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Note. The bullet • and the asterisk ∗ are respectively used to indicate the most relevant results

and complements. The symbol [] follows statements the proof of which has been omitted, whereas

[Ex] is used to propose the reader to fill in the argument as an exercise.

Here are some abbreviations that are used throughout:

a.a. = almost any; resp. = respectively; w.r.t. = with respect to.

p′: conjugate exponent of p, that is, p′ := p/(p− 1) if 1 < p < +∞, 1′ :=∞, ∞′ := 1.

0. Two Relevant Topologies

Inductive Topology. Here we review two standard methods of constructing a topology on a given

set, in such a way that certain continuity properties are fulfilled.

Let A be any index set. Let {Xα}α∈A be a family of topological spaces, and {λα}α∈A be a family

of mappings Xα → X. Defining a set B ⊂ X to be open in X iff λ−1α (B) is open in Xα for any α,

we obtain a topology, which is called the inductive (or final) topology on X generated by the family

{Xα, λα}. By construction, this is the finest topology on X such that λα is continuous for any α.

Proposition 0.1 Let X be equipped with the inductive topology generated by a family {Xα, λα}α∈A.

Then:

(i) For any topological space H, a mapping f : X → H is continuous iff f ◦ λα : Xα → H is

continuous for any α ∈ A.

(ii) The property (i) characterizes the inductive topology.

Proof. (i) For any open subset U of H, f−1(U) is open in X iff (f ◦ λα)−1(U) = λ−1α (f−1(U)) is

open in Xα for any α. This yields the first statement.

(ii) Let us now denote by X̂ the set X equipped with another topology which fulfils (i). By

applying the “if” part of (i) to the identity mapping j : X → X̂ and to j−1 : X → X̂, we see that j

is a homeomorphism. tu

For instance, let ∼ be an equivalence relation in a topological space E, denote by X := E/ ∼
the corresponding quotient set, and let π : E → X map any x ∈ E to its equivalence class. X is

canonically equipped with the inductive topology of {E, π}; this means that a set B ⊂ X is open

iff π−1(B) is open. This is called the quotient topology.

Projective Topology. The following construction may be regarded as dual of the previous one.

Let us consider a set Y , a family {Yα}α∈A of topological spaces, and a family {γα}α∈A of mappings

Y → Yα. We define a set to be open in Y iff it is a union of finite intersections of sets of the form

γ−1α (Bα), as α ranges in A and Bα varies among the open subsets of Yα. This means that the sets

of the form γ−1α (Bα) constitue a sub-basis for this topology, that we call the projective (or initial)

topology on Y generated by the family {Yα, γα}. By construction, this is the coarsest topology on

Y such that γα is continuous for any α.

Proposition 0.2 Let Y be equipped with the projective topology generated by a family {Yα, γα}α∈A.

Then:

(i) For any topological space H, a mapping f : H → Y is continuous iff γα ◦ f : H → Yα is
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continuous for any α ∈ A.

(ii) The property (i) characterizes the projective topology.

Proof. (i) We only have to prove the “if” part. Let γα ◦ f be continuous for any α ∈ A; then

f−1(γ−1α (Bα)) = (γα ◦f)−1(Bα) is open in H for any open set Bα ⊂ Yα. By the above construction,

if B is open in Y it follows that f−1(B) is open in H.

(ii) Let us now denote by Ŷ the set Y equipped with another topology which fulfils (i). By

applying the “if” part of (i) to the identity mapping j : Y → Ŷ and to j−1 : Ŷ → Y , we see that j

is a homeomorphism. tu

For instance, the Cartesian product Y :=
∏
α∈A Yα of a family of topological spaces {Yα} is

canonically equipped with the projective topology generated by the family of the canonic projections

πα : Y → Yα. This is called the product topology.

The topology induced by a topological space T on a subset M is another example of projective

topology. In this case Y = M , the index set A is a singleton, Yα = T , and γα : M → T : u 7→ u.

1. Test Functions

The theory of distributions was introduced in the 1940s by Laurent Schwartz, who provided a

precise functional formulation to previous ideas of Heaviside, Dirac and others, and forged a powerful

tool of calculus. Distributions also offered a solid basis for the construction of Sobolev spaces, that

had been introduced by Sobolev in the 1930s using the notion of weak derivative (which had been

pioneered by Beppo Levi). These spaces play a fundamental role in the modern analysis of either

linear or nonlinear partial differential equations.

Let Ω be a domain of RN (N ≥ 1). For any m ∈ N, and any compact subset K of Ω, let us denote

by DmK(Ω) the space of m-times differentiable functions Ω → C whose support is contained in K.

Let us also denote by Dm(Ω) the space of m-times differentiable functions Ω → C whose support

is a compact subset of Ω; we then set D(Ω) := D∞(Ω) — the space of infinitely differentiable

compactly supported functions Ω → C, also named test functions. Thus DmK(Ω) ⊂ Cm(Ω) and

Dm(Ω) =
⋃

K⊂⊂Ω
DmK(Ω) ∀m ∈ N, D(Ω) =

⋂
m∈N

Dm(Ω) (set-wise).

The null function is the only analytical function of D(Ω), as any function of this space vanishes

in some open set. The bell-shaped function

ρ(x) := exp
[(
|x|2 − 1

)−1]
if |x| < 1, ρ(x) := 0 if |x| ≥ 1 (1.1)

also belongs to D(RN ). By suitably translating and rescaling the variable x, further nontrivial

elements of D(Ω) are easily constructed, with support included in an arbitrary open subset of Ω.

For any m ∈ N∪{∞}, DmK(Ω) may be identified with a subspace of Cm(K), by which we denote

the space of functions Ω → C whose restriction to K is of class Cm. The latter is a Banach space

only for finite m. On the other hand, we shall equip the space C∞(K) =
⋂
m∈N Cm(K) with the

projective topology generated by the injections C∞(K)→ Cm(K), as m ranges through N.

We shall equip the space Dm(Ω) with the inductive topology generated by the injections DmK(Ω)→
Dm(Ω), as K ranges through the compact subsets of Ω. This topology is thus generated by the

union of the topologies of the spaces DmK(Ω), as K ⊂⊂ Ω. This means that a set A ⊂ Dm(Ω) is

open in this space iff A ∩ DmK(Ω) is open in DmK(Ω) for all K ⊂⊂ Ω.

A subset B ⊂ Dm(Ω) is said to be bounded iff it is contained and bounded in DmK(Ω), for some

compact subset K of Ω. (1) This holds iff

(1) This is consistent with a more general notion of boundedness. Any subset of a topological vector space V is
said to be bounded iff, for any neighbourhood U of the origin, there exists λ > 0 such that λB := {λu : u ∈
B} ⊂ U .
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(i) there exists a K ⊂⊂ Ω that contains the support of all the functions of B, and

(ii) supv∈B supΩ |Dαv| < +∞ for any α ∈ NN with |α| ≤ m, if m is finite. [Ex]

As any convergent sequence is bounded, the next statement is easily established. (Note that, by

the linearity of D(Ω), it suffices to define vanishing sequences.)

Proposition 1.1 (Sequential Convergence) For any m ∈ N ∪ {∞}, un → 0 in Dm(Ω) iff

(i) there exists a compact set K ⊂ Ω such that {un} ⊂ DmK(Ω), and

(ii) un → 0 vanishes in DmK(Ω). [Ex]

By the next result, this notion of sequential convergence does not determine the topology of

Dm(Ω). (2)

Theorem 1.2 For any m ∈ N ∪ {∞}, the space Dm(Ω) is not metrizable.

Proof. Let {Kn} be a strictly increasing sequence of compact subsets of Ω such that
⋃
nKn = Ω,

and for any n let us select any vn ∈ DmKn+1
(Ω) \ DmKn

(Ω). For any n obviously λvn → 0 in Dm(Ω)

as λ→ 0.

By contradiction let us assume that the topology of Dm(Ω) is induced by a metric d. For any

n > m then there exists λn > 0 such that d(λnvn, 0) ≤ 1/n; that is, d(λnvn, 0)→ 0. Thus λnvn → 0

in Dm(Ω), although the supports of these functions are not all included in any K ⊂⊂ Ω, at variance

with Proposition 1.1. tu

Theorem 1.3 (Sequential Completeness) For any m ∈ N∪{∞}, the space Dm(Ω) is sequentially

complete.

Proof. We prove this statement for m = ∞; for finite m it is even simpler. Any Cauchy sequence
(3) {un} in D(Ω) is clearly bounded. It is then also a Cauchy sequence in DK(Ω) for some K ⊂⊂ Ω.

One may then extract a subsequence {u(0)n } that converges in D0
K(Ω). From it one may extract

a subsequence {u(1)n } that converges in D1
K(Ω). For ` = 1, 2, ..., one may similarly extract nested

subsequences {u(`)n } that converge in D`K(Ω). The diagonal subsequence {u(`)` } then converges in

D(Ω). tu

Theorem 1.4 (Compactness) For any m ∈ N∪{∞}, any subset of Dm(Ω) is sequentially relatively

compact iff it is bounded.

Proof. If B is a bounded subset of Dm(Ω), then it is bounded in DmK(Ω) for some K ⊂⊂ Ω. By

applying the Ascoli-Arzelà theorem to all the derivatives of the functions of B (up to order m, if m

is finite), we see that B is then relatively compact in DmK(Ω), hence also in Dm(Ω).

Conversely, by the characterization of sequential convergence, any sequentially relatively compact

subset of Dm(Ω) is contained in DmK(Ω) for some K ⊂⊂ Ω. As it is sequentially relatively compact

in the latter space, it is bounded in DmK(Ω), hence also in Dm(Ω). tu

(2) The family of sequentially closed subsets of a topological space X defines a new topology, the sequential
topology of the original topology, that may be strictly coarser than the latter. However, in metric spaces the
two topologies coincide.

Note that, if one extends a subset A of a topological space by including the limits of all convergent se-
quences of elements of the given set, the resulting set may not be sequentially closed (!). The same may occur
if one reiterates this procedure, by successively including the sequential limits. Anyway there exists a smallest
sequentially closed set that includes A.

Several sequential topological notions are equivalent to the corresponding notion referred to the sequential
topology. For instance, a functional j : X → R is sequentially lower semicontinuous iff it is lower semicontin-

uous w.r.t. sequential topology.
(3) A sequence {un} in the topological vector spaceD(Ω) is called a Cauchy sequence iff, for any neighbourhood

U of the origin, there exists M ∈ N such that um − un ∈ U for any m, n ≥ M .
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The Space E(Ω). (4) This is the space of infinitely differentiable functions Ω → C, namely (5)

E(Ω) = C∞(Ω) =
⋂
m∈N

Cm(Ω), Cm(Ω) =
{
v : Ω → C : v|K ∈ Cm(K),∀K ⊂⊂ Ω

}
.

E(Ω) may thus be equipped with the topology generated by the intersection of the topologies of the

spaces Cm(K), as m varies in N and K ⊂⊂ Ω. This is the coarsest among all the topologies such

that the injections Cm(K) → E(Ω) are continuous, namely, it is the projective topology generated

by these injections. (6)

This entails that a subset B of E(Ω) is bounded iff it is bounded in any Cm(Ω), and that a

sequence vanishes in E(Ω) iff it vanishes in any Cm(Ω). [Ex]

2. Distributions

The linear and continuous functionals D(Ω) → C are called distributions. (7) They form the

topological dual space of D(Ω), denoted D′(Ω) For any T ∈ D′(Ω) and any v ∈ D(Ω), we also write

〈T, v〉 := T (v). Here are some examples:

(i) For any f ∈ L1
loc(Ω), the integral functional Tf : v 7→

∫
Ω
f(x) v(x) dx is a distribution. As the

mapping f 7→ Tf is injective, [Ex] we may identify L1
loc(Ω) with a subspace of D′(Ω). This subspace

is dense in D′(Ω). [] For this reason, the distributions are also named generalized functions. The

distributions of the form Tf are also named regular distributions, whereas the other ones are called

singular distributions.

(ii) Although the real function x 7→ 1/x is not locally integrable in R, its principal value

p.v.
1

x
: v 7→ lim

ε→0

∫
|x|>ε

v(x)

x
dx ∀v ∈ D(R) (2.1)

is a distribution. (8) For any v ∈ D(R) and for any a > 0 such that supp v ⊂ [−a, a], by the oddness

of the function 1/x, we have

〈p.v.
1

x
, v〉 = lim

ε→0+

(∫
ε<|x|<a

v(x)− v(0)

x
dx+

∫
ε<|x|<a

v(0)

x
dx

)
= lim
ε→0+

∫
ε<|x|<a

v(x)− v(0)

x
dx =

∫
R

v(x)− v(0)

x
dx.

(2.1′)

This limit exists finite, as by the mean value theorem∣∣∣∣ ∫
ε<|x|<a

v(x)− v(0)

x
dx

∣∣∣∣ ≤ 2amax
R
|v′| ∀ε > 0.

(4) Laurent Schwartz founded the theory of distributions upon three spaces: D(Ω), E(Ω), and the space of

rapidly decreasing functions: S(RN ) (that is also known as the Schwartz space) , see Sect. 4. The latter space

allowed him to extend the Fourier transform to distributions.
(5) We defined Cm(K) as the space of functions Ω → C whose restriction to K is of class Cm.
(6) This topology may be induced by a metric, that makes C∞(K) a Fréchet space.
(7) One might also consider the space of the linear and continuous functionals Dm(Ω)→ C for any finite m.

Ahead we shall deal with the latter space for m = 0.
(8) This is called a regularization of the (non-locally-integrable) function 1/x, since its restriction to D(R\{0})

coincides with this function. More generally, one says that T ∈ D(Ω) is a regularization of a function

f ∈ L1
loc(Ω \ {x0}) iff its restriction to Ω \ {x0} coincides with f . (Of course, this is of interest only if

f 6∈ L1
loc(Ω).) Several other singular functions admit a similar regularization in the class of distributions (see

ahead).
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Note that the principal value is quite different from other notions of generalized integral.

Other distributions may also be associated to the function 1/x.

(iii) The Dirac mass δ0 : v 7→ v(0) is a distribution (also named the Dirac distribution). [Ex]

Obviously, the same applies to the translated Dirac mass δx : v 7→ v(x) for any x ∈ RN .

(iv) A series of (translated) Dirac masses
∑∞
n=1 δxn

: v 7→
∑∞
n=1 v(xn) is also a distribution iff

{xn} is a sequence in Ω that intersects any compact subset of Ω only in a finite number of points.

[Ex]

(v) For any sequence {xn} in Ω, the series
∑∞
n=1 n

−2δxn is a distribution. [Ex]

(vi) For any Borel measure µ over Ω, the functional v 7→
∫
Ω
v(x) dµ(x) is a distribution.

Proposition 2.0 Let us denote by T : D(Ω) → D′(Ω) the canonic injection. T (D(Ω)) is dense

in D′(Ω). []

• Theorem 2.1 (Characterization of Distributions) For any linear functional T : D(Ω)→ C the

following properties are mutually equivalent:

(i) T ∈ D′(Ω);

(ii) T is sequentially continuous; i.e., T (vn)→ 0 whenever vn → 0 in D(Ω);

(iii) T is of finite order on any K ⊂⊂ Ω, that is,

∀K ⊂⊂ Ω, ∃m ∈ N,∃C > 0 : ∀v ∈ D(Ω),

supp v ⊂ K ⇒ |T (v)| ≤ C max
|α|≤m

sup
K
|Dαv|. (2.2)

(iv) T is bounded, i.e., it maps bounded subsets of D(Ω) to bounded subsets of C.

Proof. Obviously, (i) ⇒ (ii). Let us prove that (ii) ⇒ (iii). By contradiction, let us assume that

∃K ⊂⊂ Ω : ∀m ∈ N,∃vm ∈ DK(Ω) : |T (vm)| > m max
|α|≤m

sup
K
|Dαvm|.

Possibly dividing vm by T (vm), we can assume that T (vm) = 1 for any m. Hence supK |Dαvm| <
1/m for any α ∈ NN and any m ≥ |α|. Thus vm → 0 in DK(Ω), whence in D(Ω), although T (vm)

does not vanish. Therefore (iii) does not hold.

The implication (iii) ⇒ (iv) easily follows from (2.2) and the characterization of bounded subsets

of D(Ω). [Ex]

We shall not prove that (iv) ⇒ (i). tu

We equip the space D′(Ω) with the sequential topology induced by the pointwise convergence:

for any sequence {Tn} in D′(Ω),

Tn → 0 in D′(Ω) ⇔ Tn(v)→ 0 ∀v ∈ D(Ω). (2.3)

(Because of the linear structure of D′(Ω), it suffices to define vanishing sequences.) The convergence

of a series of distributions is defined as the convergence of the sequence of the partial sums; that is,

a series
∑∞
n=0 Tn converges to T in D′(Ω) whenever {

∑m
n=0 Tn} converges to T in D′(Ω) as m→∞.

Thus

T =
∞∑
n=0

Tn in D′(Ω) ⇔ 〈T, ϕ〉 =
∞∑
n=0

〈Tn, ϕ〉 ∀ϕ ∈ D(Ω). (2.4)

Examples. (i) The very definition of the principal value is based on the approximation (by regu-

larization in this case) in the sense of distributions. Setting

fε(x) = 1/x if |x| ≥ ε, fε(x) = 0 if |x| < ε,
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by (2.1’) we have Tfε → p.v. (1/x) in D′(R).

(ii) The Dirac mass may be approximated in several ways. For instance, both sequences

fn(x) :=

{
n/2 if |x| < 1/n

0 if |x| ≥ 1/n,
gn(x) :=

n√
π
e−n

2x2

∀x ∈ R,∀n ∈ N

converge to δ in D′(R). Indeed, by the mean value theorem, for any n ∈ N there exists xn ∈
]− 1/n, 1/n[ such that

〈Tfn , ϕ〉 =
n

2

∫ 1/n

−1/n
ϕ(x) dx = ϕ(xn)→ ϕ(0) = 〈δ, ϕ〉 ∀ϕ ∈ D(R).

On the other hand, recalling the classical Poisson identity
∫
R
e−y

2

dy =
√
π,

〈Tgn , ϕ〉 =
n√
π

∫
R

e−n
2x2

ϕ(x) dx =
1√
π

∫
R

e−y
2

ϕ(y/n) dy

→ ϕ(0)√
π

∫
R

e−y
2

dy = ϕ(0) = 〈δ, ϕ〉 ∀ϕ ∈ D(R).

{fn} and {gn} are accordingly said two regularizing sequences of the Dirac mass.

Proposition 2.2 If Tn → T in D′(Ω) and vn → v in D(Ω), then Tn(vn)→ T (v). []

Theorem 2.3 The space D′(Ω) is sequentially complete. []

Theorem 2.4 Any subset of D′(Ω) is sequentially relatively compact iff it is bounded. []

Exercises. (i) Check that a sequence {fn} in L1(R) approximates δ in D′(R) whenever

∃M > 0 : ∀n ∈ N, fn ≥ −M a.e. in R,

∀ε > 0,∃C > 0 : ∀n ∈ N, |x| > ε ⇒ fn(x) ≤ C,

fn → 0 a.e. in R,

∫ 1/n

−1/n
fn(x) dx→ 1.

Show that no one of these four conditions is needed for the convergence: actually they may fail

simultaneously.

(ii) For which complex sequences {an}, {bn} and {cn} are

T1 :=
∑
n anD

nδ0, T2 :=
∑
n bnD

nδ1/n and T3 :=
∑
n cnD

nδn distributions over R?

3. Distributional Calculus

Some operations may be defined in the space D′(Ω) by transposition. For Ω = RN this applies,

e.g., to the traslations (denoted by τh for any h ∈ RN ) and to the rescalings of x:

〈τhT, v〉 := 〈T, τ−hv〉 ∀v ∈ D(RN ),∀T ∈ D′(RN ),∀h ∈ RN , (3.1)

〈T (A·), v〉 := Det(A)−1 〈T, v(A−1·)〉

∀v ∈ D(RN ),∀T ∈ D′(RN ),∀ nonsingular A ∈ RN2

.
(3.2)
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The multipication of distributions by C∞-functions may also be defined by transposition: for any

open set Ω,

〈fT, v〉 := 〈T, fv〉 ∀T ∈ D′(Ω),∀f ∈ C∞(Ω),∀v ∈ D(Ω). (3.3)

It is easily checked that τhT, T (A·), fT are distributions, and that for regular distributions these

definitions are consistent with known properties. (9)

The differentiation is also extended to D′(Ω) by transposition: (10)

〈D̃αT, v〉 := (−1)|α|〈T,Dαv〉 ∀T ∈ D′(Ω),∀v ∈ D(Ω),∀α ∈ NN . (3.4)

Whenever T and D̃αT are regular distributions, this definition is consistent with the properties of

ordinary derivatives.

Any distribution thus has derivatives of any order. For any f ∈ L1
loc(Ω) such that Dαf ∈ L1

loc(Ω),

this notion of derivative is consistent with partial integration: for T = Tf , (3.4) indeed reads (11)

∫
Ω

[Dαf(x)]v(x) dx = (−1)|α|
∫
Ω

f(x)Dαv(x) dx ∀v ∈ D(Ω),∀α ∈ NN . (3.5)

The operator D̃α is linear and continuous in D′(Ω). [Ex] As derivatives commute in D(Ω), the

same applies in D′(Ω), that is, D̃α ◦ D̃β = D̃α+β = D̃β ◦ D̃α for any multi-indices α, β. [Ex]

The formula of differentiation of the product is extended as follows:

D̃i(fT ) = (Dif)T + fD̃iT ∀f ∈ C∞(Ω),∀T ∈ D′(Ω),∀i;

in fact
〈D̃i(fT ), v〉 = −〈fT,Div〉 = −〈T, fDiv〉 = 〈T, (Dif)v〉 − 〈T,Di(fv)〉

= 〈(Dif)T, v〉+ 〈D̃iT, fv〉 = 〈(Dif)T + fD̃iT, v〉 ∀v ∈ D(Ω).

A recursive procedure then yields the extension of the classical Leibniz rule:

D̃α(fT ) =
∑
β≤α

(
α

β

)
(Dα−βf)D̃βT ∀f ∈ C∞(Ω),∀T ∈ D′(Ω),∀α ∈ NN ,

where

(
α

β

)
:=

N∏
i=1

(
αi

βi

)
=

N∏
i=1

αi!

(αi − βi)!βi!
. [Ex]

(3.6)

Proposition 3.1 D(Ω) ⊂ E(Ω) with continuous injection and density (by an obvious identifica-

tion). Moreover, E ′(Ω) ⊂ D′(Ω) with continuous injection.

Proof. It is obvious that D(Ω) ⊂ E(Ω) with continuous injection. Let ρ be as in (1.1), and define

the mollifier ρε(x) := ε−Nρ(x/ε) for any x ∈ RN and any ε > 0.

For any v ∈ E(Ω), if K is a nondecreasing family of compact subsets that converges to Ω and

ε → 0, then (v1K) ∗ ρε → v in E(Ω). [Ex] Hence D(Ω) is dense in E(Ω). This entails the final

statement. tu

Comparison with Classical Derivatives.

(9) For anym ∈ N, the same properties hold for the topological dual ofDm(Ω), in this case for any f ∈ Cm(Ω).

(10) In this section we denote the distributional derivative by D̃α, and the classical derivative, i.e. the pointwise
limit of the incremental ratio, by Dα, whenever the latter exists.

(11) This coincides with the definition of weak derivative due to Sobolev.
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• Theorem 3.2 (Du-Bois Reymond) Let f ∈ C0(Ω) and i ∈ {1, . . . , N}. Then D̃if ∈ C0(Ω)

(possibly after modification in a set of vanishing measure) iff f is classically differentiable w.r.t. xi
and Dif ∈ C0(Ω). In this case D̃if = Dif in Ω. []

The next statement applies to N = 1, with Ω := ]a, b[ and −∞ ≤ a < b ≤ +∞. A multidimen-

sional extension will be provided in the next section.

First we remind the reader that a function f ∈ L1(a, b) is absolutely continuous iff there exists

g ∈ L1(a, b) such that f(x) = f(y) +
∫ x
y
g(ξ) dξ for any x, y ∈]a, b[. This entails that f ′ = g a.e. in

]a, b[. Thus if f ∈ L1(a, b) is absolutely continuous, then it is a.e. differentiable and f ′ ∈ L1(a, b).

The converse may fail: the Heaviside function H (H(x) = 0 for any x < 0, H(x) = 1 for any x ≥ 0)

is a counterexample, as H ′ = 0 a.e. in R, but H is not a.e. equal to any absolutely continuous

function. (12)

• Theorem 3.3 A function f ∈ L1(a, b) is a.e. equal to an absolutely continuous function, f̂ , iff

D̃f ∈ L1(a, b). In this case D̃f = Df̂ a.e. in ]a, b[.

If f ∈ L1
loc(a, b) then Df may exist a.e. in ]a, b[ and even be locally integrable without coinciding

with the distributional derivative D̃f , which need not be an element of L1
loc(a, b). For instance, still

denoting by H the Heaviside function, we have DH = 0 a.e. in R, but D̃H = δ0 as

〈D̃H, v〉 = −
∫
R

H(x)Dv(x) dx = −
∫
R+

Dv(x) dx = v(0) = 〈δ0, v〉 ∀v ∈ D(R).

Support and Order of Distributions. A distribution T ∈ D′(Ω) is said to vanish in an open

subset Ω̃ of Ω iff it vanishes on any function of D(Ω) supported in Ω̃. There exists then a (possibly

empty) largest open set A ⊂ Ω in which T vanishes; [] (13) its complement in Ω is called the support

of T , and is denoted by suppT . This extends the usual notion, since the support (in the usual sense)

of any f ∈ C0(Ω) coincides with the support of the associated distribution Tf . [Ex]

If m is the smallest integer that fulfills (2.2), we say that T has order m in K. The supremum of

these orders as K varies among the compact subsets of Ω is called the order of T ; thus distributions

may be of either finite of infinite order. For instance,

the (distributions that are identified with) functions of L1
loc(Ω) and the Dirac mass are of order

zero;

p.v. (1/x) is of order one;

D̃αδ0 is of order |α| for any α ∈ NN ;∑∞
n=0 anD̃

nδn is a distribution over R of infinite order for any complex sequence {an}. [Ex]

The next statement establishes a strict relation between support and order.

Theorem 3.4 Any compactly supported distribution is of finite order.

This is easily established recalling the characterization (2.2). [Ex] The converse implication

obviously fails.

The Space E ′(Ω). We saw that D(Ω) is a dense subspace of E(Ω). Moreover, E ′(Ω) is a dense

subspace of D′(Ω). []

(12) Functions that are a.e. equal to an absolutely continuous function are often said absolutely continuous
themselves, for they are identified with their equivalence class.

(13) This is the union of all the open sets in which T vanishes, for if a distribution vanishes on a family of open
sets then it also vanishes on their union. This property is less trivial than it might look at first sight: the
argument is based on the classical tool, that is named partition of unity.
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Theorem 3.5 E ′(Ω) may be identified with the subspace of compactly supported distributions. []

Examples. (i) As the support of any v ∈ D(R) is contained in some interval of the form [−a, a],

we have

〈D (p.v.
1

x
), v〉 = −〈 (p.v.

1

x
), v′〉 (2.1

′)
= −

∫
R

1

x
[v′(x)− v′(0)] dx

= −
∫
R

1

x
[v(x)− v(0)− xv′(0)]′ dx = −

∫
R

1

x2
[v(x)− v(0)− xv′(0)] dx.

(3.7)

The latter integral converges, since v has compact support and (by the mean-value theorem) the

integrand equals v′′(ξx), for some ξx between 0 and x.

(ii) The function f(x) = [sin(1/|x|)]/|x| is defined a.e., but is not locally (Lebesgue-)integrable in

R; hence it cannot be identified with a distribution. On the other hand, setting

g(x) := lim
ε→0+

∫ x

ε

f(t) dt ∈ L1
loc(R) ⊂ D′(R) (3.8)

(i.e., g(x) :=
∫ x
0
f(t) dt, this being meant as a generalized Riemann-integral), we have Dg ∈ D′(R);

thus Dg cannot be identified with f ( 6∈ D′(R)). Actually, as g is odd and has a finite limit (denoted

g(+∞)) at +∞, for any v ∈ D(R) we have (as v(0) = 0 for |a| large enough)

〈Dg, v〉 = −〈g,Dv〉 = −
∫
R

g(x)[v(x)− v(0)]′ dx = − lim
a→+∞

∫ a

−a
g(x)[v(x)− v(0)]′ dx

= lim
a→+∞

∫ a

−a
f(x)[v(x)− v(0)] dx+ lim

a→+∞
[g(a)− g(−a)]v(0)

=

∫
R

f(x)[v(x)− v(0)] dx+ 2g(+∞)v(0) ∀v ∈ D(R),

(3.9)

the latter being a generalized Riemann-integral.

(iii) The modifications for f̃(x) = [sin(1/|x|)]/x and g̃(x) :=
∫ x
0
f̃(t) dt are left to the reader. tu

Problems of Division. For any f ∈ C∞(RN ) and S ∈ D′(RN ), let us consider the problem of

determining T ∈ D′(RN ) such that

fT = S (3.10)

(This is named a problem of division, since formally T = S/f .) The general solution may be

represented as the sum of a particular solution of (3.10) and the general solution of the homogeneous

equation fT0 = 0. The latter may depend on a number of arbitrary constants.

If f does not vanish in RN , then 1/f ∈ C∞(RN ) and (3.10) has one and only one solution:

T = (1/f)S. On the other hand, if f vanish at some points of RN , the situation is less trivial. Let

us see the case of N = 1, along the lines of [Gilardi: Analisi 3]. For instance, if f(x) = xm (with

m ∈ N), then the homogeneous equation xmT = 0 has the general solution T0 =
∑m−1
n=0 cnD

nδ0,

with cn ∈ C for any n. [Ex] On the other hand, even the simple-looking equation xmT = 1 is more

demanding.

Proposition 3.6 Let f ∈ C∞(R) have just isolated and finite-order zeroes. Then, denoting by Z

the set of these zeroes and by νz the order of any z ∈ Z,

T =
∑
z∈Z

νz∑
n=0

cz,nD
nδz, with cz,n ∈ C,∀z,∀n (3.11)
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is the general solution in D′(R) of the equation fT = 0.

Corollary 3.7 For any polynomial P and any f ∈ D′(R), there exists T ∈ D′(R) such that

PT = f .

Exercises.

— Define the conjugate, the real and the imaginary part of distributions via transposition. [Ex]

— Let the function ρ be defined as in (1.0) above, and set vn(x) := ρ(nx)/n for any x ∈ R and

any n ∈ N. Is the sequence {vn} bounded in D(R)?

— Let u ∈ D(R) be such that u = 1 in [−1, 1], u = 0 outside ]− 2, 2[; set un(x) := u(nx) for any

x ∈ R and any n ∈ N. Study the possible convergence of the sequence {un} in the spaces D(R),

E(R), L1
loc(R).

— Show that, if {xn} ⊂ Ω is a sequence of points that do not accumulate in Ω and {αn} ⊂ NN ,

then T : v 7→
∑
n D̃

αnv(xn) is a distribution of order equal to supn |αn| (≤ +∞). Show also that,

if instead the sequence accumulates in Ω, then T is not a distribution.

— Let {Tn} be a sequence of distributions over an open set Ω, and assume that T (v) :=

limn→∞ Tn(v) exists in C for any v ∈ D(Ω). Show that then T is a distribution.

— Check that D̃ log |x| = p.v. 1/x in D′(R), cf. (2.5), and D̃ log |x| = 1/x in D′(R \ {0}).
— Show that if T ∈ D′(R) is such that D̃2T = 0 in D′(R) then T is a first-degree polynomial.

— For any convergent sequence {Tn} in D′(R), limn→∞ D̃Tn = D̃ limn→∞ Tn, without any re-

striction. In particular this applies to elements of L1
loc(Ω). On the other hand, some classical

counterexamples show that the passage to the limit in the Lebesgue integral requires some restric-

tions. Why those counterexamples do not contradict the above statement?

— In classical analysis it is known that the existence of the mixed derivatives may not commute,

even if they exist. On the other hand in the theory of distributions mixed derivatives do commute?

Is there any contradiction?

limn→∞ D̃Tn = D̃ limn→∞ Tn, without any restriction. In particular this applies to elements of

L1
loc(Ω). On the other hand, some classical counterexamples show that the passage to the limit in

the Lebesgue integral requires some restrictions. Why those counterexamples do not contradict the

above statement?

— Are the following linear functionals D(R)→ C distributions?

T1 =

∞∑
k=1

ekδlog k , T2 =

∞∑
k=1

Dkδ1/k , T3 =

∞∑
k=1

k−1δ1/k , T4 =

∞∑
k=1

k−2δ1/k .

— For any α ∈ C∞(R) and x0 ∈ RN , evaluate 〈αδx0
− α(x0)δx0

, ϕ〉 for any ϕ ∈ D′(RN ).

— Show that δ(λ·) = δ/|λ| for any λ ∈ C \ {0}, and compare this formula with (3.2).

— Check that if T is an even distribution then T ′ is odd, and that if T is odd then T ′ is even.

— Let a ∈ R, k ∈ N. Is D̃kδa either even or odd?

— For any integer m ≥ 1 and any λ1, ..., λm ∈ C, let us set T :=
∑m
k=1 λkD̃

kδ. Check that

xm+1T = 0 in D′(R). (In particular, xδ = 0 in D′(R).)

— Show that nδ − n2I]0,1/n[ → δ′/2 in D′. Find an approximation of δ′′ in D′.
— Show that D2(H(x) sinx) = δ −H(x) sinx in D′(R).

Exercises. (i) May the differentiation also be defined as the limit of the incremental ratios in

D′(R)?

(ii) May a convergent series in D′(Ω) be differentiated term by term?

(iii) Prove that sign(sin(nx))→ 0 in D′(R) as n→∞.

(iv) For any k ∈ N, study the limit of nk sin(nx) in D′(R) as n→∞.

(v) Let {λk} and {ak} be two sequences in R. Provide a condition on {λk} ({ak}, resp.) such

that the series
∑∞
k=0 λkD

kδak converges in D′(R) for any sequence {ak} ({λk}, resp.).
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(vi) Show that, if T is a distribution of order n > 0, then DT has order n+ 1.

(vii) Check that

xDnδ = −nDn−1δ, xnDnδ = (−1)nn!δ, xmDnδ = 0 if m > n > 0.

(viii) Solve the equations x2T = 0, x2T = 1, T ′+aT = H, T ′+aT = δ (with a ∈ R) in D′(R).

4. Temperate Distributions

The Schwartz Space S of Rapidly Decreasing Functions. In view of the analysis of the

Fourier transform via distributions, we define the Schwartz space of rapidly decreasing functions (as

|x| → +∞):

S :=
{
v ∈ C∞ : ∀α, β ∈ NN , xβDα

xv ∈ L∞
}

=
{
v ∈ C∞ : ∀α ∈ NN ,∀m ∈ N, |x|mDα

xv(x)→ 0 as |x| → +∞
}
.

(4.1)

(We still omit the domain RN .) By the Leibniz rule, this space is invariant by application of

operators of the form u 7→ P (x)Q(D)u, for any complex polynomials P and Q of N real variables.

It is actually the smallest space that includes L1 and has this stability property. S is a locally

convex Fréchet space equipped with either of the following equivalent families of seminorms

|v|α,β := sup
x∈RN

|xβDα
xv(x)| ∀α, β ∈ NN , (4.2)

|v|m,α := sup
x∈RN

(
1 + |x|2

)m |Dα
xv(x)| ∀m ∈ N,∀α ∈ NN . (4.3)

For instance, the function x 7→ exp(−|x|2) and all functions of D are elements of S, indeed D ⊂ S
(with continuous injection). As these families of seminorms are countable, S is a Frechét space.

The Space S ′ of Temperate Distributions. We denote the topological dual of S by S ′. In

analogy with D′, we equip S ′ with the sequential topology of pointwise convergence: for any sequence

{Tn} in S ′,
Tn → 0 in S ′ ⇔ Tn(v)→ 0 ∀v ∈ S. (4.4)

Proposition 4.1 A linear functional L : S → C is an element of S ′ (if and) only if

∃C >, ∃m ∈ N : ∀v ∈ S |L(v)| ≤ C
∑

|α|,|β|≤m

|v|α,β . (4.5)

Proof. For any m ∈ N, let us set

Sm :=
{
v ∈ Cm : xβDα

xv ∈ L∞,∀α, β ∈ NN such that |α|, |β| ≤ m
}
,

and notice that S =
⋂
m≥1 Sm is equipped with the projective limit topology of the sequence {Sm}.

This yields S ′ =
⋃
m≥1{(Sm)′}. [] tu

For any T ∈ S ′ and any v ∈ S, we shall also write 〈T, v〉 in place of T (v). This notation is

consistent with that we used for distributions, because of the following result.

Proposition 4.2

S ⊂ S ′, D ⊂ S ⊂ E , E ′ ⊂ S ′ ⊂ D′ with continuous and dense injections. (4.6)
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Proof. The density of S in S ′ can be proved as for the density of D in D′ [that argument was

omitted].

It is clear that the injection D ⊂ S is continuous. In order to prove the density, let us fix any

ϕ ∈ D(R) such that ϕ = 1 in [0, 1], set ϕn(x) := ϕ(|x|/n) for any x ∈ RN and any n ∈ N, and

notice that ϕnv ∈ D∩S for any v ∈ S. By means of the Leibniz rule one can then see that ϕnv → v

in S. [Ex]

The continuity of the injection S ⊂ E is obvious. As D is dense in E and D ⊂ S, S is also dense

in E . The inclusions among the dual spaces and the continuity of the corresponding injections then

follow from a general result. [] tu

In passing notice that

D ⊂ D′, S ⊂ S ′, but E 6⊂ E ′, (4.7)

since there exists smooth non-compactly-supported functions.

S ′ is the smallest space that includes L1 and is invariant by differentiation and multiplication by

a polynomial. Any function u ∈ L1
loc is said slowly increasing iff it is of the form u(x) = P (x)w(x),

with P polynomial of N variables and w ∈ L1. The space L1
loc is not included in S ′, but any slowly

increasing function and any compactly supported distribution are temperate distributions (by the

usual identifications).

For instance, ψ : R → R : x 7→ ex is (identified with) a nontemperate distribution. In fact, any

f ∈ C∞(R) such that f(x) = e−|x|/2 if |x| > 1 is rapidly decreasing, but ψf 6∈ L1. On the other

hand, the real function x 7→ sin(ex) is slowly increasing, hence temperate. Therefore its derivative

ex cos(ex) is also temperate, although its absolute value is not so. [Ex]

For any α ∈ NN , the linear and continuous operators u 7→ xαu and u 7→ Dαu are extended from

S to S ′ by transposition, that is,

〈xαT, v〉 := 〈T, xαv〉, 〈DαT, v〉 := 〈T, (−D)αv〉 ∀v ∈ S,∀T ∈ S ′,∀α ∈ NN .

These operators are linear and continuous in S ′, and this is the smallest space containing L1 in

which this occurs. This is easily generalized to the operators T 7→ P (x)T and T 7→ Q(D)T , whence

to T 7→ P (x)Q(D)T , for any polynomials P and Q of N variables.

Exercises.

— Check that the two families of seminorms (4.2) and (4.3) are equivalent.

— Check that xβDα
xv ∈ L1, for any v ∈ S and any α, β ∈ NN .

— Show that, for any p ∈ [1,+∞], the functions of Lp are slowly increasing.

Hint: The statement is obvious for p = 1 or p = +∞. For any p ∈ ]1,+∞[, set p′ := p/(p − 1);

then notice that by the Hölder inequality∫
(1 + |x|2)−k|f(x)| dx ≤

(∫
(1 + |x|2)−kp

′
dx

)1/p′

‖f‖Lp ∀f ∈ Lp,∀k ∈ N,

and that for k large enough
∫

(1 + |x|2)−kp
′
dx converges...

— Let u(x) = P (x)w(x), with P polynomial and w ∈ Lp, for some p ∈ [1,+∞]. Is then u slowly

increasing?

— Compare the class of the slowly increasing functions with that of the measurable functions

f : RN → C such that |f(x)| ≤ C|x|k for any x, for some k ∈ N and C > 0.

— Let {Tn} be a sequence of E ′. Establish implications among the following properties:

Tn → 0 in E ′, Tn → 0 in S ′, Tn → 0 in D′.

— Does the topology of the spaces D, E ,S and of their duals coincide with the corresponding

sequential topology? tu


