
Fourier and Laplace Transforms, Convolution
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The Fourier transform was introduced by Fourier at the beginning of the XIX century. In the
1940s Laurent Schwartz introduced the temperate distributions, and extended the transform to this
class. This transform is an important theoretical tool in many branches of analysis, and is also very
useful for applications. In particular it allows one to reduce linear ordinary differential equations
with constant coefficients to algebraic equations.

1. The Fourier Transform in L1

In this section we define the Fourier transform in the space of integrable functions, and study its
basic properties, in view of the extensions of the next section.

The Fourier Transform in L1. Dealing with this transform, we shall always use spaces of
functions from RN to C; we shall then write L1 in place of L1(RN ), C0 in place of C0(RN ), and so
on. We shall also denote by C0

b the space of continuous and bounded functions RN → R, equipped
with the sup-norm. For any u ∈ L1, we define the Fourier transform (also called Fourier-integral)
û of u: (1)

û(ξ) :=

∫
RN

e−2πiξ·xu(x) dx ∀ξ ∈ RN
(
ξ ·x :=

∑N
i=1ξixi

)
. (1.1)

Proposition 1.1 (1.1) defines a linear and continuous operator F : L1 → C0
b : u 7→ û, with

‖û‖L∞ ≤ ‖u‖L1 for any u ∈ L1. [Ex]

Notice that ‖û‖L∞ = û(0) = ‖u‖L1 for any nonnegative u ∈ L1, as

‖û‖L∞ ≤
∫
RN

|u(x)| dx =

∫
RN

u(x) dx = û(0) ≤ ‖û‖L∞ .

Let us denote the adjoint of any A ∈ RN2

by A∗, and the complex conjugate of any z ∈ C by z̄.
We shall say that u is radial iff u(Ax) = u(x) for any x and any orthonormal matrix A ∈ RN2

(i.e.,
with A∗ = A−1).

Proposition 1.2 For any u ∈ L1,

v(x) = u(x− y) =⇒ v̂(ξ) = e−2πiξ·yû(ξ) ∀y ∈ RN , (1.2)

v(x) = e2πix·ηu(x) =⇒ v̂(ξ) = û(ξ − η) ∀η ∈ RN , (1.3)

v(x) = u
(
A−1x

)
=⇒ v̂(ξ) = |detA|û(A∗ξ) ∀A ∈ RN2

,detA 6= 0, (1.4)

v(x) = u(x) =⇒ v̂(ξ) = û(−ξ), (1.5)

u is even (odd, resp.) ⇒ û is even (odd, resp.), (1.6)

u is real ⇒ Re(û) is even, Im(û) is odd, (1.7)

u is imaginary ⇒ Re(û) is odd, Im(û) is even, (1.8)

u is radial ⇒ û is radial. [Ex] (1.9)

(1) Some authors omit the factor 2π in the exponent, others omit it and include a denominator (2π)−N/2 for
the integral (maybe the latter definition is the most usual one). Each of these modifications simplifies some

formulas, but none is able to simplify all of them.
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Henceforth by D (or Dj or Dα) we shall denote the derivative in the sense of distributions.

Lemma 1.3 Let j ∈ {1, ..., N}. If ϕ,Djϕ ∈ L1 then
∫
RN Djϕ(x) dx = 0.

Proof. Let us set

ρ(x) := exp
[(
|x|2 − 1

)−1]
if |x| < 1, ρ(x) := 0 if |x| ≥ 1,

ρn(x) := ρ(x/n) ∀x ∈ RN ,∀n ∈ N.

Hence ρn(x)→ 1 a.e. in R, and∣∣∣ ∫ [Djϕ(x)
]
ρn(x) dx

∣∣∣ =
∣∣∣ ∫

RN

ϕ(x)Djρn(x) dx
∣∣∣ ≤ 1

n

∫
RN

∣∣ϕ(x)
∣∣ dx sup |Djρ| → 0.

Therefore, by the dominated convergence theorem,∫
Djϕ(x) dx =

∫
Djϕ(x) lim

n→∞
ρn(x) dx = lim

n→∞

∫ [
Djϕ(x)

]
ρn(x) dx = 0. tu

• Proposition 1.4 For any α ∈ NN ,

u,Dα
xu ∈ L1 ⇒ (2πi)|α|ξαû = (Dα

xu)̂ in C0
b , (1.10)

u, xαu ∈ L1 ⇒ Dα
ξ û = (−2πi)|α|(xαu)̂ in C0

b . (1.11)

Proof. In both cases it suffices to prove the equality for any first-order derivative Dj(:= ∂/∂xj); the
general case will then follow by induction. As

Dj [e
−2πiξ·xu(x)] = −2πiξje

−2πiξ·xu(x) + e−2πiξ·xDju(x),

and u,Dα
xu ∈ L1, we infer that Dj [e

−2πiξ·xu(x)] ∈ L1. Integrating the latter equality over RN , and

noticing that
∫
RN Dj [e

−2πiξ·xu(x)] dx = 0 by Lemma 1.3, we get (2πi)|α|ξαû = (Dα
xu)̂. Moreover,

(Dα
xu)̂ ∈ C0

b , by Proposition 1.1.
Denoting by ej the unit vector in the jth direction, we have

û(ξ + tej)− û(ξ)

t
=

∫
RN

e−2πi(ξ+tej)·x − e−2πiξ·x

t
u(x) dx ∀t 6= 0,

and the absolute value of the integrand is bounded by 2|t|−1| sin(πtxj)u(x)| ≤ 2π|xju(x)| for any t.

Passing to the limit as t→ 0, by the dominated convergence theorem we then get Dj û = −2πi(xju)̂.
By Proposition 1.1, this is an element of C0

b . tu

Corollary 1.5 Let m ∈ N. For any polynomial P (ξ) :=
∑
|α|≤maαξ

α (with aα ∈ C, ∀α),

Dα
xu ∈ L1 ∀α ∈ NN , |α| ≤ m ⇒

(1 + |ξ|)mû(ξ) ∈ C0
b , P (2πiξ)û = (P (D)u)̂ in C0

b ,
(1.12)

(1 + |x|)mu ∈ L1 ⇒ Dαû ∈ C0
b ∀α ∈ NN , |α| ≤ m,

P (D)û = [P (−2πix)u]̂ in C0
b . [Ex]

(1.13)

By the latter statement, the integrability of any derivative of u ∈ L1 provides information on
the decay of û as |ξ| → ∞; and conversely a suitable decay of u ∈ L1 as |x| → ∞ entails the
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differentiability of certain derivatives of û. The regularity of u is thus related to the decay of û, and
the decay of u is related to the regularity of û.

Proposition 1.6 (Riemann-Lebesgue) For any u ∈ L1, û(ξ)→ 0 as |ξ| → +∞, and û is uniformly
continuous in RN .

Proof. For any u ∈ L1, there exists a sequence {un} in D such that un → u in L1. By part (i) of
Corollary 1.5, ûn(ξ)→ 0 as |ξ| → +∞. This holds also for û, as ûn → û uniformly in RN .

(In alternative one may check that the thesis holds for the characteristic function of any N -
dimensional interval [a1, b1]× · · · × [aN , bN ]. It then suffices to approximate u in L1 by a sequence
of finite linear combinations of characteristic functions of N -dimensional intervals, and then apply
Proposition 1.1 to pass to the limit.)

As û ∈ C0
b , the uniform continuity follows from the asymptotic behaviour. [Ex] tu

Theorem 1.7 (Parseval)∫
RN

û v dx =

∫
RN

u v̂ dx ∀u, v ∈ L1, (1.14)

u∗v ∈ L1, and (u∗v)̂ = û v̂ ∀u, v ∈ L1. (1.15)

Proof. By the theorems of Tonelli and Fubini, for any u, v ∈ L1 we have∫
RN

û(y)v(y) dy =

∫∫
RN×RN

e−2πiy·xu(x)v(y) dxdy =

∫
RN

u(y)v̂(y) dy,

(u∗v)̂(ξ) =

∫∫
RN×RN

e−2πiξ·xu(x− y)v(y) dxdy

=

∫
RN

e−2πiξ·(x−y)u(x− y) dx

∫
RN

e−2πiξ·yv(y) dy = û(ξ)v̂(ξ).

tu

Theorem 1.8 For any u ∈ L1 ∩ C0 ∩ L∞, if û ∈ L1 then

u(x) =

∫
RN

e2πiξ·xû(ξ)dξ (=: F̃(û)) ∀x ∈ RN . (1.16)

Proof. Let us set v(x) := exp(−πx2) for any x ∈ RN . A calculation based on integration along
paths in the complex plane shows that v̂(ξ) := exp(−πξ2) for any ξ ∈ RN . [] By the Tonelli and
Fubini theorems, we have∫

RN

û(ξ)v(ξ)e2πiξ·x dξ =

∫∫
RN×RN

u(y)e−2πiξ·yv(ξ)e2πiξ·x dydξ

=

∫
RN

u(y)v̂(y − x) dy =

∫
RN

u(x+ z)v̂(z) dz.

Let us now replace v(ξ) by εε(ξ) := v(εξ), for any ε > 0. As (εε)̂(z) = ε−N v̂(z/ε), by setting
s = z/ε we get ∫

RN

û(ξ)v(εξ)e2πiξ·x dξ =

∫
RN

u(x+ εs)v̂(s) ds.

As u is continuous and bounded, by the dominated convergence theorem, as ε→ 0 we get

v(0)

∫
RN

û(ξ)e2πiξ·x dξ = u(x)

∫
RN

v̂(s) ds.
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As v(0) = 1 and
∫
RN v̂(s) ds = 1, we get (1.16). tu

By Proposition 1.1, the regularity assumptions of Theorem 1.8 are actually needed, as ū = F
(
û
)
.

However, by a more refined argument one could show that (1.16) holds under the only hypotheses
that u, û ∈ L1. Of course, a posteriori one then gets u, û ∈ C0 ∩ L∞.

Under the assumptions of this theorem, we also have

̂̂u(x) = u(−x) ∀x ∈ RN . (1.17)

By Theorem 1.8, u = 0 is the only element of L1 ∩ C0 ∩ L∞ such that F(u) = 0. This yields the
next statement.

Corollary 1.9 The Fourier transform L1 → C0 ∩ L∞ is injective. [Ex]

By (1.13) it is clear that û ∈ E iff u decreases at infinity more rapidly than any negative power
of |x|. By the next classical theorem, û is analytic iff u has compact support.

Theorem 1.10 (Paley-Wiener) Any u ∈ C∞
(
RN

)
has bounded support iff F(u) can be extended

to an analitic function CN → C [also denoted by F(u)]. (2) Moreover, suppu ⊂ B(0, R) iff

∀m ∈ N,∃Cm ≥ 0 : ∀z ∈ CN , [F(u)](z)| ≤ Cm
e2πR|Im(z)|

(1 + |z|)m
, (1.18)

or equivalently,

∀ε > 0,∃Cε ≥ 0 : ∀z ∈ CN , [F(u)](z)| ≤ Cεe2π(R+ε)|Im(z)|. []

This extended function F(u) : CN → C is named the Fourier-Laplace transform of u.

Overview of the Fourier Transform in L1. We defined the classical Fourier transform F : L1 →
C0
b , and derived its basic properties. In particular, we saw that:

(i) the operator F transforms partial derivatives to multiplication by powers of the independent
variable (up to a multiplicative constant), and conversely. This is at the basis of the application of
the Fourier transform to the study of linear partial differential equations with constant coefficients
on the whole RN , that we shall outline ahead.

(ii) the operator F establishes a correspondence between the regularity of u and the order
of infinitesimum of û at ∞, and conversely between the order of infinitesimum of u at ∞ and
the regularity of û. In the limit case of a compactly supported function (and only in this case),
its Fourier transform can be extended to an entire analytic function CN → C; this is called the
Fourier-Laplace transform of u.

(iii) the operator F maps the convolution of two functions to the product of their transforms.
(iv) Under suitable regularity restrictions, the inverse transform exists, and has an integral repre-

sentation analogous to that of the direct transform. The properties of the two transforms are then
similar; this accounts for the duality of the statements (i) and (ii). However the assumptions are
not perfectly symmetric; in the next section we shall see a different functional framework where this
is remedied.

The inversion formula (1.16) also provides an interpretation of the Fourier transform. (1.16)
represents u as a weighted average of the harmonic components x 7→ e2πiξ·x. For any ξ ∈ RN , û(ξ)
is the amplitude of the component having vector frequency ξ (that is, frequency ξi in each direction

(2) A function CN → C is said analytic iff it is separately analytic with respect to each variable. For any

z ∈ CN , we set |z| :=
(∑N

i=1 |zi|2
)1/2

and Im(z) := (Im(z1), ..., Im(zN )).

We recall the reader that we denote the closed ball of RN with center the origin and radius R by B(0, R).
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xi). Therefore any function which fulfills (1.16) can equivalently be represented by specifying either
the value u(x) at a.a. point x ∈ RN , or the amplitude û(ξ) for a.a. frequency ξ ∈ RN . (2)

In passing note that the Fourier integral (1.1) converges for any ξ, although any function fξ : y 7→
e−2πiξ·x is not integrable over RN , not even in the sense of the principal value.

Loosely speaking, the Paley-Wiener theorem entails that any non-identically vanishing u ∈ D has
harmonic components of arbitrarly large frequencies.

The analogy between the Fourier transform and the Fourier series is obvious, and will be briefly
discussed at the end of the next section.

Exercises. (i) For any N and any u ∈ L1, (1.1) also reads

û(ξ) :=

∫
RN

cos(ξ · x)u(x) dx+ i

∫
RN

sin(ξ · x)u(x) dx ∀ξ ∈ RN . (1.19)

The first integral is named the cosine transform, the second one the sine transform. They coincide
with the even and the odd parts of the Fourier transform. Note that these transforms coincide with
their inverses.

Show that:
u is even ⇔ û(ξ) = 2

∫
R+ cos(ξ · x)u(x) dx ∀ξ ∈ RN ,

u is odd ⇔ û(ξ) = 2i
∫
R+ sin(ξ · x)u(x) dx ∀ξ ∈ RN .

Therefore, for any u ∈ L1, the cosine transform of any u coincides with the Fourier transform of
the even part of u, and the sine transform of any u coincides with the Fourier transform of the even
part of u multiplied by −i.

(ii) Under suitable assumptions on u and v, prove that (uv)̂ = û∗v̂.
(iii) Notice that the function u : R → R : x 7→ exp(−πx2) solves the differential equation

Du + 2πxu = 0. By means of Proposition 1.4, derive the corresponding equation in terms of
the Fourier transform û, couple it with the initial condition û(0) =

∫
RN u(x) dx, and derive the

expression of û : R→ R : ξ 7→ exp(−πξ2) by solving this Cauchy problem. Check that the result is
consistent with (1.1).

(iv) Check that, for any u ∈ L1,

u is real and even ⇒ û is real and even, (1.20)

u is real and odd ⇒ û is imaginary and odd, (1.21)

u is imaginary and even ⇒ û is imaginary and even, (1.22)

u is imaginary and odd ⇒ û is real and odd. (1.23)

2. Extensions of the Fourier Transform

In this section we extend the Fourier transform to the space of measures, to the space S of rapidly
decreasing functions, to the space S ′ of temperate distributions, and to the space L2 of square-
integrable functions.

Fourier Transform of Measures. The Fourier transform can be extended to any finite complex
Borel measure µ on RN , simply by replacing u(x) dx with dµ(x) in (1.1):

µ̂(ξ) :=

∫
RN

e−2πiξ·x dµ(x) ∀ξ ∈ RN ,∀ Borel measure µ on RN . (2.1)

(2) In signal theory, the transformation u 7→ û is referred to as the Fourier analysis, and its inverse as the
Fourier synthesis; û is usually named the spectrum of the signal u.
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This is also called the Fourier-Stieltjes transform. These transformed functions are elements of C0
b ,

just as for the functions of L1. For instance, δ̂a = e−2πiξ·a for any a ∈ RN ; in particular, δ̂0 = 1.
However δ̂a(ξ) does not vanish as |ξ| → +∞, at variance with Riemann-Lebesgue’s Proposition 1.6.

Fourier Transform in S. By Theorems 1.8 and 1.10, u, û ∈ D only if u is analytic, whence
u ≡ 0. Thus D is not stable by Fourier transform. Loosely speaking, this means that the set
of frequencies of the harmonic components of any non-identically vanishing u ∈ D is unbounded.
This led L. Schwartz to introduce the space of rapidly decreasing functions, S, then to restrict the
Fourier transform to this space, and finally to extend this transform to the dual space of temperate
distributions. We shall review the basic elements of that theory.

First we see that several of the formulas we saw in Sect. 1 also hold in S and S ′ without any
restriction.

Proposition 2.1 (The restriction of) F operates in S and is continuous (w.r.t. the topology of
this space). Moreover, for any u, v ∈ S,

(2πi)|α|ξαû = (Dα
xu)̂, (2.2)

Dα
ξ û = (−2πi)|α|(xαu)̂, (2.3)∫
RN

û v dx =

∫
RN

u v̂ dx, (2.4)

(uv)̂ = û∗v̂, (2.5)

(u∗v)̂ = û v̂, (2.6)

u(x) =

∫
RN

e2πiξ·xû(ξ)dξ (=: F̃(û)) ∀x ∈ RN . [Ex] (2.7)

Fourier Transform in S ′. We shall use the notations F and ̂also for several restrictions and
extensions of the Fourier transform that we shall define. Next we extend the Fourier operator F to
S ′ by transposition: we define the operator F̄ : S ′ → S ′ by setting

〈F̄(T ), v〉 := 〈T,F(v)〉 ∀v ∈ S,∀T ∈ S ′. (2.8)

As S is dense in L1, this is the unique continuous extension of the Fourier transform from L1 to S ′.
Henceforth we shall identify F̄ with F .

Proposition 2.2 The formulae (2.2)–(2.6) hold also in S ′. [Ex]

The differentiation rules of distributions hold also in S ′, as this is a subspace of D′. For any
T ∈ S ′ and any v ∈ D,

S′〈(2πi)|α|ξαT̂ , v〉S = S′〈T̂ , (2πi)|α|ξαv〉S = S′〈T, [(2πi)|α|ξαv]̂ 〉S

= S′〈T, (−D)αv̂〉S = S′〈DαT, v̂〉S = S′〈(DαT )̂ , v〉S .

Hence
(2πi)|α|ξαT̂ = (Dα

xT )̂ ∈ S ′ ∀T ∈ S ′,∀α ∈ NN . (2.9)

Lemma 2.3 For any T ∈ E ′ and any ξ ∈ RN , T̂ (ξ) = E′〈T, e−2πix·ξ〉E . This expression can be
extended to any ξ ∈ CN , and is an analytic function. [This extends the Fourier-Laplace transform
of Sect. 1.]

Proof. For any ε > 0, let us define the mollifier ρε as above, and set (T ∗ ρε)(x) := 〈Ty, ρε(x − y)〉
for any x ∈ RN . (The index y indicates that T acts on the variable y; here x is just a parameter.)
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As ε→ 0, T ∗ ρε → T weakly in E ′, hence also weakly in S ′, as S is dense in S ′. Therefore

(T ∗ ρε)̂ → T̂ in S ′. (2.10)

On the other hand, as T ∗ ρε ∈ E and
∫
RN ρε(x) dx = 1, we have

(T ∗ ρε)̂(ξ) =

∫
RN×RN

e−2πiξ·x〈Ty, ρε(x− y)〉 dxdy

= 〈Ty, e−2πiξ·y
∫
RN

e−2πiξ·(x−y)ρε(x− y) dx〉 = 〈Ty, e−2πiξ·y〉ρ̂ε(ξ),

and this is an analytic function of ξ. As ε→ 0, ρ̂ε(ξ)→ 1 uniformly on any compact subset of RN .
Therefore

(T ∗ ρε)̂(ξ) = 〈Ty, e−2πiξ·y〉ρ̂ε(ξ)→ 〈Ty, e−2πiξ·y〉 in S ′.

By (2.10) we then conclude that T̂ (ξ) = 〈Ty, e−2πiξ·y〉 for any ξ ∈ RN , and this function is analytic.
tu

Theorem 2.4 (Paley-Wiener-Schwartz) Any temperate distribution T has bounded support (i.e.,
T ∈ E ′) iff F(T ) can be extended to an analitic function CN → C [which is also denoted by F(T )].

Moreover, suppT ⊂ B(0, R)) iff

∃m ∈ N0,∃C ≥ 0 : ∀z ∈ CN , |[F(T )](z)| ≤ C(1 + |z|)me2πR|Im(z)|. [] (2.11)

Fourier Transform in D′. The Fourier transform can also be extended to the whole D′ by
transposition, but in this case the transform maps D′ to a proper subset of D′ itself. Since F does
not map D to D, we define the space Z := {v ∈ S : F(v) ∈ D}, and equip it with the projective
topology induced by F , namely, the coarsest among the topologies such that (the restriction of)
F : Z → S is continuous.
Z is a proper and dense subspace of S; hence Z ⊂ S ⊂ S ′ ⊂ Z ′, with continuous injections. As

we noticed, Z ∩ D is reduced to the null function. We can now define F̂ : D′ → Z ′ as follows: (3)

Z′〈F̂(T ), v〉Z := D′〈T,F(v)〉D ∀v ∈ Z,∀T ∈ D′. (2.12)

This mapping is one-to-one, and extends F .

Fourier Transform in L2. As L2 ⊂ S ′, any function of L2 has a Fourier transform that belongs
to S ′. The next statement is more precise.

• Theorem 2.5 (Plancherel) For any u ∈ S ′, we have u ∈ L2 iff û ∈ L2. The (restriction of the)
Fourier transform is an isometry in this space, that is

‖û‖L2 = ‖u‖L2 ∀u ∈ L2. (2.13)

Moreover,

UR(ξ) :=

∫
]−R,R[N

e−2πiξ·xu(x) dx→ û(ξ) in L2, as R→ +∞,∀u ∈ L2. (2.14)

The functions UR thus converge also in measure on any bounded subset of RN , but not necessarily
a.e. in RN , a priori. Nevertheless, as R diverges along a suitable sequence (which may depend on
u), these functions converge a.e. in RN .

(3) F(T ) is sometimes called an ultradistribution, but (helas) the same term is also used for other notions in

the literature.
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Proof. For any u ∈ S, we know that û ∈ S. Moreover, by (1.14) and (1.17) we have∫
RN

|û|2 dx =

∫
RN

û¯̂u dx =

∫
RN

û̄̂u dx =

∫
RN

u(x)̂̂u(−x) dx =

∫
RN

uū dx =

∫
RN

|u|2 dx.

Therefore, as S ⊂ L2 with density, the restriction of F to L2 is an isometry with respect to the
L2-metric. Hence F maps L2 to itself.

In order to prove (2.14), for any R > 0 and any x ∈ R, let us set χR(x) := 1 if |xi| ≤ R for
i = 1, ..., N , and χR(x) := 0 otherwise. Then uχR ∈ L1 ∩L2 and uχR → u in L2. Hence, by (2.13),∫

]−R,R[N
e−2πiξ·xu(x) dx =

∫
RN

e−2πiξ·xu(x)χR(x) dx = (uχR)̂(ξ)→ û(ξ) in L2. tu

Remarks. (i) In any Hilbert space the scalar product is determined by the norm, as 2(u, v) =
‖u+ v‖2 − ‖u‖2 − ‖v‖2. (2.13) then entails that∫

RN

u(x)v̄(x) dx =

∫
RN

û(ξ)v̂(ξ) dξ ∀u, v ∈ L2. (2.15)

(ii) The above argument allows one to extend the inversion Theorem 1.8 to L2.
(iii) The representation (2.14) is more general:∫

]−R,R[N
e−2πiξ·xu(x) dx→ û(ξ) in S ′, as R→ +∞,∀u ∈ S ′ ∩ L1

loc. (2.16)tu

The Lebesgue-integral representation (1.1) is meaningful only if u ∈ L1. Anyway it may be useful
to know of cases in which the (extended) Fourier transform maps functions to functions. For any
p ∈ [1, 2], any function of u ∈ Lp can be written as the sum of a function of L1 and one of L2,
i.e., Lp ⊂ L1 + L2. Indeed, setting χ := 1 where |u| ≥ 1 and χ := 0 elsewhere, we have uχ ∈ L1,
u(1−χ) ∈ L2 and u = uχ+u(1−χ). Hence F(u) = F(uχ) +F(u(1−χ)) ∈ L∞+L2; in particular
F(u) is an a.e.-defined function, although it may admit no integral representation.

This is made more precise by the next result, which is a direct consequence of the classical
Riesz-Thorin Theorem on interpolation of Lp-spaces.

Theorem 2.6 (Hausdorff-Young) Let p ∈ [1, 2] and p′ := p/(p − 1) if p > 1, p′ = ∞ if p = 1.
Then (the restriction of) F is a linear and continuous operator Lp → Lp

′
. More precisely, for any

u ∈ Lp, û ∈ Lp′ and ‖û‖Lp′ ≤ ‖u‖Lp .

In this statement we regard F as a restriction of the operator defined in S ′. The results established
for F in S and in S ′, in particular Theorems 2.1 and 2.5, hold also for the inverse Fourier transform
F−1. This is clear, because of the analytic expression of the latter for functions of S, see (1.16).

Fourier Transform vs. Fourier Series. Here we take N = 1, although the discussion might be
extended to any N . For any T > 0, we say that

a function f : R→ C is T -periodic iff f(t+ T ) = f(t) for any t ∈ R,

a distribution u ∈ D′(R) is T -periodic iff 〈u, ϕ(·+ T )〉 = 〈u, ϕ〉 for any ϕ ∈ D(R).

We shall denote the T -periodic distributions (temperate distributions, resp.) by D′T (S ′T , resp.). At
variance with the nonperiodic setting, the following result holds.

Proposition 2.7 Any periodic distribution is temperate, i.e., D′T = S ′T . For any T > 0 and any
sequence {εn} of D′T ,

εn → v in D′ ⇔ εn → v in S ′. [] (2.17)
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The relation between the Fourier transform and the Fourier series is illustrated by the next result,
which, loosely speaking, states that the harmonic components of a periodic temperate distribution
only have integer frequencies. Here by δa we denote the Dirac measure concentrated at a point
a ∈ R, and say that a series

∑
k∈Z ck converges iff limn→∞

∑n
k=−n ck exists (this definition is

reminiscent of the principal value, cf. Sect. VIII.2).

Theorem 2.8 (Fourier Series in D′) Let u ∈ S ′ and T > 0. The next three statements are then
equivalent:

u ∈ D′T , (2.18)

∃{ak}k∈Z ⊂ C : u(x) =
∑
k∈Zake

2kπix/T in D′, (2.19)

∃{ak}k∈Z ⊂ C : û(ξ) =
∑
k∈Zakδk/T (ξ) in D′. (2.20)

The sequence {ak} is uniquely determined by u. Moreover, if u ∈ L1
loc, then

ak =
1

T

∫ T

0

e−2kπix/Tu(x) dx ∀k ∈ Z. [] (2.21)

If either (2.19) or (2.20) hold, then by Proposition 2.7 both series also converge weakly star in
S ′. This constrains the growth at ±∞ of the Fourier coefficients, ak:

∃C > 0,∃M,m > 0 : ∀k ∈ Z, |ak| ≤M(1 + |k|m).

The series in (2.19) and the sequence of the aks are respectively named Fourier series and Fourier
coefficients of u.

Theorem 2.9 (Fourier Series in L2) Let u be any T -periodic distribution. Then u|]0,T [ ∈ L2(0, T )
iff, defining the aks as in (2.19), {ak} ∈ `2. Moreover, if the latter property holds, then

‖u‖2L2(0,T ) =
∑
k∈Z|ak|

2. [] (2.22)

Overview of the Extensions of the Fourier Transform. The Fourier transform (1.1) has a
natural extension to any complex Borel measure µ: formally, it suffices to replace u(x)dx by dµ. As
(the restriction of) F maps the Schwartz space S to itself, we could extend F to S ′ by transposition.
We also saw that F is an isometry in L2, that in this space it admits an integral representation as
a principal value, and that F is also linear and continuous from Lp to Lp/(p−1), for any p ∈ ]1, 2[.

Finally, we pointed out that the Fourier series arise as Fourier transforms of periodic functions.

Exercises. (i) Show that F does not map Lp to Lq for any q 6= p′.
Hint: This may be proved by a dimensionality argument. Let u ∈ Lp be such that F(u) ∈ Lq.

For any λ > 0, setting uλ(x) := u(λx) for any x, (1.4) yields F(uλ) = λ−NF(u)1/λ. Check that

‖F(uλ)‖Lq

‖uλ‖Lp

= λN(−1+1/q+1/p) ‖F(u)‖Lq

‖u‖Lp

.

(ii) Show that the only possible eigenvalues of F in S ′ are ±i,±1.
Hint: Remind that the function x 7→ exp(−πx2) is an eigenfunction.
(iii) Evaluate F(δ) and F(1).
Hint: For the latter, note that

∫
F−1(v) dx = [FF−1(v)](0) = v(0).

(iv) Check that the operators F̄ : u 7→ ¯̂u and F2 are idempotent in S; i.e. F̄2 and F4 coincide
with the identity.

(v) Show that (uv)̂ = û ∗ v̂ for any u, v ∈ S ′.
(vi) Set T :=

∑
n∈Z δn, and check that T ∈ S ′ and T̂ = T in S ′.
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3. The Laplace Transform: ... Omissis ...

4. Convolution: ... Omissis ...

5. Fourier Transform and P.D.E.s with Constant Coefficients

In this section we briefly illustrate the use of the Fourier transform in the analysis of P.D.E.s with
constant coefficients set on the whole RN .

Any polynomial P (η) of N complex variables of degree m is canonically associated to a linear
differential operator P (D) (D := (∂/∂1, ..., ∂/∂N )) with constant (complex) coefficients of order m,
and conversely:

P (η) :=
∑
|α|≤mcαη

α (with cα ∈ C, ∀α) ↔ P (D) :=
∑
|α|≤mcαD

α. (5.1)

This establishes an isomorphism between the linear space of polynomials over RN with complex
coefficients and that of linear differential operators with constant complex coefficients. The Fourier
transform exploits this isomorphism as follows. For any u = u(x) ∈ S, by Proposition 2.1 we have
(4)

F [P (Dx)u] = P (2πiξ)Fu, F [P (−2πix)u] = P (Dξ)Fu in RN ,

and the corresponding formulae for the inverse transform, for any function v = v(ξ) ∈ S:

F−1[P (Dξ)v] = P (−2πix)F−1v, F−1[P (2πiξ)v] = P (Dx)F−1v in RN .

The polynomial P (2πiξ) is called the symbol of P (D), (5) and is an element of S ′. Hence

P (D)u = F−1[P (2πiξ)Fu]
(2.5)
=
(
F−1[P (2πiξ)]

)
∗u ∈ S ∀u ∈ S. (5.2)

An analogous result holds for any u ∈ E ′ (i.e., any compactly supported distribution), by transpo-
sition, as S ′ ∗ E ′ ⊂ S ′. In particular,

F−1[P (2πiξ)] =
(
F−1[P (2πiξ)]

)
∗δ = P (D)δ (∈ S ′). (5.2′)

These properties may be applied to the study of P.D.E.s. This method is necessarily restricted to
linear equations with constant coefficients that are set on the whole RN . Let us fix a non-identically-
vanishing differential operator P (D), a function f ∈ S, and consider the equation

u ∈ S, P (D)u = f in S. (5.3)

Let us assume that u ∈ S solves this equation. By applying the Fourier transform to both members
of this differential equation, we get

û ∈ S, P (2πiξ)û(ξ) = f̂(ξ) in S. (5.4)

If P (2πiξ) 6= 0 for any ξ ∈ RN , then û(ξ) = P (2πiξ)−1f̂(ξ) (∈ S). [Ex] In this case the differential
equation (5.3) has a unique solution (in S): (6)

u = F−1[P (2πiξ)−1f̂(ξ)] = (F−1[P (2πiξ)−1])∗f ∈ S. (5.5)

(4) In passing notice that these polynomials are naturally restricted to imaginary variables, but their values are
not restricted to either real or imaginary numbers.

(5) The occurrence of the factor 2π depends on the definition we gave of the Fourier transform.
(6) In alternative and for any P , by (5.2) we have (F−1[P (2πiξ)])∗u = P (D)u = f . But in general to invert

a convolution is not an easy task.
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(A priori this convolution makes sense only in S ′.)
Note that, whenever P (2πiξ) 6= 0 for any ξ ∈ RN , P (2πiξ)−1 ∈ E ∩ S ′ [Ex] Moreover, as

P (2πiξ)−1S ⊂ S, by transposition we get

P (2πiξ)−1f̂(ξ) ∈ S ′ ∀f ∈ S ′. (5.5′)

The first equality of (5.5) then holds also if u, f ∈ S ′; however, the convolution makes sense only if
f ∈ E ′. We have thus shown the next statement.

Proposition 5.1 Let P (D) (6≡ 0) be a linear differential operator with constant coefficients. If
P (2πiξ) 6= 0 for any ξ ∈ RN , then

P (D)−1 = (F−1[P (2πiξ)−1]F) = (F−1[P (2πiξ)−1])∗ : S → S and E ′ → S ′. (5.6)

For instance, (7)

P (η) := 1−
N∑
j=1

η2j ↔ P (D) = I −
N∑
j=1

D2
j =: I −∆ on S or S ′. (5.7)

As P (2πiξ) = 1 + 4π2|ξ|2 > 0 for any ξ ∈ RN , we get

∀f ∈ S (f ∈ E ′, resp.),

u = F−1[(1 + 4π2|ξ|2)−1f̂ ] = F−1[(1 + 4π2|ξ|2)−1]∗f
is the unique solution in S (in S ′, resp.) of the equation u−∆u = f.

(5.8)

A similar conclusion does not hold for P (D) = −∆, as P (2πiξ) = 0 for ξ = 0.

Remark. So far we used the Fourier transform, and thus confined ourselves either to S or to S ′.
The next formula shows that any differential operator may be represented as the convolution with
a compactly supported distribution:

P (D)u = P (D)(δ ∗ u) = [P (D)δ] ∗ u ∀u ∈ D′. (5.8′)

Pseudo-Differential Operators. (5.2) also reads as an identity between operators:

P (D) = F−1[P (2πiξ)F ] = (F−1[P (2πiξ)]) ∗ either in S → S or E ′ → S ′. (5.9)

More generally, in this way one may define the pseudo-differential operator P (D) in S (and then
in S ′ by transposition) also for nonpolynomial functions P ∈ S ′, provided that P (2πiξ)S ⊂ S. As
(1.15) also applies to S ′, one may define P (D) by means of (5.9); if 1/P ∈ S ′, (5.6) then follows
also in this case. For instance, one may define any positive power of the negative Laplace operator
−∆ := −

∑N
j=1D

2
j :

(−∆)s/2u := F−1
[
|2πξ|sF(u)

]
= (2π)sF−1(|ξ|s)∗u ∈ S ∀u ∈ S,∀s > 0. (5.10)

This definition may be extended to any s ∈ ] − N, 0[, since in this case the function ξ 7→ |ξ|s is
an element of L1

loc ⊂ S ′. As

∀s ∈ ]−N, 0[,∃cs > 0 : F−1(|ξ|s) = cs|x|−(s+N) (∈ L1
loc ⊂ S ′), [] (5.11)

(7) In passing notice that I −∆ : v 7→ v −∆v is a linear operator, but 1−∆ : v 7→ 1−∆v is not so.
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we have (8)

(−∆)s/2u := (2π)sF−1(|ξ|s)∗u = (2π)scs|x|−(s+N)∗u ∈ S ∀u ∈ S,∀s ∈ ]−N, 0[; (5.12)

by transposition, the same applies for any u ∈ S ′. In conclusion,

∀s > −N, (−∆)s/2 : S → S and E ′ → S ′ (linear and continuous in both cases). (5.13)

A similar statement applies to any power of the operator I − ∆, as (1 + |2πξ|)s/2 ∈ S ′ whence
F−1[(1 + |2πξ|)s/2] ∈ S ′ for any s ∈ R. [Ex] The order of a pseudo-differential operator P (D) is
defined in terms of the asymptotic behavior of the function P (2πiξ) as |ξ| → +∞. (9) For instance
(I −∆)s/2 has order s, for any s ∈ R.

Fundamental Solutions. An operator P (D) (6≡ 0) is said elliptic iff its principal part (i.e., the
sum of the terms of leading order) is associated to a polynomial that vanishes only at the origin of
CN . This class includes e.g. (−∆)m + P̃ (D) for any m ∈ N and any polynomial P̃ of degree lower
than m. All elliptic operators are of even order. [Ex]

Theorem 5.2 (Ehrenpreis-Malgrange-Hörmander ....) Let P (D) (6≡ 0) be a linear differential
operator with constant coefficients, and Ω be a convex domain of RN . Then:

P (D)E(Ω) = E(Ω), (5.14)

P (D)D′F (Ω) = D′F (Ω), (5.15)

P (D)D′(Ω) = D′(Ω) (Ehrenpreis-Malgrange), (5.16)

P (D)S ′ = S ′ (Hörmander). (5.17)

If P (D) is elliptic, then (5.14) and (5.15) hold also for nonconvex domains. []

For any of these four equalities the inclusion “⊂” is trivial (and holds for any domain Ω); the
element of interest stays in the inclusion “⊃”, which corresponds to the existence of a solution of
the P.D.E. (5.3). A famous example due to Levy shows that this theorem may fail if the coefficients
of the operator are nonconstant, even if they are assumed to be C∞ functions of x.

Remarks. (i) The equalities (5.14) – (5.17) are of the form P (D)X = X, for various selections of
the space X. This entails that X ⊂ P (D)−1X, but not X = P (D)−1X. For instance:

— in general P (D)−1E 6⊂ E . E.g., if P (D) = D2
t −D2

x, the wave equation P (D)u = 0 has solutions
u 6∈ E (u may even be discontinuous!).

— in general P (D)−1S ′ 6⊂ S ′. Actually, the equation P (D)u = f ∈ S ′ might have not only a
solution in S ′ (by (5.17)), but also one or more in D′ \ S ′; an example is provided ahead.

(ii) It is easily seen that

P (D)E ′(Ω) ⊂ E ′(Ω) ∀ domain Ω ⊂ RN . (5.18)

But the opposite inclusion fails: for instance, for N = 1, Ω = R, P (D) = D and f = χ]0,1[ (the
characteristic function of the interval ]0, 1[), the solutions of the equation (5.3) are of the form

(8) This holds also for s ≤ −N , provided that the function g(x) = |x|−(s+N) (6∈ L1
loc) is replaced by a

regularization, namely by a distribution T whose restriction to RN \ {0} coincides with g.
(9) In this connection we have the following result.

Let P : RN → C be a smooth function such that (denoting by [n/2] the integer part of n/2),

∀α with |α| ≤ [n/2] + 1, ξ 7→ |ξ||α||DαP (ξ)| is uniformly bounded in RN .

The operator P (D) is then linear and continuous in Lp(RN ).
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u = x+ − (x− 1)+ +C. Consistently with (5.15) and (5.17), these are elements of D′F ∩S ′, but not
of E ′. [Ex] Similarly one may see that

P (D)D(Ω) ⊂ D(Ω), P (D)S(Ω) ⊂ S(Ω) ∀ domain Ω ⊂ RN , (5.19)

but these inclusions are strict.

Let P (η) be a polynomial of N complex variables of degree m, as in (5.1). Any E ∈ D′ is called
a fundamental solution of P (D) iff P (D)E = δ. If E ∈ S ′ we may apply the Fourier transform,

getting P (2πiξ)Ê = 1; thus Ê is a regularization of the function P (2πiξ)−1.

Proposition 5.3 No fundamental solution E has compact support: E 6∈ E ′.

Proof. By the Paley-Wiener-Schwartz Theorem 2.4, if E had compact support then Ê would be
an entire function. By applying the Fourier transform to the equation P (D)E = δ, we would then

get P (2πiξ)Ê = 1. But 1/P (2πiξ) can be an entire function only if P is constant, because any
other polynomial has zeroes. E would then be proportional to δ, and this is not consistent with the
equation P (D)E = δ. tu

By the next statement we see that any nontrivial operator P (D) has a fundamental solution in
any open set Ω, and that this allows one to construct a solution of the equation (5.3) for any f ∈ E ′.
The next two results respectively deal with the existence and the uniqueness of the solution of (5.3),
in particular of the fundamental solution of the operator P (D).

Proposition 5.4 Let P (D) ( 6≡ 0) be a linear differential operator with constant coefficients. Then:
(i) there exists a fundamental solution E ∈ D′F ∩ S ′;
(ii) E∗ : E ′ → S ′, and

P (D)(E ∗ f) = f ∀f ∈ E ′; (5.20)

(iii) let Ω be a bounded domain of RN . For any f ∈ L1(Ω), setting f̃ := f in Ω and f̃ := 0
outside Ω, we have P (D)(E ∗ f̃)|Ω = f in D′(Ω).

Proof. (i) As δ ∈ D′F ∩ S ′, this follows from (5.15) and (5.17).
(ii) One can show that E ∗ f ∈ S ′ for any f ∈ E ′. [] (As the support of E is not compact, f

is assumed to be compactly supported in order to give a meaning to E ∗ f .) Moreover, by the
differential properties of the convolution,

P (D)(E ∗ f) = [P (D)E] ∗ f = δ ∗ f = f.

(iii) As f̃ ∈ E ′, by (5.20) P (D)(E ∗ f̃) = f̃ in D′(RN ). tu

Let us set
εη(x) := e2πiη·x ∀η ∈ CN ,∀x ∈ RN ,

ZP := {η ∈ CN : P (2πiη) = 0},
ΣP := span of {εη : η ∈ ZP } (⊂ D′).

(5.21)

By the fundamental theorem of algebra ZP 6= ∅. As |εη(x)| = e−2πIm(η)·x, the distribution εη has
exponential growth iff η 6∈ RN . Thus εη ∈ S ′ iff η ∈ RN (this actually corresponds to εη ∈ L∞).

Proposition 5.5 Let P (D) ( 6≡ 0) be a linear differential operator with constant coefficients. Then:
(i) ΣP coincides with the kernel of P (D) in S ′;
(ii) the set of all fundamental solutions of P (D) in S ′ coincides with the affine space E + ΣP ,

where E is any fundamental solution. [Ex]

Although the fundamental solution is not unique in D′, next we see that it may be unique in S ′.
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Proposition 5.6 Let P (D) ( 6≡ 0) be a linear differential operator with constant coefficients. Then:
(i) the restriction of the operator P (D) to S ′ is injective (in particular, there is at most one

fundamental solution in S ′) iff P (2πiξ) 6= 0 for any ξ ∈ RN ;
(ii) if P (2πiξ) 6= 0 for any ξ ∈ RN , then E := F−1([P (2πiξ)]−1) (∈ S ′ ∩ L1

loc) is the unique
fundamental solution of P (D) in S ′.

Proof. (i) Note that for any v ∈ S ′

P (D)v = 0 ⇔ P (2πiξ)v̂(ξ) = 0 ∀ξ ∈ RN ⇔ v̂ is supported in ZP ∩RN .

Therefore v = 0 is the only solution v ∈ S ′ of the equation P (D)v = 0 (namely, P (D) is injective
in S ′) iff ZP ∩RN = ∅, i.e., iff P (2πiξ) 6= 0 for any ξ ∈ RN .

(ii) This follows from part (i) and (5.5). tu

Remarks. (i) If P (2πiξ) 6= 0 for any ξ ∈ RN , we saw that E = F−1([P (2πiξ)]−1) ∈ S ′ ∩ L1
loc and

the restriction of the operator P (D) to S ′ is injective. By (5.20), E∗ may then be regarded as the
inverse of the operator P (D) in E ′.

(ii) If P (2πiξ) = 0 for some ξ ∈ RN , then P (D) has either no locally integrable fundamental
solution or more than one. This depends upon the multiplicity of these roots.

For instance, for any m ∈ N, the polynomial

P (2πiξ) =

( m∑
j=1

(2πξj)
2

)m
= |2πξ|2m

is the symbol of the elliptic operator P (D) = (−
∑m
j=1D

2
j )
m = (−∆)m. As

P (2πiξ) = |2πξ|2m = 0 ⇔ ξ = 0 (with algebraic multiplicity 2m),

we have
[P (2πiξ)]−1 ∈ S ′ ∩ L1

loc ⇔ 2m < N.

Therefore:
— if 2m < N then (−∆)m has a fundamental solution E ∈ S ′ ∩L1

loc; for any polynomial Q(x) of

degree < 2m, Ẽ = E +Q(x) is also a fundamental solution in S ′ ∩ L1
loc;

— if 2m ≥ N then (−∆)m has no fundamental solution in L1
loc.

Thus, for instance, the operator (−∆)m has a locally integrable fundamental solution in R3 iff
m = 1.

Fundamental Solutions of Cauchy Problems. Let us consider a Cauchy problem of the form{
Dtu+ P (Dx)u = 0 ∀t > 0

u(·, 0) = u0,
(5.22)

for any u0 ∈ E ′(RN ). Any mapping E : R+ → D′(RN ), such that the function R+ 7→ 〈E(·, t), ϕ〉
is smooth for any ϕ ∈ D(RN ), is said a fundamental solution of the Cauchy problem associated to
the operator Dt + P (Dx) iff{

DtE + P (Dx)E = 0 in D′(RN ),∀t > 0

E(·, 0) = δx=0 in D′(RN ).
(5.23)

Actually, setting Ẽ(·, t) = E(·, t) for any t ≥ 0 and Ẽ(·, t) = 0 for any t < 0, (5.23) is equivalent
to

DtẼ + P (Dx)Ẽ = δx=0 ⊗ δt=0 = δ(x,t)=(0,0) in D′(RN+1), (5.24)
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which means that Ẽ is a fundamental solution of the operator Dt + P (Dx) in RN+1 (with support
confined to RN ×R+).

Defining the extension ũ similarly to Ẽ, the Cauchy problem (5.22) also reads

Dtũ+ P (Dx)ũ = u0 ⊗ δt=0; (5.25)

(5.24) then entails that u(x, t) = Ẽ ∗ (u0 ⊗ δt=0) = 〈E(x− y, t), u0(y)〉 solves (5.22). This definition
of fundamental solution of the Cauchy problem may also be extended to equations of higher order
in time.

Examples of Fundamental Solutions. The construction of a fundamental solution may not be
trivial. Here we just illustrate some simple examples.

(i) The Heaviside function (denoted by H) is a fundamental solution of the derivative D in R.
By Proposition 5.6 all fundamental solutions of D are of the form H + c, with c ∈ R.

(ii) For any C ∈ C, the function E(x) = x(H(x) + C) is a fundamental solution of D2 in R. By
Proposition 5.6 all fundamental solutions of D2 are of the form E(x) +ax+ b, for any a, b ∈ ci. [Ex]

(iii) The rotational invariance of the Laplace operator ∆ suggests that the equation ∆E = δ
might have a radial solution E(x) := ϕ(r) (r := |x|). By representing the Laplace operator in radial
coordinates, we have

ϕ′′(r) +
N − 1

r
ϕ′(r) = 0 ∀r > 0 (in RN ).

Prescribing the appropriate singular behaviour at the origin, we then get the fundamental solution

E(x) :=


2−1|x| ∀x ∈ RN \ {0}, if N = 1,

(2π)−1 log |x| ∀x ∈ RN \ {0}, if N = 2,

− |x|2−N

(N − 2)ωN
∀x ∈ RN \ {0}, if N > 2;

(5.26)

ωN being the (N − 1)-dimensional measure of the unit sphere of RN . By Proposition 5.6 the
fundamental solution of ∆ is unique up to the sum of polynomials of degree one.

(iv) The function
E(x, t) := (4πt)−N/2 exp

(
−|x|2/4t

)
∀t > 0 (5.27)

is a fundamental solution of the heat operator Dt −∆x in RN+1 in the above sense. By Proposi-
tion 5.6 the fundamental solution of this operator is unique up to additive constants.

(v) The function

E(x, t) := (2c)−1[H(x+ ct)−H(x− ct)] =

{
0 if |x| ≥ ct
(2c)−1 if |x| < ct

(5.28)

is a fundamental solution of the Cauchy problem for the wave operator D2
t − c2D2

x in R2, in the
sense that

L(D)E = 0 ∀t > 0, E(x, 0) = 0, DtE(x, 0) = δ for x ∈ R. (5.29)

By Proposition 5.6 the fundamental solution of this operator is not unique.

6. A Glance at System Theory

In signal analysis (10) and other branches of engineering, some of the above results are used in
the framework of the theory of systems with a different language, alternative to that of functional
analysis — thus without referring to function spaces, and with attenuated mathematical rigor.

(10) Here is classical reference: A. Papoulis: Signal analysis. McGraw-Hill, New York 1977
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Filters. The action of a system (representing a technical device) acting on time-dependent signals
(i.e., functions of time) defines a filter (i.e., a linear operator) L : u 7→ f . Here we just deal with linear
SISO (i.e., single input - single output) systems. This filter may be represented, e.g., by a (linear)
ODE: P (D)u = f ; other filters are represented by multiplication by a constant (if this number is
real and > 1, the filter is named an amplifier; if it is < 1, the filter is named an attenuator), by time-
differentiation, by time-integration, by time-translation, and so on. An important class consists of
the filters L that are translation-invariant (or time-invariant), i.e., setting ρτu(t) := u(t − τ) for
any t, τ ∈ R,

Lρτu = ρτLu for any admissible input u,∀τ ∈ R. (6.1)

For instance, if L = P (D) this property is fulfilled iff the coefficients of P are constant.

Convolution Filters. Henceforth we shall assume that δ is an admissible input for the system,
i.e., δ is in the domain of L. Setting

h̄(t, τ) := [L(ρτδ)](t) = [L(δ(· − τ))](t) ∀τ ∈ R, (6.2)

for any admissible input u we have

(Lu)(t) = [L(δ ∗ u)](t) = [L〈ρτδ(·), u(τ)〉](t) = 〈[L(ρτδ)](t), u(τ)〉 = 〈h̄(t, τ), u(τ)〉; (6.3)

in general the latter is not a convolution.
The filter L is time-invariant (if and) only if h̄ is of the form h̄(t, τ) = h(t− τ) for any t, τ ; [Ex]

thus h = Lδ. In this case the outcome of (6.3) is a convolution:

L(u) = L(δ ∗ u) = 〈h(t− ·), u〉 = (Lδ) ∗ u for any admissible input u, (6.4)

i.e., L = (Lδ)∗; L is accordingly said a convolution filter.

Transfer Functions. By (6.3), the response of the system is determined by the response Lδ to

the unit impulse δ. Lδ and L̂δ are respectively called the transfer function in time and transfer
function in frequency (or spectrum) of the system L.

Henceforth we shall restrict ourselves to time-invariant filters. In these systems signals may
conveniently be represented either as functions of time or (via Fourier transform) as functions of
the frequency. For any admissible input u, we have

Lu = L(δ ∗ u) = (Lδ) ∗ u ⇔ L̂u = L̂δ û; (6.5)

the first formula holds for a.e. time t, the second one for a.e. frequency ω (assuming that these are
regular distributions). Hence

|L̂u|2 = |L̂δ|2 |û|2 for a.e. frequency ω. (6.6)

As
∫
|û(ω)|2 dω =

∫
|u(t)|2 dt is interpreted as the power of the signal u, |û|2 is named the power

spectrum of the signal, and |L̂δ|2 is named the transfer function of the energy (both are functions
of the frequency). The formula (6.6) may then be interpreted as follows:

“the power spectrum of the response equals the product of the transfer function of the energy by
the power spectrum of the input.”

Filter Compositions. For instance, a filter L may be constructed by combining two filters L1, L2

in parallel (in series, resp.). This means that L = L1 + L2 (L = L1 ◦ L2, resp.), and entails

L = [L1δ + L2δ] ∗
(
L = (L1δ) ∗ (L2δ)∗, resp.

)
in time, (6.7)

L̂δ = L̂1δ + L̂2δ
(
L̂δ = L̂1δ · L̂2δ, resp.

)
in frequency (6.8)
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(the latter formula holds only if L1, L2 are convolution filters). There are further ways to construct
filters. For instance, a feedback system is represented by a mapping f 7→ g that is implictly defined
by the equation

g = L1(f + L2(g)) in time, (6.9)

L1 and L2 being linear filters. Let us assume that L1 and L2 are convolution filters, set Hi := L̂i(δ)
(i = 1, 2), and also assume that 1 −H1H2 is invertible. By applying the Fourier transform to this
equation we get

ĝ = H1

(
f̂ +H2ĝ

)
, i.e. ĝ =

H1

1−H1H2
f̂ in frequency. (6.10)

We conclude that the feedback system defines a convolution filter, and that its response in time to
the unit impulse is F−1(H1/(1−H1H2)).

Fundamental Relation. The next statement establishes a fundamental relation between a filter,
its transfer function, and sinusoidal signals (i.e., exponential functions with imaginary exponent).
Let us set εω(t) := e2πiωt for any ω, t ∈ R.

Theorem 5.7 Let Φ be a subspace of S ′ such that δ, εω ∈ Φ for any ω, and L : Φ → Φ be a

time-invariant linear system. Any εω is then an eigenfunction of L, and the spectrum L̂δ(ω) is the
corresponding eigenvalue. That is, for any ω,

εω ∈ Φ ⇒ L(εω) = L̂δ(ω) εω in time. (6.11)

Proof. We have

[L(εω)](t) = [L(δ ∗ εω)](t) = [(Lδ) ∗ εω](t) =

∫
R

[Lδ](τ)e2πiω(t−τ) dτ

=

∫
R

[Lδ](τ)e−2πiωτ dτ e2πiωt = L̂δ(ω) εω(t).

(6.12)tu

In several cases one may take Φ = S ′.
(The latter result may be extended to the Laplace transform...)

Differential Filters (ODEs). For these filters we retrieve some known results. After (5.4), if
L = P (D) then

L̂δ(ω) = P (2πiω) δ̂(ω) = P (2πiω). (6.13)

Hence Lδ = F−1(P (2πiω)), so that we retrieve (5.20):

Lu = (Lδ) ∗ u = F−1(P (2πiω)) ∗ u ⇔ L̂u = L̂δ û = P (2πiω)û. (6.14)

Moreover, the transfer function of the energy of L = P (D) is |L̂δ|2 = |P (2πiω)|2:

|L̂u|2 = |L̂δ|2|û|2 = |P (2πiω)|2 |û|2 in frequency. (6.15)

For any ω ∈ R, εω is an eigenfunction of any differential filter L = P (D) =
∑m
n=0 cnD

n, and

corresponds to the eigenvalue L̂δ
(6.13)

= P (2πiω) =
∑m
n=0 cn(2πiω)n. In this case Theorem 5.7 is

reduced to the obvious formula

m∑
n=0

cnD
ne2πiωt =

m∑
n=0

cn(2πiω)n e2πiωt. (6.16)


