
Distributions and Fourier Transform – A. Visintin – 2014

This chapter includes the following sections:

1. Distributions.

2. Convolution.

3. Fourier transform of functions.

4. Extensions of the Fourier transform.

The symbol [Ex] means that the proof is left as exercise. [] means that a proof is missing.

1 Distributions

The theory of distributions was introduced in the 1940s by Laurent Schwartz, who provided a thorough

functional formulation to previous ideas of Heaviside, Dirac and others, and forged a powerful tool

of calculus. Distributions also offer a solid basis for the construction of Sobolev spaces, that had

been introduced by Sobolev in the 1930s using the notion of weak derivative. These spaces play a

fundamental role in the modern analysis of linear and nonlinear partial differential equations.

We shall denote by Ω a nonempty domain of RN . The notion of distribution rests upon the idea

of regarding any locally integrable function f : Ω → C as a continuous linear functional acting on a

topological vector space T (Ω):

Tf (v) :=

∫
Ω
f(x)v(x) dx ∀v ∈ T (Ω). (1.1)

One is thus induced to consider all the functionals of the topological dual T ′(Ω) of T (Ω). In this way

several classes of distributions are generated. The space T (Ω) must be so large that the functional Tf
determines a unique f . On the other hand, the smaller is the space T (Ω), the larger is its topological

dual T ′(Ω). Moreover, there exists a smallest space T (Ω), so that T ′(Ω) is the largest one; the elements

of this dual space are what we name distributions.

In this section we outline some basic tenets of this theory, and provide some tools that we will use

ahead.

Test Functions. Let Ω be a domain of RN . By D(Ω) we denote the space of infinitely differentiable

functions Ω→ C whose support is a compact subset of Ω; these are called test functions.

The null function is the only analytic function in D(Ω), since any element of this space vanishes

in some open set. The bell-shaped function

ρ(x) :=

{
exp

[
(|x|2 − 1)−1

]
if |x| < 1,

0 if |x| ≥ 1
(1.2)

belongs to D(RN ). By suitably translating ρ and by rescaling w.r.t. x, nontrivial elements of D(Ω)

are easily constructed for any Ω.

For any K ⊂⊂ Ω (i.e., any compact subset K of Ω), let us denote by DK(Ω) the space of the

infinitely differentiable functions Ω → C whose support is contained in K. This is a vector subspace

of C∞(Ω), and D(Ω) =
⋃
K⊂⊂ΩDK(Ω). The space D(Ω) is equipped with the finest topology among

those that make all injections DK(Ω) → D(Ω) continuous (so-called inductive-limit topology). This

topology makes D(Ω) a nonmetrizable locally convex Hausdorff space. []

By definition of the inductive-limit topology, a set A ⊂ D(Ω) is open in this topology iff A∩DK(Ω)

is open for any K ⊂⊂ Ω. Here we shall not study this topology: for our purposes, it will suffice to

characterize the corresponding notions of bounded subsets and of convergent sequences.
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A subset B ⊂ D(Ω) is bounded in the inductive topology iff it is contained and is bounded in

DK(Ω) for some K ⊂⊂ Ω. [] This means that

(i) there exists a K ⊂⊂ Ω that contains the support of all the functions of B, and

(ii) supv∈B supx∈Ω |Dαv(x)| < +∞ for any α ∈ NN .

As any convergent sequence is necessarily bounded, the following characterization of convergent

sequences of D(Ω) should be easily understood. A sequence {un} in D(Ω) converges to u ∈ D(Ω) in

the inductive topology iff, for some K ⊂⊂ Ω, un, u ∈ DK(Ω) for any n, and un → u in DK(Ω). [] This

means that

(i) there exists a K ⊂⊂ Ω that contains the support of any un and of u, and

(ii) supx∈Ω |Dα(un − u)(x)| → 0 for any α ∈ NN . [Ex]

For instance, if ρ is defined as in (1.2), then the sequence {ρ(· − an)} is bounded in D(R) iff the

sequence {an} is bounded. Moreover ρ(· − an)→ ρ(· − a) in D(RN ) iff an → a. [Ex]

Distributions. All linear and continuous functionals D(Ω) → C are called distributions; these

functionals thus form the (topological) dual space D′(Ω). For any T ∈ D′(Ω) and any v ∈ D(Ω) we

also write 〈T, v〉 in place of T (v).

Theorem 1.1 (Characterization of Distributions)

For any linear functional T : D(Ω)→ C, the following properties are mutually equivalent:

(i) T is continuous, i.e., T ∈ D′(Ω);

(ii) T is bounded, i.e., it maps bounded subsets of D(Ω) to bounded subsets of C;

(iii) T is sequentially continuous, i.e., T (vn)→ 0 whenever vn → 0 in D(Ω);

(iv)

∀K ⊂⊂ Ω, ∃m ∈ N,∃C > 0 : ∀v ∈ D(Ω),

supp(v) ⊂ K ⇒ |T (v)| ≤ C max
|α|≤m

sup
K
|Dαv|. [] (1.3)

(If m is the smallest integer integer such that the latter condition is fulfilled, one says that T has

order m on the compact set K; m may actually depend on K.)

Here are some examples of distributions:

(i) For any f ∈ L1
loc(Ω), the integral functional

Tf : v 7→
∫

Ω
f(x) v(x) dx (1.4)

is a distribution. The mapping f 7→ Tf is injective, so that we may identify L1
loc(Ω) with a subspace

of D′(Ω). These distributions are called regular; the others are called singular.

(ii) Let µ be either a complex-valued Borel measure on Ω, or a positive measure on Ω that is finite

on any K ⊂⊂ Ω. In either case the functional

Tµ : v 7→
∫

Ω
v(x) dµ(x) (1.5)

is a distribution, that is usually identified with µ itself. in particular this applies to continuous

functions.

(iii) Although the function x 7→ 1/x is not locally integrable in R, its principal value (p.v.),

〈p.v.
1

x
, v〉 := lim

ε→0

∫
|x|>ε

v(x)

x
dx ∀v ∈ D(R) (1.6)
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is a distribution. For any v ∈ D(R) and for any a > 0 such that supp(v) ⊂ [−a, a], by the oddness of

the function x 7→ 1/x we have

〈p.v.
1

x
, v〉 = lim

ε→0+

(∫
ε<|x|<a

v(x)− v(0)

x
dx+

∫
ε<|x|<a

v(0)

x
dx

)
= lim

ε→0+

∫
ε<|x|<a

v(x)− v(0)

x
dx =

∫ a

−a

v(x)− v(0)

x
dx.

(1.7)

This limit exists and is finite, since by the mean value theorem∣∣∣∣ ∫
ε<|x|<a

v(x)− v(0)

x
dx

∣∣∣∣ ≤ 2amax
R
|v′| ∀ε > 0.

Notice that the principal value is quite different from other notions of generalized integral.

(iv) For any x0 ∈ Ω (⊂ NN ) the Dirac mass δx0 : v 7→ v(x0) is a distribution. [Ex] In particular

δ0 ∈ D′(R).

(v) The series of Dirac masses
∑∞

n=1 δxn/n
2 is a distribution for any sequence {xn} in Ω. [Ex]

(vi) The series
∑∞

n=1 δxn is a distribution iff any K ⊂⊂ Ω contains at most a finite number of

points of the sequence {xn} (i.e., iff |xn| → +∞). [Ex] (Indeed, if this condition is fulfilled, whenever

any test function is applied to the series this is reduced to a finite sum.) So for instance

∞∑
n=1

δn ∈ D′(R),

∞∑
n=1

δ1/n ∈ D′(R \ {0}), but

∞∑
n=1

δ1/n 6∈ D′(R).

We equip the space D′(Ω) with the sequential (weak star) convergence: for any sequence {Tn} and

any T in D′(Ω),

Tn → T in D′(Ω) ⇔ Tn(v)→ T (v) ∀v ∈ D(Ω). (1.8)

This makes D′(Ω) a nonmetrizable locally convex Hausdorff space. []

Proposition 1.2 If Tn → T in D′(Ω) and vn → v in D(Ω), then Tn(vn)→ T (v). []

Differentiation of Distributions. We define the multiplication of a distribution by a C∞-function

and the differentiation 1 of a distribution via transposition:

〈fT, v〉 := 〈T, fv〉 ∀T ∈ D′(Ω),∀f ∈ C∞(Ω),∀v ∈ D(Ω) , (1.9)

〈D̃αT, v〉 := (−1)|α|〈T,Dαv〉 ∀T ∈ D′(Ω),∀v ∈ D(Ω), ∀α ∈ NN . (1.10)

Via the characterization (1.3), it may be checked that D̃αT is a distribution. [Ex] (Actually, by (1.3),

the operator D̃α may just increase the order of T at most of |α| on any K ⊂⊂ Ω; see ahead.) Thus

any distribution has derivatives of any order. More specifically, for any f ∈ C∞(Ω), the operators

T 7→ fT and D̃α are linear and continuous in D′(Ω). [Ex]

The definition (1.9) is consistent with the properties of L1
loc(Ω). For any f ∈ L1

loc(Ω), the definition

(1.10) is also consistent with partial integration: if T = Tf , (1.10) indeed reads∫
Ω

[Dαf(x)]v(x) dx = (−1)|α|
∫

Ω
f(x)Dαv(x) dx ∀v ∈ D(Ω),∀α ∈ NN .

(No boundary terms appears as the support of v is compact.)

1In this section we denote the distributional derivative by D̃α, and the classical derivative, i.e. the pointwise limit of
the difference quotient, by Dα, whenever the latter exists.
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By (1.10) and as derivatives commute in D(Ω), the same applies to D′(Ω), that is,

D̃α ◦ D̃βT = D̃α+βT = D̃β ◦ D̃αT ∀T ∈ D′(Ω), ∀α, β ∈ NN . (1.11)

The formula of differentiation of the product is extended as follows:

D̃i(fT ) = (Dif)T + fD̃iT

∀f ∈ C∞(Ω), ∀T ∈ D′(Ω), for i = 1, .., N ;
(1.12)

in fact, for any v ∈ D(Ω),

〈D̃i(fT ), v〉 = −〈fT,Div〉 = −〈T, fDiv〉 = 〈T, (Dif)v〉 − 〈T,Di(fv)〉
= 〈(Dif)T, v〉+ 〈D̃iT, fv〉 = 〈(Dif)T + fD̃iT, v〉.

A recursive procedure then yields the extension of the classical Leibniz rule:

D̃α(fT ) =
∑
β≤α

(
α

β

)
(Dα−βf)D̃βT

∀f ∈ C∞(Ω),∀T ∈ D′(Ω),∀α ∈ NN . [Ex]

(1.13)

The translation (for Ω = RN ), the conjugation and other linear operations on functions are also

easily extended to distributions via transposition. [Ex]

Comparison with Classical Derivatives.

Theorem 1.3 (Du-Bois Reymond)

For any f ∈ C0(Ω) and any i ∈ {1, . . . , N}, the two following conditions are equivalent:

(i) D̃if ∈ C0(Ω), 2

(ii) f is classically differentiable w.r.t. xi at each point of Ω, and Dif ∈ C0(Ω). []

The next theorem applies to Ω := ]a, b[, for −∞ ≤ a < b ≤ +∞. First we remind the reader that

a function f ∈ L1(a, b) is absolutely continuous iff

∃g ∈ L1(a, b) : f(x) = f(y) +

∫ x

y
g(ξ) dξ ∀x, y ∈]a, b[.

This entails that f ′ = g a.e. in ]a, b[. Thus if f ∈ L1(a, b) is absolutely continuous, then it is a.e.

differentiable (in the classical sense) and f ′ ∈ L1(a, b).

The converse does not hold: even if f is a.e. differentiable and f ′ ∈ L1(a, b), f ∈ L1(a, b) need not

be absolutely continuous and D̃if need not be a regular distribution. A counterexample is provided

by the Heaviside function H:

H(x) := 0 ∀x < 0 H(x) := 1 ∀x ≥ 0. [Ex] (1.14)

DH = 0 a.e. in R, but of course H is not (a.e. equal to) an absolutely continuous function. Notice

that D̃H = δ0 since

〈D̃H, v〉 = −
∫
R
H(x)Dv(x) dx = −

∫
R+

Dv(x) dx = v(0) = 〈δ0, v〉 ∀v ∈ D(R).

2 that is, D̃if is a regular distribution that may be identified with a function h ∈ C0(Ω)∩L1
loc(Ω). Using the notation

(??), this condition and the final assertion read D̃iTf = Th and D̃iTf = TDif in Ω, respectively.
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Theorem 1.4 A function f ∈ L1(a, b) is a.e. equal to an absolutely continuous function f̂ , iff D̃f ∈
L1(a, b). In this case D̃f = Df̂ a.e. in ]a, b[. []

Thus, for complex functions of a single variable:

(i) f is of class C1 iff f and D̃f are both continuous,

(ii) f is absolutely continuous iff f and D̃f are both locally integrable.

Henceforth all derivatives will be meant in the sense of distributions, if not otherwise stated. We

shall denote them by Dα, dropping the tilde.

Examples. (i) D log |x| = 1/x (in R) in standard calculus, but not in the theory of distributions, as

1/x is not locally integrable in any neighbourhood of x = 0, and thus it is no distribution. We claim

that, for any v ∈ D(R) and any a > 0 such that supp(v) ⊂ [−a, a],

D log |x| = p.v.
1

x
in D′(R). (1.15)

Indeed, as the support of any v ∈ D(R) is contained in some symmetric interval [−a, a], we have

〈D log |x|, v〉 = −〈log |x|, v′〉 = − lim
ε→0+

∫
R\[−ε,ε]

(log |x|) v′(x) dx

= lim
ε→0+

{∫
[−a,a]\[−ε,ε]

1

x
v(x) dx+ (log |ε|) [v(ε)− v(−ε)]

}
(

as

∫
[−a,a]\[−ε,ε]

v(0)

x
dx = 0 and lim

ε→0+
(log |ε|) [v(ε)− v(−ε)] = 0

)
= lim

ε→0+

∫
[−a,a]\[−ε,ε]

v(x)− v(0)

x
dx = 〈p.v.

1

x
, v〉.

(1.16)

(ii) D[p.v.(1/x)] 6= −1/x2 as the latter is no distribution. Instead, for any v ∈ D(R) and any a > 0

such that supp(v) ⊂ [−a, a], we have

〈D(p.v.
1

x
), v〉 = −〈p.v.

1

x
, v′〉 (1.7)

= −
∫ a

−a

v′(x)− v′(0)

x
dx

= − lim
a→+∞

∫ a

−a

[v(x)− v(0)− xv′(0)]′

x
dx

= (by partial integration) − lim
a→+∞

∫ a

−a

v(x)− v(0)− xv′(0)

x2
dx.

(1.17)

The latter integral converges, since v has compact support and (by the mean-value theorem) the

integrand equals v′′(ξx), for some ξx between 0 and x. (In passing notice that the condition (1.3) is

fulfilled.)

* (iii) The even function

f(x) =
sin(1/|x|)
|x|

for a.e. x ∈ R (1.18)

is not locally (Lebesgue)-integrable in R; hence it cannot be identified with a distribution. On the

other hand, it is easily seen that the next two limits exist

g(x) := lim
ε→0+

∫ x

ε
f(t) dt ∀x > 0,

g(x) := lim
ε→0−

∫ x

ε
f(t) dt ∀x < 0.

(1.19)

5



That is, g(x) :=
∫ x

0 f(t) dt, if this is understood as a generalized Riemann integral. Moreover, g ∈
L1

loc(R) ⊂ D′(R), so that Dg ∈ D′(R); however, Dg cannot be identified with f (6∈ D′(R)). Actually,

the distribution Dg is a regularization of the function f (namely, a distribution T whose restriction

to R \ {0} coincides with f).

As g is odd and has a finite limit (denoted g(+∞)) at +∞, for any v ∈ D(R) and any a > 0 such

that supp(v) ⊂ [−a, a],

〈Dg, v〉 = −〈g, v′〉 = − lim
b→+∞

∫ b

−b
g(x)[v(x)− v(0)]′ dx

= lim
b→+∞

∫ b

−b
f(x)[v(x)− v(0)] dx+ lim

b→+∞
[g(b)− g(−b)]v(0)

=

∫ a

−a
f(x)[v(x)− v(0)] dx+ 2g(+∞)v(0) ∀v ∈ D(R).

(1.20)

* (iv) The modifications for the odd function f̃(x) = [sin(1/|x|)]/x are left to the reader. 2

Problems of Division. For any f ∈ C∞(RN ) and S ∈ D′(RN ), let us consider the problem

find T ∈ D′(RN ) such that fT = S. (1.21)

(This is named a problem of division, since formally T = S/f .) The general solution may be repre-

sented as the sum of a particular solution of the nonhomogeneous equation and the general solution

of the homogeneous equation fT0 = 0. The latter may depend on a number of arbitrary constants.

If f does not vanish in RN , then 1/f ∈ C∞(RN ) and (1.21) has one and only one solution:

T = (1/f)S. On the other hand, if f vanish at some points of RN , the solution is less trivial. Let us

see the case of N = 1, along the lines of [Gilardi: Analisi 3]. For instance, if f(x) = xm (with m ∈ N),

then the homogeneous equation xmT = 0 has the general solution T0 =
∑m−1

n=0 cnD
nδ0, with cn ∈ C

for any n. [Ex] On the other hand, even the simple-looking equation xmT = 1 is more demanding:

notice that x−m 6∈ D′(R) for any integer m ≥ 1.

Support and Order of Distributions. For any open set Ω̃ ⊂ Ω and any T ∈ D′(Ω), we define the

restriction of T to Ω̃, denoted T
∣∣
Ω̃

, by

〈T
∣∣
Ω̃
, v〉 := 〈T, v〉 ∀v ∈ D(Ω) such that supp(v) ⊂ Ω̃.

Because of Theorem 1.1, T
∣∣
Ω̃
∈ D′(Ω̃).

A distribution T ∈ D′(Ω) is said to vanish in an open subset Ω̃ of Ω iff it vanishes on any function

of D(Ω) supported in Ω̃. Notice that, for any triplet of Euclidean domains Ω1,Ω2,Ω3,

Ω1 ⊂ Ω2 ⊂ Ω3 ⇒
(
T
∣∣
Ω2

)∣∣
Ω1

= T
∣∣
Ω1

∀T ∈ D′(Ω3). (1.22)

There exists then a (possibly empty) largest open set A ⊂ Ω in which T vanishes. [Ex] Its complement

in Ω is called the support of T , and will be denoted by supp(T ).

For any K ⊂⊂ Ω, the smallest integer m that fulfills the estimate (1.3) is called the order of T in

K. The supremum of these orders is called the order of T ; each distribution is thus of either finite or

infinite order. For instance,

(i) regular distributions and the Dirac mass are of order zero; [Ex]

(ii) Dαδ0 is of order |α| for any α ∈ NN ;

(iii) p.v. (1/x) is of order one in D′(R). [Ex]

On the other hand,
∑∞

n=1D
nδn is of infinite order in D′(R).

The next statement directly follows from (1.3).
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Theorem 1.5 Any compactly supported distribution is of finite order.

The next theorem is also relevant, and will be applied ahead.

Theorem 1.6 Any distribution whose support is the origin is a finite combination of derivatives of

the Dirac mass.

The Space E(Ω) and its Dual. In his theory of distributions, Laurent Schwartz denoted by E(Ω)

the space C∞(Ω), equipped with the family of seminorms

|v|K,α := sup
x∈K
|Dαv(x)| ∀K ⊂⊂ Ω,∀α ∈ NN .

This renders E(Ω) a locally convex Frèchet space, and induces the topology of uniform convergence of

all derivatives on any compact subset of Ω: for any sequence {un} in E(Ω) and any u ∈ E ,

un → u in E(Ω) ⇔
sup
x∈K
|Dα(un − u)(x)| → 0 ∀K ⊂⊂ Ω, ∀α ∈ NN . (1.23)

Notice that

D(Ω) ⊂ E(Ω) with continuous and sequentially dense injection, (1.24)

namely, any element of E(Ω) may be approximated by a sequence of D(Ω). This may be checked via

multiplication by a suitable sequence of compactly supported smooth functions. [Ex] By (1.24)

E ′(Ω) ⊂ D′(Ω) with continuous and sequentially dense injection, (1.25)

so that we may identify E ′(Ω) with a subspace of D′(Ω).

As we did for D′(Ω), we shall equip the space E ′(Ω) with the sequential weak star convergence: for

any sequence {Tn} in E ′(Ω) and any T ∈ E ′(Ω),

Tn → T in E ′(Ω) ⇔ Tn(v)→ T (v) ∀v ∈ E(Ω). (1.26)

[This makes E ′(Ω) a nonmetrizable locally convex Hausdorff space.]

The sequential weak star convergence of E ′(Ω) is strictly stronger than that induced by D′(Ω): for

any sequence {Tn} in E ′(Ω) and any T ∈ E ′(Ω),

Tn → T in E ′(Ω)
6⇐⇒ Tn → T in D′(Ω).[Ex] (1.27)

If Ω = R, the sequence {χ[n,n+1]} (the characteristic functions of the intervals [n, n + 1]) is a coun-

terexample to the converse implication:

χ[n,n+1] → 0 in D′(RN ) but not in E ′(RN ).

Theorem 1.7 E ′(Ω) may be identified with the subspace of distributions having compact support.

We just outline a part of the argument. Let T ∈ D′(Ω) have support K ⊂⊂ Ω. For any v ∈ E(Ω),

multiplying it by χK and then convoluting with a regularizing kernel ρ (see (1.2)), one may construct

v0 ∈ D(Ω) such that v0 = v in K. [Ex] One may thus define T̃ (v) by setting T̃ (v) = T (v0). It is easily

checked that this determines a unique T̃ ∈ E ′(Ω). Compactly supported distributions may thus be

identified with certain elements of E ′(Ω).
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The proof of the surjectivity of the mapping T 7→ T̃ is less straightforward, and is here omitted.

On the basis of the latter theorem, examples of elements of E ′(Ω) are easily provided. E.g.:

(i) any compactly supported f ∈ L1
loc belongs to E ′(Ω),

(ii)
∑m

n=1D
αnδan ∈ E ′(Ω), for any finite families a1, ..., am ∈ Ω and α1, ..., αm ∈ NN ,

(iii)
∑∞

n=1 n
−2Dαnδan ∈ E ′(Ω), for any sequence {an} contained in a compact subset of Ω, and

any sequence of multi-indices {αn}. (If the coefficients n−2 are dropped or the sequence {an} is not

confined to a compact subset of Ω, this is no element of E ′(Ω).)

On the basis of the latter theorem, we may apply to E ′(Ω) the operations that we defined for

distributions. It is straightforward to check that this space is stable by differentiation, multiplication

by a smooth function, and so on.

The Space S of Rapidly Decreasing Functions. In order to extend the Fourier transform to

distributions, Laurent Schwartz introduced the space of (infinitely differentiable) rapidly de-

creasing functions (at ∞): 3

S
(
RN
)

:=
{
v ∈ C∞ : ∀α, β ∈ NN , xβDαv ∈ L∞

}
=
{
v ∈ C∞ : ∀α ∈ NN , ∀m ∈ N,
|x|mDαv(x)→ 0 as |x| → +∞

}
.

(1.28)

(The latter equality is easily checked.) [Ex] We shall write S in place of S
(
RN
)
. This is a locally

convex Fréchet space equipped with either of the following equivalent families of seminorms []

|v|α,β := sup
x∈RN

|xβDαv(x)| α, β ∈ NN , (1.29)

|v|m,α := sup
x∈RN

(1 + |x|2)m|Dαv(x)| m ∈ N, α ∈ NN . (1.30)

For instance, for any θ ∈ C∞ such that θ(x)/|x|a → +∞ as |x| → +∞ for some a > 0, e−θ(x) ∈ S. By

the Leibniz rule, for any polynomials P and Q, the operators

u 7→ P (x)Q(D)u, u 7→ P (D)[Q(x)u] (1.31)

map S to S and are continuous. [Ex] It is easily checked that

D ⊂ S ⊂ E with continuous and sequentially dense injections. (1.32)

The Space S ′ of Tempered Distributions. We shall denote the (topological) dual space of S by

S ′. As S is a metric space, this is the space of the linear functionals T : S → C such that

{vn} ⊂ S, vn → 0 in S ⇒ 〈T, vn〉 → 0. (1.33)

The elements of this space are usually named tempered distributions: we shall see that actually

S ′ ⊂ D′ (up to identifications) with continuous injection. Here are some examples:

(i) any compactly supported T ∈ D′(Ω),

3 Laurent Schwartz founded the theory of distributions upon the dual of three main function spaces: D(Ω), E(Ω) and
S(RN ). The two latter are Fréchet space, at variance with the first one; the same holds for the respective (topological)
duals.

Notice that this does not subsume any monotonicity property; e.g., the nonmonotone function e−|x|
2

sinx is an element
of S(R).
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(ii) any f ∈ Lp with p ∈ [1,+∞],

(iii) any function f such that |f(x)| ≤ C(1 + |x|)m for some C > 0 and m ∈ N,

(iv) f(x) = p(x)w(x), for any polynomial p and any w ∈ L1. [Ex]

On the other hand L1
loc is not included in S ′. E.g., e|x| 6∈ S ′. Nevertheless ahead we shall see that

ex cos(ex) ∈ S ′ for N = 1, at variance with what might be expected.

Convergence in S ′. As we did for D′(Ω) and E ′(Ω), we shall equip the space S ′ with the sequential

weak star convergence: for any sequence {Tn} in S ′ and any T ∈ S ′,

Tn → T in S ′ ⇔ Tn(v)→ T (v) ∀v ∈ S. (1.34)

[This makes S ′ a nonmetrizable locally convex Hausdorff space.]

As D ⊂ S ′ ⊂ D′ and D is a sequentially dense subset of D′, it follows that

S ′ ⊂ D′ with continuous and sequentially dense injection; [Ex] (1.35)

namely, any element of D′ may be approximated by a sequence of S ′. The sequential weak star

convergence of S ′ is strictly stronger than that induced by D′: for any sequence {Tn} in S ′ and any

T ∈ S ′,
Tn → T in S ′ 6⇐⇒ Tn → T in D′.[Ex] (1.36)

In R, {e|x|χ[n,n+1]} is a counterexample to the converse implication:

e|x|χ[n,n+1] → 0 in D′ but not in S ′. (1.37)

On the other hand L1
loc is not included in S ′, not even for N = 1. E.g., e|x| 6∈ S ′.

Because of (1.35), we may apply to S ′ the operations that we defined for distributions. It is

straightforward to check that this space is stable by differentiation, multiplication by a smooth func-

tion, and so on.

Overview of Distribution Spaces. We introduced the spaces D(Ω), E(Ω), with (up to identifica-

tions)

D(Ω) ⊂ E(Ω) with continuous and dense injection. (1.38)

For Ω = RN (which is not displayed), we also defined S, which is such that

D ⊂ S ⊂ E with continuous and dense injection. (1.39)

We equipped the respective dual spaces with the weak star convergence. (1.38) and (1.39) respec-

tively yield

E ′(Ω) ⊂ D′(Ω) with continuous and sequentially dense injection, (1.40)

and, for Ω = RN ,

E ′ ⊂ S ′ ⊂ D′ with continuous and sequentially dense injection. (1.41)

(The density of the inclusions S ⊂ E and E ′ ⊂ S ′ was not mentioned above. However the former

one is obvious, and the second one directly follows from it.)

L. Schwartz also introduced spaces of slowly increasing functions and rapidly decreasing distribu-

tions. But we shall not delve on them.

Exercises.
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2 Convolution

Convolution of L1-Functions. For any measurable functions f, g : RN → C, we call convolution

product (or just convolution) of f and g the function

(f ∗ g)(x) :=

∫
f(x− y)g(y) dy for a.e. x ∈ RN , (2.42)

whenever this integral converges (absolutely) for a.e. x. (We write
∫
...dy in place of

∫
...
∫
RN ... dy1...dyN ,

and omit to display the domain RN .) Note that

supp(f ∗ g) ⊂ supp(f) + supp(g). [Ex] (2.43)

If A and B are two topological vector spaces of functions for which the convolution makes sense, we

set A ∗B := {f ∗ g : f ∈ A, g ∈ B}, and define A ·B similarly.

Proposition 2.1 (i) L1 ∗ L1 ⊂ L1, and

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 ∀f, g ∈ L1 . (2.44)

(ii) L1
loc ∗ L1

comp ⊂ L1
loc, and 4

‖f ∗ g‖L1(K) ≤ ‖f‖L1(K−supp(g))‖g‖L1

∀K ⊂⊂ RN , ∀f ∈ L1
loc,∀g ∈ L1

comp.
(2.45)

Moreover L1
comp ∗ L1

comp ⊂ L1
comp.

(iii) For N = 1, L1
loc(R+) ∗ L1

loc(R+) ⊂ L1
loc(R+). 5 For any f, g ∈ L1

loc(R+),

(f ∗ g)(x) =

{∫ x
0 f(x− y)g(y) dy for a.e. x ≥ 0

0 for a.e. x < 0,
(2.46)

‖f ∗ g‖L1(0,M) ≤ ‖f‖L1(0,M)‖g‖L1(0,M) ∀M > 0. (2.47)

The mapping (f, g) 7→ f ∗ g is thus continuous in each of these three cases.

Proof. (i) For any f, g ∈ L1, the function (RN )2 → C : (z, y) 7→ f(z)g(y) is (absolutely) integrable,

and by changing integration variable we get∫∫
f(z)g(y) dz dy =

∫∫
f(x− y)g(y) dy dx.

By Fubini’s theorem the function f ∗ g : x 7→
∫
f(x− y)g(y) dy is then integrable. Moreover

‖f ∗ g‖L1 =

∫
dx
∣∣∣∫ f(x− y)g(y) dy

∣∣∣
≤
∫∫
|f(x− y)||g(y)| dx dy =

∫∫
|f(z)||g(y)| dz dy = ‖f‖L1‖g‖L1 .

4 By L1
comp we denote the space of integral functions that have compact support.

5 Any function or distribution defined on R+ will be automatically extended to the whole R with value 0. (In signal
theory, the functions of time that vanish for any t < 0 are said causal).
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(ii) For any f ∈ L1
loc and g ∈ L1

comp, setting Sg := supp(g),

(f ∗ g)(x) =

∫
Sg

f(x− y)g(y) dy for a.e. x ∈ RN .

Moreover, for any K ⊂⊂ RN ,

‖f ∗ g‖L1(K) ≤
∫
K
dx

∫
Sg

|f(x− y)g(y)| dy =

∫
Sg

dy

∫
K
|f(x− y)g(y)| dx

=

∫
Sg

dy

∫
K−Sg

|f(z)g(y)| dz ≤ ‖f‖L1(K−Sg)‖g‖L1 .

The proof of the inclusion L1
comp ∗ L1

comp ⊂ L1
comp is based on (2.43), and is left to the Reader.

(iii) Part (iii) may be proved by means of an argument similar to that of part (ii), that we also

leave to the reader. 2

Proposition 2.2 L1, L1
comp and L1

loc(R+), equipped with the convolution product, are commutative

algebras (without unit). 6 In particular,

f ∗ g = g ∗ f, (f ∗ g) ∗ h = f ∗ (g ∗ h) a.e. in RN

∀(f, g, h) ∈ (L1)3 ∪
(
L1

loc × L1
comp × L1

comp

)
.

(2.48)

If N = 1, the same holds for any (f, g, h) ∈ L1
loc(R+)3, too.

Proof. For any (f, g, h) ∈ (L1)3 and a.e. x ∈ RN ,

(f ∗ g)(x) =

∫
f(x− y)g(y) dy =

∫
f(z)g(x− z)dz = (g ∗ f)(x),

[(f ∗ g) ∗ h](x) =

∫
[(f ∗ g)](z)h(x− z) dz =

∫
dz

∫
f(y)g(z − y) dy h(x− z)

=

∫∫
f(y)g(t)h((x− y)− t) dt dy

=

∫
dy f(y)

∫
g(t)h(x− y − t) dt

=

∫
f(y)[(g ∗ h)](x− y) dy = [f ∗ (g ∗ h)](x).

The cases of (f, g, h) ∈
(
L1

loc × L1
comp × L1

comp

)
and (f, g, h) ∈ L1

loc(R+)3 are similarly checked. 2

It is easily seen that (L1, ∗) and (L∞, ·) (here “·” stands for the pointwise product) are commutative

Banach algebras; (L∞, ·) has the unit element e ≡ 1.

6 Let a vector space X over a field K (= C or R) be equipped with a product ∗ : X × X → X. This is called an
algebra iff, for any u, v, z ∈ X and any λ ∈ K:

(i) u ∗ (v ∗ z) = (u ∗ v) ∗ z,
(ii) (u+ v) ∗ z = u ∗ z + v ∗ z, z ∗ (u+ v) = z ∗ u+ z ∗ v,
(iii) λ(u ∗ v) = (λu) ∗ v = u ∗ (λv).
The algebra is said commutative iff the product ∗ is commutative.
X is called a Banach algebra iff it is both an algebra and a Banach space (over the same field), and, denoting the

norm by ‖ · ‖,
(iv) ‖u ∗ v‖ ≤ ‖u‖‖v‖ for any u, v ∈ X.
X is called a Banach algebra with unit iff
(v) there exists (a necessarily unique) e ∈ X such that ‖e‖ = 1, and e ∗ u = u ∗ e = u for any u ∈ X.
(If the unit is missing, it may be constructed in a canonical way...)
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Convolution of Lp-Functions. The following result generalizes Proposition 2.1. 7

• Theorem 2.3 (Young) Let

p, q, r ∈ [1,+∞], p−1 + q−1 = 1 + r−1. 8 (2.50)

Then: (i) Lp ∗ Lq ⊂ Lr and

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq ∀f ∈ Lp,∀g ∈ Lq. (2.51)

(ii) Lploc ∗ L
q
comp ⊂ Lrloc and

‖f ∗ g‖Lr(K) ≤ ‖f‖Lp(K−supp(g))‖g‖Lq

∀K ⊂⊂ RN ,∀f ∈ Lploc, ∀g ∈ L
q
comp.

(2.52)

Moreover Lpcomp ∗ Lqcomp ⊂ Lrcomp.

(iii) For N = 1, Lploc(R
+) ∗ Lqloc(R

+) ⊂ Lrloc(R+), and

‖f ∗ g‖Lr(0,M) ≤ ‖f‖Lp(0,M)‖g‖Lq(0,M)

∀M > 0,∀f ∈ Lploc(R
+), ∀g ∈ Lqloc(R

+).
(2.53)

The mapping (f, g) 7→ f ∗ g is thus continuous in each of these three cases.

Proof. (i) If p = +∞, then by (2.8) q = 1 and r = +∞, and (2.51) obviously holds; let us then

assume that p < +∞. For any fixed f ∈ Lp, the generalized (integral) Minkowski inequality and the

Hölder inequality respectively yield

‖f ∗ g‖Lp =
∥∥∥∫ f(x− y)g(y) dy

∥∥∥
Lp
≤ ‖f‖Lp‖g‖L1 ∀g ∈ L1 ,

‖f ∗ g‖L∞ = ess sup

∫
f(x− y)g(y) dy ≤ ‖f‖Lp‖g‖Lp′ ∀g ∈ Lp′

(p−1 + (p′)−1 = 1). Thus the mapping g 7→ f ∗ g is (linear and) continuous from L1 to Lp and from

Lp
′

to L∞. By the Riesz-Thorin Theorem (see below), this mapping is then continuous from Lq to Lr

and inequality (2.51) holds, provided that

∃θ ∈ ]0, 1][:
1

q
=
θ

1
+

1− θ
p′

,
1

r
=
θ

p
+

1− θ
∞

.

As the latter equality yields θ = p/r, by the first one we get p−1 + q−1 = 1 + r−1.

(ii) For any f ∈ Lploc and g ∈ Lqcomp, setting Sg := supp(g),

(f ∗ g)(x) =

∫
Sg

f(x− y)g(y) dy converges for a.e. x ∈ RN .

7 This theorem may be compared with the following result, that easily follows from the Hölder inequality:
If p, q, r ∈ [1,+∞[ are such that p−1 + q−1 = r−1, then

uv ∈ Lr(Ω), ‖uv‖r ≤ ‖u‖p‖v‖q ∀u ∈ Lp(Ω), ∀v ∈ Lq(Ω).[Ex] (2.49)

8 Here we set (+∞)−1 := 0.
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If r = +∞ then p = q = 1, and we are in the situation of part (ii) of Proposition 2.1; let us then

assume that r 6= +∞. For any K ⊂⊂ RN , denoting by χK,g the characteristic function of K − Sg, we

have

‖f ∗ g‖rLr(K) =

∫
K

∣∣∣∣ ∫
Sg

f(x− y)g(y) dy

∣∣∣∣r dx
≤
∫ ∣∣∣∣ ∫ (χK,gf)(x− y)g(y) dy

∣∣∣∣r dx.
As χK,gf ∈ Lp, by part (i) the latter integral is finite.

(iii) Part (iii) may be proved by means of an argument similar to that of part (ii), that we leave

to the reader. 2

Theorem 2.4 (Riesz-Thorin) * Let Ω,Ω′ be nonempty open subsets of RN . For i = 1, 2, let pi, qi ∈
[1,+∞] and assume that

T : Lp1(Ω) + Lp2(Ω)→ Lq1(Ω′) + Lq2(Ω′) (2.54)

is a linear operator such that

T : Lpi(Ω)→ Lqi(Ω′) is continuous. (2.55)

Let θ ∈ ]0, 1[, and p := p(θ), q := q(θ) be such that

1

p
=

θ

p1
+

1− θ
p2

,
1

q
=

θ

q1
+

1− θ
q2

. (2.56)

Then T maps Lp(Ω) to Lq(Ω′), is linear and continuous. Moreover, if M1 and M2 are two constants

such that

‖Tf‖Lqi (Ω′) ≤Mi‖f‖Lpi (Ω) ∀f ∈ Lpi(Ω) (i = 1, 2), (2.57)

then

‖Tf‖Lq(Ω′) ≤M θ
1M

1−θ
2 ‖f‖Lp(Ω) ∀f ∈ Lp(Ω). [] (2.58)

By this result, we may regard Lp(θ)(Ω) as an interpolate space between Lp1(Ω) and Lp2(Ω). ((2.58)

is accordingly called the interpolate inequality.) This theorem is actually a prototype of the theory of

Banach spaces interpolation.

For any f : RN → C, let us set f̌(x) = f(−x).

Corollary 2.5 Let

p, q, s ∈ [1,+∞], p−1 + q−1 + s−1 = 2. (2.59)

Then:

∀(f, g, h) ∈ Lp × Lq × Ls,
(f ∗ g) · h, g · (f̌ ∗ h), f · (ǧ ∗ h) ∈ L1, and∫

(f ∗ g) · h =

∫
g · (f̌ ∗ h) =

∫
f · (ǧ ∗ h).

(2.60)

The same holds also

∀(f, g, h) ∈
(
Lpcomp × L

q
loc × L

s
comp

)
,

∀(f, g, h) ∈ Lploc(R
+)× Lqloc(R

+)× Lscomp(R+).
(2.61)
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(In the language of operator theory, f̌ is the adjoint of the operator f∗.)

Proof. For any (f, g, h) ∈ Lp × Lq × Ls, by the Young Theorem 2.50 f ∗ g ∈ Lr for r as in (2.50).

By (2.59) then r−1 + s−1 = 1, and (2.60) follows.

The remainder is similarly checked. 2

Let us next set τhf(x) := f(x+ h) for any f : RN → C and any x, h ∈ RN .

Let us denote by C0(RN ) the space of continuous functions RN → C (which is a Fréchet space

equipped with the family of sup-norms on compact subsets of RN ), and by C0
0 (RN ) the subspace of

C0(RN ) of functions that vanish at infinity (this is a Banach space equipped with the sup-norm).

Lemma 2.6 As h→ 0,

τhf → f in C0, ∀f ∈ C0, (2.62)

τhf → f in Lp, ∀f ∈ Lp, ∀p ∈ [1,+∞[. (2.63)

Proof. As any f ∈ C0 is locally uniformly continuous, τhf → f uniformly in any K ⊂⊂ RN ; (2.62)

thus holds. This yields (2.63), as C0 is dense in Lp for any p ∈ [1,+∞[. 2

By the next result, in the Young theorem the space L∞ may be replaced by L∞ ∩C0, and in part

(i) also by L∞ ∩ C0
0 .

Proposition 2.7 Let p, q ∈ [1,+∞] be such that p−1 + q−1 = 1. Then:

f ∗ g ∈ C0 ∀(f, g) ∈ (Lp × Lq) ∪ (Lploc × L
q
comp), (2.64)

f ∗ g ∈ C0 ∀(f, g) ∈ Lploc(R
+)× Lqloc(R

+) if N = 1, (2.65)

(f ∗ g)(x)→ 0 as |x| → +∞ ∀(f, g) ∈ Lp × Lq,∀p, q ∈ [1,+∞[. (2.66)

Proof. For instance, let p 6= +∞ and (f, g) ∈ Lp×Lq; the other cases may be dealt with similarly.

By Lemma 2.6,

‖τh(f ∗ g)− (f ∗ g)‖L∞ =
∥∥∥∫ [f(x+ h− y)− f(x− y)]g(y)] dy

∥∥∥
L∞

≤ ‖τhf − f‖Lp‖g‖Lq → 0 as h→ 0;

(2.67)

the function f ∗ g may then be identified with a uniformly continuous function.

Let {fn} ⊂ Lpcomp and {gn} ⊂ Lqcomp be such that fn → f in Lp and gn → g in Lq. Hence fn ∗ gn
has compact support, and fn ∗ gn → f ∗ g uniformly. This yields the final statement of the theorem.

2

It is easily seen that if either p or q = +∞ then (2.66) fails.

Convolution of Distributions. By part (ii) of Proposition 2.1,

f ∗ g ∈ L1
loc ∀(f, g) ∈ (L1

loc×L1
comp) ∪ (L1

comp×L1
loc).

For any ϕ ∈ D, then∫
(f ∗ g)(x)ϕ(x) dx =

∫∫
f(x− y)g(y)ϕ(x) dxdy =

∫∫
f(z)g(y)ϕ(z + y) dzdy, (2.68)
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and of course each of these double integrals equals the corresponding iterated integrals, by Fubini’s

theorem. This formula allows one to extend the operation of convolution to distributions, under

analogous restrictions on the supports. Let either (T, S) ∈ (D′×E ′) ∪ (E ′×D′), and define

〈T ∗ S, ϕ〉 := 〈Tx, 〈Sy, ϕ(x+ y)〉〉 ∀ϕ ∈ D. (2.69)

(In 〈Sy, ϕ(x+ y)〉 the variable x is just a parameter; if this pairing is reduced to an integration, then

y is the integration variable.) This is meaningful, since

S ∈ E ′ (S ∈ D′, resp.) ⇒ 〈Sy, ϕ(x+ y)〉 ∈ D (∈ E , resp.). [Ex] (2.70)

For N = 1, if T ∈ D′(R+), then (2.69) still makes sense.

On the other hand, one cannot write 〈TxSy, ϕ(x + y)〉 in the duality between D′(RN×RN ) and

D(RN×RN ), since the support of the mapping (x, y) 7→ ϕ(x+ y) is compact only if ϕ ≡ 0.

In E ′ the convolution commutes and is associative. Thus (E ′, ∗) is a convolution algebra, with unit

element δ0. Here are some further properties:

D′ ∗ E ′ ⊂ D′, E ′ ∗ E ′ ⊂ E ′, (2.71)

S ′ ∗ E ′ ⊂ S ′, S ∗ S ′ ⊂ E ∩ S ′, (2.72)

S ∗ E ′ ⊂ S, S ∗ S ′ ⊂ E , (2.73)

and in all of these cases the convolution is separately continuous w.r.t. each of the two factors.

For instance, the inclusion D′ ∗ E ′ ⊂ D′ is an extension of L1
loc ∗ L1

comp ⊂ L1
loc, and actually may

be proved by approximating distributions by L1
loc- or L1

comp-functions, by using the latter property,

and then passing to the limit. This procedure may also be used to prove E ′ ∗ E ′ ⊂ E ′, too. The other

inclusions may similarly be justified by approximation and passage to the limit.

3 The Fourier Transform in L1

Integral Transforms. These are linear integral operators T that typically act on functions R→ C,

and have the form (
û(ξ) :=

)
(T u)(ξ) =

∫
R
K(ξ, x)u(x) dx ∀ξ ∈ R, (3.1)

for a prescribed kernel K : R2 → C, and for any transformable function u. 9 The main properties of

this class of transforms include the following:

(i) Inverse Transform. Under appropriate restrictions, there exists another kernel K̃ : R2 → C
such that (formally) ∫

R
K̃(x, ξ)K(ξ, y) dξ = δ0(x− y) ∀x, y ∈ R. (3.2)

Denoting by R the integral operator associated to K̃, we thus have RT u = T Ru = u for any trans-

formable u.

(ii) Commutation Formula. Any integral transform is associated to a class of linear operators

(typically of differential type), that act on functions of time. For any such operator, L, there exists a

function, L̃(ξ), such that

T LT −1 = L̃(ξ) (this is a multiplicative operator). (3.3)

9 To devise hypotheses that encompass a large number of integral transforms is not easy and may not be convenient.
In this brief overview we then refer to the Fourier transform. We are intentionally sloppy and drop regularity properties,
that however are specified ahead.
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By applying T , an equation of the form Lu = f (for a prescribed function f = f(t)) is then

transformed into L̃(ξ)û(ξ) = f̂(ξ). Thus û = f̂/L̃, whence u = R(f̂/L̃). This procedure is at the basis

of so-called symbolic (or operational) calculus, that was introduced by O. Heaviside at the end of the

19th century.

The first of the transforms that we illustrate is named after J. Fourier, who introduced it at the

beginning of the 19th century, and is the keystone of all integral transforms. In the 1950s Laurent

Schwartz introduced the space of tempered distributions, and extended the Fourier transform to this

class. Because of the commutation formula, this transform allows one to reduce linear ordinary

differential equations with constant coefficients to algebraic equations, and this found many uses in

the study of stationary problems.

The Fourier Transform in L1. We shall systematically deal with spaces of functions from the

whole RN to C. We shall then write L1 in place of L1(RN ), C0 in place of C0(RN ), and so on. For

any u ∈ L1, we define the Fourier transform (also called Fourier integral) û of u by 10

û(ξ) := (2π)−N/2
∫
RN

e−iξ·xu(x) dx ∀ξ ∈ RN , (3.4)

here ξ · x :=
∑N

i=1ξixi.

Proposition 3.1 The formula (3.4) defines a linear and continuous operator

F : L1 → C0
b : u 7→ û;

‖û‖L∞ ≤ (2π)−N/2‖u‖L1 ∀u ∈ L1.[Ex]
(3.5)

(By C0
b we denote the Banach space C0

b ∩ L∞.)

Thus ûn → û uniformly in RN whenever un → u in L1. In passing notice that ‖û‖L∞ =

(2π)−N/2‖u‖L1 for any nonnegative u ∈ L1, as in this case

‖û‖L∞ ≤ (2π)−N/2‖u‖L1 = û(0) ≤ ‖û‖L∞ .

Apparently, no simple condition characterizes the image set F(L1).

Proposition 3.2 For any u ∈ L1, 11

v(x) = u(x− y) ⇒ v̂(ξ) = e−iξ·yû(ξ) ∀y ∈ RN , (3.6)

v(x) = eix·ηu(x) ⇒ v̂(ξ) = û(ξ − η) ∀η ∈ RN , (3.7)

v(x) = u
(
A−1x

)
⇒ v̂(ξ) = |detA|û(A∗ξ) ∀A ∈ RN

2
, detA 6= 0 , (3.8)

v(x) = u(x) ⇒ v̂(ξ) = û(−ξ), (3.9)

u is even (odd, resp.) ⇒ û is even (odd, resp.), (3.10)

u is real and even ⇒ û is real (and even), (3.11)

u is real and odd ⇒ û is imaginary (and odd), (3.12)

u is radial ⇒ û is radial. (3.13)

[Ex]

10 Some authors introduce a factor 2π in the exponent under the integral, others omit the factor in front of the integral.
Our definition is maybe the most frequently used. Each of these modifications simplifies some formulas, but none is able
to simplify all of them.

11 For any A ∈ RN
2

, we set (A∗)ij := Aji for any i, j. For any z ∈ C, we denote its complex conjugate by z. We say

that u is radial iff u(Ax) = u(x) for any x and any orthonormal matrix A ∈ RN
2

(i.e., with A∗ = A−1).

16



Henceforth by D (or Dj or Dα) we shall denote the operation of derivation in the sense of distri-

butions.

Examples. (i) For any A > 0, if u = χ[−A,A], then û(ξ) =
√

2/π sin(Aξ)
ξ . 12

(ii) We claim that

u(x) = exp(−a|x|2) ∀x ∈ RN ⇒
û(ξ) = (2a)−N/2 exp(−|ξ|2/(4a)) ∀ξ ∈ RN .

(3.14)

Let us first prove this statement in the case of a = 1/2 and N = 1. 13 As u′ = −xu for any

x ∈ RN ,

iξû(ξ)
(??)
= D̂xu(ξ) = −̂xu(ξ)

(??)
= (−i)Dξû(ξ),

that is, Dξû = −ξû for any ξ ∈ RN . As u(0) = 1 and

û(0) = (2π)−1/2

∫
e−|x|

2/2 dx = 1,

û solves the same Cauchy problem as u. Therefore for N = 1

u(x) = exp(−|x|2/2) ⇒ û(ξ) = exp(−|ξ|2/2) (i.e., û = u). (3.15)

For N > 1 and still for a = 1/2, we have u(x) =
∏N
j=1 exp(−x2

j/2). Therefore

û(ξ) = (2π)−N/2
∫
e−ξ·xe−|x|

2/2 dx

=

N∏
j=1

(2π)−1/2

∫
e−ξjxje−x

2
j/2 dxj

(3.15)
=

N∏
j=1

e−ξ
2
j /2 = e−|ξ|

2/2.

This concludes the proof of (3.14) for a = 1/2. The general formula then follows from (3.8).

Lemma 3.3 Let j ∈ {1, ..., N}. If ϕ,Djϕ ∈ L1 then
∫
RN Djϕ(x) dx = 0.

Proof. Let us define ρ as in (1.2), and set

ρn(x) := ρ
(x
n

)
∀x ∈ RN ,∀n ∈ N. (3.16)

Hence ρn(x)→ 1 pointwise in RN as n→∞, and∣∣∣ ∫
RN

[
Djϕ(x)

]
ρn(x) dx

∣∣∣ =
∣∣∣ ∫

RN
ϕ(x)Djρn(x) dx

∣∣∣ ≤ 1

n
‖ϕ‖L1 · ‖Djρ‖∞.

Therefore, by the dominated convergence theorem,∫
RN

Djϕ(x) dx = lim
n→∞

∫
RN

[
Djϕ(x)

]
ρn(x) dx = 0. 2

• Proposition 3.4 For any multi-index α ∈ NN ,

u,Dα
xu ∈ L1 ⇒ (iξ)αû = (Dα

xu)̂ ∈ C0
b , (3.17)

u, xαu ∈ L1 ⇒ Dα
ξ û = [(−ix)αu]̂ ∈ C0

b . (3.18)

12 Defining the cardinal sinus function sinc v := sin v
v

for any v ∈ R, this also reads û(ξ) = A
√

2/π sinc (Aξ).
13A different proof of this result is based on integration along paths in the complex plane.
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Proof. In both cases it suffices to prove the equality for any first-order derivative Dj = ∂/∂xj ; the

general case follows by induction.

(i) As

Dj [e
−iξ·xu(x)] = −iξje−iξ·xu(x) + e−iξ·xDju(x),

the integrability assumptions entail that Dj [e
−iξ·xu(x)] ∈ L1. It then suffices to integrate the latter

equality over RN , and to notice that
∫
RN Dj [e

−iξ·xu(x)] dx = 0 by Lemma 3.3. Finally (Dα
xu)̂ ∈ C0

b ,

by Proposition 3.1.

(ii) Denoting by ej the unit vector in the jth direction, we have

û(ξ + tej)− û(ξ)

t
=

∫
RN

e−i(ξ+tej)·x − e−iξ·x

t
u(x) dx

=

∫
RN

ixj
2
e−i(ξ+tej/2)·x sin(txj/2)u(x) dx.

Passing to the limit as t → 0, by the dominated convergence theorem we then get Dj û(ξ) =

−i(xju)̂(ξ) for any ξ. By Proposition 3.1, this is an element of C0
b . 2

Corollary 3.5 Let m ∈ N0.

(i) If Dα
xu ∈ L1 for any α ∈ NN0 with |α| ≤ m, then (1 + |ξ|)mû(ξ) ∈ L∞.

(ii) If (1 + |x|)mu ∈ L1, then û ∈ Cm. [Ex]

In other terms:

(i) the faster u decreases at infinity, the greater is the regularity of û;

(ii) the greater is the regularity of u, the faster û decreases at infinity.

Proposition 3.6 (Riemann-Lebesgue) For any u ∈ L1, û(ξ)→ 0 as |ξ| → +∞, and û is uniformly

continuous in RN .

Proof. For any u ∈ L1, there exists a sequence {un} in D such that un → u in L1. By part (i)

of Corollary 3.5, ûn(ξ) → 0 as |ξ| → +∞. This holds also for û, as ûn → û uniformly in RN by

Proposition 3.1. 14 As û ∈ C0
b , the uniform continuity follows. 2

Theorem 3.7 (Parseval) The formal adjoint of F coincides with F itself, that is,∫
RN

û v dx =

∫
RN

u v̂ dx ∀u, v ∈ L1. (3.19)

Moreover,

u∗v ∈ L1 , and (u∗v)̂ = (2π)N/2û v̂ ∀u, v ∈ L1. (3.20)

Proof. By the theorems of Tonelli and Fubini, for any u, v ∈ L1 we have∫
RN

û(y)v(y) dy = (2π)−N/2
∫∫

RN×RN
e−iy·xu(x)v(y) dx dy =

∫
RN

u(y)v̂(y) dy.

14 Here is an alternative argument. By direct evaluation of the integral one may check that the assertion holds for the
characteristic function of any N -dimensional interval [a1, b1]× · · · × [aN , bN ]. It then suffices to approximate u in L1 by
a sequence of finite linear combinations of characteristic functions of N -dimensional intervals.
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On the other, by the change of integration variable z = x− y,

(u∗v)̂(ξ) = (2π)−N/2
∫∫

RN×RN
e−2πiξ·xu(x− y)v(y) dx dy

= (2π)−N/2
∫
RN

e−2πiξ·zu(z) dz

∫
RN

e−2πiξ·yv(y) dy

= (2π)N/2û(ξ)v̂(ξ). 2

Next we present the inversion formula for the Fourier transform. First let us introduce the so-called

conjugate Fourier transform:

F̃(v)(x) := (2π)−N/2
∫
RN

e2πiξ·xv(ξ)dξ ∀v ∈ L1, ∀x ∈ RN . (3.21)

This operator differs from F just in the sign of the imaginary unit. Obviously, F̃v = F v̄ for any

v ∈ L1. Clearly the properties of F̃ are analogous to those of F .

Theorem 3.8 For any u ∈ L1 ∩ C0 ∩ L∞, if û ∈ L1 then

u(x) = F̃(û)(x) ∀x ∈ RN . (3.22)

Proof. Let us set v(x) := exp(−|x|2/2) for any x ∈ RN . By the Tonelli and Fubini theorems, we

have ∫
RN

û(ξ)v(ξ)eiξ·x dξ = (2π)−N/2
∫∫

RN×RN
u(y)e−iξ·yv(ξ)eiξ·x dy dξ

=

∫
RN

u(y)v̂(y − x) dy =

∫
RN

u(x+ z)v̂(z) dz ∀x ∈ RN .

Let us now replace v(ξ) by vε(ξ) := v(εξ), for any ε > 0. By (3.8), v̂ε(z) = ε−N v̂(ε−1z); by a further

change of variable of integration we then get∫
RN

û(ξ)v(εξ)eiξ·x dξ =

∫
RN

u(x+ εy)v̂(y) dy ∀x ∈ RN .

As u is continuous and bounded, by the dominated convergence theorem we may pass to the limit

under integral as ε→ 0. We thus get

v(0)

∫
RN

û(ξ)eiξ·x dξ = u(x)

∫
RN

v̂(y) dy. (3.23)

On the other hand, by (3.14) and by the classical Poisson formula,∫
RN

v̂(y) dy =

∫
RN

exp(−|y|2/2) dy =

(∫
R

exp(−|y|2/2) dy

)N
= (2π)N/2.

As v(0) = 1, (3.22) then follows from (3.23). 2

By Proposition 3.1, for the above argument the regularity assumptions of Theorem 3.8 are actually

needed, as ū = F
(
û
)
. However, by a more refined argument one might show that (3.22) holds under

the only hypotheses that u, û ∈ L1. (Of course, a posteriori one then gets that u, û ∈ C0
b .)

By Theorem 3.8, F(u) ≡ 0 only if u ≡ 0; hence the Fourier transform L1 → C0
b is injective. Under

the assumptions of this theorem, we also havê̂u(x) = ū(−x) ∀x ∈ RN . (3.24)

We recall that B(0, R) denotes the closed ball in RN with center at the origin and radius R.
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Theorem 3.9 (Paley-Wiener) For any u ∈ C∞
(
RN
)

and any R > 0, suppu ⊂ B(0, R) iff F(u)

can be extended to a holomorphic function CN → C (also denoted by F(u)) 15 such that

∀m ∈ N,∃C ≥ 0 : ∀z ∈ CN |[F(u)](z)| ≤ C eR|I(z)|

(1 + |z|)m
.[] (3.25)

This extended function F(u) : CN → C is called the Fourier-Laplace transform of u, for reasons

that will appear clear ahead.

Overview of the Fourier Transform in L1. We defined the classic Fourier transform F : L1 → C0
b

and derived its basic properties. In particular, we saw that

(i) F transforms partial derivatives to multiplication by powers of the independent variable

(up to a multiplicative constant) and conversely. This is at the basis of the application of the Fourier

transform to the study of linear partial differential equations with constant coefficients, that we shall

outline ahead.

(ii) F establishes a correspondence between the regularity of u and the order of decay of û at

∞, and conversely between the order of decay of u at ∞ and the regularity of û. In the limit case

of a compactly supported function, its Fourier transform may be extended to an entire holomorphic

function CN → C.

(iii) F transforms the convolution of two functions to the product of their transforms (the

converse statement may fail, because of summability restrictions).

(iv) Under suitable regularity restrictions, the inverse transform exists, and has an integral

representation analogous to that of the direct transform.

The properties of the two transforms are then similar; this accounts for the duality of the statements

(i) and (ii). However the assumptions are not perfectly symmetric; in the next section we shall see a

different functional framework where this is remedied.

The inversion formula (3.22) also provides an interpretation of the Fourier transform. (3.22)

represents u as a weighted average of the harmonic components x 7→ eiξ·x. For any ξ ∈ RN , û(ξ) is

the amplitude of the component having vector frequency ξ (that is, frequency ξi in each direction xi).

Therefore any function which fulfills (3.22) may equivalently be represented by specifying either the

value u(x) at a.a. points x ∈ RN , or the amplitude û(ξ) for a.a. frequencies ξ ∈ RN . (Loosely speaking,

any non-identically vanishing u ∈ D has harmonic components of arbitrarly large frequencies.)

The analogy between the Fourier transform and the Fourier series is obvious, and will be briefly

discussed at the end of the next section.

4 Extensions of the Fourier Transform

Fourier Transform of Measures. The Fourier transform may easily be extended to any finite

complex Borel measure µ on RN , simply by replacing f(x) dx with dµ(x) in (3.4). In this case one

speaks of the Fourier-Stieltjes transform. Most of the previously established properties holds also

in this case. For instance, transformed functions are still elements of C0
b and fulfill the properties of

transformation of derivatives and multiplication by a power of x. The Riemann-Lebesgue theorem

(Proposition 3.6) however fails; e.g., δ̂0(ξ) does not vanish as |ξ| → +∞. The transform of the

Dirac measure at the origin actually coincides with the function identically equal to (2π)−N/2, that is,

δ̂0 = (2π)−N/2.

15 A function CN → C is called holomorphic (or analytic) iff it is separately olomorphic with respect to each variable.

For any z ∈ CN , we set |z| =
(∑N

i=1 |zi|
2
)1/2

and I(z) = (I(z1), ..., I(zN )) (the vector of the imaginary parts).
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Fourier Transform in S. For any u ∈ D, by Theorem 3.9 û is holomorphic; hence û ∈ D only if

û ≡ 0, namely u ≡ 0. Thus D is not stable by Fourier transform. This means that the set of the

frequencies of the harmonic components of any non-identically vanishing u ∈ D is unbounded. This

situation induced L. Schwartz to introduce the space of rapidly decreasing functions S, cf. Sect. 1,

and to extend the Fourier transform to this space and to its (topological) dual. Next we review the

tenets of that theory.

Proposition 4.1 (The restriction of) F operates in S and is continuous. Moreover, the formulae of

Proposition 3.4 and Theorem 3.7 hold in S without any restriction, F is invertible in S, and F−1 = F̃
(cf. (3.22)). [Ex]

The first part is easily checked by repeated use of the Leibniz rule, because of the stability of the

space S w.r.t. multiplication by any polynomial and w.r.t. application of any differential operator (with

constant coefficients). Actually, S is the smallest space that contains L1 and has these properties.

[Ex] The next statement extends and also completes (3.20).

Proposition 4.2 For any u, v ∈ S,

u∗v ∈ S, (u∗v)̂ = (2π)N/2û v̂ in S, (4.1)

uv ∈ S , (uv)̂ = (2π)−N/2û∗v̂ in S. (4.2)

Proof. The first statement is a direct extension of (3.20). Let us prove the second one.

It is easily checked that uv ∈ S. By writing (3.20) with û and v̂ in place of u and v, and F̃ in

place of F , we have

F̃(û∗v̂) = (2π)N/2F̃(û) F̃(v̂) = (2π)N/2u v.

By applying F to both members of this equality, (4.2) follows. 2

Fourier Transform in S′. Denoting by Fτ the transposed of F , we set 16

F̄ := [Fτ ]∗ : S ′ → S ′. (4.3)

By the Parseval Theorem 3.7, Fτ = F ; hence F̄ = F∗, that is,

〈F̄(T ), v〉 := 〈T,F(v)〉 ∀v ∈ S, ∀T ∈ S ′. (4.4)

As S is sequentially dense in S ′, F̄ is the unique continuous extension of the Fourier transform

from S to S ′.
Henceforth we shall use the same symbols F or ̂ for the many restrictions and extensions of the

Fourier transform. We shall thus write F(T ), or T̂ , in place of F̄(T ).

Proposition 4.3 F may be uniquely extended to an operator which acts in S ′ and is continuous.

Moreover, the formulae of Proposition 3.4 and Theorem 3.7 hold in S ′ without any restriction, F is

invertible in S ′, and F−1 = F̃ . [Ex]

For instance, for any v ∈ D we have

D′〈i|α|ξαT̂ , v〉D = D′〈T̂ , i|α|ξαv〉D = D′〈T, [i|α|ξαv]̂ 〉D
(3.18)

= D′〈T, (−D)αv̂〉D = D′〈DαT, v̂〉D = D′〈(DαT )̂, v〉D.
As D is a dense subspace of S, we conclude that

i|α|ξαT̂ = (Dα
xT )̂ ∈ S ′ ∀T ∈ S ′, ∀α ∈ NN . (4.5)

16 Notice that F : S → S, Fτ : S → S, F∗ : S ′ → S ′.
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Proposition 4.4 For any u ∈ S and any T ∈ S ′,

u∗T ∈ S ′, (u∗T )̂ = (2π)N/2û T̂ in S ′, (4.6)

uT ∈ S ′, (uT )̂ = (2π)−N/2û∗T̂ in S ′. (4.7)

Next we extend to E ′ the Fourier-Laplace transform of the previous section.

Theorem 4.5 Let us set

T̂ (ξ) = E ′〈T, e−ix·ξ〉E ∀T ∈ E ′, ∀ξ ∈ RN . (4.8)

This expression may be extended to any ξ ∈ CN , and is a holomorphic function.

Proof. For any n ∈ N, let us define the mollifier ρn as in (3.16), and set (T ∗ρn)(x) := 〈Ty, ρn(x−y)〉
for any x ∈ RN . (The index y indicates that T acts on the variable y; on the other hand here x is

just a parameter.) This yields T ∗ ρn → T in E ′, hence also in S ′ as E ′ ⊂ S ′ with continuous and

sequentially dense injections. Therefore

(T ∗ ρε)̂ → T̂ in S ′. (4.9)

On the other hand, as T ∗ ρn ∈ E and
∫
RN ρn(x) dx = 1, we have

(T ∗ ρn)̂(ξ) = (2π)−N/2
∫
RN

e−iξ·x(T ∗ ρn)(x) dx

= (2π)−N/2
∫
RN×RN

e−iξ·x〈Ty, ρn(x− y)〉 dx dy

= (2π)−N/2〈Ty, e−iξ·y
∫
RN

e−iξ·(x−y)ρn(x− y) dx〉 = 〈Ty, e−iξ·y〉ρ̂n(ξ),

and this is a holomorphic function of ξ. As ε→ 0, ρ̂n(ξ)→ 1 uniformly on any compact subset of RN .

Therefore

(T ∗ ρn)̂(ξ) = 〈Ty, e−iξ·y〉ρ̂n(ξ)→ 〈Ty, e−iξ·y〉 in S ′.

By (4.9) we then conclude that T̂ (ξ) = 〈Ty, e−2πiξ·y〉 for any ξ ∈ RN , and this function is holomorphic.

2

Theorem 4.6 (Paley-Wiener-Schwartz) For any T ∈ S ′ and any R > 0, suppT ⊂ B(0, R) iff

F(T ) may be extended to a holomorphic function CN → C (also denoted by F(T )) such that

∃m ∈ N0,∃C ≥ 0 : ∀z ∈ CN |[F(T )](z)| ≤ C(1 + |z|)meR|I(z)|. [] (4.10)

(Thus F maps E ′ to holomorphic functions.)

We can now further extend (4.6) as follows.

Proposition 4.7 For any u ∈ E ′ and any T ∈ S ′,

u∗T ∈ S ′, (u∗T )̂ = (2π)N/2û T̂ in S ′, (4.11)

Notice that û T̂ ∈ S ′, as by the latter theorem û is holomorphic.

Fourier Transform in L2. As L2 ⊂ S ′, any function of L2 has a Fourier transform. Next we study

the restriction of F to L2 and show that it is an isometry.
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• Theorem 4.8 (Plancherel)

u ∈ L2 ⇔ û ∈ L2 ∀u ∈ S ′. (4.12)

The restriction of F to L2 is an isometry:

‖û‖L2 = ‖u‖L2 ∀u ∈ L2. (4.13)

Moreover, for any u ∈ L2,

(2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx → û(ξ) in L2, as R→ +∞. (4.14)

Therefore this sequence also converges in measure on any bounded subset of RN ; it also converges a.e.

in RN , as R→ +∞ along some sequence which may depend on u.

Proof. For any u ∈ S, we know that û ∈ S. Moreover, by (3.19) and (3.24),∫
RN
|û|2 dx =

∫
RN

û¯̂u dx =

∫
RN

û̄̂u dx =

∫
RN

u(x)̂̂u(−x) dx =

∫
RN

uū dx

=

∫
RN
|u|2 dx.

Therefore, as S ⊂ L2 with continuity and density, the restriction of F to L2 is an isometry with

respect to the L2-metric. Hence F maps L2 to itself.

In order to prove (4.14), for any R > 0 and any x ∈ R, let us set χR(x) := 1 if |xi| ≤ R for

i = 1, ..., N , and χR(x) := 0 otherwise. Then uχR ∈ L1 ∩ L2 and uχR → u in L2. Hence, by (4.13),

(2π)−N/2
∫

]−R,R[N
e−iξ·xu(x) dx = (2π)−N/2

∫
RN

e−iξ·xu(x)χR(x) dx

= (uχR)̂(ξ) → û(ξ) in L2. 2

Remarks. (i) We saw that in any Hilbert space H the scalar product is determined by the norm:

2(u, v) = ‖u+ v‖2 − ‖u‖2 − ‖v‖2 for any u, v ∈ H. (4.13) then entails that∫
RN

u(x)v̄(x) dx =

∫
RN

û(ξ)v̂(ξ) dξ ∀u, v ∈ L2, (4.15)

(ii) The representation (4.14) is more general:∫
]−R,R[N

e−2πiξ·xu(x) dx → û(ξ) in S ′, as R→ +∞ , ∀u ∈ S ′ ∩ L1
loc . (4.16)

The above argument also allow one to generalize the inversion Theorem 3.8.

(iii) The Lebesgue-integral representation (3.4) is meaningful only if u ∈ L1. Anyway it may be

useful to know of cases in which the (extended) Fourier transform maps functions to functions. We

claim that, for any p ∈ [1, 2], any function u ∈ Lp may be written as the sum of a function of L1 and

one of L2, i.e.,

Lp ⊂ L1 + L2 ∀p ∈ [1, 2] . (4.17)

Indeed, setting χ := 1 where |u| ≥ 1 and χ := 0 elsewhere, we have uχ ∈ L1, u(1 − χ) ∈ L2 and

u = uχ+ u(1− χ). 17 Therefore, as F : L1 → L∞ and F : L2 → L2,

F(u) = F(uχ) + F(u(1− χ)) ∈ L∞ + L2 ∀u ∈ Lp, ∀p ∈ [1, 2] . (4.18)

17 Similarly one can show that Lp ⊂ Lq + Lr whenever 1 ≤ q < p < r ≤ ∞.
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Thus F(u) is a regular distribution, although it may admit no integral representation.

This is made more precise by the following result, which is a direct consequence of the classic

Riesz-Thorin Theorem 2.4.

Theorem 4.9 (Hausdorff-Young) 18 Let p ∈ [1, 2], p′ := p/(p − 1) if p > 1, and p′ = ∞ if p = 1.

Then (the restriction of) F is a linear and continuous operator Lp → Lp
′
. More precisely, for any

u ∈ Lp we have û ∈ Lp′ and ‖û‖Lp′ ≤ ‖u‖Lp.

Proof. As F is linear and continuous as an operator L1 → L∞ and L2 → L2, it suffices to apply

the classical Riesz-Thorin Theorem 2.4. 2

Because of the symmetry between the definitions of the direct and inverse Fourier transform,

see formulas (3.4) and (3.22), the results that we established for F in S and in S ′, in particular

Theorems 4.1 and 4.8, hold also for F−1.

We claim that F does not map Lp to Lq for any q 6= p′. Let u ∈ Lp be such that F(u) ∈ Lq. For

any λ > 0, setting uλ(x) := u(λx) for any x, by (3.8) we have F(uλ) = λ−NF(u)1/λ; hence

‖F(uλ)‖Lq
‖uλ‖Lp

= λ−N
‖F(u)1/λ‖Lq
‖uλ‖Lp

= λN(−1+1/q+1/p) ‖F(u)‖Lq
‖u‖Lp

(4.19)

and this ratio is uniformly bounded w.r.t. λ iff q = p′.

Overview of the Extensions of the Fourier Transform. At first we noticed that the Fourier

transform (3.5) has an obvious extension for any complex Borel measure µ; loosely speaking, this is

just defined by replacing u(x)dx by dµ in the definition (3.4). By the Paley-Wiener theorem, D is

not stable under application of the Fourier transform. However, F maps the Schwartz space S to

itself; this allowed us to extend F to S ′ by transposition. We also saw that F is an isometry in L2

(Plancherel theorem), that in this space F admits an integral representation as a principal value, and

that F is also linear and continuous from Lp to Lp/(p−1), for any p ∈ ]1, 2[.

Finally, we saw that the Fourier series arise as Fourier transforms of periodic functions.

Note: The Fourier transform is a homomorphism from the algebra (L1, ∗) to the algebra (L∞, ·)
(here “·” stands for the product a.e.), and is an isomorphism between the algebras (S, ∗) and (S, ·);
cf. (3.20).

18 We set ∞−1 := 0.
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