
Elements of Convex Analysis

1 The Legendre Transform. omissis

2 Convex Lower Semicontinuous Functions.

We deal with a real Banach space B, although most of the results of this chapter also hold for

any real separated locally convex space. By 〈·, ·〉 we denote the duality pairing between B and its

topological dual B∗, as well as that between B∗ and B. If not otherwise specified, we refer to the

strong topology.

Proposition 2.0 (i) Any set K ⊂ B is closed and convex iff IK is closed and convex.

(ii) Any function f : B →]−∞,+∞] is lower semicontinuous and convex iff epi(f) is closed and

convex.

(iii) If {Ki}i∈I is a family of closed convex subsets of B, then
⋂
iKi is closed and convex.

(iv) If {fi}i∈I is a family of lower semicontinuous convex functions B →] −∞,+∞], then their

upper hull f(·) := supi fi(·) is lower semicontinuous and convex.

• Proposition 2.1 (i) Any convex set K ⊂ B is strongly closed iff it is weakly closed.

(ii) Any convex function F : B →] − ∞,+∞] is strongly lower semicontinuous iff it is weakly

lower semicontinuous.

Proof. Let K be a strongly closed subset of B. If u /∈ K, then by a corollary of the Hahn-Banach

theorem the compact set {u} can be strongly separated from K by means of a closed hyperplane.

Hence u does not belong to the weak closure of K, and this proves the first statement.

The second statement then follows from part (ii) of Proposition 2.0. tu

Remark. Of course the same result also holds for B∗. However, if B is not reflexive, a subset of

B∗ may be convex and weakly (equivalently, strongly) closed without being weakly star closed. For

instance, this occurs for the half-space {u∗ ∈ B∗ : 〈u∗∗, u∗〉 ≥ 0} for any u∗∗ ∈ B∗∗ \B. (1)

In order to avoid any reference to B∗∗, we deal with the duality between B∗ and B, rather than

that between B∗ and B∗∗. This can be expressed by saying that B and B∗ are regarded as spaces

in duality. We shall then often use the weak star topology instead of the weak one.

The argument of Proposition 2.1 also yields the following result.

• Proposition 2.2 (i) Any set K ⊂ B (K 6= B) is convex and closed iff it is the intersection of

a (nonempty) family of closed half-spaces.

(ii) Any function F : B →]−∞,+∞] is lower semicontinuous and convex iff it is the upper hull

of a (nonempty) family of continuous affine functions. (2) []

(Part (i) easily follows from the Hahn-Banach theorem.)

We denote by Γ (B) the class of convex lower semicontinuous functions B →]−∞,+∞], and by

Γ0(B) the subclass of functions not identically equal to +∞.

For any set K ⊂ B, the smallest closed convex subset of B which contains K is called the closed

convex hull of K. It coincides with the intersection of all the closed convex subsets of B which

contain K. By Proposition 2.2(i), it also coincides with the intersection of the closed half-spaces

which contain K. As the closure of any convex set is convex, that hull also coincides with co(K),

namely, the closure of the convex hull of K. (But it may not coincide with the convex hull of the

(1) Here 〈·, ·〉 represents the duality pairing between B∗∗ and B∗.
(2) In passing note that the convex set B is the intersection of the empty family, and F ≡ −∞ is the upper

hull of the empty family of functions.
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closure of K, for this may not be closed. The set K := {(0, 0)} ∪ {(x, y) ∈ (R+)2 : xy ≥ 1} is a

counterexample.)

Similarly, let us consider any function F : B →] −∞,+∞] which has a convex and lower semi-

continuous lower bound. By Proposition 2.2(ii), F has then a continuous affine lower bound, and

the upper hull of these lower bounds is the largest lower bound of F in Γ (B). It is called the

Γ -regularized function of F , and its epigraph coincides with the closed convex hull of the epigraph

of F . []

Regularity Properties of Convex Functions. Convexity is a source of regularity, as it is shown

by the following classical result.

* Theorem 2.2’. (Alexandrov) If F : RN → R is convex, then it is twice differentiable a.e. in

RN . []

* Theorem 2.3 Let F : B →]−∞,+∞] be convex and upperly bounded in a (nonempty) open set

A ⊂ B. Then F is locally Lipschitz continuous in int(Dom(F )). (2) []

Whenever F is convex and continuous at a point, the latter result applies.

Corollary 2.4 If F : RN →] − ∞,+∞] is convex, then it is locally Lipschitz continuous in

int(Dom(F )).

Proof. int(Dom(F )) contains an N -simplex S, i.e., a set of convex combinations of N + 1 affinely

independent points of int(Dom(F )). By the convexity, F is bounded in the interior of S, which is

nonempty. It then suffices to apply the latter theorem. tu

• Corollary 2.5 If F ∈ Γ0(B), then it is locally Lipschitz continuous in int(Dom(F )). []

Exercises. (i) Prove that the interior and the closure of any convex subset of B are convex.

(ii) Show that co(K̄) ⊂ co(K). Check that the opposite inclusion fails for K := (R×{1})∪{(0, 0)}.
(iii) Let F : B →]−∞,+∞] be convex. Show that F is continuous at u0 ∈ Dom(B) whenever it

is upper semicontinuous at the same point u0.

Hint: Apply Theorem 2.3.

(iv) Let F : B →] −∞,+∞] be convex. Show that any point of relative minimum for F is also

of absolute minimum.

(v) Prove that a convex subset of a Banach space is weakly closed iff it is sequentially weakly

closed, and that a convex function is lower semicontinuous iff it is sequentially lower semicontinuous.

tu

3 The Fenchel Transform.

Let F : B →]−∞,+∞] be proper (i.e., with nonempty domain). We define the conjugate function
(2)

F ∗(u∗) := sup
u∈B
{〈u∗, u〉 − F (u)}

(
= sup{〈u∗, u〉 − r : (u, r) ∈ epi(F )}

)
∀u∗ ∈ B∗. (3.1)

As B∗ is a Banach space, for any proper function G : B∗ →] −∞,+∞], the conjugate function

G∗ : B∗∗ →]−∞,+∞] might be defined by using the duality pairing between B∗ and its dual B∗∗.

(2) By int(A) we denote the interior of the set A.
(2) This has nothing to do with the transposed L∗ of a linear operator L.
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However, it seems more convenient to deal with the duality pairing between B∗ and B, as we did

above. We then restrict G∗ to B: (3)

G∗(u) := sup
u∗∈B∗

{〈u∗, u〉 −G(u∗)} ∀u ∈ B. (3.2)

If F is as above and F ∗ is also proper, we introduce the biconjugate function of F :

F ∗∗(u) := sup
u∗∈B∗

{〈u∗, u〉 − F ∗(u∗)}
(

= sup{〈u∗, u〉 − r : (u∗, r) ∈ epi(F ∗)}
)

∀u ∈ B. (3.3)

Similarly, if G∗ is proper, we define the biconjugate function of a proper function G : B∗ →
]−∞,+∞]:

G∗∗(u∗) := sup
u∈B
{〈u∗, u〉 −G∗(u)} ∀u∗ ∈ B∗. (3.4)

Note that

F ∗(0) = − inf
u∈B

F (u), F ∗∗(0) = − inf
u∗∈B∗

F ∗(u). (3.5)

For any proper function F : B →]−∞,+∞], F ∗ is proper iff F has a continuous affine lower bound.

We may then summarize the above definitions as follows:

(i) If F : B →]−∞,+∞] is proper, then F ∗ : B∗ →]−∞,+∞] is defined as in (3.1).

(ii) If G : B∗ →] −∞,+∞] is proper, then G∗ : B∗∗ →] −∞,+∞] is defined. Most often one

restricts G∗ to B.

(iii) If F ∗ : B∗ →] − ∞,+∞] is proper (i.e., if F has a continuous affine lower bound), then

(F ∗)∗ : B∗∗ →]−∞,+∞] is defined. Most often one restricts (F ∗)∗ to B; we set

F ∗∗ := (F ∗)∗
∣∣
B
.

(iv) If G∗
∣∣
B

: B →] − ∞,+∞] is proper (i.e., if G has a continuous affine lower bound), then

(G∗
∣∣
B

)∗ : B∗ →]−∞,+∞] is defined.

Here is an application of the above setting to economics.

“If we interpret the vector space B as a commodity space and accordingly its dual B∗ as a price

space, and if we interpret F : B →]−∞,+∞] as a cost function that associates to every commodity

u ∈ B its cost F (u) ∈] − ∞,+∞], then the conjugate function F ∗ can be interpreted as a profit

function that associates to every price u∗ ∈ B∗ the maximum profit F ∗(u∗) = supu∈B{〈u∗, u〉 −
F (u)} (since 〈u∗, u〉 is the value of u when the price system u∗ prevails).” (4)

• Theorem 3.1 Let F : B →] −∞,+∞] be proper and admit a continuous affine lower bound.

Then:

(i) F ∗ ∈ Γ0(B∗) and F ∗∗ ∈ Γ0(B). F ∗ is even weakly star lower semicontinuous.

(ii) (Fenchel-Moreau theorem) F ∗∗ is the Γ -regularized function of F ; that is,

F ∗∗(u) = sup{〈u∗, u〉+ α : u∗ ∈ B∗, α ∈ R, 〈u∗, u〉+ α ≤ F (u)} ∀u ∈ B, (3.5)′

or also epi(F ∗∗) = co(epi(F )). [Therefore F ∗∗ = F whenever F ∈ Γ0(B).]

(iii) (Fenchel’s inequality and dual Fenchel’s inequality)

〈u∗, u〉 ≤ F (u) + F ∗(u∗) ∀u ∈ Dom(F ),∀u∗ ∈ Dom(F ∗),

〈u∗, u〉 ≤ F ∗∗(u) + F ∗(u∗) ∀u ∈ Dom(F ∗∗),∀u∗ ∈ Dom(F ∗).
(3.6)

(3) No confusion should arise by denoting this restriction by G∗.
(4) From J.-P. Aubin: Applied Functional Analysis, 1979, p. 211.
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Proof. (i) is a consequence of part (ii) of Proposition 2.2.

Let us now come to the proof of (3.5’). Although in this formula u is kept fixed and u∗, α are

varied, here we fix any u∗ ∈ Dom(F ∗) and α ∈ R, and let u vary. By definition of F ∗(u∗) we have

〈u∗, u〉+ α ≤ F (u) ∀u ∈ B ⇔ α ≤ −F ∗(u∗).

That is, the function Lu∗ : u 7→ 〈u∗, u〉−F ∗(u∗) is a continuous and affine lower bound of F , and its

constant term, −F ∗(u∗), is maximal in the family of these lower bounds. This family of functions

is parameterized by u∗; its upper hull, F ∗∗, is the Γ -regularized function of F , by definition of

Γ -regularization. (ii) thus holds.

The inequalities (3.6) directly follows from the definitions of F ∗ and F ∗∗. tu

* Proposition 3.2 Let X1, X2 be vector spaces over R and f : X1 × X2 →] − ∞,+∞]. Let

us define the infimal value function g(u) := infv∈X2
f(u, v) for any u ∈ X1. (5) If f is convex

(quasi-convex, resp.) then g is also convex (quasi-convex, resp.).

Proof. For i = 1, 2, let us fix any ui ∈ Dom(g), any vi ∈ Dom(f(ui, ·)), and any λ ∈]0, 1[. If f is

convex we have

g(λu1 + (1− λ)u2) ≤ f(λu1 + (1− λ)u2, λv1 + (1− λ)v2)

= f(λ(u1, v1) + (1− λ)(u2, v2)) ≤ λf(u1, v1) + (1− λ)f(u2, v2).

By taking the infimum with respect to (v1, v2) we then get g(λu1+(1−λ)u2) ≤ λg(u1)+(1−λ)g(u2).

Similarly, if f is quasi-convex we have

g(λu1 + (1− λ)u2) ≤ f(λu1 + (1− λ)u2, λv1 + (1− λ)v2)

= f(λ(u1, v1) + (1− λ)(u2, v2)) ≤ max{f(u1, v1), f(u2, v2)}.

By taking the infimum with respect to (v1, v2) we get g(λu1 + (1− λ)u2) ≤ max{g(u1), g(u2)}. tu

* The Infimal Convolution. Let X be a vector space over R. For any F,G : X →] −∞,+∞],

we define the infimal convolution of F and G by

(F∇G)(u) := inf
v,w∈X:v+w=u

{F (v) +G(w)}
(

= inf
v∈X
{F (v) +G(u− v)}

)
∀u ∈ X. (3.7)

(The analogy with the usual convolution product is obvious.) This operation is commutative and

associative. [Ex] We have [Ex]

Dom(F∇G) = Dom(F ) + Dom(G), F∇I{0} = F ∀F,G : X →]−∞,+∞],

Dom(F∇G) = Dom(F ) + Dom(G), IA∇IB = IA+B ∀A,B ⊂ X,

if F1 ≤ F2 in X, then F1∇G ≤ F2∇G in X ∀F1, F2, G : X →]−∞,+∞],

epi(F ) + epi(G) ⊂ epi(F∇G) ∀F,G : X →]−∞,+∞],

F∇G is convex ∀ convex F,G : X →]−∞,+∞].

(5) Notice that g may attain the value −∞.
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* Proposition 3.3 (i) If F,G : B →]−∞,+∞] are proper, then (F∇G)∗ = F ∗ +G∗.

(ii) If F,G ∈ Γ0(B) and either F or G is continuous at some point u0 ∈ Dom(F )∩Dom(G), then

(F +G)∗ = F ∗∇G∗. []

Part (i) is easily proved. For any u∗ ∈ B∗ we have

(F∇G)∗(u∗) = sup
u∈B
{〈u∗, u〉 − inf

w∈B
{F (w) +G(u− w)}}

= sup
u,w∈B

{〈u∗, w〉+ 〈u∗, u− w〉 − F (w)−G(u− w)}

= sup
w∈B
{〈u∗, w〉 − F (w)}+ sup

v∈B
{〈u∗, v〉 −G(v)} = F ∗(u∗) +G∗(u∗).

If F,G ∈ Γ0(B), then (F ∗∇G∗)∗∗ = (F ∗∗+G∗∗)∗ = (F +G)∗ by part (i). The further assumption

of part (ii) allows one to show that (F ∗∇G∗)∗∗ = F ∗∇G∗. []

Exercises. (i) Show that Ico(K) = co(IK).

(ii) Exhibit a function f : R→]−∞,+∞] which has no convex lower bound.

(iii) Set f(u) := u2 for any u ∈ R \ {0}, f(0) := 1. Check that epi(co(f)) 6= co(epi(f)). (Notice

that there exists no function g : R→]−∞,+∞] such that epi(g) = co(epi(f))).

(iv) Check that f : R→]−∞,+∞] is convex iff Dom(f) is convex and f
∣∣
Dom(f)

is also convex.

(v) Check that the pointwise limit of a sequence of convex functions is convex.

(vi) Let K be a convex subset of a Banach space, equipped with a norm ‖ · ‖, and define the

distance function, dK(u) := inf{‖u− v‖ : v ∈ K} for any u ∈ B . Check that IK∇‖ · ‖ = dK .

(vii) Prove the characterization (4.3) of quasi-convex functions.

(viii) The sum of two quasi-convex functions is necessarily quasi-convex?

(ix) Let K be a subset of a real vector space. Does co(K) coincide with the set of convex

combinations of pairs of elements of K?

Exercises. (i) Let p, q ∈]1,+∞[, 1/p+ 1/q = 1. Check that the function R→ R : v∗ 7→ |v∗|q/q is

the conjugate of the function v 7→ |v|p/p. The Fenchel inequality (3.6)1 then generalizes the classical

Young inequality: uu∗ ≤ |u|p/p+ |u∗|p′/p′ for any u, u∗ ∈ R.

Let Ω be an open subset of RN . Check that the functional Lq(Ω) → R : v∗ 7→ (1/q)
∫
Ω
|v∗|qdx

is the conjugate of the functional Lp(Ω)→ R : v 7→ (1/p)
∫
Ω
|v|pdx.

(ii) Check that (3.6) is equivalent to

〈u∗, u〉 ≤ r + s ∀(u, r) ∈ epi(F ),∀(u∗, s) ∈ epi(F ∗),

〈u∗, u〉 ≤ r + s ∀(u, r) ∈ epi(F ∗∗),∀(u∗, s) ∈ epi(F ∗);

moreover, for instance,

epi(F ∗) = {(u∗, s) ∈ B∗ ×R : 〈u∗, u〉 ≤ r + s, ∀(u, r) ∈ epi(F )}.

(iii) Under the assumptions of Theorem 3.1, prove that:

(a) F ≤ G entails G∗ ≤ F ∗ (whenever G fulfils the conditions which we assumed for F );

(b) F ∗∗∗ := (F ∗∗)∗ = (F ∗)∗∗ = F ∗;

(iv) Let B be a Banach space equipped with the norm ‖ · ‖, and let B∗ be equipped with the dual

norm ‖ · ‖∗. Let ϕ ∈ Γ0(R) be even, set F (u) := ϕ(‖u‖) for any u ∈ B, and G(u∗) := ϕ∗(‖u∗‖∗) for

any u∗ ∈ B∗. Show that F ∗ = G.

* (v) Let F be convex. Show that if F is lower semicontinuous at u ∈ B, then F (u) = F ∗∗(u).

* (vi) Let B be a Banach space, u0 ∈ B, set F (u) := ‖u − u0‖ for any u ∈ B and denote the

unit ball of B∗ by K∗. Check that F ∗(u∗) = IK∗(u
∗) + 〈u∗, u0〉 for any u∗ ∈ B∗.

Let us then set Fc(u) := F (cu) for any u ∈ B and any c ∈ R. How can F ∗c be represented? tu
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4 The Subdifferential.

Let F : B →]−∞,+∞] be proper. We define its subdifferential, ∂F , as follows:

∂F (u) := {u∗ ∈ B∗ : 〈u∗, u− v〉 ≥ F (u)− F (v), ∀v ∈ B} ∀u ∈ Dom(F ). (4.1)

∂F (u) = ∅ is not excluded, and we set ∂F (u) = ∅ for any u ∈ B \ Dom(F ). We also define the

(effective) domain of ∂F by Dom(∂F ) := {u ∈ B : ∂F (u) 6= ∅}, and say that F is subdifferentiable

at u iff ∂F (u) 6= ∅. The elements of ∂F (u) are called subgradients of F at u.

The condition (4.1) means that:

(i) the continuous and affine function L : v 7→ 〈u∗, v − u〉+ F (u) is a lower bound of F , and

(ii) L is exact at u, that is, L(u) = F (u).

If F ∗ : B∗ →]−∞,+∞] is proper, we set

∂F ∗(u∗) := {u ∈ B : 〈u, u∗ − v∗〉 ≥ F ∗(u∗)− F ∗(v∗), ∀v∗ ∈ B∗} ∀u∗ ∈ Dom(F ∗), (4.2)

and ∂F ∗(u∗) = ∅ for any u∗ ∈ B∗ \ Dom(F ∗). As above, the duality pairing between B∗ and B is

here exploited. This is tantamount to defining ∂F ∗(u∗) as a subset of B∗∗, and then to restrict it

to B.

Examples. (i) Let H be a (real) Hilbert space, 1 ≤ p < +∞ and set Fp(u) := ‖u‖p/p for any

u ∈ H. It is convenient to identify H with its dual space, and then to define the subdifferential as

a subset of H, simply by replacing the duality pairing by the scalar product in the definition.

If p > 1, then ∂Fp(u) = {‖u‖p−2u} for any u ∈ H; in particular, ∂F1(u) = {‖u‖−1u} for any

u ∈ H \ {0}, and ∂F1(0) = {v ∈ H : ‖v‖ ≤ 1}.
In particular, if H := R then ∂F1 = sign, where we set

sign(x) := {−1} if x < 0, sign(0) := [−1, 1], sign(x) := {1} if x > 0. (4.3)

(ii) Let (A,A, µ) be a measure space, 1 ≤ p < +∞, Fp : R → R : v 7→ |v|p/p, and set

Φp(u) :=
∫
A
Fp(u)dµ for any u ∈ B := Lp(A,A, µ). Then

∂Φp(u) = {u∗ ∈ Lp
′
(A,A, µ) : u∗ ∈ ∂Fp(u), µ-a.e. in A} ∀u ∈ B.

(Here p′ := p/(p− 1) if p 6= 1, 1′ := +∞, as usual.)

(iii) Let us set B := R and F+(u) = F−(u) := |u| for any u ∈ R \ {0}, F+(0) := 1, F−(0) := −1.

Then ∂F+(u) = sign(u) for any R \ {0} and ∂F+(0) = ∅. On the other hand, ∂F−(u) = ∅ for any

R \ {0} and ∂F−(0) = [−1, 1].

(iv) Let Ω be an open subset of RN (N ≥ 1), 1 < p < +∞, either B := W 1,p
0 (Ω) or B := W 1,p(Ω),

and set

F (u) :=
1

p

∫
Ω

|∇u|pdx ∀u ∈ B. (4.4)

This functional is convex and continuous on the whole B. By examples (i) and (ii), for any u ∈ B,

ξ := |∇u|p−2∇u is the only element of Lp
′
(Ω)N such that∫

Ω

ξ · ∇(u− v)dx ≥ 1

p

∫
Ω

(|∇u|p − |∇v|p) dx ∀v ∈ B. (4.5)

Thus, setting Lu : v 7→
∫
Ω
|∇u|p−2∇u · ∇vdx, Lu ∈ B∗ and Lu ∈ ∂F (u). If B := W 1,p

0 (Ω) then

∂F (u) = −∇ ·
(
|∇u|p−2∇u

)
in D′(Ω). ∂F is thus single-valued.

This holds also for p = 1, provided that we replace |∇u|p−2∇u by any element of ∂g(∇u), where

g(ξ) := |ξ| for any ξ ∈ RN . In this case ∂F is multi-valued.
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(v) Let Ω be as above, 1 < p < +∞, set B := Lp(Ω) and

F̃ (u) :=


1

p

∫
Ω

|∇u|pdx ∀u ∈W 1,p
0 (Ω),

+∞ ∀u ∈ Lp(Ω) \W 1,p
0 (Ω).

(4.6)

By (4.5), Dom(∂F̃ ) = {u ∈ W 1,p
0 (Ω) : ∇ ·

(
|∇u|p−2∇u

)
∈ Lp′(Ω)} (otherwise the first integral

of (4.5) is meaningless) and ∂F̃ (u) = −∇ ·
(
|∇u|p−2∇u

)
for any u ∈ Dom(∂F̃ ). For instance, for

p = 2, Dom(∂F̃ ) = H1
0 (Ω) ∩H2(Ω) and ∂F̃ (u) = −∆u for any u ∈ Dom(∂F̃ ).

If in (4.6) we replace W 1,p
0 (Ω) by B̃ := W 1,p(Ω), the representation of ∂F̃ is more delicate.

Actually,

〈ξ, v〉 =

∫
Ω

|∇u|p−2∇u·∇v dx ∀ξ ∈ ∂F̃ (u),∀u, v ∈W 1,p(Ω), (4.6′)

(so that 〈ξ, u− v〉 ≥ F̃ (u)− F̃ (v) ≥ 0). By the Hahn-Banach theorem, ξ may then be extended to

an element of W 1,p(Ω)′.

(vi) These examples can easily be extended if |∇u|p is replaced by ϕ(∇u), where ϕ : RN → R

is convex and ϕ(ξ) grows at infinity at most like |ξ|p (that is, there exist C,M > 0 such that

ϕ(ξ) ≤ C|ξ|p +M for any ξ ∈ RN ). tu

• Theorem 4.1 Let F : B →]−∞,+∞] and assume that any function of which here we consider

either the conjugate or the subdifferential is proper. Then for any u ∈ B and any u∗ ∈ B∗ we have:

(i) u∗ ∈ ∂F (u) ⇔ F (u) + F ∗(u∗) = 〈u∗, u〉 (Fenchel’s equality), or equivalently:

u∗ ∈ ∂F (u) ⇔ there exist (u, r) ∈ epi(F ) and (u∗, s) ∈ epi(F ∗) such that r + s = 〈u∗, u〉.
(ii) u ∈ ∂F ∗(u∗) ⇔ F ∗∗(u) + F ∗(u∗) = 〈u∗, u〉 (dual Fenchel’s equality), or equivalently:

u ∈ ∂F ∗(u∗) ⇔ there exist (u, r) ∈ epi(F ∗∗) and (u∗, s) ∈ epi(F ∗) such that r+ s = 〈u∗, u〉.
(iii) u∗ ∈ ∂F (u) ⇒ u ∈ ∂F ∗(u∗). The converse holds if F (u) = F ∗∗(u).

(iv) ∂F (u) is convex and weakly star closed (hence strongly and weakly closed); ∂F ∗(u∗) is convex

and closed.

(v) The operator ∂F is monotone, that is,

〈u∗1 − u∗2, u1 − u2〉 ≥ 0 ∀ui ∈ Dom(∂F ),∀u∗i ∈ ∂F (ui)(i = 1, 2). (4.7)

(vi) F (u) = inf F ⇔ ∂F (u) 3 0 ⇔
[
F (u) = F ∗∗(u), ∂F ∗∗(u) 3 0

]
⇒ u ∈ ∂F ∗(0). If F ∈ Γ0(B)

then the latter implication can be inverted.

Proof. By (4.1), u∗ ∈ ∂F (u) iff 〈u∗, v〉 − F (v) ≤ 〈u∗, u〉 − F (u) for any v ∈ B, that is,

F ∗(u∗) := sup
v∈B
{〈u∗, v〉 − F (v)} = 〈u∗, u〉 − F (u).

(i) thus holds. (ii) can be derived similarly.

As F ∗∗ ≤ F , (iii) follows from (i), (ii) and (3.6).

By (4.1) we have ∂F (u) =
⋂
v∈B {u∗ ∈ B∗ : 〈u∗, u− v〉 ≥ F (u)− F (v)}; thus ∂F (u) is the inter-

section of a (nonempty) family of weakly star closed half-spaces. This yields the first part of (iv).

The remainder can be proved similarly.

(v) and (vi) easily follow from the definition of subdifferential (cf. Proposition 4.2 below). tu

By the Fenchel’s inequality, F (u) + F ∗(u∗) ≥ 〈u∗, u〉 (which holds for any (u, u∗) ∈ B ×B∗), the

Fenchel’s equality is equivalent to the opposite Fenchel’s inequality, F (u) + F ∗(u∗) ≤ 〈u∗, u〉. By

the same token, the dual Fenchel’s equality is equivalent to the opposite dual Fenchel’s inequality:

F ∗∗(u) + F ∗(u∗) ≥ 〈u∗, u〉.
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By part (iii) of the latter result, for any F ∈ Γ0(B), ∂F ∗ = (∂F )−1. (5)

Corollary 4.1’ Let F : B →]−∞,+∞] and F ∗ be proper, and set

Φ(u, u∗) := F (u) + F ∗(u∗)− 〈u∗, u〉 ∀u ∈ Dom(F ),∀u∗ ∈ Dom(F ∗).

Then

u∗ ∈ ∂F (u) iff Φ(u, u∗) = inf
Dom(F )×Dom(F∗)

Φ. (4.7)′

Proof. The Fenchel equality and inequality respectively read

u∗ ∈ ∂F (u) iff Φ(u, u∗) = 0; 0 ≤ inf
Dom(F )×Dom(F∗)

Φ.

This yields the “only if” part. Conversely, if Φ(u, u∗) = infDom(F )×Dom(F∗) Φ, then Φ(u, u∗) ≤
Φ(v, u∗) for any v ∈ B, whence u∗ ∈ ∂F (u). The “if” part thus holds. (6) tu

Note that (4.7)’ yields

u∗ ∈ ∂F (u) iff ∂uΦ(u, u∗) 3 0, ∂u∗Φ(u, u∗) 3 0. (4.7)′

The following result can easily be proved via the Fenchel equality and inequality.

Proposition 4.2 Under the assumptions of Theorem 4.1 we have:

(i) If ∂F (u) 6= ∅, then F (u) = F ∗∗(u).

(ii) If F (u) = F ∗∗(u), then ∂F (u) = ∂F ∗∗(u) (possibly = ∅). [Ex]

The two latter implications cannot be inverted in general. As counterexamples take, e.g., B = R

and respectively F1(x) := +∞ for any x < 0, F1(x) := −
√
x for any x ≥ 0, F2(x) := F1(x) for any

x 6= 0, F2(0) := 1. In either case consider the point x = 0.

• Theorem 4.3 (Rockafellar) Let F1, F2 : B →]−∞,+∞]. Then

∂F1(u) + ∂F2(u) ⊂ ∂(F1 + F2)(u) ∀u ∈ Dom(F1) ∩Dom(F2). (4.8)

The opposite inclusion holds if F1, F2 ∈ Γ0(B), and either F1 or F2 is continuous at some point

u0 ∈ Dom(F1) ∩Dom(F2). (7)

Proof. To check (4.8) it suffices to write the definition of subdifferential for F1 and F2, and sum the

two inequalities.

The opposite inclusion is less easy to be proved. tu

The continuity assumption cannot be dropped. As a counterexample take B = R, F1(x) := +∞
for any x < 0, F1(x) := −

√
x for any x ≥ 0, F2 := I]−∞,0]. Hence (F1 + F2)(0) = 0, (F1 + F2)(x) =

+∞ for any x 6= 0. Therefore ∂(F1 + F2)(0) = R, whereas ∂F1(0) + ∂F2(0) = ∅+ [0,+∞[= ∅.

(5) The inverse of any multi-valued function f : A→ 2B is defined as follows: for any (a, b) ∈ A×B, a ∈ f−1(b)
iff b ∈ f(a). For multi-valued functions, this is not always equivalent to the property f−1 ◦ f = f ◦ f−1 = Id.

(6) This is just another way of proving the Fenchel equality.
(7) By Corollary 2.5, this hypothesis is equivalent to

[int(Dom(F1)) ∩ Dom(F2)] ∪ [Dom(F1) ∩ int(Dom(F2))] 6= ∅.
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Proposition 4.4 Let B1, B2 be Banach spaces over R, L : B1 → B2 be linear and continuous,

and F ∈ Γ (B2). Then F ◦ L ∈ Γ (B1).

Moreover, if F is continuous at some point p̄ ∈ B2, then

∂(F ◦ L)(u) = (L∗ ◦ ∂F )(Lu) ∀u ∈ B1. [] (4.9)

• Proposition 4.5 Let F : B →]−∞,+∞] be lower semicontinuous at some u ∈ B, and {(un, u∗n)}
be a sequence in B ×B∗. If

u∗n ∈ ∂F (un) ∀n ∈ N, un → u weakly in B, u∗n → u∗ weakly star in B∗, (4.10)

lim inf
n→∞

〈u∗n, un〉 ≤ 〈u∗, u〉, (4.11)

then u∗ ∈ ∂F (u).

Proof. For any n, u∗n ∈ ∂F (un) iff

〈u∗n, un − v〉 ≥ F (un)− F (v) ∀v ∈ Dom(F ).

It then suffices to pass to the inferior limit as n→∞. tu

The latter result entails that the operator ∂F is strongly-weakly star and weakly-strongly sequen-

tially closed in B ×B∗.

Proposition 4.6 Let F : B →] − ∞,+∞] be convex. If F has a point of continuity, then

int(Dom(F )) ⊂ Dom(∂F )(⊂ Dom(F )).

Proof. If F is continuous at some point, then it is continuous at any interior point of Dom(F ),

by Theorem 2.3. Let us fix any u0 ∈ int(Dom(F )). As int(epi(F )) is nonempty and (u0, F (u0)) ∈
int(epi(F )), by Theorem II.3.10 there exists a closed hyperplane through (u0, F (u0)) which is tangent

to epi(F ). Thus there exists (u∗, r) ∈ (B∗ ×R) \ {(0, 0)} such that

B∗×R〈(u∗, r), (u− u0, a− F (u0))〉B×R = B∗〈u∗, u− u0〉B + r[a− F (u0)] ≥ 0

∀(u, a) ∈ int(epi(F )).

We have r 6= 0, since otherwise B∗〈u∗, u − u0〉B ≥ 0 for any u ∈ int(Dom(F )), whence u∗ = 0

as u0 ∈ int(Dom(F )). Moreover r > 0, as a may be arbitrarily large. Taking a := F (u), we get

B∗〈−u∗/r, u0 − u〉B ≥ F (u0)− F (u) for any u ∈ Dom(F ), that is, −u∗/r ∈ ∂F (u0). tu

Proposition 4.7 If F ∈ Γ0(B) then Dom(∂F ) is dense in Dom(F ).

This result will be proved in Sect. XIII.4.

Inverse Fenchel equality and inequality: for any u∗ ∈ B∗ and any function F : B → R ∪ {+∞},

∃ξ ∈ R :

{
∃u ∈ B : 〈u∗, u〉 = F (u) + ξ

∀v ∈ B, 〈u∗, v〉 ≤ F (v) + ξ
⇒ u∗ ∈ ∂F (u), ξ = F ∗(u∗). (4.12)

(The opposite implication coincides with the usual Fenchel equality and inequality.)
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In particular this entails that, for any functions F : B → R ∪ {+∞} and G : B∗ → R ∪ {+∞}
and for any (u, u∗) ∈ B ×B∗,{

〈u∗, u〉 = F (u) +G(u∗)

〈v∗, v〉 ≤ F (v) +G(v∗) ∀(v, v∗) ∈ B×B∗
⇒

{
u∗ ∈ ∂F (u), G(u∗) = F ∗(u∗)

u ∈ ∂G(u∗), F (u) = G∗(u).
(4.13)

tu

Exercises. (i) Let F ∈ Γ0(B) and u∗ ∈ B∗. Check that ∂F ∗(u∗) coincides with the set of points

which minimize the function u 7→ F (u)− 〈u∗, u〉.
(ii) Show by a counterexample that in general u ∈ ∂F ∗(u∗) does not entail u∗ ∈ ∂F (u).

(iii) Evaluate F ∗i , F ∗∗i , ∂Fi, ∂F
∗
i , ∂F ∗∗i , for any Fi defined as follows:

(a) F1(x) := |x|2 for any x ∈ R \ {0}, F1(0) := −1.

(b) F2(x) := |x|2 for any x ∈ R \ {0}, F2(0) := 1.

(c) F3(x) := −|x|2 for any x ∈ R.

(d) F4(x) := arctanx for any x ∈ R.

(e) F5(x) := +∞ for any x < 0, F5(x) := −
√
x for any x ≥ 0.

Hint: In order to evaluate the conjugate, one may use part (iii) of Theorem 4.1.

(iv) Let F : B →]−∞,+∞] (F 6≡ +∞) and u ∈ K ⊂ B. Check that the two following properties

are equivalent:

(a) F (u) = infK F ,

(b) 0 ∈ ∂(F + IK)(u).

Show that, if F ∈ Γ0(B), K is closed and convex, and [int(Dom(F ))∩K]∪ [Dom(F )∩ int(K)] 6= ∅,
then (a) and (b) are also equivalent to

(c) 0 ∈ ∂F (u) + ∂IK(u), i.e., −∂IK(u) ∩ ∂F (u) 6= ∅.
(v) Consider the elementary statements

1

2
x2 +

1

2
y2 ≥ xy ∀x, y ∈ R,

1

2
x2 +

1

2
y2 = xy iff x = y ∀x, y ∈ R.

Check that they respectively express the Fenchel inequality and the Fenchel equality for the function

x 7→ 1
2x

2 in R. Apply then the Fenchel inequality and the Fenchel equality to the function x 7→ 1
2x

p

in R for any p ∈]1,+∞[.

(vi) Show that the Fenchel inequality and equality entail the monotonicity of the subdifferential.

(vii) May the implication (4.13) be inverted? tu


