. = Let X be the set of the measurable functions v : R+ → R such that v(x) = o(x−1/2) as
x→ +∞.

(i) Is X ⊂ Lp(R+) for some p?
(ii) Is X ⊃ Lp(R+) for some p?

26. = For any n ∈ N, let an > 0 and χn be the characteristic function of the interval [n, n+an].

(i) Do sequences {an} exist such that the sequence {χn} converges in Lp(R) for some p?
Must {an} be related to p? What is the limit?
(ii) Do sequences {an} exist such that the set {χn} is relatively sequentially weakly star
compact in Lp(R) for some p?
(iii) Do sequences {an} exist such that {χn} weakly converges in Lp(R) for some p 6=∞?
What is the limit?
(iv) Do sequences {an} exist such that {χn} weakly star converges in C0

c (R)′? What is
the limit?

27. = Do the following sequences converge in some sense in Lp(−1, 1) for some p ∈ ]1,+∞]?
What is the limit?

(i) {un(x) := ex/n cos(nx)};
(ii) {un(x) := [sin(nx)]+};

28. Let us equip C0
c (R) with the uniform norm.

(i) Is C0
c (R) a closed subspace of L∞(R)?

(ii) Is C0
c (R) dense in C0

b (R)?
(iii) Is C0

c (R) dense in L1(R)?

29. = Let X be a normed space, and {un}, {fn}, {Fn} be sequences in X,X ′, X ′′, respectively.
Are the following implications true?

(i) if un → u weakly and fn → f strongly, then 〈fn, un〉 → 〈f, u〉;
(ii) if un → u strongly and fn → f weakly, then 〈fn, un〉 → 〈f, u〉;
(iii) if un → u strongly and fn → f weakly star, then 〈fn, un〉 → 〈f, u〉;
(iv) if un → u weakly and fn → f weakly star, then 〈fn, un〉 → 〈f, u〉;
(v) if Fn → F weakly and fn → f strongly, then 〈Fn, fn〉 → 〈F, f〉;
(vi) if Fn → F strongly and fn → f weakly, then 〈Fn, fn〉 → 〈F, f〉;
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(vii) if Fn → F strongly and fn → f weakly star, then 〈Fn, fn〉 → 〈F, f〉;
(viii) if Fn → F weakly star and fn → f strongly, then 〈Fn, fn〉 → 〈F, f〉;
(ix) if Fn → F weakly and fn → f weakly, then 〈Fn, fn〉 → 〈F, f〉.

30. = This exercise characterizes the weak convergence by testing it on a subfamily of the dual
space.

(i) Let {un} be a bounded sequence in a normed space X, u ∈ X, and A be a dense subset
of the unit sphere of X ′. Prove that un → u weakly whenever 〈f, un〉 → 〈f, u〉 for any
f ∈ A.
(ii) Characterize similarly the weak convergence in X ′.
(iii) Characterize similarly the weak star convergence in X ′.

31. = ** Let X be a normed space. Show that a linear functional f : X → R is continuous if
(and only if) its kernel f−1(0) is closed.

Hint: If f ∈ X ′ \ {0} then there exists v̄ ∈ X such that f(v̄) = 1. For any closed A ⊂ R
then f−1(A) = Av̄ + f−1(0) (= {av̄ + w : a ∈ A,w ∈ f−1(0)})

32. = May two nonisomorphic normed spaces X1 and X2 be such that X1 ⊂ X2 (setwise) and
‖v‖1 ≤ ‖v‖2 for any v ∈ X1?

33. = * Let A be a linear subspace of a Banach space X.

(i) Give a sufficient condition such that N (L) = A for some L ∈ L(X).
(ii) Give a necessary and sufficient condition such that A = f−1(0) for some f ∈ X ′ with
f 6≡ 0.

34. = * Let X,Y, Z be Banach spaces, and L ∈ L(X,Y ), M ∈ L(Y,Z). If ML has a linear
and continuous inverse, does then follow that both M and L have a linear and continuous
inverses?

35. = * Let X,Y be Banach spaces, and L : X → Y be a linear mapping.
(i) Prove that, if un → u entails Lun ⇀ Lu, then L is continuous (that is, un → u entails
Lun → u).

Hint: Use the closed graph theorem ...

(ii) If Y has a predual, does this result hold also assuming that un → u entails Lun
∗
⇀ u?

36. Let X be the space of compactly-supported continuous functions ]0, 1]→ C; let Y be the
space of continuous functions ]0, 1]→ C that vanish as t→ 0; equip both spaces with the
sup-norm.

(i) are they Banach spaces? are they Fréchet spaces?
(ii) are they normed subspaces of L2(0, 1)? L2(0, 1)? of L1(0, 1)?
* (iii) Is X dense in Y ?

3 Spaces of Continuous Functions

*3.1 Banach algebras

A vector space A over the field K (= R or C) is called an (associative) algebra iff it is equipped

with a multiplication A×A→ A such that

a(bc) = (ab)(c) ,

(a+ b)c = ac+ bc, a(b+ c) = ab+ ac ,

λ(ab) = (λa)b = a(λb)
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for any a, b, c ∈ A and any λ ∈ K. The algebra is called commutative iff ab = ba for any

a, b ∈ A. If A is an algebra as well as a Banach space over K, it is called a Banach algebra iff

‖ab‖ ≤ ‖a‖ ‖b‖

for any a, b ∈ A. This entails that the multiplication is continuous on A×A. If moreover A has

a multiplicative unit I with ‖I‖ = 1, it is called a Banach algebra with unit.

Examples of Banach algebras.

(i) The field K is a trivial commutative Banach algebra with unit. For any N > 1, KN×N is

a noncommutative Banach algebra with unit (the unit matrix).

(ii) The space L(X) of bounded linear operators over a Banach space X, equipped with the

composition, is a Banach algebra with unit (the identity operator). If X has finite dimension,

this algebra is isomorphic to KN×N .

(iii) For any topological space T , let us equip the Banach space C0
b (T ) of bounded contin-

uous functions T → K with the supremum norm and the pointwise multiplication. This is a

commutative Banach algebra with unit (the constant function 1).

(iv) For any measure space (Ω,A, µ), the space L∞(Ω), equipped with the pointwise multi-

plication is a commutative Banach algebra with unit (the constant function 1).

(v) For any N > 1, C0
b (T ;KN×N ) and L∞(Ω;KN×N ) are noncommutative Banach algebras

with unit.

Theorem 3.1 (Neumann Series) Let X be a Banach algebra with unit I. For any u ∈ X,

‖u‖ < 1 ⇒ ∃(I − u)−1 =

∞∑
n=0

un. (3.1)

Proof. It suffices to notice that if ‖u‖ < 1 then

(I − u)

∞∑
n=0

un =

( ∞∑
n=0

un
)

(I − u). = I 2

3.2 The Ascoli-Arzelà theorem

The following classical result conveys an important characterization of (relative) compactness

in C0(K) (K being a compact metric space). This is relevant since the space C0(K) has no

predual, and thus here one cannot use the Banach-Alaoglu theorem.

Theorem 3.2 (Ascoli-Arzelà) Let K be a compact metric space. A subset F of C0(K) is rel-

atively strongly compact if (and only if) it is (equi)bounded as well as uniformly equicontinuous

in C0(K), that is, 20

sup
{
|u(x)| : x ∈ K,u ∈ F

}
< +∞, (3.2)

sup
{
|u(x)− u(y)| : x, y ∈ K, d(x, y) ≤ h, u ∈ F

}
→ 0 as h→ 0. (3.3)

20Because of the compactness of K, the condition (3.3) is equivalent to the (in general weaker) condition of
pointwise equicontinuity

sup
u∈F

sup
{
|u(x)− u(y)| : y ∈ K, d(x, y) ≤ h, u ∈ F

}
→ 0 as h→ 0,∀x ∈ K. [Ex]
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*Proof. It suffices to show that a Cauchy subsequence may be extracted from any sequence in

F . Let {xj}j∈N be a (countable) dense subset in K. Because of the boundedness of F , from {un}
one may extract a subsequence {un1} such that {un1(x1)} converges. Similarly, for j = 2, 3, ...,

from {unj−1} one may iteratively extract a subsequence {unj} in such a way that {unj (x`)}
converges for all ` ≤ j. By a diagonalization procedure, for any m ∈ N let us then define ũm as

the mth element of the sequence unm . Thus {ũm} is a subsequence extracted not only from the

initial sequence {un} but also from {unj} for any j ∈ N; moreover {ũm(xj)} converges for any

j ∈ N.

Let us now fix any ε > 0. By equicontinuity there exists a δ > 0 such that

|ũm(xj)− ũm(y)| ≤ ε ∀y ∈ K ∩B(xj , δ), ∀j,m ∈ N. (3.4)

By the compactness of K, a finite subcovering {B(xj , δ)}j∈J may be extracted from the family

of the open balls {B(xj , δ)}j∈N. Therefore, for any m′,m′′ large enough,

|ũm′(y)− ũm′′(y)|
≤ |ũm′(y)− ũm′(xj)|+ |ũm′(xj)− ũm′′(xj)|+ |ũm′′(xj)− ũm′′(y)|
(3.4)

≤ |ũm′(xj)− ũm′′(xj)|+ 2ε ∀y ∈ K ∩B(xj , δ), ∀j ∈ J,

whence

max
y∈K
|ũm′(y)− ũm′′(y)| ≤ max

j∈A
|ũm′(xj)− ũm′′(xj)|+ 2ε.

As {ũm(xj)} is a Cauchy sequence (in R) for any j, {ũm} is then a Cauchy sequence in C0(K).

2

3.3 Exercises

1. Drop any of the three assumptions of the Stone-Weierstrass theorem (1. separation, 2.
constants, 3. conjugation), and find a counterexample in each case.

2. = Does the Weierstrass theorem hold in the algebra C0(]0, 1[)?

3. = Discuss the mutual implications among the following notions

(i) pointwise equicontinuity of a family of functions in C0
b (R);

(ii) equilipschitzianity of a family of functions in C0
b (R) (i.e., equiboundedness of the

incremental ratios);
(iii) equiboundedness of a family of functions in C1

b (R).
(iv) uniform equicontinuity of a family of functions in C0

b (R);

4. Let {un} be an equibounded, and uniformly equicontinuous family of monotone functions
in C1

b (R). Does the pointwise convergence of {un} to 0 entail the uniform convergence of
a subsequence?

5. Is the proof of Lemma 3.11 at p. 54 of [Br] correct?

6. * (i) Prove that any pointwise equicontinuous sequence of functions in C0(K) is uniformly
equicontinuous, assuming that K is a compact metric space.

(ii) Exhibit a counterexample for a noncompact K.
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4 * Weak Topologies

(Yes: this is the asterisk, not the star of the weak star topology. More material is available on

demand.)

4.1 * Final topology

Before introducing weak topologies, we review two standard methods of constructing a topol-

ogy on a given set, in such a way that certain continuity properties are fulfilled.

Let A be any index set. Let {Xα}α∈A be a family of topological spaces, and {λα}α∈A be a

family of mappings Xα → X, where X is any set. Let us say that a subset U of X is open

iff λ−1
α (U) is open for all α ∈ A. This defines a topology on X which is called the final (or

inductive) topology on X generated by the family {(Xα, λα)}α∈A. This is the finest among the

topologies on X that make all λα’s continuous.

Proposition 4.1 Let X be equipped with the final topology generated by a family {(Xα, λα)}α∈A
as above. Then:

(i) For any topological space H, a mapping f : X → H is continuous iff f ◦ λα : Xα → H is

continuous for any α ∈ A.

(ii) The property (i) characterizes the final topology.

Proof. (i) By definition, for any open subset V of H, f−1(V ) is open in X iff (f ◦ λα)−1(V ) =

λ−1
α (f−1(V )) is open in Xα for any α. This yields the first statement.

(ii) Let us now denote by X̂ the set X equipped with another topology which fulfills the

property (i). By applying the “if” part of (i) to the identity mapping j : X → X̂ and to

j−1 : X̂ → X, we see that j is a homeomorphism. 2

*4.2 Initial topology

The following construction may be regarded as dual to the previous one.

Let A still be any index set. Let us consider a set Y , a family {Yα}α∈A of topological spaces,

and a family {γα}α∈A of mappings Y → Yα. Let the family S of subsets of Y be defined as

S = {γ−1
α (Vα) : α ∈ A, Vα open in Yα}, (4.1)

define U to be open in Y iff it is a union of finite intersections 21 of sets in S. The resulting topol-

ogy is called the initial (or projective) topology on Y generated by the family {(Yα, γα)}α∈A.

It is the coarsest topology on X under which any γα is continuous.

Proposition 4.2 Let Y be equipped with the initial topology generated by a family {(Yα, γα)}α∈A
as above. Then:

(i) For any topological space H, a mapping f : H → Y is continuous iff γα ◦ f : H → Yα is

continuous for any α ∈ A.

(ii) The property (i) characterizes the initial topology.

Proof. (i) For any α and any open subset Vα of Yα, γ−1
α (Vα) is open in Y iff (γα ◦ f)−1(Vα) =

f−1(γ−1
α (Vα)) is open in H. This yields the first statement.

(ii) Let us now denote by Ŷ the set Y equipped with another topology which fulfils (i). By

applying the “if” part of (i) to the identity mapping j : Y → Ŷ and to j−1 : Ŷ → Y , we see that

j is a homeomorphism. 2

For instance, the Cartesian product Y :=
∏
α∈A Yα of a family of topological spaces {Yα}

may be equipped with the initial topology generated by the family of the canonical projections

21In topological terminology, S is a subbasis of that topology.
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πα : Y → Yα. This is called the product topology. The topology induced by a topological space

T on a subset M is another example of an initial topology. In this case Y = M , the index set

A is a singleton, Yα = T , and γα : M → T is the canonical imbedding.

*4.3 Construction of weak topologies

In any normed space X, besides the topology generated by the norm (usually referred to as the

strong topology), a weak topology is defined. This is the initial topology on X generated

by the family {(K, f) : f ∈ X ′}. Thus

the weak topology on X is the coarsest topology on X

among those that make all functionals of X ′ continuous.
(4.2)

As a consequence, any weakly closed (weakly open, resp.) set is closed (open, resp.). 22 A

subbasis S of the weak topology in X is given by

S =
⋃
u∈X

(u+ S0), S0 = {f−1(]− ε, ε[) : f ∈ X ′, ε > 0}. (4.3)

The family S0 is thus a subbasis of the system of neigborhoods of the origin. Any weakly open

subset of X is the union of a family of elements, each being the intersections of a finite subfamily

of S. The same construction applies to the dual space X ′. Thus

the weak topology on X ′ is the coarsest topology on X ′

among those that make all functionals of X ′′ continuous.
(4.4)

In X ′ the weak star topology is also defined. 23 This is the initial topology on X ′ generated

by the family

F := {(K, F ) : F ∈ J(X)} = {(K, Ju) : u ∈ X},

where by J we denote the canonical imbedding X → X ′′. Thus

the weak star topology on X ′ is the coarsest topology on X ′

among those that make all functionals of J(X) continuous.
(4.5)

If X is reflexive, i.e. J(X) = X ′′, then the weak star topology coincides with the weak topology

on X ′.

*4.4 Schur and von Neumann

The weak topology is not metrizable whenever X has infinite dimension. Therefore the weak

closure of a subset S of X may include elements that cannot be represented as the weak limit of

any sequence in S. Therefore weak continuity and sequential weak continuity need not coincide.

Nevertheless,

a sequence in `1 converges weakly iff it converges strongly. (4.6)

This astonishing phenomenon is known as the Schur property. For the reasons that we just

explained, this does not contradict the next result.

22The norm topology will be our default topology unless otherwise specified. So open will stand for strongly
open, closed for strongly closed, and so on.

23This is meaningful only in a dual space. The star refers to the fact that in the literature the dual space is
often denoted by X∗, with a star instead of a prime.
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Theorem 4.3 (Banach) The weak and the strong topology coincide only in finite-dimensional

normed spaces.

The next example is due to von Neumann (who introduced the notion of weak topology). In `2,

for any n let us denote by en the nth vector, and define the (unbounded) set A := {em +men :

m,n ∈ N, 1 ≤ m < n}. No sequence of A weakly vanishes in `2. [Ex] Nevertheless the null

element 0 := (0, ..., 0, ...) is in the weak closure of A, since any weak neighborhood of 0 intersects

A. []

*4.5 Uniqueness of weak and weak star limits

We recall the reader that one says that two points u, v in a topological space H can be

separated whenever there exist two disjoint open sets that respectively include u and v. The

space H is called a Hausdorff space, and its topology is said to be Hausdorff, if any pair of

distinct points u, v ∈ H can be separated. This holds iff the limit of any converging sequence in

H is unique.

The next result thus entails the uniqueness of weak and weak star limits.

Proposition 4.4 The weak topology of a normed space X and the weak star topology of X ′ are

Hausdorff.

Proof. Let us first consider the weak topology. If u, v ∈ X with u 6= v, then f(u) 6= f(v) for

some f ∈ X ′ by separation (Theorem 2.14), so f−1(I) and f−1(J) separate u and v, where I

and J are any open real intervals which separate f(u) and f(v).

Let us next come to the weak star topology. Just by definition of function, without using any

consequence of the Hahn-Banach theorem, if f, g ∈ X ′ with f 6= g, then f(u) 6= g(u) for some

u ∈ X: The argument then proceeds as above. 2

* If X is an infinite dimensional normed space, X ′ equipped with the weak topology is not

complete. []

*4.6 Two classical results of Mazur

A function f : X → R ∪ {+∞} is said to be lower semicontinuous (convex, resp.) iff for

any a ∈ R its epigraph {(v, r) ∈ X×R : v ∈ X, f(v) ≤ r} is closed (convex, resp.).

Theorem 4.5 (Mazur) Let X be a real normed space. Then:

(i) A convex subset of X is closed iff it is weakly closed.

(ii) A convex function f : X → R ∪ {+∞} is lower semicontinuous iff it is weakly lower

semicontinuous.

(iii) A linear functional f : X → R is continuous iff it is weakly continuous.

Proof. After Corollary 2.15, any closed convex subset A of X is the intersection of the closed

halfspaces that contain it; moreover any half space is closed iff it is weakly closed. This yields

part (i). Part (ii) directly follows from part (i). Finally, part (ii) entails part (iii), since for any

linear functional f both f and −f are convex. 2

Remarks. (i) More generally, if X and Y are Banach space and L : X → Y is a linear operator,

then each of the following properties is equivalent to the other ones:

(1) L : X → Y is continuous from Xstrong to Ystrong (i.e., L is “strongly continuous”),

(2) L : X → Y is continuous from Xstrong to Yweak,

(3) L : X → Y is continuous from Xweak to Yweak (i.e., L is “weakly continuous”).
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Here the spaces are assumed to complete, as the proof rests on the closed graph theorem. []

(ii) If X has a predual (i.e., there exists a normed space X such that X = Y ′), one may wonder

whether in Theorem 4.5 the weak topology may be replaced by the weak star topology. If X is

not reflexive, the answer is in the negative. For instance, for any F ∈ Y ′′ \ Y , the hyperplane

{f ∈ Y ′ : F (f) = 0} is not weakly star closed, [] although it is both strongly and weakly closed.

Corollary 4.6 (Mazur) Let X be a normed space, and un → u weakly in X. Then u is the

strong limit of a sequence {ũm} of finite convex combinations of elements of the sequence {un}.
That is, for any m ∈ N there exist `m ∈ N and λm,k ≥ 0 for 1 ≤ k ≤ `m with

∑`m
k=1 λm,k = 1

such that

ũm :=

`m∑
k=1

λm,kuk → u in X, as m→∞. (4.7)

Proof. Let us set S := {un}, and notice that co(S) (the closure of the convex hull) is convex,

as the closure of any convex set is convex. [Ex] By part (i) of Theorem 4.5, any weak limit of a

sequence in S is included in co(S). Thus u ∈ co(S), that is, u is the (strong) limit of a sequence

in co(S). 24 2

*4.7 The theorem of Banach-Alaoglu

Let us recall that a subset A of a Hausdorff space H is called relatively compact (resp. rel-

atively sequentially compact) in H iff its closure A is compact (resp. sequentially compact)

when endowed with the topology induced by H. Thus, A is relatively sequentially compact in

H iff every sequence in A has a convergent subsequence whose limit belongs to A.

A Hausdorff space H is said to be (topologically) compact iff a finite subcovering may be

extracted from every open covering of that set. H is said to be sequentially compact iff a

convergent subsequence may be extracted from every sequence. 25 In metrizable spaces the

topological compactness is equivalent to the sequential compactness. However in nonmetrizable

topological spaces in general there is no implication between topological and sequential com-

pactness. For instance infinite-dimensional Banach spaces equipped with either the weak or (if

they have a predual) weak star topology are nonmetrizable. [Ex]

Theorem 4.7 (Banach-Alaoglu) Let X be a normed space. The closed unit ball of BX′ is weakly

star compact. (This entails that any bounded subset of X ′ is relatively weakly star compact.) []

From this important result one may retrieve the theorem as it was originally stated by Banach:
26

Theorem 4.8 (Banach) Let X be a separable normed space. The closed unit ball of BX′ is

sequentially weakly star compact. (This entails that any bounded subset of X ′ is relatively se-

quentially weakly star compact.)

See e.g. [Br] p. 34 for the proof. 27

*4.8 Further results on weak topologies

The following holds in any infinite-dimensional normed space X.

24In passing note that in general co(A) (the closure of the convex hull) need not coincide with co(Ā) (the convex
hull of the closure). Consider e.g. A = {(x, x2) : x ∈ R \ {0}}.

25Since this definition does not refer to any ambient space, its limit must be an element of H.
26The hypotheses of Banach-Alaoglu are more general, but the thesis is weaker.
27There this result is erroneously attributed to Banach and Alaoglu. The corresponding footnote is also ques-

tionable ... (why?).
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(i) As weakly open sets are unbounded, the open unit ball B0
X is not weakly open. It even has

no interior point for the weak topology.

(ii) By Mazur’s Theorem 4.5, the closed unit ball is weakly closed. This set coincides with its

weak boundary, as it has no interior point in the weak topology.

(iii) The boundary of the unit ball, {v ∈ X : ‖v‖ = 1}, is closed but not weakly closed. For

example, if X = `2 the sequence of unit vectors {en} weakly converges to the origin.

Here is a further property along the same line.

Proposition 4.9 Let X be an infinite-dimensional normed space. The unit sphere {v ∈ X :

‖v‖ = 1} in X is weakly dense in the closed unit ball BX . The unit sphere {f ∈ X ′ : ‖f‖ = 1}
is also weakly star dense in BX′.

Proof. Let u ∈ BX , and A be a weak neighborhood of u. As we saw, the weakly open set

A− u (:= {x− u : x ∈ A}) contains a straight line {tw : t ∈ R} for some w ∈ X, w 6= 0. Hence

‖u+ tw‖ = 1 for a suitable t ∈ K. Any weak neighborhood of any point of BX thus contains a

point of the unit sphere. We conclude that the unit sphere of X is weakly dense in BX .

The proof of the second statement is quite similar. 2

*4.9 Exercises

1. = Let A be a convex subset of a normed space X. Show that the closure of A coincides
with its weak closure.

(This obviously entails the first part of Mazur’s Theorem 4.5.)

2. Let X be a separable infinite-dimensional normed space. Is the unit sphere SX′ relatively
sequentially weakly star compact?

3. Is a weakly closed set necessarily convex?

4. Let X be an infinite dimensional real normed space. Which set is the weak closure of the
open unit ball B0

X?

5. = Let X be a Banach space, BX be the open unit ball of X, and set A := BX \ {0}.
(i) Is A relatively compact?
(ii) What is the closure of A?
(iii) What is the interior of A?
(iv) What is the weak interior of A?
(v) Is the weak closure of A bounded?

6. = Let {en} be the canonical basis of `2, and set

A :=
{∑

n∈N anen : an ≥ 0 ∀n, 1 ≤
∑

n∈N |an|2 ≤ 2
}

.

(i) Is A closed?
(ii) Is A compact?
(iii) What is the interior of A?
(iv) Is A sequentially weakly compact?
(v) What is the weak interior of A?

7. For any of the spaces, R4, c, Lp(R) (1 ≤ p ≤ +∞), establish whether

(i) bounded subsets are sequentially compact,

(ii) compact subsets are sequentially weakly compact,

(iii) sequentially weakly compact subsets are compact,

(iv) bounded subsets are relatively sequentially weakly star compact,

* (v) closed bounded subsets are sequentially weakly star compact.
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5 The Baire Theorem and its Consequences

*5.1 The Baire theorem

The results of this section stem from the following classical metric theorem.

Theorem 5.1 (Baire Theorem) If a complete metric space X is a countable union of closed

subsets, then at least one of them has interior points.

* Proof. Let {Xn} be any sequence of (possibly nondisjoint) closed subsets of X with empty

interior. It suffices to show that X 6=
⋃
n∈NXn.

As X0 is closed and has no interior point, it cannot coincide with X. Thus X \ X0 is open

and contains a closed ball, say B(x0, ε0). The set X1 ∩ B(x0, ε0) is closed and has no interior

point; X \ [X1 ∩ B(x0, ε0)] is thus open and contains a closed ball B(x1, ε1) with ε1 ≤ ε0/2.

Iterating this procedure we construct a nested sequence {B(xn, εn)} of closed balls; each of

them does not intersect Xn, and εn → 0. By the completeness of X, the sequence {xn} then

converges to some x ∈ X. By construction B(xm, εm) ∩
(⋃

n≤mXn

)
= ∅ for any m. Hence

x ∈
⋂
n∈NB(xn, εn) 6⊂

⋃
n∈NXn; thus X 6=

⋃
n∈NXn. 2

The Baire theorem may be restated in a number of ways, e.g., the following formulation is

simply obtained from Theorem 5.1 by taking complementary sets.

If X is a complete metric space, then:

the intersection of a countable family of open dense subsets of X is dense.

Notice that this theorem concerns (complete) metric spaces, but is stated in terms of topolog-

ical notions.

5.2 The Principle of Uniform Boundedness

Let X1 and X2 be normed spaces with respective norms ‖ · ‖1 and ‖ · ‖2. 28 We know that the

space L(X1;X2) of all linear and continuous operators X1 → X2 is a normed space equipped

with the operator norm

‖L‖L(X1;X2) = sup{‖Lu‖2/‖u‖1 : u ∈ X1 \ {0}}
(

= sup{‖Lu‖2 : u ∈ X1, ‖u‖1 ≤ 1}
)
,

and is complete iff X2 is complete. The principle of uniform boundedness states that any

pointwise bounded family F ⊂ L(X1;X2) is uniformly bounded.

Theorem 5.2 (Banach-Steinhaus) Let X1 be a Banach space, X2 be a normed space, and F ⊂
L(X1;X2). Then

sup
L∈F
‖Lu‖2 < +∞ ∀u ∈ X1 ⇒ sup

L∈F
‖L‖L(X1;X2) < +∞. (5.1)

This implication also reads as follows:

∀u ∈ X1, ∃C > 0 : ∀L ∈ F , ‖Lu‖2 ≤ C‖u‖1
⇒ ∃Ĉ > 0 : ∀u ∈ X1, ∀L ∈ F , ‖Lu‖2 ≤ Ĉ‖u‖1.

(5.2)

Proof. For any n ∈ N, let us set An := {u ∈ X1 : ∀L ∈ F , ‖Lu‖2 ≤ n}. By the continuity of

the operators of F , this set is closed. By the assumption of pointwise boundedness, each u ∈ X1

28Whenever we deal with operators between two normed spaces, we shall implicitly assume that they are linear
spaces over the same field.
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belongs to some An; that is,
⋃
nAn = X1. Then, by Baire’s theorem, for some ñ ∈ N the interior

of Añ is nonempty. So let w ∈ X1 and r > 0 be such that the ball B(w, r) := w + rB(0, 1) is

contained in Añ. For any L ∈ F and any v ∈ B(0, 1), we then have ‖L(w + rv)‖2 ≤ ñ, whence

r‖L(v)‖2 ≤ ñ+ ‖L(w)‖2 ≤ ñ+ S(w), S(w) := sup
L∈F
‖Lw‖2.

Hence ‖L‖L(X1;X2) ≤ [ñ+ S(w)]/r for all L ∈ F . The implication (5.1) is thus established. 2

The Banach-Steinhaus theorem fails if X1 is not complete. As a counterexample, consider the

family of functionals {Ln}n∈N with Lnx = nxn for any x := (x1, x2, ...) ∈ c00 and any n. This

family of functionals are pointwise but not uniformly bounded. [Ex]

As another counterexample, let us denote by X1 the linear space C1([0, 1]) equipped with the

norm of C0([0, 1]), and consider the functionals Lnu = n[u(1/n)− u(0)] for any u ∈ X1 and any

n.

In particular, the Banach-Steinhaus theorem result applies to functionals.

Corollary 5.3 If X Banach space, then any pointwise bounded family of X ′ is uniformly

bounded.

Here are some other relevant consequencess of the Banach-Steinhaus theorem.

Corollary 5.4 (i) If X is a normed space, then any weakly convergent sequence in X is

bounded.

(ii) If X is a normed space, then any weakly convergent sequence in X ′ is bounded.

(iii) If X is a Banach space, then any weakly star convergent sequence in X ′ is bounded. [Ex]

Concerning part (iii), notice that a weakly star convergent sequence {fn} in X ′ is tested

over the elements of J(X); that is, {fn} is regarded as a subset of L(J(X);R). The Banach-

Steinhaus theorem J(X) may then be applied only if J(X) is complete; that is, as J is an

isometric isomorphism, only if X is complete.

On the other hand, concerning part (ii), the weak convergence the sequence {fn} in X ′ is tested

over the elements of X ′′; that is, {fn} is regarded as a subset of L(X ′′;R). As X ′′ is always

complete, the Banach-Steinhaus theorem can be applied without assuming X to be complete.

For a similar reason, in part (i) the completeness of X is not needed.

Corollary 5.5 Let X1 be a Banach space, X2 be a normed space, and {Ln} be a sequence in

L(X1;X2). Assume that for any u ∈ X1 the sequence {Lnu} converges in X2, and denote this

limit by Lu. This defines an operator L ∈ L(X1;X2).

(See [Br] p. 62 for the proof.)

5.3 The Open Mapping Theorem

A linear mapping between two normed spaces is called open iff it maps open sets onto open

sets.

Lemma 5.6 Let X1 and X2 be two normed spaces. A mapping L ∈ L(X1;X2) is open if (and

only if) 0 is an interior point of L(B1). (Here B1 denotes the open unit ball in X1.)
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Proof. Let U be open in X. For any u ∈ U there exists ε > 0 such that u+εB1 ⊂ U . If 0 is an

interior point of L(B1), then L(u) is an interior point of L(u) + εL(B1) = L(u+ εB1)
(
⊂ L(U)

)
,

hence also of L(U). 2

This lemma entails that any open mapping is surjective. [Ex] The celebrated open mapping

theorem states the converse, whenever X1 and X2 are complete.

Theorem 5.7 (Banach’s Open Mapping Theorem) Let X1 and X2 be Banach spaces. Any

surjective mapping L ∈ L(X1;X2) is open.

* Proof. Set Vm = L(mB1). We have X2 = ∪m≥1Vm as L is surjective. By Baire’s theorem,

some Vk has nonempty interior, so it contains an open ball v + Bδ = v + δB1. We infer that

−v + Bδ ⊂ Vk by symmetry, and Bδ ⊂ Vk by convexity; consequently Bε ⊂ V1 for ε = δ/k.

Because of Lemma 5.6, it now suffices to prove that V1 ⊂ V2, since 0 will then also be an

interior point of V1 = L(B1). To this purpose, let v ∈ V1. Set v0 = v and choose u1 ∈ B1

with v1 := v0 − Lu1 ∈ Bε/2 ⊂ L(B1/2). Proceeding inductively, choose un ∈ B21−n with

vn := vn−1 − Lun ∈ B2−nε ⊂ L(B2−n). Therefore
∑∞

n=0 ‖ui‖ < ∞; hence
∑∞

n=0 ui converges in

X2. 29 We thus get

u :=

∞∑
n=1

un ∈ B2, v −
n∑
j=1

Luj = vn → 0;

thus v = Lu ∈ L(B2) = V2. 2

Remarks. (i) One may wonder whether any surjective mapping L ∈ L(X1;X2) maps closed sets

onto closed sets. This fails even in finite-dimensional spaces. For instance the linear, continuous

and surjective functional L : R2 → R : (x, y) 7→ x maps the closed set A := {(x, y) : xy ≥ 1}
onto the nonclosed set L(A) = (0,+∞).

(ii) Continuous mappings map compact sets to compact sets, without any linearity assumption.

(These maps are not called compact!)

(iii) In the open mapping theorem the surjectivity cannot be dispensed with. The null function

is a trivial counterexample.

Corollary 5.8 (Inverse Mapping Theorem) Let X1 and X2 be Banach spaces. The inverse of

any linear, continuous and bijective mapping X1 → X2 is (linear and) continuous.

Let us recall that, if ‖ · ‖1 and ‖ · ‖2 are two norms over a linear space, we say that the first

is stronger than the second one iff there exists a constant C > 0 such that ‖u‖2 ≤ C‖u‖1 for all

u ∈ X.

Corollary 5.9 Let a linear space X be a Banach space when equipped with either of two norms.

If one of them is stronger than the other one, then the two norms are equivalent.

Proof. Denoting X1 and X2 the two normed spaces, it suffices to apply Corollary 5.8 to the

identity mapping X1 → X2. 2

Exercise: two norms on the same Banach space are equivalent. (Hint: take the sum of the

norms, and apply a corollary of the open mapping theorem.) But, surprisingly, this statement

is wrong ! (it is not obvious that with the sum of the norms the space is complete...)

see Theorem 4.2 of Let E be an infinite dimensional Banach space. There exist mutually

non-equivalent norms on E all making the space into an isometric copy of the original one. More

precisely, the cardinality of such a set of norms can be chosen to be as large as the dimension

29In an exercise we proved that in a Banach space totally convergent sequences are convergent.
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Arendt and Robin Nittka

5.4 The Closed Graph Theorem

It is easy to see that, whenever X1 and X2 are two normed spaces (resp. Banach spaces) over

the field K, X1 ×X2 is a normed space (resp. a Banach space) over K when equipped with the

norm

‖(v1, v2)‖ := ‖v1‖1 + ‖v2‖2 ∀(v1, v2) ∈ X1 ×X2,

and that the projections pj : X1 ×X2 → Xj are continuous. The next consequence of the Open

Mapping Theorem is as simple as important.

Theorem 5.10 (Closed Graph Theorem) Let X1 and X2 be Banach spaces, let L : X1 → X2

be a linear mapping. The graph of L, GL := {(v, Lv) : v ∈ X1}, is closed in X1 × X2 iff L is

continuous.

Proof. Let us first prove the “if”-part. For any(u,w) ∈ GL, there exists a sequence {un} in

X1 such that un → u and Lun → w. If L is continuous then w = Lu, that is, (u,w) ∈ GL.

Let us next prove the “only if”-part. If the linear subspace GL of X1 ×X2 is closed, then it

is a Banach space by itself. The projections

pi : GL → Xi, p1(v, Lv) = v, p2(v, Lv) = Lv,

are continuous. As p1 is bijective, p−1
1 also is continuous by the inverse mapping theorem

(Corollary 5.8). Therefore L = p2 ◦ p−1
1 is continuous. 2

Remarks. (i) Let L : X1 → X2 be a linear mapping between two Banach spaces X1 and X2,

and let us consider the following statements:

(a) un → u in X1, (b) Lun → w in X2, (c) w = Lu.

The closedness of L reads “(a) and (b) together imply (c)” whereas its continuity is tantamount

to “(a) implies (b) and (c)” (for any sequence {un} and any u in X1). The fact that the closedness

entails the continuity is a remarkable consequence of the open mapping theorem.

We emphasize that it is assumed that L(X1) = X2 in the open mapping theorem, and

Dom(L) = X1 in the closed graph theorem.

(ii) Let X1 and X2 be Banach spaces, and L : X1 → X2 be a linear mapping. The closedness

of the graph of L (that is, the continuity of L) does not entail the closedness of the range of L.

Whenever X1 ⊂ X2 with proper and continuous injection, the indentity mapping X1 → X2 is a

counterexample.

(iii) Each of the main three theorems of this section – the open mapping theorem (Theo-

rem 5.7), the inverse mapping theorem (Corollary 5.8), the closed graph theorem (Theorem 5.10)

– may be derived from any other one of them.

(iv) These theorems may be extended to Fréchet spaces (even to the more general environment

of locally convex topological vector spaces!) with analogous proofs. Actually, they do not involve

dual spaces and weak topologies.

*5.5 Exercises

1. * Let X,Y be Banach spaces and T ∈ L(X,Y ). Is it true that T is surjective iff T (Bx) is
a neighbourhood of the origin?
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2. Consider the following argument:

“For any m ∈ N, let us define fm ∈ (c00)′ by setting fm(u) =
∑m

n=0 un for any u :=
(u1, u2, ...) ∈ c00. For any u ∈ c00, the sequence {fm(u)} is clearly bounded (in R). By the
corollary of the Banach-Steinhaus theorem, the sequence {fm} is then bounded in (c00)′.”

Show that the conclusion is wrong, and find the mistake in the argument.

3. = * Let X be an infinite-dimensional normed space. Construct a linear functional f :
X → R that is not continuous.

4. = ** Prove the following principle of uniform boundedness in metric spaces, adapting the
argument of Theorem 5.2.

Theorem (Osgood Theorem). Let X be a complete metric space, N be a normed
space, and F be a family of pointwise bounded, continuous functions X → N . Then F is
uniformly bounded on some nonempty open subset of X; that is,

sup{|f(x)| : f ∈ F} < +∞ ∀x ∈ X ⇒
∃x0 ∈ X,∃r > 0 : sup{|f(x)| : f ∈ F , d(x, x0) < r} < +∞.

Hint: See the proof of the Banach-Steinhaus theorem...

5. Let U be a subset of a Banach space X. Show that

sup{|f(u)| : u ∈ U} < +∞ ∀f ∈ X ′, ‖f‖X′ ≤ 1

⇒ sup{|f(u)| : u ∈ U, f ∈ X ′, ‖f‖X′ ≤ 1} < +∞.

(This is a dual formulation of the Principle of Uniform Boundedness for functionals.)

6. Let X be a Banach space. Prove that:

(i) A subset A of X is bounded if (and only if) {f(v) : v ∈ A} is bounded for any f ∈ X ′.
(ii) A subset A of X ′ is bounded if (and only if) {F (f) : f ∈ A} is bounded for any
F ∈ X ′′.
(iii) A subset A of X ′ is bounded if (and only if) {f(v) : f ∈ A} is bounded for any v ∈ X.

7. Let us denote by X the linear space C1([0, 1]) equipped with the norm of C0([0, 1]), and
consider the following argument:

“The differentiation operator L : X → C0([0, 1]) : u 7→ u′ is linear and closed. By the
Closed Graph Theorem, the operator L is then continuous.”

Show that the conclusion is wrong, and find the mistake in the argument.

8. In the proof of Corollary 4.3 at p. 62 of [Br], where is the Banach-Steinhaus theorem
applied?

9. Provide an alternative proof of the Inverse Mapping Theorem via the Closed Graph The-
orem.

10. = * (i) Show that the dimension of a Banach space cannot be countable.
Hint: Use the Baire theorem...
* (ii) A normed space may have countable infinite dimension: give an example.

Remark. Although the completeness of a normed space is a metric property, the state-
ment (ii) does not contradict the assertion that the dimension is a purely algebraic notion.

11. = ** Conjecture: the norms of two Banach spaces over the same set necessarily equivalent.

Tentative argument: The sum of the two norms is a norm over the same set. By the inverse
mapping theorem, it is equivalent to the two given norms.

This argument is wrong: why?

(One may show that the conjecture is wrong, but this is nontrivial.)
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6 Hilbert Spaces

6.1 Inner-Product spaces

Let H be a linear space over the field K. A mapping (·, ·) : H × H → K is called an inner

product (or a scalar product) 30 over H iff it fulfills the following properties:

the functional H → K : u 7→ (u, v) is linear over K ∀v ∈ H, (6.1)

(u, v) = (v, u) ∀u, v ∈ H, (6.2)

the bar denoting complex conjugation31, and

(u, u) > 0 ∀u ∈ H \ {0} . (6.3)

In particular, the positive definiteness property (6.3) implies that (u, u) ∈ R for all u ∈ H and

that

(u, u) = 0 ⇔ u = 0 . (6.4)

The properties (6.1) and (6.2) obviously entail that

the functional H → K : v 7→ (u, v) is linear over K ∀u ∈ H. (6.5)

A linear space over C (R, resp.) equipped with an inner product is called a complex (real,

resp.) inner-product space, or a pre-Hilbert space. Here is some further terminology:

(6.1) and (6.5) ⇔ (·, ·) is sesquilinear if K = C, bilinear if K = R.

(6.1) and (6.2) ⇔ (·, ·) is Hermitian (or skew-symmetric) if K = C, symmetric if K = R.

(6.5) ⇔ (u, ·) is antilinear, or conjugate-linear, or skew-linear.

Henceforth, when dealing with an inner-product space, we set

‖u‖ :=
√

(u, u) ∀u ∈ H. (6.6)

By the properties (6.1) – (6.3) above and by (6.9) ahead, we infer that ‖ ·‖ is indeed a norm over

H; this is called a Hilbert norm. Dealing with aninner-product space we shall always refer to

this norm, if not otherwise specified.

Remark. A Banach space equipped with a non-Hilbert norm may be Hilbertizable; that is,

a non-Hilbert norm may be equivalent to a Hilbert norm. For instance, the linear space L2(0, 1)

equipped with the non-Hilbert norm ‖·‖L2 +‖·‖L1 is Hilbertizable, since this norm is equivalent

to the Hilbert norm ‖ · ‖L2 .

6.2 Basic properties

Proposition 6.1 If H is an inner-product space over the field K, then

|(u, v)| ≤ ‖u‖‖v‖ ∀u, v ∈ H (Cauchy-Schwarz inequality), (6.7)

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2 ∀u, v ∈ H (parallelogram identity), (6.8)

‖u+ v‖ ≤ ‖u‖+ ‖v‖ ∀u, v ∈ H (Minkowski inequality), (6.9)

the mapping (·, ·) : H ×H → K is continuous. (6.10)

30The notation (·, ·) is traditional. Unfortunately it is also used to denote pairs.
31Of course, for a real space the complex conjugation may be dropped.
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Proof. (i) Let us prove (6.7). Without loss of generality, we may assume that K = C and

v 6= 0. By (6.1) and (6.2), 32

0 ≤ (u+ λv, u+ λv) = (u, u) + |λ|2(v, v) + (λv, u) + (u, λv)

= ‖u‖2 + |λ|2‖v‖2 + 2Re[λ(v, u)] ∀λ ∈ C.

By taking λ = −(u, v)/‖v‖2, we then get

0 ≤ ‖u‖2 +
|(u, v)|2

‖v‖2
− 2
|(u, v)|2

‖v‖2
= ‖u‖2 − |(u, v)|2

‖v‖2
,

which yields (6.7).

(ii) In order to check (6.8), notice that

‖u+ v‖2 = (u+ v, u+ v) = ‖u‖2 + (u, v) + (v, u) + ‖v‖2

= ‖u‖2 + 2Re(u, v) + ‖v‖2,
(6.11)

and similarly ‖u− v‖2 = ‖u‖2 − 2Re(u, v) + ‖v‖2. Summing these equalities we get (6.8).

(iii) By (6.11) and by the Cauchy-Schwarz inequality we have

‖u+ v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 =
(
‖u‖+ ‖v‖

)2 ∀u, v ∈ H,

that is (6.9).

(iv) Let two sequences {un} and {vn} in H be such that un → u and vn → v in the norm

topology. We have

|(u, v)− (un, vn)| ≤ |(u, v)− (un, v)|+ |(un, v)− (un, vn)|
≤ ‖u− un‖‖v‖+ ‖un‖‖v − vn‖ ;

as ‖un‖ is uniformly bounded, the latter sum vanishes as n→∞. 2

It is promptly checked that the Cauchy-Schwarz inequality (6.7) is reduced to an equality iff

u and v are linearly dependent. The same holds for the Minkowski inequality (6.9).

6.3 The polarization identity

The denomination of (6.8) as parallelogram identity is easily understood by considering the

parallelogram of vertices 0, u, v, u + v in the two-dimensional subspace spanned by u and v

(assuming u, v 6= 0 and u 6= v): by (6.8), the sum of the squared lengths of the sides equals

the sum of the squared lengths of the diagonals. In the plane this is known as the Apollonius

theorem.

We saw that the inner product determines a norm which fulfills the parallelogram identity

(6.8). The polarization identity that is displayed in the next lemma relates the inner product

to the corresponding norm, inverting the relation (6.6). More generally, Theorem 6.3 below

shows that any normed space in which the norm fulfills the parallelogram identity (6.8) is an

inner-product space, in which the inner product is defined via the polarization identity. The

parallelogram identity thus characterizes inner-product spaces in the class of normed spaces, and

characterizes Hilbert norms among the norms of a Hilbert space. 33 E.g., the norm of C0([0, 1])

and that of `p with p 6= 2 do not fulfill the parallelogram identity.

32We shall still denote by Re(z) the real part of any complex number z.
33The are several other characterizations. See e.g. [de Figueiredo-Karlovitz].
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Lemma 6.2 Let V be a complex linear space equipped with a sesquilinear mapping b : V ×V →
C. 34 Let q : V → R be the corresponding quadratic mapping, that is, q(v) := b(v, v) for any

v ∈ V . The following polarization identity then holds 35

b(u, v) :=
1

4

4∑
n=1

inq(u+ inv)

=
1

4

{
[q(u+ v)− q(u− v)] + i[q(u+ iv)− q(u− iv)]

}
∀u, v ∈ H.

(6.12)

If V is a real linear space and b : V × V → R is a bilinear mapping, then the i-terms drop;

that is, (6.12) is replaced by

b(u, v) :=
1

4
[q(u+ v)− q(u− v)] ∀u, v ∈ V.[Ex] (6.13)

Theorem 6.3 (P. Jordan, von Neumann) If H is a complex normed space equipped with a

norm ‖ · ‖ that fulfills the parallelogram identity (6.8), then

(u, v) :=
1

4

4∑
n=1

in‖u+ inv‖2

=
1

4

[
(‖u+ v‖2 − ‖u− v‖2) + i(‖u+ iv‖2 − ‖u− iv‖2)

]
∀u, v ∈ H

(6.14)

defines an inner product, which is related to the norm ‖ · ‖ by (6.6).

If H is a real normed space, the same holds with (6.14) replaced by

(u, v) :=
1

4

(
‖u+ v‖2 − ‖u− v‖2

)
∀u, v ∈ H.[Ex] (6.15)

(In the real case one may also set (u, v) := 1
2

(
‖u+ v‖2 − ‖u‖2 − ‖v‖2

)
.)

6.4 Hilbert spaces

An inner-product space is called a Hilbert space whenever it is complete w.r.t. the induced

norm. A (closed) Banach subspace of a Hilbert space is itself a Hilbert space, and is called a

(closed) Hilbert subspace. Henceforth we shall confine ourselves to Hilbert spaces, although for

several results the completeness is not needed.

Two Hilbert spaces H1 and H2 are called isometrically isomorphic iff there exists a linear

surjective operator U : H1 → H2 such that (Uu,Uv)H2 = (u, v)H2 for any u, v ∈ H1. Such an

operator is called unitary.

Theorem 6.4 Any Hilbert space is reflexive. []

This result will also be retrieved as a consequence of the Riesz-Fréchet representation of the

dual of Hilbert spaces, see Theorem 8.1 below.

6.5 Examples of Hilbert spaces

(i) For any N ≥ 1, KN is a Hilbert space over K equipped with the inner product

(u, v)KN :=
N∑
n=1

unvn ∀u, v ∈ KN . (6.16)

34We are not assuming either b to be Hermitian or q to be positive definite.
35As usual, by i we denote the imaginary unit.
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CN can also be equipped with the structure of Hilbert spaces over R: this corresponds to

identifying R2N with CN via the mapping (u1, ..., u2N ) 7→ (u1 + iu2, ..., u2N−1 + iu2N ).

(ii) For any measure space (A,A, µ), the space of K-valued functions L2(A,A, µ) is a Hilbert

space over K equipped with the inner product

(u, v) :=

∫
A
u(x)v(x) dµ(x) ∀u, v ∈ L2(A,A, µ). (6.17)

(iii) As a particular case of the example (ii), the sequence space `2 (= `2K) is a Hilbert space

over K equipped with the inner product

(u, v) :=

∞∑
n=1

unvn ∀u = {un}, v = {vn} ∈ `2. (6.18)

(iv) For any N ≥ 1, one may also define

L2(A,A, µ;KN ) = L2(A,A, µ;K)N , L2(A,A, µ;KN×N ) = L2(A,A, µ;K)N×N , 36

`N , `N×N and so on, in a obvious way; these are also Hilbert spaces.

(v) The linear space of sequences of K that only contain a finite number of nonvanishing

elements is a noncomplete inner-product subspace of `2. Its completion coincides with the

Hilbert space `2.

(vi) Let Ω be a bounded open subset of RN (N ≥ 1), Let us equip the linear space of continuous

functions Ω̄→ K with the inner product

(u, v) :=

∫
Ω
u(x)v(x) dx ∀u, v ∈ C0(Ω̄).

This space is not complete. For instance, for Ω = ]−1, 1[, {un : x 7→ arctan(nx)}n∈N is a Cauchy

sequence in this space, but it does not converge to any continuous function (it converges a.e.

to the discontinuous function π
2 sign). The completion of this space coincides with the Hilbert

space L2(−1, 1). [Ex]

6.6 Exercises

1. Let V be a complex linear space and b1(·, ·), b2(·, ·) be two sesquilinear mappings V ×V → C
such that b1(v, v) = b2(v, v) for any v ∈ V . Show that these two mappings then coincide
on the whole V × V .

2. Let V be a complex linear space and a mapping b(·, ·) : V × V → C be either sesquilinear
and symmetric (rather than skew-symmetric), or bilinear and skew-symmetric (rather than
symmetric). Show that then in either case b(u, v) = 0 for any u, v ∈ V .

3. Let V be a complex linear space. Show that a sesquilinear mapping (·, ·) : V × V → C is
Hermitian iff the associated quadratic mapping V → C : v 7→ (v, v) is real-valued.

Notice that this fails in real spaces (with “symmetric” in place of “Hermitian”)!

4. Let H be the set of all complex sequences {xn} such that

‖{xn}‖ :=
( ∞∑
n=1

‖xn‖4
)1/4

+
( ∞∑
n=1

‖xn‖2
)1/2

< +∞.

Check that this is a norm on H.

(i) Is this norm equivalent to a Hilbert norm?
(ii) Does H coincide with any of the known sequence spaces?
(iii) Formulate an analogous exercise in terms of Lebesgue functions ]0, 1[→ R (instead of
sequences, with integrals instead of series), and answer the analogous questions.

36This is a space of matrix-valued functions.
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5. Let H be an inner-product space and x, y ∈ H. Show that

x ⊥ y ⇔ ‖x+ λy‖ ≥ ‖x‖ ∀λ ∈ K.

6. Let H be an inner-product space. Show that for any x, y, z ∈ H

‖x− z‖ = ‖x− y‖+ ‖y − z‖ ⇔ ∃λ ∈ ]0, 1[: y = λx+ (1− λ)z.

7. Let H be an inner-product space and x, y ∈ H. Show that if H is a real space then

x ⊥ y ⇔ ‖x+ y‖2 = ‖x‖2 + ‖y‖2,

and find a counterexample for a complex space.

8. Let H be a complex inner-product space and x, y ∈ H. Show that

x ⊥ y ⇔ ‖ax+ by‖2 = a2‖x‖2 + b2‖y‖2 ∀a, b ∈ C.

9. Let {un} be a sequence in a Hilbert space H and u ∈ H be such that un → u weakly and
‖un‖ → ‖u‖. Prove that then un → u.

Hint: Develop the square ‖un − u‖2 ...

10. Let H be a Hilbert space, L : Dom(L) ⊂ H → H be a closed unbounded linear operator,
and equip the linear space X = {v ∈ H : Lv ∈ H} with the norm ‖v‖X = ‖v‖H + ‖Lv‖H
[which is named the norm of the graph of L in H].

(i) Check that this is a Banach space.
(ii) Is this space Hilbertizable?

11. Let 1 ≤ p ≤ +∞. In the linear space `p set ‖| · ‖| = ‖ · ‖`2 + ‖ · ‖`p .

(i) ‖| · ‖| is a norm for some p?
(ii) Is the corresponding space complete? (if not so, indicate the associated completed
space.)
(iii) Is ‖| · ‖| a Hilbert norm for some p?
(iv) Is ‖| · ‖| a Hilbertizable norm for some p?

12. * Exhibit a nonseparable Hilbert space.

Hint: A standard example uses the Cartesian product of a continuous families of copies
of the field K...

13. Consider the following clases:

B: Banach spaces, H: Hilbert spaces,

E : Euclidean spaces, P: Normed spaces with a predual,

F : Fréchet spaces, N : Normed spaces, R: Reflexive spaces.

Which inclusions hold among these spaces?

7 Orthogonality and Projections

The norm provides a distance that is homogeneous and invariant by translation. The inner

product allows one to define angles, in particular orthogonality, and then orthogonal projections.

7.1 Orthogonality

Let H be an inner-product space. We shall say that two elements u, v ∈ H are orthogonal,

and write u ⊥ v, iff (u, v) = 0. More generally, we shall say that two (nonempty) subsets U and
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V of H are orthogonal, and write U ⊥ V , iff (u, v) = 0 for any u ∈ U and any v ∈ V . We define

the orthogonal complement of any (nonempty) subset U of H as

U⊥ := {v ∈ H : (v, u) = 0 ∀u ∈ U}.

In real inner-product spaces one can measure angles: for any unit vectors u, v ∈ H we define

the (nonoriented) angle formed by u and v to be arccos (u, v). There is no analogous notion in

general Banach spaces.

Theorem 7.1 (Orthogonal Projection on a Convex Set) Let K be a nonempty closed convex

subset of a Hilbert space H. For any u ∈ H there exists one and only one (orthogonal)

projection w ∈ K such that

‖u− w‖ = inf{‖u− v‖ : v ∈ K}. (7.1)

This condition is equivalent to the variational inequality

Re (u− w, v − w) ≤ 0 ∀v ∈ K. (7.2)

The projection operator PK : u 7→ w is nonexpansive, that is,

‖PKu1 − PKu2‖ ≤ ‖u1 − u2‖ ∀u1, u2 ∈ H. (7.3)

A geometric interpretation provides a clear understanding of this theorem. For instance, by

drawing the intersection of K with the plane that contains u, w and v (assuming that they are

distinct and nonaligned), explains why (7.2) characterizes the orthogonal projection. A similar

geometric reduction may also be used for some other results of the theory of Hilbert spaces.

Proof. (i) Let {vn} ⊂ K be a minimizing sequence for the distance from K, that is,

dn := ‖u− vn‖ → inf{‖u− v‖ : v ∈ K} =: d as n→∞.

The parallelogram identity yields

2‖u− (vn + vm)/2‖2 + 2‖(vn − vm)/2‖2

= ‖u− vn‖2 + ‖u− vm‖2 = d2
n + d2

m.

As (vn + vm)/2 ∈ K, we have ‖u− (vn + vm)/2‖ ≥ d. The preceding equality then yields

2‖(vn − vm)/2‖2 ≤ d2
n + d2

m − 2d2 → 0.

Thus {vn} is a Cauchy sequence in H; by the completeness of H, it converges to some w ∈ K.

The continuity of the norm then yields (2.1).

(ii) Let w fulfil (7.1). For any v ∈ K and any t ∈ ]0, 1], w + t(v − w) ∈ K by the convexity of

K. Hence

‖u− w‖2 ≤ ‖u− [w + t(v − w)]‖2

= ‖u− w‖2 − 2tRe(u− w, v − w) + t2‖v − w‖2,

that is, 2tRe (u− w, v − w) ≤ t2‖v − w‖2. Dividing by t and passing to the limit as t → 0, we

then get (7.2). Conversely,

‖u− v‖2 = ‖(u− w)− (v − w)‖2

= ‖u− w‖2 + ‖v − w‖2 − 2Re(u− w, v − w)

(7.2)

≥ ‖u− w‖2 + ‖v − w‖2 ≥ ‖u− w‖2 ∀v ∈ K.
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(iii) For any given u1, u2 ∈ H, let w1, w2 ∈ H satisfy (7.2) with u = u1 resp. u = u2, and take

v = w2 resp. v = w1. Summing the two inequalities we get

‖w1 − w2‖2 ≤ Re (u1 − u2, w1 − w2) ≤ ‖u1 − u2‖ ‖w1 − w2‖,

whence ‖w1 − w2‖ ≤ ‖u1 − u2‖, i.e. (7.3). In particular, the choice u1 = u2 shows that (7.2)

defines a unique element w = PKu for any given u ∈ H. 2

Corollary 7.2 (Orthogonal Projection on a Subspace) Let V be a closed subspace of a Hilbert

space H. The projection operator PV is then linear and continuous. Moreover, for any u ∈ H,

w = PV u ⇔ (w − u, v) = 0 ∀v ∈ V. (7.4)

The latter is called a variational equation, and the linear and continuous operator PV is

named an (orthogonal) projection.

Proof. Let us assume that w = PV u. For any ṽ ∈ V and any real λ > 0, let us take v = w±λṽ
(∈ V ) in (7.2), and then divide by λ. This yields Re(w − u, ṽ) = 0 for any ṽ ∈ V . By taking

ṽ = v and ṽ = iv for any v ∈ V , we get (w − u, v) = 0. The converse implication and the

linearity of PV are straightforward. The continuity follows from (7.3). 2

Remarks. (i) In Theorem 7.1 the distance from the nonempty closed convex set K is minimized

without assuming any compactness property for K.

(ii) Theorem 7.1 rests upon the completeness of the set K, rather than H. Therefore this

result remains valid in uncomplete inner-product spaces, provided that the convex subset K is

complete. In particular the orthogonal projection either on a finite-dimensional linear subspace

V , or on a (nonempty) closed convex subset of V , thus exists also in uncomplete inner-product

spaces.

(iii) Variational inequalities and variational equations are extensively used in analysis, in

particular in convex analysis, in optimization, in the analysis of PDEs, and so on. They also

found a large number of applications in mathematical physics, in optimization, and so on.

Theorem 7.3 (Orthogonal Decomposition) Let M be a linear subspace of a Hilbert space H.

Then M⊥ is a closed subspace, and 37

M̄ = R(PM̄ ), M⊥ = N (PM̄ ), H = M̄ ⊕M⊥. (7.5)

Moreover M⊥ = (M̄)⊥ and (M⊥)⊥ = M̄ .

Proof. For any sequence {un} in H, if un ⊥ M for any n and un → u, then u ⊥ M , by the

continuity of the inner product; thus M⊥ is closed and M⊥ ⊂ (M̄)⊥. The opposite inclusion is

trivial.

For any u ∈ H, u− PM̄u ∈M⊥ by (7.4); thus u = PM̄u+ (u− PM̄u) ∈ M̄ +M⊥. Moreover,

if u ∈ M̄ ∩M⊥ then (u, u) = 0, that is, u = 0. The third equality in (7.5) is thus established.

Applying (7.5) to M⊥ we get H = M⊥ ⊕ (M⊥)⊥. Comparing this equality with (7.5), we

conclude that (M⊥)⊥ = M̄ . 2

* Remark. By the formula H = M̄ ⊕M⊥, any closed subspace of a Hilbert space is topolog-

ically complemented. By a celebrated theorem of Lindenstrauss and Tzafriri, the existence of a

topological complement characterizes Hilbert spaces within the class of Banach spaces. []

37As usual, for any linear mapping L, we denote its range by R(L) and its nullspace by N (L). For any linear
subspaces A and B, by “H = A⊕B” we mean that H = A+B and A ∩B = {0}.
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Theorem 7.4 (Characterization of Orthogonal Projections) For any closed subspace M of a

Hilbert space H, the projection operator PM is continuous, and

(i) PM is idempotent, i.e. P 2
M = PM ;

(ii) PM is self-adjoint, i.e. (PMu, v) = (u, PMv) for any u, v ∈ H.

Conversely, any idempotent, self-adjoint, linear operator P : H → H coincides with the

projection on the closed subspace R(P ).

Proof. The continuity directly follows from the nonexpansiveness (7.3).

For any u ∈ H, PMu = PMu+ 0 ∈M +M⊥, whence PM (PMu) = PMu. Thus (i) holds.

For any u, v ∈ H, (7.4) yields (PMu, v) = (PMu, PMv) = (u, PMv), i.e. (ii).

Let us now assume that P : H → H is an idempotent, self-adjoint, linear operator, and set

M := P (H); it will suffice to show that P = PM . Properties (i) and (ii) and the Cauchy-Schwarz

inequality yield

‖Pu‖2 = (Pu, Pu) = (P 2u, u) = (Pu, u) ≤ ‖Pu‖ ‖u‖,
whence ‖Pu‖ ≤ ‖u‖; thus P is continuous.

M is a linear subspace, and Pv = v for any v ∈ M . For any sequence {un} in M , if un → u

then Pu = limPun = limun = u. Thus M is a closed subspace of H. For any u, v ∈ H, as P is

self-adjoint we have

(u− Pu, Pv) = (Pu− P 2u, v) = (Pu− Pu, v) = 0.

Hence u− Pu ∈M⊥; thus P = PM . 2

Here is another characterization.

Theorem 7.5 An operator P ∈ L(H) is a projection iff P 2 = P and ‖P‖L(X) ≤ 1. []

7.2 Overview of Projections

So far we have seen three notions of linear projection:

(i) In linear spaces any linear idempotent operator from the space to itself is called a pro-

jection. The range is a linear subspace.

(ii) In Banach spaces one introduces continuous projections (or just projections). Here the

range is a (closed) subspace.

(iii) In Hilbert spaces self-adjoint continuous projections are called orthogonal projections

(or just projections).

In Hilbert spaces one may also deal with orthogonal projections on (nonempty) closed convex

subsets: they map any element of the space to the point of the subset that has minimal distance.

These projections can be expressed via variational inequalities, whereas projections on closed

subspaces are characterized by variational equations.

For an orthogonal projection P in a Hilbert space we have ‖P‖L(H) ≤ 1. Equality holds

iff P (H) 6= {0}. On the other hand for a projection P in a Banach space X we may have

‖P‖L(X) > 1, as trivial examples in R2 show.

7.3 Exercises

1. * Let H be a Hilbert space and M,N be two (closed) subspaces. Show that then:
(i) The composition PMPN is an orthogonal projection iff PM and PN commute, i.e.
PMPN = PNPM . Either property entails PMPN = PM∩N .
(ii) The sum PM + PN is an orthogonal projection iff PM and PN reciprocally annihilate,
i.e. PMPN = PNPM = 0, or equivalently PM ⊥ PN . Any of these properties entails
PM + PN = PM⊕N .
(iii) M ⊂ N iff either PMPN = PN , or PNPM = PN , or ‖PMx‖ ≤ ‖PNx‖ for any x ∈ H.
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8 The Representation Theorem

8.1 The Riesz-Fréchet Theorem

Next from orthogonality we infer one of the key properties of Hilbert spaces.

Theorem 8.1 (Riesz-Fréchet’s Representation Theorem) Let H be a Hilbert space over the field

K. The operator

R : H → H ′ defined by Rv(u) := (u, v) ∀u, v ∈ H (8.1)

is bijective and isometric. H ′ is thus a Hilbert space, and is isometrically isomorphic to H.

If K = R the mapping v → Rv is linear, whereas if K = C it is antilinear, i.e.,

Rλ1v1+λ2v2 = λ̄1Rv1 + λ̄2Rv2 ∀λ1, λ2 ∈ C, ∀v1, v2 ∈ H. (8.2)

The inverse operator R−1 : H ′ → H is often called the Riesz-Fréchet isomorphism.

Proof. For any u ∈ H, by the Cauchy-Schwarz inequality (6.7) we have

|Rv(u)| = |(u, v)| ≤ ‖u‖‖v‖ ,

thus Rv ∈ H ′ and ‖Rv‖H′ ≤ ‖v‖. As ‖v‖2 = Rv(v) ≤ ‖Rv‖H′ ‖v‖, the opposite inequality is

also fulfilled. Thus R is an isometry.

Let us now fix any f ∈ H ′ and show that f = Rv for some v ∈ H. Obviously, R0 = 0. Let

us thus assume that f 6= 0, and choose any z ∈ [f−1(0)]⊥ with f(z) = 1. For any u ∈ H,

w := u − f(u)z ∈ f−1(0). Hence (w, z) = 0, i.e. (u, z) − f(u)‖z‖2 = 0. Setting v = ‖z‖−2z we

then get (u, v) = f(u). Thus Rv = f and therefore Rv is onto H ′.

The final statement is a straightforward consequence of the antilinearity of the inner product

w.r.t. to the second argument. 2

Remarks. (i) This representation theorem generalizes Theorem 1.7 ((L2)′ = L2, freely speak-

ing), due to the same authors.

(ii) For any u ∈ H one may also consider the functional R̃u : H → K : v 7→ (u, v). If K = R,

R̃u = Ru and is linear. On the other hand if K = C, for any u ∈ H, R̃u is continuous and

antilinear:

R̃u(λ1v1 + λ2v2) = λ̄1R̃u(v1) + λ̄2R̃u(v2) ∀λ1, λ2 ∈ C,∀u, v1, v2 ∈ H.

Thus the map u 7→ R̃u is linear, but it maps H to its antidual H̃, namely the linear space of

continuous and antilinear functionals H → C. 38 Notice that the operator

T : H̃ → H ′, Tf̃ (v) = f̃(v) ∀v ∈ H,∀f̃ ∈ H̃

is bijective, isometric, and linear. 2

Proposition 8.2 Any Hilbert space H is reflexive.

Proof. We have to show that the canonical embedding J : H → H ′′ is surjective. Let us

define the antilinear operator R : H → H ′ as in (8.1). For any u′′ ∈ H ′′, the functional

38The occurrence of antilinearity is intrinsic, and there is no way to get rid of it.
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v 7→ f(v) := 〈u′′,Rv〉 is an element of H ′. By Theorem 8.1, then f = Ru for some u ∈ H.

Denoting by J the canonical isomorphism H → H ′′, we then have

〈u′′,Rv〉 = f(v) = Ru(v) = (v, u) = (u, v) = Rv(u) = 〈J(u),Rv〉 ∀v ∈ H.

As R is surjective, u′′ = J(u). As u′′ was arbitrary, we conclude that J is surjective. 2

8.2 The Lax-Milgram Theorem

Theorem 8.3 (Lax-Milgram) Let H be a Hilbert space, and L ∈ L(H) be such that, for some

α > 0,

(Lv, v) ≥ α‖v‖2 ∀v ∈ H (coerciveness). (8.3)

Then L is bijective, and

‖L−1w‖ ≤ α−1‖w‖ ∀w ∈ H. (8.4)

(Thus L−1 ∈ L(H) and ‖L−1‖L(H) ≤ α−1.)

Proof. By the continuity and the coerciveness of L,

α‖v‖2 ≤ (Lv, v) ≤ ‖Lv‖ ‖v‖ whence α‖v‖ ≤ ‖Lv‖ ∀v ∈ H;

whenever the latter inequality is fulfilled, one says that the operator L is bounded below.

This entails that:

(i) L is injective;

(ii) if L−1 exists then (8.4) is fulfilled;

(iii) Any sequence {vn} in H is Cauchy if so is {Lvn}.
To conclude the proof it then suffices to show that L is surjective. By (iii) and by the continuity

of L, L(H) is closed. For any v ∈ L(H)⊥ we have α‖v‖2 ≤ (Lv, v) = 0, whence v = 0; thus

L(H)⊥ = {0}. As by Theorem 7.5 H = L(H) ⊕ L(H)⊥ = L(H) ⊕ {0}, we conclude that

L(H) = H. 2

Remark. This theorem generalizes the Riesz-Fréchet representation Theorem 8.1 to nonsym-

metric operators. We check this assuming thatH is a real Hilbert space, for the sake of simplicity.

If (Au, v) = (Av, u) for any u, v ∈ H, then (u, v) 7→ ((u, v)) := (Au, v) is a scalar product over

H; moreover, by the continuity and coerciveness of A, the corresponding norm is equivalent to

the original one. Then, by the representation theorem, for any f ∈ H ′ setting uf := R−1f ∈ H
we have ((uf , v)) = 〈f, v〉 for any v ∈ H, i.e., Auf = f .

The Lax-Milgram theorem is a widely used tool to derive existence and uniqueness results

for linear boundary value problems, written as an operator equation Au = b between suitably

chosen function spaces.

8.3 Exercises

1. = Prove the following extension of the classical Pythagoras’s theorem to Hilbert spaces.

For any finite orthogonal system {un}n=1,...,m of an inner-product space H,∥∥∥∥ m∑
n=1

un

∥∥∥∥2

=

m∑
n=1

‖un‖2.

For m = 2 (and only in this case), conversely this formula holds only if u1 and u2 are
orthogonal.
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2. Prove directly the Hahn-Banach Theorem I.4.1 in a Hilbert space, assuming that M is a
closed subspace, without using the Zorn Lemma (neither any equivalent statement).

3. Let M be a closed subspace of a Hilbert space H, X be a Banach space, and L : M → X
be a linear and continuous operator. Prove that L has a linear and continuous extension
to the whole H.

This may be regarded as a sort of Hahn-Banach-type Theorem for operators. Notice that
this property may fail if H is just a Banach space. Consider for instance M = X = c0,
H = `∞ and L equal to the identity operator.

4. Let M be a linear subspace of a Hilbert space H. Prove that M is dense in H iff M⊥ = {0}.

5. Under which assumptions is M⊥ = [(M⊥)⊥]⊥ in a Hilbert space?

6. Let H be the linear space of functions f : R→ R such that {x ∈ R : f(x) 6= 0} is at most
countable. Is this a Hilbert space w.r.t. the inner product (f, g) :=

∑
x∈R f(x)g(x) ?

7. * Prove that, if H is a Hilbert space and L ∈ L(H) is symmetric, that is,

(Lu, v) = (u, Lv)
(

= (Lv, u)
)

∀u, v ∈ H,

then the thesis of the Lax-Milgram theorem follows from the Riesz-Fréchet representation
Theorem 8.1.

Hint: The mapping (u, v) 7→ ((u, v)) := (u, Lv) defines an inner product over H. Notice
that the dual H ′ is the same for the original and this newly defined inner product.

Since L is continuous and coercive, the corresponding norm is equivalent to the original
one, hence the dual H ′ is the same for either choice of inner product.

To prove that L is surjective, let b ∈ H define f ∈ H ′ be setting f(v) = (v, b) for any v.
By the representation theorem, there exists u ∈ H with f(v) = ((v, u)) = (v, Lu) for any
v ∈ H; thus Lu = b and consequently L is surjective. That L is injective, and that (8.4)
holds, follows as above by virtue of the inequality α‖v‖ ≤ ‖Lv‖, valid for any v ∈ H.

9 Orthonormal Systems and Hilbert Bases

9.1 Orthonormal Systems

An either finite or countable or uncountable subset A 6= ∅ of an inner-product space H is called

an orthogonal system iff (u, v) = 0 for any two distinct elements u, v ∈ A (the case 0 ∈ A is

not excluded). A is said to be orthonormal iff moreover any u ∈ A is normalized, i.e., ‖u‖ = 1.

(The origin 0 may thus belong to orthogonal but not to orthonormal systems).

Proposition 9.1 (Gram-Schmidt Orthonormalization) Let {un} be an either finite or countable

linearly independent subset of an inner-product space H. Let us set v1 = u1/‖u1‖. For any

integer n > 1, by induction let us assume that v1, ..., vn are known, and set

wn+1 := un+1 −
n∑
j=1

(un+1, vj)vj ,

vn+1 := wn+1/‖wn+1‖ ∀n ≥ 1.

(9.1)

This entails that {vn} is an orthonormal subset of H, and

span{v1, ..., vn} = span{u1, ..., un} ∀n.
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Proof. For any n ∈ N, let us denote by Vn the span of {u1, ..., un}. By induction hypothesis,

let us assume that Vn coincides with the span of {v1, ..., vn}. Notice that wn+1 6= 0 as un+1 6∈ Vn.

For any n, by construction vn+1 is of unit norm and is orthogonal to v1, ..., vn. The sequence

{un} is thus orthonormal, and Vn+1 coincides with the span of {v1, ..., vn+1}. 2

In passing, notice that
∑n

j=1(un+1, vj)vj coincides with the projection of un+1 on the span Vn
of {v1, ..., vn}; this projection is well defined, as Vn is finite-dimensional.

For instance, the Gram-Schmidt procedure transforms the set of monomials {fn(x) := xn :

n ∈ N ∪ {0}} to an orthonormal subset of L2(0, 1), more specifically the family of the classical

Legendre polynomials. []

The next result illustrates the relevance of orthogonal sequences in Hilbert spaces.

Theorem 9.2 For any orthogonal sequence {un}n∈N in a Hilbert space H, the following prop-

erties are mutually equivalent:

∞∑
n=1

un converges unconditionally (in H), (9.2)

∞∑
n=1

un converges weakly unconditionally (in H), (9.3)

∞∑
n=1

‖un‖2 converges (in R). (9.4)

Proof. (9.2) ⇒ (9.3): this is obvious.

Let us show that (9.3) ⇒ (9.4). By (9.3) the sequence of the partial sums {
∑m

n=1 un}m∈N is

bounded. By the orthogonality of the sequence {un}, then

m∑
n=1

‖un‖2 =

∥∥∥∥∥
m∑
n=1

un

∥∥∥∥∥
2

≤ Constant (independent of m);

(9.4) then follows.

Let us next prove that (9.4)⇒ (9.2). By (9.4) the sequence of partial sums {
∑m

n=1 ‖un‖2}m∈N
is Cauchy in R, and by the orthogonality of {un}∥∥∥∥∥ ∑̀

n=m

un

∥∥∥∥∥
2

=
∑̀
n=m

‖un‖2 ∀`,m ∈ N,m < `.

Hence the sequence of partial sums {
∑m

n=1 un}m∈N is Cauchy in H. By the completeness of H,

(9.2) then follows.

The convergence in (9.2) is obviously unconditional (i.e., it is invariant by reordering of the

sequence — see below). The convergences in (9.3) and (9.4) are then also unconditional. 2

By the latter Theorem, in a Hilbert space a series of orthogonal elements thus converges iff

the sequence of the norms is an element of `2. Notice that in a Banach space a series converges

if the sequence of the norms is an element of `1 (⊂ `2 !).

9.2 Bessel inequality

For any (nonempty) subset A of a normed space X, we denote by span (A) is the closure of

the set of finite linear combinations of elements of A; this is a closed subspace of H. Moreover,

for any Hilbert space H,

span (A) = (A⊥)⊥ ∀A ⊂ H.[Ex] (9.5)
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Lemma 9.3 Let {un}1≤n≤m be a finite orthonormal family in an inner-product space H. Then

for any u ∈ H∥∥∥∥∥u−
m∑
n=1

(u, un)un

∥∥∥∥∥
2

= ‖u‖2 −
m∑
n=1

|(u, un)|2 = ‖u‖2 −

∥∥∥∥∥
m∑
n=1

(u, un)un

∥∥∥∥∥
2

. (9.6)

Moreover
∑m

n=1(u, un)un coincides with the orthogonal projection of u on the closed subspace

span ({un}1≤n≤m).

* Proof. Let us fix any u ∈ H, and set αn := (u, un) for any n ∈ N. By the orthonormality of

{un}, for any m ∈ N we have∥∥∥∥∥
m∑
n=1

αnun

∥∥∥∥∥
2

=
m∑
n=1

‖αnun‖2 =
m∑
n=1

|αn|2 ∀` > m, (9.7)

Re

(
u,

m∑
n=1

αnun

)
=

m∑
n=1

‖αnun‖2 =

m∑
n=1

|αn|2. (9.8)

Hence ∥∥∥∥∥u−
m∑
n=1

αnun

∥∥∥∥∥
2

= ‖u‖2 − 2Re

(
u,

m∑
n=1

αnun

)
+

∥∥∥∥∥
m∑
n=1

αnun

∥∥∥∥∥
2

(9.7),(9.8)
= ‖u‖2 − 2

m∑
n=1

|αn|2 +

m∑
n=1

|αn|2

= ‖u‖2 −
m∑
n=1

|αn|2 ∀m ∈ N.

(9.9)

For any m, let us define the partial sum sm =
∑m

n=1 αnun, and notice that

‖s` − sm‖2 =

∥∥∥∥∥ ∑̀
n=m+1

αnun

∥∥∥∥∥
2

=
∑̀

n=m+1

|αn|2 ∀`,m ∈ N,m < `; (9.10)

by the completeness of H, ũ :=
∑∞

n=1 αnun then converges.

(9.7) and (9.9) also yield∥∥∥∥∥u−
m∑
n=1

αnun

∥∥∥∥∥
2

= ‖u‖2 −

∥∥∥∥∥
m∑
n=1

αnun

∥∥∥∥∥
2

∀m ∈ N . (9.11)

A simple calculation shows that (u− ũ, ũ) = 0, and this yields the final statement. 2

Next we extend Lemma 9.3 to infinite orthonormal families in Hilbert spaces.

Proposition 9.4 Let {un}n∈N be an orthonormal sequence in a Hilbert space H. Then for any

u ∈ H, the series
∑∞

n=1(u, un)un converges and∥∥∥∥∥u−
∞∑
n=1

(u, un)un

∥∥∥∥∥
2

= ‖u‖2 −
∞∑
n=1

|(u, un)|2 = ‖u‖2 −

∥∥∥∥∥
∞∑
n=1

(u, un)un

∥∥∥∥∥
2

. (9.12)

Moreover
∑∞

n=1(u, un)un coincides with the orthogonal projection of u on the closed subspace

span ({un}n∈N).
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Proof. By the completeness of H, the series
∑∞

n=1 αnun converges. Passing to the limit as

m→∞ in (9.6), we then get (9.12). 2

The first equality in (9.12) obviously entails the Bessel inequality

‖u‖2 ≥
∞∑
n=1

|(u, un)|2 ∀u ∈ H. (9.13)

9.3 Hilbert bases

An orthonormal subset A of a Hilbert space H is called a Hilbert basis iff H = span (A). In

this case A cannot be extended to any larger orthonormal subset of H; one then says that the

orthonormal subset A is complete. 39 Notice that a Hilbert basis may be finite, countable or

also uncountable.

Theorem 9.5 Any Hilbert space has a Hilbert basis.

Outline of the Proof. The argument may be based on the Zorn lemma or also the Hausdorff’s

maximal chain theorem. [Ex] 2

Proposition 9.6 Let J be any index set and A := {uj : j ∈ J} be an orthonormal subset of a

Hilbert space H. The following properties are mutually equivalent:

(i) A is a Hilbert basis;

(ii) A is maximal (w.r.t. the ordering by inclusion) among orthonormal subsets;

(iii) 0 is the only element of H orthogonal to A. [Ex]

*9.4 Unconditional convergence and sums

Let {un} be a sequence in a normed space X. A series
∑∞

n=1 un is said to be unconditionally

convergent iff
∑∞

n=1 un =
∑∞

n=1 uπ(n) for all permutations π : N→ N, that is, the convergence

of the series does not depend on the order of its terms.

This may be extended by the notion of sum over any (nonempty) index set J , that is defined

as follows. For any {uj : j ∈ J} ⊂ X, we set u :=
∑

j∈J uj iff, for any ε > 0, there exists a finite

set Ju,ε ⊂ J such that

∀ finite set I ⊂ J, Ju,ε ⊂ I ⇒

∥∥∥∥∥∑
j∈I

uj

∥∥∥∥∥ ≤ ε. (9.14)

In this case the set {uj : j ∈ J} ⊂ X is said to be summable.

Proposition 9.7 A subset {ui}i∈I of a normed space is summable iff

(i) the set J := {i ∈ I : ui 6= 0} is at most countable, and

(ii) the series
∑

i∈J ui converges unconditionally. [Ex]

Let us next come back to Hilbert bases.

Proposition 9.8 Let J be any index set and A := {uj : j ∈ J} be an orthonormal subset of a

Hilbert space H. Then A is a Hilbert basis iff for any u ∈ H, there exists exactly one function

J → K : j 7→ αj such that u =
∑

j∈J αjuj unconditionally. Moreover, if the latter property

holds, then Ju := {j ∈ J : aj 6= 0} is at most countable. []

39This should not be confused with the completeness of the space.
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9.5 Fourier coefficients

Let A := {uj : j ∈ J} be an orthonormal subset of a Hilbert space H, and for any u ∈ H
set αj := (u, uj); thus, as we saw, u =

∑
j∈J αjuj (unconditionally). The αjs are called the

(generalized) Fourier coefficients of u w.r.t. the orthonormal subset {uj}. This denomination

arose from and refers to the special case of the (separable) space H = L2(−π, π;C) and uk(x) =

eikx/
√

2π for any x ∈ ] − π, π[ and any k ∈ Z, see ahead. By an obvious bijection between Z
and N, one may replace the indices k ∈ Z by j ∈ N.

Next we provide more precise information about these coefficients.

Theorem 9.9 Let {uj}j∈J be an orthonormal subset of a Hilbert space H. The following prop-

erties are mutually equivalent:

{uj}j∈J is a Hilbert basis; (9.15)

u =
∑
j∈J

(u, uj)uj ∀u ∈ H (Fourier expansion); (9.16)

(u, v) =
∑
j∈J

(u, uj)(v, uj) ∀u, v ∈ H (Parseval identity); (9.17)

‖u‖2 =
∑
j∈J
|(u, uj)|2 ∀u ∈ H (Parseval formula). (9.18)

If J is countable, H is thus isometrically isomorphic to `2.

Proof. Let us assume (9.15). For any u ∈ H, by the Bessel inequality (9.12),
∑

`∈L |(u, u`)|2 <
+∞ for any finite set L ⊂ J . As we saw, the set Ju := {j ∈ J : (u, uj) 6= 0} is at most countable.

By the final part of Proposition 9.4,
∑

j∈Ju(u, uj)uj then coincides with the orthogonal projection

of u on the closed subspace spanned by {uj}j∈J . By Proposition 9.8 this closed subspace

coincides with the whole H. Therefore (9.15) entails (9.16).

For any finite set L ⊂ J , we have(∑
j∈J

(u, uj)uj ,
∑
`∈L

(v, u`)u`

)
=
∑
j∈J

(u, uj)(v, uj) ∀u, v ∈ H;

(9.16) thus yields (9.17). Taking v = u in (9.17) we get (9.18).

If (9.18) is fulfilled, then by (9.12) the closed subspace spanned by {uj}j∈J coincides with H;

(9.15) thus holds. 2

9.6 Hilbert dimension

Proposition 9.10 Any two Hilbert bases of the same Hilbert space have the same cardinality.

This is called the Hilbert dimension (or the orthonormal dimension) of the space.

Proof. If one of the bases is finite, the other one is also finite, and the result is straightforward.

Let us then assume that {uj}j∈J and {v`}`∈L are two infinite bases of a Hilbert space. For any

` ∈ L, as we saw the set J` := {j ∈ J : (v`, uj) 6= 0} is at most countable.

Let us denote by card(A) the cardinality of any set A. Any j ∈ J is element of some J`, as

{v`}`∈L is a Hilbert basis; hence card (J) ≤ card (∪`∈LJ`). Moreover card (∪`∈LJ`) ≤ card (L),

as each J` is at most countable and card (L) is infinite. Thus card (J) ≤ card (L). By the

symmetry of the argument, we infer that this is an equality. 2
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The Hilbert dimension may be either finite, or countable, or uncountable. Two Hilbert spaces

are isometrically isomorphic iff they have the same dimension. [] The Hilbert dimension of a

Hilbert space coincides with its Hamel dimension iff the space is finite-dimensional. [Ex]

9.7 Fourier series in L2

The sequence of unit vectors {en} is the canonical Hilbert basis of `2.

The linear space L2(−π, π) equipped with the inner product (u, v) :=
∫ π
−π u(x)v(x) dx is a

complex Hilbert space.

Proposition 9.11 The family {uk(x) = eikx/
√

2π}k∈Z is a Hilbert basis of L2(−π, π).

Proof. By the Stone-Weierstrass theorem, {uk}k∈Z is dense in C0([−π, π]). [] By the continuity

of the canonic injection C0([−π, π]) → L2(−π, π), this family is dense in the latter space, too.

2

The following formulae define the transform L2(−π, π)→ `2 : f 7→ {f̂k}k∈N and its inverse:

f̂k = (f, uk) ∀k ∈ Z, f(x) =
∑
k∈Z

f̂kuk(x) for a.e. x ∈ ]−π, π[, (9.19)

the convergence of the latter series being understood in the sense of L2(−π, π). More explicitly,

the two latter formulae read 40

f̂k =
1√
2π

∫ π

−π
f(x)e−ikx dx ∀k ∈ Z,

lim
m→∞

∫ π

−π

∣∣∣∣∣f(x)−
k=m∑
k=−m

f̂kuk(x)

∣∣∣∣∣
2

dx = 0.

(9.20)

The operator L2(−π, π)→ `2 : f 7→ {f̂k} is also called the Fourier series transform in L2.

9.8 Overview

So far we have introduced three types of bases:

(i) Hamel bases for linear spaces: they exist for any space;

(ii) Schauder bases for separable Banach spaces: for some spaces they do not exist;

(iii) Hilbert bases for Hilbert spaces: they exist for any space.

A Schauder basis of a separable Hilbert space is a Hilbert basis iff it is orthonormal. In this

case the Schauder basis is unconditional. [Ex]

We introduced the axioms of the inner product, and derived some basic properties, in particular

the Cauchy-Schwarz inequality and the parallelogram identity. By means of the Cauchy-Schwarz

inequality, we showed that a norm can be associated with any inner product. Thus any Hilbert

space is also a Banach space. Conversely, because of the polarization identity, an inner product

is associated with any norm which fulfills the parallelogram identity.

By means of the inner product, we defined the concepts of orthogonality and of orthogonal pro-

jection. The completeness entails the existence of the orthogonal projection on any (nonempty)

closed convex subset, in particular on closed subspaces. Orthogonal projections are character-

ized as idempotent, self-adjoint (or equivalently, non expansive), linear operators of the space

to itself. Orthogonal projections also provide a surjective isometric isomorphism between the

40A priori the L2-convergence entails the a.e. convergence just for a suitable subsequence. In 1966 Carleson
was able to prove the convergence of the whole sequence: a highly nontrivial result! On this basis in 2006 he was
awarded the prestigious Abel prize.
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antidual of any Hilbert space and the space itself (Riesz-Fréchet representation theorem). This

entails that any Hilbert space is reflexive.

We then dealt with orthonormal systems of a Hilbert space and derived the Bessel inequality.

We defined Hilbert bases, saw that any Hilbert space is endowed with such a basis, and defined

the Hilbert dimension. Finally, we derived the Fourier expansion of any element of a Hilbert

space w.r.t. to a Hilbert basis.

9.9 Exercises

1. Show that any orthonormal sequence in a Hilbert space H weakly vanishes.

2. Show that a Hilbert space is separable iff its Hilbert dimension is at most countable.

3. Show that two Hilbert spaces are isometrically isomorphic iff they have the same Hilbert
dimension.

4. Show that any separable Hilbert space over the field K is isometrically isomorphic either
to KN , for some N ≥ 0, or to `2.

5. Let {en} be the canonical basis of the Hilbert space `2, and V be the (dense) linear subspace
spanned by {

∑∞
n=1 en/n} ∪ {en : n ≥ 2}. Does an orthonormal Schauder basis exist in V ?

6. = Let H be a Hilbert space and L : H → H be a linear mapping. Prove that if L
is either symmetric (i.e., (Lu, v) = (u, Lv) for any u, v ∈ H) or skew-symmetric (i.e.,
(Lu, v) = −(u, Lv) for any u, v ∈ H), then it is continuous (this is the classical Hellinger-
Toeplitz theorem).

Hint: Remind the following result (one of the exercises of Section 2): Let X,Y be Banach
spaces, and L : X → Y be linear. If un → u entails Lun ⇀ Lu, then L is continuous.

10 Operators

10.1 Examples of Bounded Linear Operators

(i) For any matrix A ∈ KM,N , the associated linear mapping L : KN → KM

(Lu)j =

N∑
k=1

ajkuk 1 ≤ j ≤M

obviously defines a bounded linear operator.

(ii) An infinite matrix A = (ajk) defines a bounded linear mapping between sequence spaces

through the formula

(Lu)j =

∞∑
k=1

ajkuk, 1 ≤ j <∞. (10.1)

For example, the estimate

∞∑
j=1

( ∞∑
k=1

|ajkuk|

)2

≤

 ∞∑
j,k=1

|ajk|2
 ∞∑

k=1

|uk|2 [Ex] (10.2)

entails that L ∈ L(`2) with ‖L‖2 ≤
∑

j,k |ajk|2, if this sum is finite. The latter condition,

however, is not necessary: e.g., the unit matrix does not satisfy it. Indeed, in the diagonal case

(Lu)k = αkuk, we have L ∈ L(`p) iff ‖α‖∞ < ∞. One may ask for conditions, in terms of the
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elements of A, which hold iff (10.1) defines a bounded linear mapping from `p to `q. However,

no “useful” one is known in the case 1 < p, q <∞. []

(iii) The right (or forward) shift Sr and the left (or backward) shift Sl

(S̃ru)k = uk−1, (S̃`u)k = uk+1, (10.3)

are most naturally defined on the space of doubly infinite sequences {uk}k∈Z; obviously these

are isometries on `pK(Z) for any p ∈ [1,∞]. 41 Most often one deals with unilateral sequences

u = (u1, u2, . . . ), and sets

Sr(u1, u2, . . . ) = (0, u1, u2, . . . ), S`(u1, u2, . . . ) = (u2, u3, . . . ).

These operators belong to L(X) for X = `p (:= `pK(N)), but they are no longer isomorphisms.

Notice that Sr is injective but not surjective, and S` is surjective but not injective; S` ◦ Sr = I

but Sr ◦ S` 6= I.

(iv) For any p ∈ [1,∞], if a is a bounded measurable function on a measure space (A,A, µ),

then the multiplication operator defined by

(Lu)(x) = a(x)u(x) for a.e. x ∈ A

is an operator L ∈ L(Lp(A)) and ‖L‖ = ‖a‖∞. Similarly, if A is also a compact metric space

and a ∈ C0(A), then L ∈ L(Lp(A)) and ‖L‖ = ‖a‖∞.

(v) Let (A,A, µ) and (B,B, ν) be two σ-finite measure spaces, k ∈ L2(A×B), and set

(Lu)(x) =

∫
B
k(x, y)u(y) dµ(y) for a.e. x ∈ A, ∀u ∈ L2(B). (10.4)

By the theorems of Tonelli and Fubini and the Hölder inequality, Lu is an a.e. well-defined and

measurable function, and∫
A

∣∣∣∣∫
B
k(x, y)u(y) dν(y)

∣∣∣∣2 dµ(x) ≤
∫
A

∫
B
|k(x, y)|2 dν(y) dµ(x) ·

∫
B
|u(y)|2 dν(y).

Thus L ∈ L(L2(B);L2(A)), and

‖L‖L(L2(B);L2(A)) ≤
∫∫

A×B
|k(x, y)|2 dµ(y) dν(x).

The function k is called the kernel of the integral operator L.

If A = B = [a, b] and µ = ν is the Lebesgue measure, then the operators

(L1u)(x) =

∫ b

a
k(x, y)u(y) dy, (L2u)(x) =

∫ x

a
k(x, y)u(y) dy ∀x ∈ [a, b]

are respectively called Fredholm and Volterra integral operators.

*10.2 Adjoint of unbounded operators

Adjoint operators are illustrated e.g. in [Bz, chap. 2]. That definition is extended to unbounded

operators (i.e., linear operators L : D(L) ⊂ X → Y ), 42 as follows, assuming that D(L) = X.

For any f ∈ Y ′, let us say that f ∈ D(L∗) iff the functional D(L) → C : u 7→ 〈Lu, f〉 can be

extended to a functional L∗f ∈ X ′. Thus

〈Lu, f〉 = 〈u, L∗f〉 ∀u ∈ D(L),∀f ∈ D(L∗). (10.5)

It is not difficult to prove the following result.

41Which norm on `pK(Z) makes it isometrically isomorphic to `pK(N)? (The norm is not unique.) [Ex]
42So what are named unbounded operators are actually either bounded or unbounded linear operators.
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Theorem 10.1 If X,Y are Banach spaces and L : D(L) ⊂ X → Y is a linear operator, then

L is bounded ⇔ L∗ is bounded ⇒ ‖L‖L(X,Y ) = ‖L∗‖L(Y ′,X′), (10.6)

∃L−1 bounded ⇔ ∃(L∗)−1 bounded ⇒ ‖L−1‖L(Y,X) = ‖(L∗)−1‖L(X′,Y ′), (10.7)

D(L) = X ⇒ L∗ is uniquely defined, graph(L∗) is closed (in Y ′×X ′), (10.8)

D(L∗) is closed ⇒ L∗ ∈ L(D(L∗), X ′). (10.9)

The final statement follows from the previous one. Indeed, if D(L∗) is closed, then graph(L∗)

is closed. [Ex] This entails (10.9), since any unbounded operator with closed domain and closed

graph is actually bounded, because of the Closed Graph Theorem.

We shall say that a linear operator L : D(L) ⊂ X → Y is bounded below iff there exists C > 0

such that ‖Lv‖Y ≥ C‖v‖X for any v ∈ D(L). In (2.11) we already defined the kernel and the

range of a linear operator.

Theorem 10.2 If X,Y are Banach spaces and L ∈ L(X,Y ), then

N (L) = ⊥R(L∗), N (L∗) = R(L)⊥, (10.10)

R(L) is closed ⇔ R(L∗) is closed (Banach’s Closed-Range Theorem), [] (10.11)

L is bounded below ⇔ L is injective, R(L) is closed

⇔ L∗ is surjective ⇔ ∃L−1 ∈ L(R(L), X),
(10.12)

L is bijective ⇔ L is bounded below, R(L) is dense. (10.13)

The argument of Banach’s Closed-Range Theorem (10.11) is nontrivial, see e.g. [Bz, chap. 2];

once it has been established, the other statements follow without difficulty. [Ex]

From (10.10) one may infer that

N (L)⊥ = R(L∗)
w∗
, ⊥N (L∗) = R(L∗). (10.14)

The dual of the statements (10.12) and (10.13) also hold:

L∗ is bounded below ⇔ L∗ is injective, R(L∗) is closed

⇔ L is surjective ⇔ ∃(L∗)−1 ∈ L(R(L∗), X),
(10.15)

L∗ is bijective ⇔ L∗ is bounded below, R(L∗) is dense. (10.16)

The whole theorem holds also for unbounded operators with dense domain and closed graph,

but in that case the arguments are more demanding; see e.g. [Bz, chap. 2].

Density of the domain and closedness of the graph are typical hypotheses in the theory of

unbounded operators. Note that the density of the domain may be retrieved just by restricting

L to the closure of its domain. On the other hand, if the graph of L is not closed, in several

cases the closure of this graph is the graph of a single-valued (hence linear) operator, L̄. This

operator is called the closure of L, since it is the smallest closed operator extending L; L is then

said to be a closable operator. This notion is especially relevant for unbounded operators on

Hilbert space. 43

Theorem 10.3 Let H be a Hilbert space. If L : D(L) ⊂ H → H is a linear operator with dense

domain, then:

(i) L is closable iff L∗ has dense domain.

(ii) If L is closable, then L̄ = (L∗)∗ (=: L∗∗) and (L̄)∗ = L∗.

(iii) If D(L∗) is closed, then L∗ : D(L∗)→ H is continuous.

43Unbounded self-adjoint operators are at the basis of the formulation of quantum mechanics that was given
by John von Neumann (born 1903) in 1927-28.
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10.3 Exercises

1. (i) Prove (10.8) and (10.9) for a linear and bounded operator.
(ii) Prove (10.12) and (10.13) (for a linear and bounded operator).

2. Let X,Y be Banach spaces. Any L ∈ L(X,Y ) has closed graph and closed kernel, but
the range L(X1) need not be closed (otherwise the Closed-Range Theorem would make no
sense...). Give an example of L ∈ L(X,Y ) with nonclosed range.

3. * Let X,Y be Banach spaces. Show that if L ∈ L(X,Y ) and L∗ are bounded below, then
there exists L−1 ∈ L(Y,X).

Hint: As L is bounded below, R(L)⊥ = N(L∗) = {0}...

10.4 Compact operators

Throughout this section X and Y will denote Banach spaces over K.

A linear and continuous operator K : X → Y is called compact (or completely continuous)

iff it maps any bounded subset ofX to a relatively compact subset of Y , or equivalently iffK(BX)

(the image of the closed unit ball) is relatively compact in Y . We shall denote the set of all

compact operators by K(X;Y ), or K(X) if X = Y . Obviously, K : X → Y is compact iff for

every bounded sequence {un} in X, the sequence {Kun} has a convergent subsequence.

Proposition 10.4 The composition M◦L of two linear continuous operators is compact if either

M or L is compact. (That is, K(X;Y ) is a two-sided ideal in the Banach algebra L(X;Y ).)

Proof. This holds since continuous operators map bounded sets to bounded sets, and relatively

compact sets to relatively compact sets. 2

Proposition 10.5 K(X;Y ) is a closed subspace of the Banach space L(X;Y ).

Proof. It is promptly seen that K(X;Y ) is a linear subspace; hence it suffices to prove that

the limit of any uniformly converging sequence of compact operators is a compact operator.

Let L ∈ L(X;Y ) and {Km} be a sequence in L(X;Y ) such that Km → L. Let {un} be

a bounded sequence in X, ‖un‖ ≤ C. It suffices to prove that {Lunk
} is Cauchy in Y for

some subsequence. To this purpose, by a diagonalization procedure one may select {unk
} such

that {Kmunk
} is convergent in Y for all m ∈ N. Let now ε > 0 be given. Choose m with

‖L −Km‖ ≤ ε, and h0 with ‖Kmunk
−Kmunj‖ < ε for all k, j ≥ h0. This entails that, for all

k, j ≥ h0,

‖Lunk
− Lunj‖ ≤ ‖Kmunk

−Kmunj‖+ ‖L−Km‖(‖unk
‖+ ‖unj‖) ≤ (1 + 2C)ε.

So {Lunk
} indeed is a Cauchy sequence in Y . 2

Theorem 10.6 (Schauder) An operator L ∈ L(X;Y ) is compact iff its adjoint L∗ is compact.

* Proof. Let L be compact, then A = L(BX) is compact. Let {gn} be a sequence in Y ′ with

‖gn‖ ≤ 1. Since |gn(v)− gn(w)| ≤ ‖v−w‖ for all v, w ∈ A, the sequence {gn|A} is bounded and

equicontinuous in C0(A). By the Ascoli-Arzelà theorem, some subsequence {gnk
} then converges

uniformly on A, and thus is Cauchy (w.r.t. the uniform norm). As

‖L∗gnk
− L∗gnj‖X′= sup

x∈BX

〈gnk
− gnj , Lx〉 ≤ ‖gnk

− gnj‖C0(A)‖L‖L(X,Y ) ∀k, j,

the subsequence {L∗gnk
} is Cauchy and hence convergent in X ′. Thus L∗ is compact.
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If conversely L∗ is compact, then so is L∗∗ : X ′′ → Y ′′. Since JY (L(BX)) = L∗∗(JX(BX)),

the set JY (L(BX)) is relatively compact in Y ′′. As JY is an isometry we conclude that L(BX)

is relatively compact in Y . 2

10.5 Examples

(i) If X has finite dimension, then every L ∈ L(X;Y ) is compact.

(ii) The shift operators Sr and S` are not compact on `p, since S` ◦ Sr = I is not compact.

(iii) Let A be a Euclidean set with nonempty interior and X = C0
b (A). The multiplication

operator

(Lau)(x) = a(x)u(x) ∀u ∈ X, for a given a ∈ C0
b (A)

is compact only if a ≡ 0 identically in A. [Ex] An analogous result holds for X = Lp(A).

(iv) Depending on the properties of its kernel k, the integral operator

(Lu)(x) =

∫
A
k(x, y)u(y) dν(y) (10.17)

not only belongs to L(X;Y ) for suitable function spaces X and Y , but actually is compact.

Consider for example the case X = L2(A1;µ), Y = L2(A2; ν) with σ-finite measures µ and ν,

and with k ∈ L2(A1 ×A2;µ⊗ ν).

If k has the product form k(x, y) = g(x)h(y) with g ∈ L2(A2) and h ∈ L2(A1), then

(Lu)(x) = g(x)

∫
A1

h(y)u(y) dν(y) for µ-a.e. x ∈ A2.

Thus R(L) equals the one-dimensional subspace spanned by g; in this case L is thus compact.

For the general case, it turns out that for any ε > 0 there is a kε ∈ L2(A1 × A2), which is a

finite linear combination of kernels in product form and satisfies ‖k−kε‖L2(A1×A2) ≤ ε. [Ex] The

corresponding integral operator Lε has finite rank 44 and satisfies ‖L−Lε‖ ≤ ‖k−kε‖L2(A1×A2) ≤
ε. As K(X;Y ) is a closed subspace of L(X;Y ), L is thus compact.

(v) As another example of operator of the form (10.17), let us consider the case where X =

C0(A1) and Y = C0(A2), with A1 and A2 compact subsets of RN and RM (resp.) equipped

with the Lebesgue measure, and with k ∈ C0(A1 × A2). Since k is uniformly continuous, the

image L(B1) of the closed unit ball B1 in C0(A1) is equicontinuous, hence relatively compact in

C0(A2) by the Ascoli-Arzelà theorem; so L is compact in this case, too.

10.6 Exercises

1. Let X,Y be Banach spaces, and let a linear operator L : X → Y map the closed unit ball
BX to a relatively compact subset of Y . Is then L continuous?

2. = Let X,Y be Banach spaces, and let a linear operator L : X → Y map the closed unit
ball BX to a relatively compact subset of Y . Is then L continuous?

3. Let us fix any f ∈ C1
b (R2) and set [T (v)](x) =

∫ x
0 f(x, y)v(y) dy for any x.

(i) Is T a bounded operator C0([0, 1])→ C1([0, 1])?
(ii) Is T a compact operator C0([0, 1])→ C0([0, 1])?
* (iii) Is T a compact operator C0([0, 1])→ C1([0, 1])?
(iv) Is T a bounded operator C0

b (R)→ C0
b (R)?

4. Let X,Y, Z be Banach spaces and L ∈ L(X,Y ),M ∈ L(Y,Z). Prove that if either of these
operators is compact, then their composition ML is also compact.

44The English terms rank and range respectively correspond to rango e insieme immagine.
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5. Let X,Y be Banach spaces.

Characterize the class of operators L ∈ L(X,Y ) that are compact and bijective.

6. (i) Are the inclusions among the spaces `p (1 ≤ p ≤ +∞) compact?
(ii) Are the inclusions among the spaces Lp(0, 1) (1 ≤ p ≤ +∞) compact?

7. Are the canonical injections Ck+1([0, 1])→ Ck([0, 1]) (k ∈ N) compact?

8. Is the canonical injection C1
b (R)→ C0

b (R) compact?

9. Is the canonical injection C0([0, 1])→ Lp(0, 1) compact for some 1 ≤ p ≤ +∞?

10. Let 1 ≤ p < +∞. Are the canonical injections `p → c0, `p → c, `p → `∞ compact?

11. = * Let X,Y be two Banach spaces, L ∈ L(X,Y ), and denote by BX the closed unit ball
of X.

(i) Show that if X is reflexive, then L(BX) is closed.
Hint: Apply the Banach-Alaoglu theorem to converging sequences in BX ...

(ii) Show that if X is reflexive and L is compact, then L(BX) is compact.
* (iii) Check that if X = Y = C0([0, 1]) and (Lu)(x) =

∫ x
0 u(t) dt for any x, then L(BX)

is not closed.

(This exercise has been taken from [Bz] p. 171.)

12. = Let X,Y be two Banach spaces, with X of infinite dimension, and let L ∈ L(X,Y ) be
compact. Show that there exists a sequence {un} in X such that ‖un‖ = 1 for any n and
Lun → 0 in Y .

Hint: Use the Riesz lemma...

(This exercise has been taken from [Bz] p. 171.)

13. = Let X and Y be two Banach spaces and L ∈ L(X;Y ). Show that:

(i) If L is compact then L maps every weakly converging sequence {un} in X to a strongly
converging sequence {Lun} in Y . (The latter property is named complete continuity).

(ii) The converse is true if X is reflexive, but not in general.

Hint: As a counterexample, consider the identity map in `1...

14. = Show that the adjoint of an integral operator with kernel k(x, y) is also an integral
operator, and identify its kernel.

15. = * Let X and Y be two Banach spaces and L ∈ L(X;Y ) be compact. Show that if R(L)
is closed then it is finite-dimensional.

Hint: R(L) is complete, as it is closed. By the open mapping theorem, L : X → R(L)
then maps closed sets to compact sets. As L is compact, it then maps any bounded closed
ball to a compact set. R(L) is thus a countable union of compact sets...

10.7 The Fredholm-Riesz-Schauder Theory

An important result in linear algebra states that a linear operator between finite-dimensional

linear spaces is injective iff it is surjective. This fails in infinite dimension; e.g., in any `p the

right shift Sr is injective but not surjective, and the left shift S` is surjective but not injective.

In this section we shall see how the above result may be extended to a relevant class of infinite-

dimensional linear and continuous operators (This extension is known as the theorem of the

Fredholm alternative.)

We say that a linear operator L : X → Y has finite rank iff its range R(L) has finite

dimension. Any finite-rank operator acting between Banach spaces X,Y is clearly compact.
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It is promptly seen that the family of finite-rank operators is not closed in L(X,Y ), at variance

with the family of compact operators. Although there are compact operators that cannot be

represented as the limit in norm of any sequence of finite-rank operators, 45 the properties of

compact operators make the former family a natural extension of finite-rank operators, as we

shall see in this section.

A celebrated theorem of F. Riesz extends some known properties of matrices (namely, of linear

operators in Euclidean spaces) to compact perturbations of linear operators in Banach spaces.

As a preliminary step, first we illustrate this result for finite-rank operators.

By Proposition 2.18 and as N (I−L) ⊂ R(L), if X is a linear space and L : X → X is a linear

mapping of finite rank, then

(i) N (I − L) has finite dimension, (10.18)

(ii) R(I − L) has finite codimension. (10.19)

The next classical result extends these properties to compact perturbations of the identity in

a Banach space X.

Theorem 10.7 (F. Riesz) Let X be a Banach space and K : X → X be a compact operator.

Then

(i) N (I −K) has finite dimension, (10.20)

(ii) R(I −K) is closed and has finite codimension, (10.21)

(iii) dim(N (I −K)) = dim(N (I −K∗)), (10.22)

(iv) N (I −K) = {0} ⇔ R(I −K) = X (10.23)

(i.e., I −K in injective iff it is surjective). (10.24)

Partial Proof. The restriction of K to N (I −K) coincides with the identity and is compact;

this yields (10.20). The proof of parts (ii) and (iii) is more technical, and is here omitted. For

part (iv) see below. 2

Remark. This theorem also applies to operators of the form A − K (in place of I − K),

for any linear continuous isomorphism A : X → X and any compact operator K : X → X.

Actually, A−1K is also compact, so the theorem holds for I −A−1K. Therefore it also holds for

A(I −A−1K) = A−K.

Corollary 10.8 Let X be a Banach space and K : X → X be a compact operator. The thesis

of the Riesz Theorem 10.7 then holds also for K∗. Moreover,

R(I −K) = ⊥[N (I −K∗)], (10.25)

and dually R(I −K∗) = [N (I −K)]⊥ if X is reflexive.

Proof. For the first statement it suffices to notice that by the Schauder theorem the operator

K∗ : X ′ → X ′ is also compact, and to apply the Riesz theorem.

(10.25) stems from the closedness of R(I − K) and from the known formula N (I − K∗) =

[R(I −K)]⊥ (see e.g. [Br] p. 66). The final statement follows from the dual argument. 2

On the basis of (10.25), part (iv) of Theorem 10.7 is easily derived from part (iii) of the same

theorem. [Ex]

45A highly nontrivial counterexample was found by a Enflo (a counterexample hunter).
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10.8 The Fredholm Alternative

The statement (10.23) expresses the Fredholm alternative: I−K is injective iff it is surjective.

Here we detail this issue for problems of the form

for a prescribed b ∈ X, find u ∈ X such that u−Ku = b. (10.26)

The next statement directly follows from the Riesz Theorem 10.7, and expresses several basic

properties of the space of solutions, that carry over from the finite-dimensional to the infinite-

dimensional setup.

Corollary 10.9 (Fredholm alternative) Let X be a Banach space and K : X → X be a compact

operator. Then one (and only one) of the following alternatives holds:

either (i) the equation u−Ku = b has a unique solution u ∈ X for any b ∈ X,

or (ii) the homogeneous equation u−Ku = 0 has a nontrivial solution u ∈ X, and

there exists b ∈ X such that the equation u−Ku = b has no solution.

In the second case, the inhomogeneous equation u − Ku = b is solvable iff f(b) = 0 for all

solutions f ∈ X ′ of the homogeneous adjoint equation (I −K∗)f = 0.

Proof. The dichotomy between the cases (i) and (ii) directly follows from (10.23).

The final statement of the corollary stems from (10.25). 2

Remarks. (i) The two cases of the dichotomy respectively correspond to

(1) N (I −K) = {0} and R(I −K) = X, that is, dim (N (I −K)) = codim (R(I −K)) = 0,

and

(2) 1 ≤ dim (N (I −K)) = codim (R(I −K)) = dim (N (I −K∗)) < +∞.

(iii) The equality dim (N (I − K)) = codim (R(I − K)) means that the (finite) number of

linearly independent solutions u ∈ X of u−Ku = 0 equals the number of linearly independent

constraints that define R(I − K). The latter set indeed coincides with the subspace of the

elements of X that fulfill a finite number of linearly-independent linear equations: these are the

constraints.

(ii) Let us consider the problems “u ∈ X, u − Ku = 0” and “f ∈ X ′, f − K∗f = 0”. The

equality dim (N (I − K)) = dim (N (I − K∗)) means that these two problems have the same

(finite) number of linearly independent solutions.

(iv) We already pointed out that the Riesz Theorem 10.7 applies to all operators of the form

A − K, for any linear and continuous isomorphism A : X → X and any compact operator

K : X → X. The same then applies to the Fredholm alternative.

(v) If K is a compact operator is a Hilbert space H, the Riesz Theorem 10.7 may be reformu-

lated as follows:

dim (N (I −K)) = dim (N (I −K∗)) < +∞, (10.27)

H = N (I −K)⊕R(I −K∗).[] (10.28)
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11 Introduction to Spectral Analysis

11.1 Spectrum of linear and continuous operators

Let X be a Banach space. The resolvent set ρ(L) of any L ∈ L(X) is defined as the set of the

λ ∈ K such that λI − L has an inverse in L(X); this inverse is called the resolvent operator.

This holds iff λI −L is bijective, as in this case (λI −L)−1 exists and is continuous, because of

the open mapping principle. 46 Any λ ∈ ρ(L) is called a regular point. For any λ ∈ ρ(L), the

resolvent operator RL(λ) := (λI − I)−1 is thus a Banach space isomorphism on X.

The spectrum σ(L) is defined as K \ ρ(L), and may be decomposed as follows. The point

spectrum σp(L) consists of all λ ∈ K such that λI − L is not injective. Thus λ ∈ σp(L) iff

Lu = λu for some u 6= 0; in this case λ is called an eigenvalue of L. (Note that for K = R, the

point spectrum includes only the real eigenvalues of L.) For λ ∈ σp(L), the subspaceN (λI−L) is

called the eigenspace belonging to λ. Its nonzero elements are named eigenvectors belonging

to λ.

The set σ(L) \ σp(L) is named the essential spectrum, is denoted by σe(L), and is divided

into two parts:

(i) The continuous spectrum σc(L) consists of all λ ∈ σ(L) \ σp(L) for which R(λI − L) is

dense in X. (This entails that (λI − I)−1 is unbounded, since otherwise this operator would be

extendable to the whole X, and thus λ ∈ ρ(L).)

(ii) The residual spectrum σr(L) is formed by the λ ∈ σ(L) \ σp(L) for which R(λI −L) is

not dense in X.

Thus obviously

σ(L) = σp(L) ∪ σe(L) = σp(L) ∪ σc(L) ∪ σr(L), (11.1)

and these unions are disjoint. (Different terminologies may also be found in the literature.)

Proposition 11.1 * Let X be a Banach space. For the adjoint L∗ of any L ∈ L(X),

σ(L∗) = σ(L), (11.2)

σr(L) ⊂ σp(L∗) ⊂ σr(L) ∪ σp(L). (11.3)

* Proof. For any λ ∈ K, λI − L∗ = (λI − L)∗ is invertible iff λI − L is invertible; [Ex] hence

ρ(L∗) = ρ(L), which is tantamount to (11.2). Let us now remind that for any nonempty set

A ⊂ X, ⊥(A⊥) = span(A). [Ex] As N (λI − L∗) = R(λI − L)⊥, we then have

⊥N (λI − L∗) = R(λI − L). (11.4)

On the other hand, by definition of σr and σp,

λ ∈ σp(L∗) ⇔ ⊥N (λI − L∗) 6= X,

λ ∈ σr(L) ⇒ R(λI − L) 6= X,

R(λI − L) 6= X ⇒ λ ∈ σr(L) ∪ σp(L).

(11.5)

The four latter displayed formulae entail (11.3). 2

Two operators L1, L2 ∈ L(X) are called similar iff there exists an invertible operator A ∈
L(X) such that L1 = A−1L2A.

Theorem 11.2 (Spectral invariance) Let X be a Banach space. Similar operators have the

same spectrum. In general the converse fails. [Ex]

46Notice that (λI − L)−1 ∈ L(X) whenever R(λI − L) is dense in X and (λI − L)−1 : R(λI − L) → X is
bounded.
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The converse fails even for (2× 2)-matrices: e.g., any nilpotent (2× 2)-matrix has a (double)

vanishing eigenvalue (even if it is not similar to the null matrix).

The parts of the spectrum, namely σp, σc, σr, as well as the dimension of each eigenspace (i.e.,

the subspace of the eigenvectors associated to a same eigenvalue) are also invariant in each class

of similar operators. [Ex]

Theorem 11.3 (Spectral mapping theorem) Let X be a Banach space. For any polynomial p

and any L ∈ L(X), σ(p(L)) = p(σ(L). []

Remarks. More generally, the latter theorem and several others concerning the space L(X)

and spectral properties hold in Banach algebras with unit.

11.2 Examples

(i) As we know, a linear operator on a finite-dimensional space X is injective iff it is surjective.

Therefore

dim(X) < +∞ ⇒ σ(L) = σp(L) (i.e., σc(L) ∪ σr(L) = ∅) ∀L ∈ L(X).

In the analysis of the next example we use the following result. For any L ∈ L(X), let us first

define its spectral radius: r(L) := sup {|λ| : λ ∈ σ(L)}.

Theorem 11.4 For any L ∈ L(X),

(i) the spectrum σ(L) is a nonempty compact subset of C;

(ii) r(L) ≤ ‖L‖ (spectral radius theorem). []

* (ii) Let us analyse the spectrum of the shift operators Sr, S` ∈ L(`pK(N)) for any p, with

the aid of Proposition 11.1. Let us first assume that 1 ≤ p < +∞. We have (λI − S`)u = 0 iff

λuk = uk+1 for all k, that is, iff u is a multiple of (1, λ, λ2, . . . ), and therefore σp(S`) = {λ ∈ C :

|λ| < 1}. Since ‖S`‖ = 1 and σ(L) is closed, it follows that σ(S`) = {λ : |λ| ≤ 1}.
Let us now come to Sr. As Sr = S′`, σ(Sr) = σ(S`) by (11.2). Now (λI − Sr)u = 0 iff λu1 = 0

and λuk = uk−1 for k > 1, that is, iff u = 0; therefore σp(Sr) = ∅. As Sr = S′` and S` = S′r, by

(11.3) it follows that σr(Sr) = σp(S`) and σr(S`) ⊂ σp(Sr) = ∅; thus σr(S`) = ∅. Moreover, as

σc = σ \ (σp ∪ σr), we get σc(S`) = σc(Sr) = {λ ∈ C : |λ| = 1} In conclusion, for 1 ≤ p < +∞
we have thus seen that

σr(S`) = σp(Sr) = ∅,
σp(S`) = σr(Sr) = {λ ∈ C : |λ| < 1},
σc(S`) = σc(Sr) = {λ ∈ C : |λ| = 1}.

(11.6)

For p =∞, a similar analysis shows that σp(S`) = σ(S`) = {λ ∈ C : |λ| ≤ 1} and σp(Sr) = ∅.
By (11.3) then

σp(S`) = σr(Sr) = {λ : |λ| ≤ 1},
σr(S`) = σc(S`) = σp(Sr) = σc(Sr) = ∅.

(11.7)

(iii) For any bounded sequence {an} in C, let us define the associated multiplication operator

L ∈ L(`p):

Lu = (a1u1, ..., anun, ...) ∀(u1, ..., un, ...) ∈ `p, ∀p ∈ [1,+∞]. (11.8)

It is promptly checked that any an is obviously an eigenvalue of L, and the unit vector en belongs

to the associated eigenspace.
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Any cluster point of the sequence {an} is an element of σ(L), as this set is closed. If an → 0

then L is compact in `p for any p 6=∞, as it is a limit of finite-rank operators.

(iv) The point spectrum may be empty. This is the case e.g. for the operator L : L2(0, 1) →
L2(0, 1), with (Lv)(x) = xv(x) for a.e. x ∈ ]0, 1[. [Ex]

11.3 Spectrum of compact operators

Next we show that, by the Riesz Theorem 10.7,

σ(K) \ {0} = σp(K) (i.e., [σc(K) ∪ σr(K)] ⊂ {0}) ∀K ∈ K(X).

Here is a more precise statement.

Theorem 11.5 Let X be a Banach space and K : X → X be a compact operator. Then:

(i) the set σ(K) is either finite or countably-infinite;

(ii) if dimX =∞ then 0 ∈ σ(K);

(iii) all λ ∈ σ(K) \ {0} are eigenvalues whose eigenspaces have finite dimension;

(iv) 0 is the only possible accumulation point of σ(K).

* Proof. By the Riesz Theorem 10.7, if λ 6= 0 then

N (λI −K) = N (I −K/λ) has finite dimension,

and R(λI −K) = X if λI −K is injective. So λ 6∈ σc(K) ∪ σr(K), and (iii) is established. If

0 ∈ ρ(K), then K is invertible and I = K−1K is compact, so dimX < +∞, as it is stated in

(ii).

In order to prove (iv), let us assume that there is a sequence {λn} of mutually distinct eigen-

values which converges to some λ ∈ C. Let {un} be any set of corresponding eigenvectors, and

set Mn = span{u1, . . . , un} for any n. Notice that K(Mn) ⊂ Mn and dimMn = n for any n,

since the eigenvectors are linearly independent.

Moreover, for any v =
∑n

i=1 αiui ∈Mn (with α1, ..., αn ∈ C), we have

(λnI −K)v =
n−1∑
i=1

αi(λnI −K)ui ∈Mn−1, (11.9)

as λnun −Kun = 0 and K(Mn−1) ⊂Mn−1. Thus (λnI −K)(Mn) ⊂Mn−1.

Because of the Riesz Lemma 2.16, for any n > 1 we may choose vn ∈ Mn with ‖vn‖ = 1 and

dist(vn,Mn−1) ≥ 1/2. For m < n, by (11.9) Kvm + (λnvn−Kvn) ∈Mn−1 +Mn−1 = Mn−1. We

then have

‖Kvn −Kvm‖ = |λn|‖vn − λ−1
n (Kvm + λnvn −Kvn)‖ ≥ |λn|/2.

Since {Kvn} has a convergent subsequence, we must have λ = 0. The statement (iv) is thus

established, and (i) follows from the boundedness of σ(K). 2

Examples show that 0 may belong to any part of the spectrum of a compact operator.

11.4 Exercises

1. = Show that the operator L : L2(0, 1)→ L2(0, 1), with (Lv)(x) = xv(x) for a.e. x ∈ ]0, 1[,
has no eigenvector. The point spectrum may thus be empty even for a bounded self-adjoint
operator.

A final word

We have seen several things, but much more are missing: the spectral theorem, its extension

to unbounded operators, and so on. And afterwards there are applications to partial differential

equations, to the calculus of variations, to quantum mechanics, and so on.

So we are at the end of the course, but not of the story.
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