Elements of Convex Analysis
1 The Legendre Transform. omissis

2 Convex Lower Semicontinuous Functions.

We deal with a real Banach space B, although most of the results of this chapter also hold for
any real separated locally convex space. By (-,-) we denote the duality pairing between B and its
topological dual B*, as well as that between B* and B. If not otherwise specified, we refer to the
strong topology.

Proposition 2.0 (i) Any set K C B is closed and convez iff I is closed and convex.

(ii) Any function f : B —] — 0o, +00] is lower semicontinuous and convez iff epi(f) is closed and
convez.

(i) If {K;}icr is a family of closed convex subsets of B, then (); K; is closed and convex.

() If {fi}ier is a family of lower semicontinuous convex functions B —| — 0o, +00], then their
upper hull f(-) := sup, fi(+) is lower semicontinuous and convez.

e Proposition 2.1 (i) Any convex set K C B is strongly closed iff it is weakly closed.
(i) Any convez function F : B —] — 0o, +00] is strongly lower semicontinuous iff it is weakly
lower semicontinuous.

Proof. Let K be a strongly closed subset of B. If u ¢ K, then by a corollary of the Hahn-Banach
theorem the compact set {u} can be strongly separated from K by means of a closed hyperplane.
Hence u does not belong to the weak closure of K, and this proves the first statement.

The second statement then follows from part (ii) of Proposition 2.0. O

Remark. Of course the same result also holds for B*. However, if B is not reflexive, a subset of
B* may be convex and weakly (equivalently, strongly) closed without being weakly star closed. For
instance, this occurs for the half-space {u* € B* : (u**,u*) > 0} for any u** € B**\ B. (1)

In order to avoid any reference to B**, we deal with the duality between B* and B, rather than
that between B* and B**. This can be expressed by saying that B and B* are regarded as spaces
in duality. We shall then often use the weak star topology instead of the weak one.

The argument of Proposition 2.1 also yields the following result.

e Proposition 2.2 (i) Any set K C B (K # B) is convex and closed iff it is the intersection of
a (nonempty) family of closed half-spaces.

(ii) Any function F : B —] — 0o, +00] is lower semicontinuous and convez iff it is the upper hull
of a (nonempty) family of continuous affine functions. 2 []

(Part (i) easily follows from the Hahn-Banach theorem.)

We denote by I'(B) the class of convex lower semicontinuous functions B —| — 0o, +00], and by
I'h(B) the subclass of functions not identically equal to +oo.

For any set K C B, the smallest closed convex subset of B which contains K is called the closed
conver hull of K. It coincides with the intersection of all the closed convex subsets of B which
contain K. By Proposition 2.2(i), it also coincides with the intersection of the closed half-spaces
which contain K. As the closure of any convex set is convex, that hull also coincides with ¢o(K),
namely, the closure of the convex hull of K. (But it may not coincide with the convex hull of the

1) Here (~, > represents the duality pairing between B** and B*.

@) m passing note that the convex set B is the intersection of the empty family, and F' = —o0 is the upper
hull of the empty family of functions.
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closure of K, for this may not be closed. The set K := {(0,0)} U {(z,y) € (RT)? : 2y > 1} is a
counterexample.)

Similarly, let us consider any function F' : B —] — 00, 4+00] which has a convex and lower semi-
continuous lower bound. By Proposition 2.2(ii), F' has then a continuous affine lower bound, and
the upper hull of these lower bounds is the largest lower bound of F in I'(B). It is called the
I-reqularized function of F', and its epigraph coincides with the closed convex hull of the epigraph
of F. ]

Regularity Properties of Convex Functions. Convexity is a source of regularity, as it is shown
by the following classical result.

* Theorem 2.2°. (Alezandrov) If F : RN — R is conver, then it is twice differentiable a.e. in
RY. []

* Theorem 2.3 Let F': B —| — 00, +00] be convex and upperly bounded in a (nonempty) open set
A C B. Then F is locally Lipschitz continuous in int(Dom(F)). 2) ]

Whenever F' is convex and continuous at a point, the latter result applies.

Corollary 2.4 If F : RY —] — oo, +00] is convex, then it is locally Lipschitz continuous in
int(Dom(F)).

Proof. int(Dom(F')) contains an N-simplex S, i.e., a set of convex combinations of N + 1 affinely
independent points of int(Dom(F')). By the convexity, F' is bounded in the interior of S, which is
nonempty. It then suffices to apply the latter theorem. O

e Corollary 2.5 If F € I'h(B), then it is locally Lipschitz continuous in int(Dom(F)). [/

Exercises. (i) Prove that the interior and the closure of any convex subset of B are convex.

(ii) Show that co(K) C €o(K). Check that the opposite inclusion fails for K := (R x{1})u{(0,0)}.

(iii) Let F': B —] — 00, 4+00] be convex. Show that F' is continuous at ug € Dom(B) whenever it
is upper semicontinuous at the same point uy.

Hint: Apply Theorem 2.3.

(iv) Let F': B —] — 00, +00] be convex. Show that any point of relative minimum for F' is also
of absolute minimum.

(v) Prove that a convex subset of a Banach space is weakly closed iff it is sequentially weakly
closed, and that a convex function is lower semicontinuous iff it is sequentially lower semicontinuous.

O

3 The Fenchel Transform.

Let F': B —]—00, +00] be proper (i.e., with nonempty domain). We define the conjugate function
(2)

F*(u*) := ig};{m*,u} — F(u)} (= sup{(u*,u) — 7 : (u,r) € epi(F)}) Yu* € B*. (3.1)

As B* is a Banach space, for any proper function G : B* —] — 0o, 400, the conjugate function
G* : B* —] — 00, +00| might be defined by using the duality pairing between B* and its dual B**.

(2) By int(A) we denote the interior of the set A.
(2) This has nothing to do with the transposed L* of a linear operator L.
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However, it seems more convenient to deal with the duality pairing between B* and B, as we did
above. We then restrict G* to B: (3)

G*(u) :== sup {(u*,u) — G(u")} Yu € B. (3.2)

u*eB*
If F is as above and F™* is also proper, we introduce the biconjugate function of F:

F**(u) := usgg{(u*,w — F*(u")} (=sup{{u*,u) —r: (u*,r) € epi(F*)}) Yu e B. (3.3)

Similarly, if G* is proper, we define the biconjugate function of a proper function G : B* —
| — o0, +00]:

G™* (u*) = sup{(u*,u) — G*(u)} Yu* € B*. (3.4)
ueB
Note that
F*(0) = —ulg]fg F(u), F*(0) = —u*lng* F*(u). (3.5)

For any proper function F' : B —] — 00, +00|, F** is proper iff F' has a continuous affine lower bound.

We may then summarize the above definitions as follows:

(i) If F: B —] — 00, 400] is proper, then F* : B* —] — 0o, +00] is defined as in (3.1).

(ii) If G : B* —] — 00,400] is proper, then G* : B** —] — 00, 4+00] is defined. Most often one
restricts G* to B.

(iii) If F* : B* —] — 0o, +0o0] is proper (i.e., if F' has a continuous affine lower bound), then
(F*)* : B** —] — 00, +00] is defined. Most often one restricts (F'*)* to B; we set

F** .— (F*)*’B

(iv) If G*|B : B —] — 00, +00] is proper (i.e., if G has a continuous affine lower bound), then

(G*|5)" : B =] — 00, +0q] is defined.

Here is an application of the above setting to economics.

“If we interpret the vector space B as a commodity space and accordingly its dual B* as a price
space, and if we interpret F': B —] — 0o, +00] as a cost function that associates to every commodity
u € B its cost F(u) €] — 0o, +00], then the conjugate function F* can be interpreted as a profit
function that associates to every price v* € B* the maximum profit F*(u*) = sup,cp{(u*,u) —
F(u)} (since (u*,u) is the value of u when the price system u* prevails).” (4

e Theorem 3.1 Let F : B —] — 00,400| be proper and admit a continuous affine lower bound.
Then:

(i) F* € I)(B*) and F** € I'hy(B). F* is even weakly star lower semicontinuous.

(ii) (Fenchel-Moreau theorem) F** is the I'-reqularized function of F'; that is,

F**(u) =sup{(u",u) + a:u* € B*,a € R, (u",u) + o < F(u)} Vu € B, (3.5)

or also epi(F**) = co(epi(F')). [Therefore F** = F whenever F € IH(B).]
(iii) (Fenchel’s inequality and dual Fenchel’s inequality)
(u* u) < F(u) + F*(u*) Vu € Dom(F),Yu* € Dom(F™),
(u* u) < F*™*(u) + F*(u") Vu € Dom(F**),Vu* € Dom(F™).

(3) No confusion should arise by denoting this restriction by G*.
4) From J.-P. Aubin: Applied Functional Analysis, 1979, p. 211.
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Proof. (i) is a consequence of part (ii) of Proposition 2.2.
Let us now come to the proof of (3.5”). Although in this formula u is kept fixed and u*, « are
varied, here we fix any «* € Dom(F*) and o € R, and let u vary. By definition of F*(u*) we have

(W u)+a<F(u) YueB & o< -—F*"(u").
That is, the function Ly« : u — (u*,u) — F*(u*) is a continuous and affine lower bound of F', and its
constant term, —F™*(u*), is maximal in the family of these lower bounds. This family of functions
is parameterized by u*; its upper hull, F** is the ['-regularized function of F', by definition of

I'-regularization. (ii) thus holds.
The inequalities (3.6) directly follows from the definitions of F* and F**. O

* Proposition 3.2 Let X, Xy be vector spaces over R and f : X7 X Xo —| — 00, +00]. Let
us define the infimal value function g(u) := inf,cx, f(u,v) for any u € X;. OV If f is convex
(quasi-conver, resp.) then g is also conver (quasi-convex, resp.).

Proof. For i = 1,2, let us fix any u; € Dom(g), any v; € Dom(f(u;,-)), and any A €]0,1[. If f is
convex we have

g()\u1 + (1 — )\)’LLQ) S f()\ul + (1 — )\)U,Q, )\Ul + (1 — )\)Ug)
= f(A(u1,v1) + (1 = M) (uz,v2)) < Af(ur,v1) + (1 = A) f(uz, v2).

By taking the infimum with respect to (v1, v2) we then get g(Aug +(1—A)uz) < Ag(u1)+(1—=X)g(usz).
Similarly, if f is quasi-convex we have

g(Aug 4+ (1= Nug) < f(Aug + (1 — Nug, Avg + (1 — N)vg)
= f(M(ug,v1) + (1 = N)(uz,v2)) < max{f(uy,v1), f(uz,v2)}.

By taking the infimum with respect to (vy,v2) we get g(Aus + (1 — ANug) < max{g(u1),g(u2)}. O

* The Infimal Convolution. Let X be a vector space over R. For any F,G : X —] — 00, 400],
we define the infimal convolution of F and G by

(FVG)(u) := inf {F(v)+ G(w)} (= Ulg;f({F(v) + G(u—v)}) Vu € X. (3.7)

vaweX:vtw=u

(The analogy with the usual convolution product is obvious.) This operation is commutative and
associative. [Ex] We have [Ex|

Dom(FVG) = Dom(F) + Dom(G), FVIjgy=F  VF,G:X —]—o00,+00],

Dom(FVGE) = Dom(F) + Dom(G), IaVIpg =1Istp VA,B C X,
if F1<Fy in X, then FiVG < F,VG in X VF, F5, G : X —] — 00, +00],
epi(F') + epi(G) C epi(FVG) VF,G: X =] — 00, 40o0],

FVG is convex V convex F,G : X —] — 0o, +00].

(®) Notice that g may attain the value —00.
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* Proposition 3.3 (i) If F,G : B —] — 00, +00] are proper, then (FVG)* = F* + G*.
(i) If F, G € IH(B) and either F' or G is continuous at some point ug € Dom(F)NDom(G), then
(F+ Q)" = F*VG*. []

Part (i) is easily proved. For any u* € B* we have

(FVG)*(u”) = sup{(u”,u) — inf {F(w) + G(u—w)}}

= USESB{(U*,U)) + (u*,u—w) — Flw) — G(u—w)}
= sup ({u" ) = F(w)} + sup{(u”, ) ~ G0)} = F*(w") + G (u)

If F,G € I)(B), then (F*VG*)** = (F**+G**)* = (F+G)* by part (i). The further assumption
of part (ii) allows one to show that (F*VG*)** = F*VG*. [|

Exercises. (i) Show that I.,x) = co(Ik).

(ii) Exhibit a function f: R —] — oo, +00] which has no convex lower bound.

(iii) Set f(u) := u? for any u € R\ {0}, f(0) := 1. Check that epi(co(f)) # co(epi(f)). (Notice
that there exists no function g : R —] — 00, +00] such that epi(g) = co(epi(f))).

(iv) Check that f: R —] — 00, 400] is convex iff Dom(f) is convex and f|D0m( is also convex.

b))
(v) Check that the pointwise limit of a sequence of convex functions is convex.
(vi) Let K be a convex subset of a Banach space, equipped with a norm || - ||, and define the
distance function, dg (u) := inf{|lu — v|| : v € K} for any u € B . Check that Ix V| - | = dk.

(vii) Prove the characterization (4.3) of quasi-convex functions.

(viii) The sum of two quasi-convex functions is necessarily quasi-convex?

(ix) Let K be a subset of a real vector space. Does co(K) coincide with the set of convex
combinations of pairs of elements of K7

Exercises. (i) Let p,q €]1,+00[, 1/p+ 1/q = 1. Check that the function R — R : v* — |v*|7/q¢ is
the conjugate of the function v — |v[P/p. The Fenchel inequality (3.6); then generalizes the classical
Young inequality: wu* < |ul|P/p + |u*|P" /p/ for any u,u* € R.

Let §2 be an open subset of RY. Check that the functional LI(2) — R : v* — (1/q) [, |v*|?dzx
is the conjugate of the functional L?(2) — R : v — (1/p) [, [v|Pdz.

(ii) Check that (3.6) is equivalent to

r+s  Y(u,r) € epi(F),Y(u",s) € epi(F7),
r+s  Y(u,r) € epi(F*),V(u",s) € epi(F*);
moreover, for instance,

epi(F*) = {(u*,s) € B* x R: (u*,u) <r+s, Y(u,r) € epi(F)}.

(iii) Under the assumptions of Theorem 3.1, prove that:

(a) F' < G entails G* < F* (whenever G fulfils the conditions which we assumed for F');

(iv) Let B be a Banach space equipped with the norm || - ||, and let B* be equipped with the dual
norm || -||«. Let ¢ € I'H(R) be even, set F(u) := ¢(||u||) for any u € B, and G(u*) := ¢*(||u*||.) for
any u* € B*. Show that F* = G.

* (v) Let F be convex. Show that if F' is lower semicontinuous at u € B, then F'(u) = F**(u).

* (vi) Let B be a Banach space, ug € B, set F(u) := ||u — ugl| for any u € B and denote the
unit ball of B* by K*. Check that F*(u*) = I« (u*) + (u*,up) for any u* € B*.

Let us then set F.(u) := F(cu) for any u € B and any ¢ € R. How can F be represented? O



4 The Subdifferential.
Let F': B —] — 00, +00] be proper. We define its subdifferential, OF, as follows:

OF (u) :={u" € B* : (u",u—v) > F(u) — F(v), Yv € B} Vu € Dom(F). (4.1)

OF (u) = 0 is not excluded, and we set F (u) = ) for any v € B\ Dom(F). We also define the
(effective) domain of OF by Dom(9F) := {u € B : F (u) # (}, and say that F is subdifferentiable
at u iff OF (u) # (. The elements of OF (u) are called subgradients of F at w.
The condition (4.1) means that:
(i) the continuous and affine function L : v — (u*,v — u) + F'(u) is a lower bound of F', and
(ii) L is ezact at u, that is, L(u) = F(u).
If F*: B* =] — 00, +00] is proper, we set

OF*(u*) :=={u € B: (u,u” —v*) > F*(u*) — F*(v*), Yo" € B*} Vu* € Dom(F™), (4.2)

and OF*(u*) = (0 for any u* € B* \ Dom(F*). As above, the duality pairing between B* and B is
here exploited. This is tantamount to defining OF*(u*) as a subset of B**, and then to restrict it
to B.

Examples. (i) Let H be a (real) Hilbert space, 1 < p < 400 and set Fj(u) := ||u||?/p for any
u € H. It is convenient to identify H with its dual space, and then to define the subdifferential as
a subset of H, simply by replacing the duality pairing by the scalar product in the definition.

If p > 1, then dF,(u) = {||ul|P"2u} for any u € H; in particular, OF;(u) = {||ul|"*u} for any
uwe H\ {0}, and 0F;(0) ={v € H : ||v]| <1}.

In particular, if H := R then 9F} = sign, where we set

sign(z) :={—1}if <0, sign(0) :=[-1,1], sign(z):= {1} if z > 0. (4.3)

(ii) Let (A, A,p) be a measure space, 1 < p < 400, F, : R - R : v — [v|’/p, and set
®,(u) == [, Fp(u)dp for any u € B := LP(A, A, ju). Then

0D, (u) = {u" € LV (A A p) s u* € OF,(u), p-a.e. in A} Yu € B.

(Here p' :=p/(p—1)if p# 1, 1’ := 400, as usual.)

(iii) Let us set B := R and F (u) = F_(u) := |u| for any u € R\ {0}, F(0) := 1, F_(0) := —1.
Then OF (u) = sign(u) for any R\ {0} and dF;(0) = (). On the other hand, OF_(u) = ) for any
R\ {0} and OF_(0) = [-1,1].

(iv) Let £2 be an open subset of RN (N > 1), 1 < p < +00, either B := Wy ?(£2) or B := W?(0),
and set

1
F(u) := / |Vu|Pdzx Yu € B. (4.4)
pJa

This functional is convex and continuous on the whole B. By examples (i) and (ii), for any u € B,
¢ := |Vu[P~2Vuy is the only element of L? (2)V such that

/g.V(u—v)dxz 1/ (Vul? — |VolP)dz Vo e B. (4.5)
Q PJao

Thus, setting L, : v — [, |[VulP~?Vu - Vvdz, L, € B* and L, € 0F(u). If B := Wy (£2) then
OF (u) = =V - (|Vul[P2Vu) in D'(£2). OF is thus single-valued.

This holds also for p = 1, provided that we replace |Vu|P~2Vu by any element of dg(Vu), where
g(&) := || for any £ € RYM. In this case OF is multi-valued.
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(v) Let £2 be as above, 1 < p < 400, set B := LP({2) and

1
N / \VulPdz — Yu € W, P(2),
Fu):={ PJa (4.6)

+oo  Yue LP(2)\ W, P(R).

By (4.5), Dom(9F) = {u € Wy?(2) : V- (|[Vu|P~2Vu) € L” (£2)} (otherwise the first integral
of (4.5) is meaningless) and dF(u) = —V - (|VulP=2Vu) for any u € Dom(9F). For instance, for
p =2, Dom(9F) = H}(2) N H*(2) and dF (u) = —Au for any u € Dom(9F).

If in (4.6) we replace Wy (2) by B := W'P(£2), the representation of F is more delicate.
Actually,

(€0) = / Va2 Vu-Vode  VE € OF(u),Vu, v € WP(0), (4.6)
2

(so that (&,u —v) > F(u) — F(v) > 0). By the Hahn-Banach theorem, £ may then be extended to
an element of W1P(£2)'.

(vi) These examples can easily be extended if [Vu|P is replaced by ¢(Vu), where p : RV — R
is convex and ¢(§) grows at infinity at most like |{|P (that is, there exist C, M > 0 such that
(&) < ClEIP + M for any € € RY). 0

e Theorem 4.1 Let F: B —| — 00, 400| and assume that any function of which here we consider
either the conjugate or the subdifferential is proper. Then for any u € B and any u* € B* we have:
(i) u* € OF (u) & F(u)+ F*(u*) = (u*,u) (Fenchel’s equality), or equivalently:
u* € OF (u) & there exist (u,r) € epi(F) and (u*,s) € epi(F*) such that r + s = (u*, u).
(ii) w € OF* (u*) & F**(u) + F*(u*) = (u*,u) (dual Fenchel’s equality), or equivalently:
u € OF*(u*) & there exist (u,r) € epi(F**) and (u*, s) € epi(F*) such that r+s = (u*,u).
(iii) u* € OF (u) = u € OF*(u*). The converse holds if F(u) = F**(u).
(iv) OF (u) is convex and weakly star closed (hence strongly and weakly closed); OF*(u*) is convex
and closed.
(v) The operator OF is monotone, that is,

(u] —u3,up —ug) >0 Vu; € Dom(0F),Vu; € 0F(u;)(i = 1,2). (4.7)

(vi) F(u) =inf F < 0F(u) 2 0 & [F(u) = F**(u),0F**(u) 2 0] = u € 9F*(0). If F € Iy(B)

then the latter implication can be inverted.
Proof. By (4.1), u* € OF (u) iff (u*,v) — F(v) < (u*,u) — F(u) for any v € B, that is,

F*(u*) := ilelg{<u*’v> — F(v)} = (u*,u) — F(u).

(i) thus holds. (ii) can be derived similarly.

As F** < F, (iii) follows from (i), (ii) and (3.6).

By (4.1) we have 0F(u) = [\, cp {u* € B* : (u*,u —v) > F(u) — F(v)}; thus OF (u) is the inter-
section of a (nonempty) family of weakly star closed half-spaces. This yields the first part of (iv).
The remainder can be proved similarly.

(v) and (vi) easily follow from the definition of subdifferential (cf. Proposition 4.2 below). O

By the Fenchel’s inequality, F'(u) + F*(u*) > (u*,u) (which holds for any (u,u*) € B x B*), the
Fenchel’s equality is equivalent to the opposite Fenchel’s inequality, F'(u) + F*(u*) < (u*,u). By
the same token, the dual Fenchel’s equality is equivalent to the opposite dual Fenchel’s inequality:
F**(u) + F*(u*) > (u*, u).
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By part (iii) of the latter result, for any F € I'o(B), OF* = (OF)~'. ©®
Corollary 4.1’ Let F : B —] — oo, +00] and F* be proper, and set
D(u,u*) == F(u) + F*(u*) — (u*, u) Vu € Dom(F),Vu* € Dom(F™).

Then

u* € 0F(u) iff P(u,u*) = 4.7y

inf
Dom(F)xDom(F*)

Proof. The Fenchel equality and inequality respectively read

u* € 0F(u) iff P(u,u”)=0; 0< inf P.
Dom(F)XxDom(F*)
This yields the “only if” part. Conversely, if ®(u,u*) = infpom(F)xDom(r+) P, then &(u,u*) <
&(v,u*) for any v € B, whence u* € OF (u). The “if’ part thus holds. (¥ O
Note that (4.7)" yields
u* € 0F(u) iff 0,P(u,u*) 30, OyP(u,u”)>0. (4.7)

The following result can easily be proved via the Fenchel equality and inequality.

Proposition 4.2 Under the assumptions of Theorem 4.1 we have:
(i) If OF (u) # 0, then F(u) = F**(u).
(i1) If F(u) = F**(u), then OF (u) = OF**(u) (possibly = 0). [Ex]

The two latter implications cannot be inverted in general. As counterexamples take, e.g., B =R
and respectively F(z) := +oo for any x < 0, Fy(x) := —/x for any x > 0, Fy(x) := Fy(z) for any
x # 0, F5(0) := 1. In either case consider the point z = 0.

e Theorem 4.3 (Rockafellar) Let Fy, Fy : B —] — 0o, +00]. Then
OF;(u) + 0F(u) C O(Fy + F»)(u) Vu € Dom(F;) N Dom(Fy). (4.8)

The opposite inclusion holds if Fy, Fy € Iy(B), and either Fy or Fy is continuous at some point
ug € Dom(Fy) N Dom(Fy). (7

Proof. To check (4.8) it suffices to write the definition of subdifferential for F; and F5, and sum the
two inequalities.
The opposite inclusion is less easy to be proved. O

The continuity assumption cannot be dropped. As a counterexample take B = R, Fy(z) := +00
for any 2 < 0, F1(x) := —/x for any > 0, F := Ij_ o). Hence (F + F»)(0) = 0, (F + F»)(z) =
+oo for any x # 0. Therefore O(F; + F5)(0) = R, whereas 0F;(0) + 9F>(0) = 0 + [0, +oo[= 0.

(5) The inverse of any multi-valued function f : A — 2B is defined as follows: for any (a,b) € AXB, a € f~1(b)
iff b € f(a). For multi-valued functions, this is not always equivalent to the property flof=foft=1Id

) This is just another way of proving the Fenchel equality.

() By Corollary 2.5, this hypothesis is equivalent to
[int(Dom(F})) N Dom(F»)] U [Dom(Fy) N int(Dom(Fy))] # (.
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Proposition 4.4 Let By, By be Banach spaces over R, L : By — By be linear and continuous,

and F € I'(Bg). Then FolL € I'(By).
Moreover, if F' is continuous at some point p € By, then

B(FoL)(u) = (L*0OF)(Lu) Yue Bi. || (4.9)

e Proposition 4.5 Let F' : B —]—00,400] be lower semicontinuous at someu € B, and {(un,u})}
be a sequence in B x B*. If

uy € OF (up) Yn € N,  wu, — u weakly in B, u, — u* weakly star in B*, (4.10)
lim inf(u), u,) < (u*,u), (4.11)
n— oo

then u* € OF (u).
Proof. For any n, u! € 0F (uy,) iff
(uy , up — vy > F(uy) — F(v) Vv € Dom(F).
It then suffices to pass to the inferior limit as n — oo. O

The latter result entails that the operator OF is strongly-weakly star and weakly-strongly sequen-
tially closed in B x B*.

Proposition 4.6 Let F : B —] — 0o, +00] be conver. If F has a point of continuity, then
int(Dom(F")) C Dom(0F)(C Dom(F)).

Proof. If F is continuous at some point, then it is continuous at any interior point of Dom(F),
by Theorem 2.3. Let us fix any ug € int(Dom(F')). As int(epi(F)) is nonempty and (ug, F'(ug)) €

int(epi(F)), by Theorem I1.3.10 there exists a closed hyperplane through (ug, F'(ug)) which is tangent
to epi(F'). Thus there exists (u*,r) € (B* x R) \ {(0,0)} such that

B*xR{((u",7), (u —ug,a — F(ug)))Bxr = B+ (u",u —ug)p + rla — F(ug)] >0
V(u,a) € int(epi(F)).

We have r # 0, since otherwise p«(u*,u — ug)p > 0 for any u € int(Dom(F')), whence u* = 0
as ug € int(Dom(F')). Moreover r > 0, as a may be arbitrarily large. Taking a := F(u), we get
g (—u*/ryug —u)g > F(ug) — F(u) for any u € Dom(F), that is, —u*/r € dF (ug). 0
Proposition 4.7 If F € I)(B) then Dom(9F) is dense in Dom(F).

This result will be proved in Sect. XIII.4.

Inverse Fenchel equality and inequality: for any u* € B* and any function F' : B — R U {+o0},

{EIUEB: (u*,uy = F(u) +§
I eR: = u* €0F(u),{=F"(u"). (4.12)
Yve B, (u,v)<F(v)+¢&

(The opposite implication coincides with the usual Fenchel equality and inequality.)
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In particular this entails that, for any functions F': B - RU {400} and G : B* — R U {+0o0}
and for any (u,u*) € B x B*,

{ (u*,u) = F(u) + G(u") u* € 0F (u), G(u*) = F*(u")

4.
(v*,v) < F(v) + G(v*) ¥Y(v,v*) € BxB* - {ue@G(u*), F(u) = G*(u). (#13)

O

Exercises. (i) Let F' € I'h(B) and u* € B*. Check that 0F*(u*) coincides with the set of points
which minimize the function u — F(u) — (u*, u).
(ii) Show by a counterexample that in general u € dF*(u*) does not entail u* € OF (u).
(iii) Evaluate F}, F;*, OF;, OF;, OF;*, for any F; defined as follows:
(a) Fi(z) :=|z|? for any x € R\ {0}, F1(0) := —1.
(b) Fy(x) := |z|? for any z € R\ {0}, F»(0) := 1.
(c) F3(z) := —|z|? for any z € R.
(d) Fy(x) := arctanx for any = € R.
(e) F5(z) := 400 for any x < 0, F5(x) := —/z for any = > 0.
Hint: In order to evaluate the conjugate, one may use part (iii) of Theorem 4.1.
(iv) Let F': B —] — 00, 400| (F' # +00) and u € K C B. Check that the two following properties
are equivalent:
(a) F(u) = infg F,
(b) 0 € O(F + Ik)(u).
Show that, if F' € I'y(B), K is closed and convex, and [int(Dom(F)) N K] U [Dom(F) Nint(K)] # 0,
then (a) and (b) are also equivalent to
(c) 0 € OF (u) 4+ 01k (u), i.e., —0Ik(u) NOF (u) # (.

(v) Consider the elementary statements

1 1
§x2+2y =zy iff z=y Vz,y € R.

Check that they respectively express the Fenchel inequality and the Fenchel equality for the function
x> %x2 in R. Apply then the Fenchel inequality and the Fenchel equality to the function x +— %$p
in R for any p €]1, +00[.
(vi) Show that the Fenchel inequality and equality entail the monotonicity of the subdifferential.
(vii) May the implication (4.13) be inverted? 0



