CLASSICAL SPACES — A. Visintin — 2017

Contents: 1. Hölder spaces. 2. Regularity of Euclidean domains.

Note. The bullet \bullet and the asterisk * are respectively used to indicate the most relevant results and complements. The symbol [] follows statements the proof of which has been omitted, whereas [Ex] is used to propose the reader to fill in the argument as an exercise.

Here are some abbreviations that are used throughout:

a.a. = almost any; resp. = respectively; w.r.t. = with respect to. p': conjugate exponent of p, that is, p' := p/(p-1) if $1 , <math>1' := \infty$, $\infty' := 1$. $\mathbf{N}_0 := \mathbf{N} \setminus \{0\}$; $\mathbf{R}_+^N := \mathbf{R}^{N-1} \times]0, +\infty[$. |A| := measure of the measurable set A.

1. Hölder spaces

First we state a result, which provides a procedure to construct normed spaces, and is easily extended from the product of two spaces to that of a finite family. This technique is very convenient, and we shall repeatedly use it.

Proposition 1.1 Let A and B be two normed spaces and $p \in [1, +\infty]$. Then:

(i) The vector space $A \times B$ is a normed space equipped with the p-norm of the product:

$$\|(v,w)\|_{p} := (\|v\|_{A}^{p} + \|w\|_{B}^{p})^{1/p} \quad \text{if } 1 \le p < +\infty,$$

$$\|(v,w)\|_{\infty} := \max \left\{ \|v\|_{A}, \|w\|_{B} \right\}.$$
 (1.1)

Let us denote this space by $(A \times B)_p$. These norms are mutually equivalent.

(ii) If A and B are Banach spaces, then $(A \times B)_p$ is a Banach space.

(iii) If A and B are separable (reflexive, resp.), then $(A \times B)_p$ is also separable (reflexive, resp.).

1 /

(iv) If A and B are uniformly convex and $1 , then <math>(A \times B)_p$ is uniformly convex.

(v) If A and B are inner-product spaces (Hilbert spaces, resp.), equipped with the scalar product $(\cdot, \cdot)_A$ and $(\cdot, \cdot)_B$, resp., then $(A \times B)_2$ is an inner-product space (a Hilbert space, resp.) equipped with the scalar product

$$((u_1, v_1), (u_2, v_2))_2 := (u_1, u_2)_A + (v_1, v_2)_B \qquad \forall (u_1, v_1), (u_2, v_2) \in (A \times B)_2.$$

 $\|(\cdot, \cdot)\|_2$ is then the corresponding Hilbert norm.

(vi) $F \in (A \times B)'_p$ (the dual space of $(A \times B)_p$) iff there exists a (unique) pair $(g,h) \in A' \times B'$ such that

$$\langle F, (u, v) \rangle = {}_{A'} \langle g, u \rangle_A + {}_{B'} \langle h, v \rangle_B \qquad \forall (u, v) \in (A \times B)_p.$$
(1.2)

In this case

$$||F||_{(A \times B)'_p} = ||(g,h)||_{(A' \times B')_{p'}}.$$
(1.3)

The mapping $(A \times B)'_p \to (A' \times B')_{p'} : F \mapsto (g, h)$ is indeed an isometric surjective isomorphism.

(We omit the simple argument, that rests upon classical properties of Banach spaces.)

A variant of the above result consists in equipping Banach spaces with the graph norm, associated to a linear operator.

Spaces of Continuous Functions. Throughout this section, by K we shall denote a compact subset of \mathbf{R}^N , and by Ω a (possibly unbounded) domain of \mathbf{R}^N .

The linear space of continuous functions $K \to \mathbf{C}$, denoted by $C^0(K)$, is a Banach space equipped with the sup-norm $p_K(v) := \sup_{x \in K} |v(x)|$ (this is even a maximum). The corresponding topology induces the uniform convergence. The linear space of continuous functions $\Omega \to \mathbf{C}$, denoted by $C^0(\Omega)$, is a locally convex Fréchet space equipped with a family of seminorms: $\{p_{K_n}\}$. Here $\{K_n \subset \subset \Omega : n \in \mathbf{N}\}$ is a nondecreasing sequence of compact sets that invades Ω , namely $\bigcup_{n \in \mathbf{N}} K_n = \Omega$. ⁽¹⁾ For instance, one may take

$$K_n = \{x \in \Omega : |x| \le n, \operatorname{dist}(x, \partial \Omega) \ge 1/n\} \quad \forall n \in \mathbf{N}.$$

This topology induces the locally uniform convergence.

The linear space of *bounded continuous* functions $\Omega \to \mathbf{C}$, denoted by $C_b^0(\Omega)$, is also a Banach space equipped with the sup-norm $p_{\Omega}(v) := \sup_{x \in \Omega} |v(x)|$, and is thus a subspace of $C^0(\Omega)$.

As Ω is a metric space, we may also deal with uniformly continuous functions. In the literature, the linear space of *bounded and uniformly continuous functions* $\Omega \to \mathbf{C}$ is often denoted by $BUC(\Omega)$ or $C^0(\overline{\Omega})$, as these functions have a unique continuous extension to $\overline{\Omega}$. The latter notation is customary but slightly misleading: for instance,

$$C^{0}(\overline{\mathbf{R}^{N}}) \neq C^{0}(\mathbf{R}^{N})$$
(1.4)

although obviously $\overline{\mathbf{R}^N} = \mathbf{R}^N$. If Ω is bounded then $K := \overline{\Omega}$ is compact, and $C^0(\overline{\Omega})$ may be identified with the space $C^0(K)$ that we defined above. Notice that $C^0(\overline{\Omega}) (= BUC(\Omega))$ is a closed subspace of $C_b^0(\Omega)$ for any domain Ω of \mathbf{R}^N , and the inclusion is strict; for instance,

$$\{x \mapsto \sin(1/x)\} \in C_b^0(]0,1[) \setminus C^0(\overline{]0,1[}), \qquad \{x \mapsto \sin(x^2)\} \in C_b^0(\mathbf{R}) \setminus C^0(\overline{\mathbf{R}}). \tag{1.5}$$

In this section we shall see several other spaces over $\overline{\Omega}$ that are included into the corresponding space over Ω .

Spaces of Hölder-Continuous Functions. Let us fix any $\lambda \in [0, 1]$. The bounded continuous functions $v : \Omega \to \mathbf{C}$ such that

$$p_{\Omega,\lambda}(v) := \sup_{x,y \in \Omega, x \neq y} \frac{|v(x) - v(y)|}{|x - y|^{\lambda}} < +\infty$$

$$(1.6)$$

are said **Hölder-continuous** of index (or exponent) λ , and form a linear space that we denote by $C^{0,\lambda}(\bar{\Omega})$ and equip with the graph norm. If $\lambda = 1$ these functions are said to be **Lipschitz continuous.** Obviously Hölder functions are uniformly continuous, so $C^{0,\lambda}(\bar{\Omega}) \subset C^0(\bar{\Omega})$. The functional $p_{\Omega,\lambda}$ is a seminorm on $C^0(\Omega)$. [Ex]

Proposition 2.1 For any $\lambda \in [0,1]$, $C^{0,\lambda}(\overline{\Omega})$ is a Banach space when equipped with the norm $p_{\Omega} + p_{\Omega,\lambda}$.

The functions $v : \Omega \to \mathbf{C}$ that are Hölder-continuous of index λ in any compact set $K \subset \Omega$ are called **locally Hölder-continuous.** They form a Fréchet space, denoted by $C^{0,\lambda}(\Omega)$, when equipped with the family of seminorms $\{p_K + p_{K,\lambda} : K \subset C \}$. Notice that

$$C^{0,\lambda}(\bar{\Omega}) \subset C^{0,\nu}(\bar{\Omega}) \qquad \forall \lambda, \nu \in]0,1], \nu < \lambda, [Ex]$$
(1.7)

with continuous injections. ⁽²⁾ For instance for any $\lambda \in [0, 1]$, the function $x \mapsto |x|^{\lambda}$ is an element of $C^{0,\lambda}(\mathbf{R})$, but not of $C^{0,\nu}(\mathbf{R})$ for any $\nu > \lambda$, and not of $C^{0,\lambda}(\mathbf{\bar{R}})$ (here also the traditional notation is not very helpful).

⁽¹⁾ We remind the reader that Fréchet spaces are linear spaces that are also complete metric spaces and such that the linear operations are continuous.

⁽²⁾ All the injections between function spaces will be continuous; so we shall not point it out any more.

3

Notice that $\bigcup_{\lambda \in [0,1]} C^{0,\lambda}([0,1]) \neq C^0([0,1])$; e.g., the function

$$u(x) := 1/\log(x/2) \qquad \forall x \in]0,1], \qquad u(0) = 0$$
(1.8)

is continuous, but is not Hölder-continuous for any index λ . [Ex]

On the other hand $\bigcap_{\lambda \in [0,1[} C^{0,\lambda}([0,1]) \neq C^{0,1}([0,1]);$ e.g., the function

$$u(x) := x \log(x/2) \qquad \forall x \in [0,1], \qquad u(0) = 0$$
(1.8)

is Hölder-continuous for any index λ , but is not Lipschitz-continuous. [Ex]

Spaces of Differentiable Functions. Let us assume that Ω and λ are as above and that $m \in \mathbb{N}$. Let us recall the multi-index notation, and set $D_i := \partial/\partial x_i$ for i = 1, ..., N.

We claim that the functions $\Omega \to \mathbf{C}$ that are *m*-times differentiable and are bounded and continuous jointly with their derivatives up to order *m* form a Banach space, denoted by $C_b^m(\Omega)$, when equipped with the norm

$$p_{\Omega,m}(v) := \sum_{|\alpha| \le m} \sup_{x \in \Omega} |D^{\alpha} v(x)| \qquad \forall m \in \mathbf{N}.$$
(1.9)

This is easily seen because, setting

$$k(m) := \frac{(N+m)!}{N!m!} = \text{ number of the multi-indices } \alpha \in \mathbf{N}^N \text{ such that } |\alpha| \le m,$$
(1.10)

the mapping $C_b^m(\Omega) \to C_b^0(\Omega)^{k(m)} : v \mapsto \{D^{\alpha}v : |\alpha| \leq m\}$ is an isomorphism between $C_b^m(\Omega)$ and its range. Indeed, if $D^{\alpha}u_n \to u_{\alpha}$ uniformly in Ω for any $\alpha \in \mathbf{N}^N$ such that $|\alpha| \leq m$, then $u_{\alpha} = D^{\alpha}u_0$; thus $u_n \to u_0$ in $C_b^m(\Omega)$. For instance, $C_b^1(\mathbf{R}^2)$ is isomorphic to $\{(w, w_1, w_2) \in C_b^0(\mathbf{R}^2)^3 : w_i = \partial w/\partial x_i$ in \mathbf{R}^2 , for $i = 1, 2\}$. Here one may define a norm via Proposition 1.1.

The functions $\Omega \to \mathbf{C}$ that are continuous with their derivatives up to order *m* form a locally convex Fréchet space equipped with the family of seminorms $\{p_{K,m} : K \subset \Omega\}$. This space is denoted by $C^m(\Omega)$ (or by $\mathcal{E}^m(\Omega)$).

The linear space of the functions $\Omega \to \mathbf{C}$ that are bounded with their derivatives up to order m, and whose derivatives of order m are Hölder-continuous of index λ , may be equipped with the norm

$$p_{\Omega,m,\lambda}(v) := \sum_{|\alpha| \le m} \sup_{x \in \Omega} |D^{\alpha}v(x)| + \sum_{|\alpha|=m} p_{\Omega,\lambda}(D^{\alpha}v),$$
(1.11)

with $p_{\Omega,\lambda}$ as above. By Proposition 1.1, this is a Banach space, that we denote by $C^{m,\lambda}(\bar{\Omega})$.

The linear space of the functions $\Omega \to \mathbf{C}$ whose derivatives up to order m are Hölder-continuous of index λ in any compact set $K \subset \Omega$ can be equipped with the family of seminorms $\{p_{K,m,\lambda} : K \subset \Omega\}$. This is a locally convex Fréchet space, denoted by $C^{m,\lambda}(\Omega)$.

It is also convenient to set

$$C^{m,0}(\bar{\Omega}) = C^{m}(\bar{\Omega}) := \{ v \in C^{m}(\Omega) : D^{\alpha}v \in C^{0}(\bar{\Omega}), \forall \alpha, |\alpha| \leq m \},\$$

$$C^{m,0}(\Omega) = C^{m}(\Omega),$$

$$C^{\infty}(\bar{\Omega}) = \bigcap_{m \in \mathbf{N}} C^{m}(\bar{\Omega}), \qquad C^{\infty}(\Omega) = \bigcap_{m \in \mathbf{N}} C^{m}(\Omega).$$

$$\forall m \in \mathbf{N}.$$

$$(1.12)$$

In passing notice that $C^{\infty}(\overline{\Omega}) \cap L^{p}(\Omega)$ is a dense subset of $L^{p}(\Omega)$ for any $p \in [1, +\infty[$. This may be proved by convolution with a regularizing kernel. **Some Embeddings.** We say that a topological space A is **embedded** into another topological space B whenever $A \subset B$ and the injection operator $A \to B$ (which is then called an *embedding*) is continuous. ⁽³⁾

For any $m \in \mathbf{N}$, some embeddings are obvious within the class of C^m -spaces,

$$m \ge \ell \quad \Rightarrow \quad C^m(\bar{\Omega}) \subset C^\ell(\bar{\Omega}), \tag{1.13}$$

as well within that of $C^{m,\lambda}$ -spaces:

$$\nu \leq \lambda \quad \Rightarrow \quad C^{m,\lambda}(\bar{\Omega}) \subset C^{m,\nu}(\bar{\Omega}) \qquad \forall m.$$
 (1.14)

Concerning inclusions between spaces of the two classes, apart from obvious ones like $C^{m,\lambda}(\bar{\Omega}) \subset C^m(\bar{\Omega})$, some regularity is needed for the domain. ⁽⁴⁾

Proposition 2.2 Let either $\Omega = \mathbf{R}^N$, or $\Omega \in C^{0,1}$ (5) and bounded. Then

$$C^{m+1}(\bar{\Omega}) \subset C^{m,\lambda}(\bar{\Omega}) \qquad \forall m, \forall \lambda \in [0,1].[]$$
(1.15)

From this inclusion it easily follows that

$$C^{m_2,\lambda_2}(\bar{\Omega}) \subset C^{m_1,\lambda_1}(\bar{\Omega}) \qquad \text{if } m_1 < m_2, \forall \lambda_1, \lambda_2 \in [0,1].$$

$$(1.16)$$

A Counterexample. The next example shows that some regularity is actually needed for (1.15) to hold. Let us set

$$\Omega := \{ (x, y) \in \mathbf{R}^2 : x^2 + y^2 < 1, \ y < |x|^{1/2} \}.$$
(1.17)

Of course $\Omega \in C^{0,1/2} \setminus C^{0,\nu}$ for any $\nu > 1/2$. ⁽⁵⁾ For any $a \in]1, 2[$, the function $v : \Omega \to \mathbf{R} : (x, y) \mapsto (y^+)^a \operatorname{sign}(x)$ belongs to $C^1(\overline{\Omega}) \setminus C^{0,\nu}(\overline{\Omega})$ for any $\nu > a/2$. [Ex]

We just considered embeddings for Banach spaces "on $\overline{\Omega}$ ". It is easy to see that these results yield analogous statements for the corresponding Fréchet spaces "on Ω ".

Synthesis. For any domain $\Omega \subset \mathbf{R}^N$, we have introduced the Banach spaces

 $C^0_b(\varOmega), \quad C^0(\bar{\varOmega}) \; (=BUC(\varOmega)), \quad C^{0,\lambda}(\bar{\varOmega}) \quad \forall \lambda \in \]0,1],$

and the Fréchet spaces

$$C^0(\Omega), \quad C^{0,\lambda}(\Omega) \quad \forall \lambda \in]0,1].$$

For any $m \in \mathbf{N}$, assuming that Ω is regular enough (e.g., it coincides with the interior of $\overline{\Omega}$), we have introduced the Banach spaces

$$C_b^m(\Omega), \quad C^m(\bar{\Omega}), \quad C^{m,\lambda}(\bar{\Omega}) \quad \forall \lambda \in]0,1],$$

and the Fréchet spaces

$$C^{m}(\Omega), \quad C^{m,\lambda}(\Omega) \quad \forall \lambda \in]0,1], \quad C^{\infty}(\bar{\Omega}), \quad C^{\infty}(\Omega).$$

Exercises. 1. Show that $\bigcup_{\lambda \in]-1,1[} C^{0,\lambda}(\Omega) \neq C^0(]-1,1[)$. 2. Show that $\bigcap_{\lambda \in]0,1[} C^{0,\lambda}(]-1,1[) \neq C^{0,1}(]-1,1[)$.

⁽³⁾ We shall use some notions of regularity of domains that are defined in the next section ...

⁽⁴⁾ The regularity of domains is defined in the next section.

 $^{^{(5)}}$ See the definition in the next section ...

⁽⁵⁾ According to the definition of the next section ...

2. Regularity of Euclidean Domains

Open subsets of \mathbf{R}^N may be very irregular; e.g., consider $\bigcup_{n \in \mathbf{N}} B(q_n, 2^{-n})$, where $\{q_n\}$ is an enumeration of \mathbf{Q}^N . This set is open and has finite measure, but it is obviously dense in \mathbf{R}^N .

Several notions may be used to define the regularity of a Euclidean open set Ω , or rather that of its boundary Γ . Here we just introduce two of them.

Open Sets of Class $C^{m,\lambda}$. Let us denote by $B_N(x,R)$ the ball of \mathbf{R}^N of center x and radius R. For any $m \in \mathbf{N}$ and $0 \leq \lambda \leq 1$, we say that Ω is of class $C^{m,\lambda}$ (here $C^{m,0}$ stays for C^m), and write $\Omega \in C^{m,\lambda}$, iff for any $x \in \Gamma$ there exist:

(i) two positive constants $R = R_x$ and δ_x ,

- (ii) a mapping $\varphi_x : B_{N-1}(0, R) \to \mathbf{R}$ of class $C^{m,\lambda}$,
- (iii) a Cartesian system of coordinates $y_1, ..., y_N$,

such that the point x is characterized by $y_1 = \dots = y_N = 0$ in this Cartesian system, and, for any $y' := (y_1, \dots, y_{N-1}) \in B_{N-1}(0, R),$

$$y_N = \varphi(y') \qquad \Rightarrow \quad (y', y_N) \in \Gamma,$$

$$\varphi(y') < y_N < \varphi(y') + \delta \qquad \Rightarrow \qquad (y', y_N) \in \Omega,$$

$$\varphi(y') - \delta < y_N < \varphi(y') \qquad \Rightarrow \qquad (y', y_N) \notin \bar{\Omega}.$$
(2.1)

This means that Γ is an (N-1)-dimensional manifold (without boundary) of class $C^{m,\lambda}$, and that Ω locally stays only on one side of Γ . We say that Ω is a continuous (Lipschitz, Hölder, resp.) open set whenever it is of class C^0 ($C^{0,1}$, $C^{0,\lambda}$ for some $\lambda \in [0,1]$, resp.). ⁽⁶⁾

For instance, the domain

$$\Omega_{a,b,\lambda} := \{ (x,y) \in \mathbf{R}^2 : x > 0, ax^{1/\lambda} < y < bx^{1/\lambda} \} \qquad \forall \lambda \le 1, \forall a, b \in \mathbf{R}, a < b$$
(2.2)

is of class $C^{0,\lambda}$ iff a < 0 < b. [Ex]

We say that Ω is **uniformly of class** $C^{m,\lambda}$ iff

$$\Omega \in C^{m,\lambda}, \quad \inf_{x \in \Gamma} R_x > 0, \quad \inf_{x \in \Gamma} \delta_x > 0, \quad \sup_{x \in \Gamma} \|\varphi_x\|_{C^{m,\lambda}(B_{N-1}(x,R))} < +\infty.$$
(2.3)

For instance, by compactness, this is fulfilled by any bounded domain Ω of class $C^{m,\lambda}$. [Ex]

Cone Property. The above notion of regularity of open sets is not completely satisfactory, as it excludes sets like e.g. a ball with deleted center. We then introduce a further regularity notion.

We say that Ω has the cone property iff there exist a, b > 0 such that, defining the finite open cone

$$C_{a,b} := \left\{ x := (x_1, ..., x_N) : x_1^2 + ... + x_{N-1}^2 \le b x_N^2, \ 0 < x_N < a \right\},$$

any point of Ω is the vertex of a cone contained in Ω and congruent to $C_{a,b}$. For instance, any ball with deleted center and the plane sets

$$\Omega_1 := \{ (\rho, \theta) : 1 < \rho < 2, 0 < \theta < 2\pi \} \qquad (\rho, \theta : \text{polar coordinates}), \\
\Omega_2 := \{ (x, y) \in \mathbf{R}^2 : |x|, |y| < 1, x \neq 0 \}$$
(2.4)

have the cone property, but are not of class C^0 . [Ex]

Proposition 2.1 Any bounded Lipschitz domain has the cone property. [Ex]

For unbounded Lipschitz domains this may fail; $\Omega := \{(x, y) \in \mathbb{R}^2 : x > 1, 0 < y < 1/x\}$ is a counterexample. Note that a domain Ω is bounded whenever it has the cone property and $|\Omega| < +\infty$.

 $^{^{(6)}}$ This notation refers to the Hölder spaces, that are defined half-a-page ahead ...