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1 Minimization

A Topological Result. Let S be a topological space and J : S →] −∞,+∞]; here we deal with

the problem of finding x0 ∈ S such that J(x0) = inf J . By the classical Weierstrass theorem, if

S is a compact topological space and J is continuous then this problem has a solution. However

these assumptions also yield the existence of a maximum, and this suggests that they might be

redundant. Indeed the following results tells us that, when dealing with minimization, continuity

can be replaced by lower semicontinuity.

Let us denote the set of minimizers of J by MJ ; that is,

MJ := {x ∈ S : J(x) = inf J}.

Theorem 1.1 (Topological Result) Let S be a nonempty topological space and J : S →]−∞,+∞].

(i) If J is lower semicontinuous and for some ã ∈ R the sublevel set Sã := {x ∈ S : J(x) ≤ ã} is

nonempty and compact, then MJ is nonempty and compact.

(ii) If J is sequentially lower semicontinuous and Sã is nonempty and sequentially compact for

some ã ∈ R, then MJ is nonempty and sequentially compact. (1)

Proof. At first let us assume (i). The family F := {Sa : a ≤ ã, Sa 6= ∅} consists of closed subsets of

Sã, by the lower semicontinuity of J , and the intersection of any finite subfamily is nonempty. Hence,

by the compactness of Sã, the intersection of the whole family, ∩F , is nonempty and compact. It is

easy to see that ∩F =MJ .

Let us now assume (ii). By the definition of inf J , there exists a sequence such that J(xn)→ inf J ;

possibly dropping a finite number of terms, we have {xn} ⊂ Sã. By the sequential compactness of the

latter set, there exist x ∈ S and a subsequence {xn′} such that xn′ → x. As J is sequentially lower

semicontinuous, this entails that J(x) = inf J . The sequential compactness of MJ can similarly be

checked. (1) tu

Some Results in Banach Spaces. In order to apply the previous general result, one must

choose an appropriate topology; for instance, in Banach spaces the weak and the strong topology

are at disposal. It then appears that the lower semicontinuity of J and the compactness of Sã are

competing requirements: the first one forces the topology in S to be sufficiently strong, the second

one induces it to be sufficiently weak. A compromise between these opposite exhigencies must then

be reached.

We recall the reader three classical compactness properties.

(1) In passing, we illustrate a topological construction. In any topological space (X, τ) the sequential topology,
denoted by seq-τ , that is associated to τ is defined as follows. We say that a set B ⊂ X is closed w.r.t. seq-τ
if and only if it contains the limit of any sequence of elements of B that converges w.r.t. τ . This sequential
topology is finer than the original topology, i.e. τ ⊂ seq-τ . If the topology τ is metrizable then it coincides
with seq-τ . This sequential topology allows to restate several sequential properties of the original topology.
E.g., any set is sequentially compact w.r.t. τ if and only if it is compact w.r.t. seq-τ ; a function is sequentially
lower semicontinuous w.r.t. τ if and only if it is lower semicontinuous w.r.t. seq-τ ; and so on.

(1) This type of argument based on the use of minimizing sequences is often referred to as the direct method
of the calculus of variations. Dealing with a differentiable functional J defined on a topological vector space,
the indirect method consists in studying the minimization problem via the Euler equation J ′(u) = 0.

The direct method might also be used for part (i), just replacing sequences by nets and subsequence by

cofinal subnets.
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Lemma 1.2

(i) (Weak Star Compactness) In the dual of a Banach space, any bounded set is weakly star

relatively compact (that is, its closure in the weak star topology is weakly star compact). [In a

reflexive Banach space, any bounded set is then weakly relatively compact.]

(ii) (Weak Star Sequential Compactness) In the dual of a separable Banach space, any bounded

set is weakly star relatively sequentially compact (that is, any bounded sequence has a weakly star

convergent subsequence).

(iii) (Weak Sequential Compactness) In a reflexive Banach space, any bounded sequence is weakly

compact.

This lemma and Theorem 1.1 yield the following result.

Corollary 1.3 (Minimization via Weak Compactness) Let B be a Banach space and J : B →
]−∞,+∞] be such that

∃ã ∈ R : {x ∈ B : J(x) ≤ ã} is nonempty and bounded. (1.1)

(i) If B is the dual of a Banach space and J is weakly star lower semicontinuous, then MJ is

nonempty and weakly star compact.

(ii) If B is the dual of a separable Banach space and J is sequentially weakly star lower semicon-

tinuous, then MJ is nonempty and sequentially weakly star compact.

(iii) If B is a reflexive Banach space and J is sequentially weakly lower semicontinuous, thenMJ

is nonempty and sequentially weakly compact.

(1.1) holds whenever J is proper and the following stronger condition, called coerciveness, is

fulfilled:

J(vn)→ +∞ as ‖vn‖B → +∞. (1.2)

(This is tantamount to the boundedness of all sublevel sets.)

As (strong) semicontinuity is less restrictive than weak semicontinuity, the next result is often

applied.

• Corollary 1.4 (Minimization via Convexity) Let B be a reflexive Banach space, J : B →
]−∞,+∞] be convex and lower semicontinuous, and (1.1) be fulfilled.

Then MJ is nonempty, weakly compact and convex (hence closed). If J is strictly convex then

there exists only one minimizer.

Proof. By Mazur’s Theorem (a consequence of the Hahn-Banach theorem), J is weakly lower

semicontinuous. The properties of MJ then follow from Corollary 1.3(iii).

If there exist two distinct points u1, u2 ∈ MJ , then J((u1 + u2)/2) < [J(u1) + J(u2)]/2 = inf J

by the strict convexity of J . This contradicts the definition of MJ . tu

This result fails if B is nonreflexive, even if it is the dual of a separable Banach space. In fact in

this case convex lower semicontinuous functionals need not be weakly star lower semicontinuous.

The above results are easily extended to minimization over a set K, just by replacing J by J+IK ,

where IK is the indicator function of K.

Well-Posedness. Many problems can be regarded as a transformation, T , from a space of data,

D, to a space of solutions, S. In several cases the solution exists and is unique, i.e., T is a single-

valued mapping D → S. If D and S are topological spaces, it is also of interest to see whether T is

continuous; in this case the problem is said to be well-posed (in the sense of Hadamard).

Dealing with minimization problems, another concept of well-posedness is also useful. Let S be

a separated topological space. The problem of minimizing a proper functional J : S →]−∞,+∞]
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is said well-posed in the sense of Tychonov iff any minimizing sequence converges to a minimum

point:

∀{un} ⊂ S, if J(un)→ inf J then ∃u ∈ S : un → u, J(u) = inf J. (1.3)

This holds iff a minimum point exists and any minimizing sequence is convergent, and entails the

uniqueness of the minimum point.

For instance, let us consider the following functionals Ji : R→]−∞,+∞]

J1(u) :=

{
u2(u− 1)2 if u 6= 1,
1 if u = 1,

J2(u) := u2e−u, J3(u) := u2(u− 1)2.

None of them is well-posed in the sense of Tychonov. J1 and J2 may be regarded as rather patho-

logical. Both functionals have one and only one minimum point, u = 0. However, {un := 1 + 1/n}
is a minimizing sequence for J1, but it converges to a point which is not of minimum; on the other

hand, {un := n} is a minimizing sequence for J2, but it does not converge.

The functional J3 has two minimum points, at variance with J1 and J2. The minimization of J3 is

not well-posed in the sense of Tychonov, but this functional does not look as especially pathological.

A weaker concept of well-posedness has indeed been proposed. A minimization problem is said well-

posed in the generalized sense of Tychonov iff a converging subsequence can be extracted from any

minimizing sequence, and this subsequence tends to a minimum point:

∀{un} ⊂ S, if J(un)→ inf J, then

∃u ∈ S,∃{un′} ⊂ {un} : un′ → u, J(u) = inf J.
(1.4)

J3 is well-posed in this generalized sense, whereas J1 and J2 are not.

Exercise. Let B be a Banach space, J : B →]−∞,+∞], and I := {x ∈ B : J(x) = inf J}. Show

that if J is convex (lower semicontinuous, resp.) then I is convex (closed, resp.).

2. The theorem of Lions-Stampacchia for variational inequalities.

Let H be a Hilbert space, with scalar product (·, ·) and norm ‖ · ‖. Let f ∈ H, set J(v) :=
1
2‖v‖

2 − (f, v) for any v ∈ H, and consider the problem of minimizing J in a nonempty closed

convex set K ⊂ H. Note that J is Fréchet-differentiable in H, with differential J ′(v) = v − f for

any v ∈ H.

Exercise. Show that u ∈ H minimizes J in K iff

(u− f, u− v) + IK(u)− IK(v) ≤ 0 ∀v ∈ H, (2.1)

or equivalently

u ∈ K and (u− f, u− v) ≤ 0 ∀v ∈ K. (2.2)tu

As J(v) := 1
2‖v − f‖

2 − 1
2‖f‖

2, it is easily seen that (2.2) holds iff u minimizes the distance of

f from K, that is, iff u is the projection of f onto K, u = PK(f). We claim that the operator

PK : H → K is nonexpansive, i.e.,

‖PK(f1)− PK(f2)‖ ≤ ‖f1 − f2‖ ∀f1, f2 ∈ H. (2.3)

This can easily be checked by a standard procedure: let us write (2.2) for f1 and u1 := PK(f1) (f2
and u2 := PK(f2), resp.), take v = u2 (v = u1, resp.), and then sum the two inequalities. This

yields ‖u1 − u2‖2 ≤ (f1 − f2, u1 − u2) ≤ ‖f1 − f2‖ ‖u1 − u2‖, whence (2.3) follows.
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More generally, one can consider a linear bounded operator A : H → H, and minimize the

functional Ĵ : v 7→ 1
2 (Av, v) − (f, v) in K, for any fixed f ∈ H. This problem is equivalent to the

variational inequality

u ∈ K and (Asu− f, u− v) ≤ 0 ∀v ∈ K; (2.4)

here As := (A + A∗)/2 is the symmetric part of A. (2) More generally, we consider a nonlinear

operator A : H → H and the variational inequality

u ∈ K and (A(u)− f, u− v) ≤ 0 ∀v ∈ K. (2.5)

We shall assume that A is Lipschitz continuous and strongly monotone in K, that is,

∃L > 0 : ∀u, v ∈ K, ‖A(u)−A(v)‖ ≤ L‖u− v‖, (2.6)

∃α > 0 : ∀u, v ∈ K, (A(u)−A(v), u− v) ≥ α‖u− v‖2. (2.7)

In general (2.5) is not equivalent to the minimization of any functional. This fails even in the linear

case whenever the operator is not symmetric.

Theorem 2.1 (Lions-Stampacchia) Let K be a nonempty closed convex subset of a real Hilbert

space H, and A : H → H fulfill (2.6) and (2.7). Then for any f ∈ H there exists one and only one

solution of (2.5), and this depends Lipschitz continuously on f .

Proof. For any ρ > 0, the inequality of (2.5) is equivalent to(
u− [u− ρ(A(u)− f)], u− v

)
≤ 0 ∀v ∈ K,

which also reads u = PK(u−ρ(A(u)−f)). We claim that for a suitable ρ > 0 the mapping T = Tρ :

v 7→ v − ρ(A(v) − f) is a contraction, i.e., there exists a < 1 such that ‖T (u) − T (v)‖ ≤ a‖u − v‖
for any u, v ∈ H. Denoting by L the Lipschitz constant of A, for any v1, v2 ∈ H, actually we have

‖T (v1)− T (v2)‖2 = ‖v1 − v2‖2 + ρ2‖A(v1)−A(v2)‖2 − 2ρ(A(v1)−A(v2), v1 − v2)

≤ ‖v1 − v2‖2 + ρ2L2‖v1 − v2‖2 − 2ρα‖v1 − v2‖2

= (1 + ρ2L2 − 2ρα)‖v1 − v2‖2.

Hence T is a contraction if 0 < ρ < 2α/L2. Therefore PK ◦ T is also a contraction, and by the

fixed-point Banach theorem PK ◦ T has one and only one fixed point. Therefore the variational

inequality (2.5) has one and only one solution.

The Lipschitz continuity of the solution operator f 7→ u is a straightforward consequence of (2.7).

tu

The latter theorem entails the following classical result.

Corollary 2.2 (Lax-Milgram) Let H be a real Hilbert space, and A : H → H be linear, bounded

and strongly monotone. Then for any f ∈ H there exists one and only one u ∈ H such that Au = f ,

and the mapping f 7→ u is linear and continuous.

If the operator A is also symmetric, then the thesis easily follows from the classical Riesz-Fréchet

theorem for the representation of the dual of a Hilbert space. [Ex]

(2) Any linear and bounded operator A acting in a Hilbert space can be written as the sum of its symmetric
and anti-symmetric parts: A = As + Aa, where As := (A + A∗)/2 and Aa := (A − A∗)/2. Here A∗ is the

adjoint of A, which operates in H∗ = H. Note that (Av, v) = (Asv, v) for any v ∈ H.



5

3. Γ -Convergence

Here we confine ourselves to metric spaces, although Γ -convergence may also be defined in the

more general framework of topological spaces.

Definitions. Let (X, d) be a metric space, a sequence {fn} and f be functions X → [−∞,+∞],

and u ∈ X. We say that fn Γ -converges to f (in (X, d)) at u, and write f(u) = Γ limn→∞ fn(u)

(or fn(u)→Γ f(u)), iff

(i) for any sequence {un} in X, if un → u then lim inf
n→∞

fn(un) ≥ f(u), (3.1)

(ii)

there exists a sequence {un} in X

such that un → u and lim supn→∞ fn(un) ≤ f(u)

(equivalently, fn(un)→ f(u), by part (i)).

(3.2)

We say that fn Γ -converges to f whenever this holds for any u ∈ X.

If in (3.2) we replace lim supn→∞ fn(un) by lim infn→∞ fn(un), then (i) and (ii) define the inferior

Γ -limit

f(u) = min
{

lim inf
n→∞

fn(un) : un → u in X
}

=: Γ−lim inf
n→∞

fn(u) ∀u ∈ X.

On the other hand, if in (3.1) we replace lim infn→∞ fn(un) by lim supn→∞ fn(un), then (i) and

(ii) define the superior Γ -limit

f(u) = min
{

lim sup
n→∞

fn(un) : un → u in X
}

=: Γ−lim sup
n→∞

fn(u) ∀u ∈ X.

The two latter limits exist for any sequence {fn}, and of course

Γ lim inf
n→∞

fn(u) ≤ Γ lim sup
n→∞

fn(u) ∀u ∈ X.

Moreover, fn Γ -converges iff these limits are equal, and in this case their common value coincides

with the Γ -limit. There is no symmetry between the inferior and superior Γ -limits; actually, in

general

Γ lim inf
n→∞

(−fn) 6= −Γ lim sup
n→∞

fn, whence Γ lim
n→∞

(−fn) 6= −Γ lim
n→∞

fn,

whenever the Γ -limit exists. The functions Γ lim infn→∞ fn and Γ lim supn→∞ fn are indeed both

lower semicontinuous. [] The same then applies to the Γ -limit, whenever it exists. (3)

Proposition 3.1 Let {fn} be a sequence of functions X → [−∞,+∞]. Then:

(i) If fn →Γ f , then f is lower semicontinuous.

(ii) If {fn} is a nondecreasing (nonincreasing, resp.) sequence of functions X → [−∞,+∞], then

fn →Γ sup{fn} (fn →Γ inf{fn}, resp.). [Ex] (3.3)

Hence

if fn = f0 ∀n, then fn →Γ f̄0. (3.4)

Here are some further properties of Γ -convergence.

(3) For any function f : X → [−∞,+∞] we shall denote its lower semicontinuous regularized function by f̄ .
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Proposition 3.2 (Comparison with the Pointwise Limit) Let {fn} be a sequence of functions

X → [−∞,+∞], f : X → [−∞,+∞], and fn →Γ f . Then:

Γ−lim inf
n→∞

fn(u) ≤ lim inf
n→∞

fn(u) ∀u ∈ X, (3.5)

Γ−lim sup
n→∞

fn(u) ≤ lim sup
n→∞

fn(u) ∀u ∈ X. (3.6)

Equalities hold whenever (denoting by U(u) the family of neighbourhoods of u)

∀ε > 0,∃U ∈ U(u) : ∀v ∈ U, fn(v) ≥ fn(u)− ε (equi-lower-semicontinuity). (3.7)

Proposition 3.3 (Compactness) Let (X, d) be a separable metric space (i.e., which admits a

countable base of open sets), and {fn} be a sequence of functions X → [−∞,+∞]. Then there

exists a Γ -convergent subsequence of {fn}. []

The next result entails a useful characterization of Γ -convergence as a variational convergence:

whenever fn →Γ f , the limit of any (converging) sequence of minimizers of fn minimizes f .

Proposition 3.4 (Minimization) Let (X, d) be a metric space, and {fn} is a sequence of functions

X →] −∞,+∞] such that fn →Γ f . Assume that inf fn > −∞ for any n, and that {un} ⊂ X and

u ∈ X are such that

fn(un) ≤ inf fn +
1

n
∀n, un → u in X. (3.8)

Then

inf fn → inf f, lim inf
n→∞

fn(un) ≥ f(u) = inf f. (3.9)

Proof. By Γ -convergence, f(u) ≤ lim infn→∞ fn(un); moreover, for any v ∈ X, there exists {vn} ⊂
X such that vn → v in X and fn(vn)→ f(v). By (3.8), fn(un) ≤ f(vn) + 1

n , for any n. Therefore

f(u) ≤ lim inf
n→∞

fn(un) ≤ lim
n→∞

fn(vn) = f(v) ∀v ∈ X. tu

Examples. Here X coincides with R, equipped with the Euclidean metric.

(i) Let us set fn(x) := (−1)nx for any x ∈ R and any n. Then

Γ lim inf
n→∞

fn(x) = −|x|, Γ lim sup
n→∞

fn(x) = |x| ∀x ∈ R.

(ii) Let us set fn(x) := cos(nx) for any x ∈ [−π, π] and any n. Then fn →Γ − 1, although fn → 0

weakly in L1(−π, π), and the pointwise limit exists only for x = 0. Note that

(−1 =) Γ lim
n→∞

fn = Γ lim
n→∞

(−fn) 6= −Γ lim
n→∞

fn (= 1).

(iii) Let us set fn(x) := x cos(nx) and f(x) := −|x| for any x ∈ [−π, π] and any n. Then fn →Γ f .

Notice that f is even, although any fn is odd.

(iv) Let set fn(x) := nx exp(nx) for any x ∈ R and any n. Then fn →Γ f , where

f(x) :=

{
0 if x < 0,
−1/e if x = 0, [Ex]
+∞ if x > 0,

although fn(0)→ 0.
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(v) Let {qn} be an enumeration of Q, and set{
fn(x) := 0 if x = qm for some m ≥ n
fn(x) := 1 otherwise

∀x ∈ R.

Then fn(x)↗ 1 for a.a. x ∈ R, but fn →Γ 0, by part (ii) of Proposition 3.1.

An Example Related to Perimeters.

Theorem 3.5 (Modica and Mortola) Let us set S :=
{
v ∈ L1

(
RN

)
: v ∈ Z a.e. in RN

}
(n ∈ N),

and for any v ∈ L1
(
RN

)

fn(v) :=


∫
RN

( 1

n
|∇v|2 + n sin2(πv)

)
dx if v ∈ H1

(
RN

)
,

+∞ otherwise,

(3.10)

f(v) :=


4

π

∫
RN

|∇v| if v ∈ S,

+∞ otherwise.

(3.11)

Then fn →Γ f in L1
(
RN

)
. []

Remarks about the Proof. Let us set ϕ(v) := 2
∫ v
0

sin(πξ)dξ for any v ∈ R; thus ϕ(v) = 4v/π

for any v ∈ Z. Notice that

1

n
|∇v|2 + n sin2(πv) =

( 1√
n
|∇v| −

√
n sin(πv)

)2
+ 2|∇v|| sin(πv)| ≥ |∇ϕ(v)|

a.e. in RN ,∀v ∈ H1
(
RN

)
.

(3.12)

If {un} is a sequence in H1
(
RN

)
, u ∈ S, and un → u in L1

(
RN

)
, then we have

lim inf
n→∞

fn(un) ≥ lim inf
n→∞

∫
RN

|∇ϕ(un)|dx ≥
∫
RN

|∇ϕ(u)| = f(u). (3.13)

It is easy to see that fn(un)→ +∞ whenever un → u 6∈ S L1
(
RN

)
. Part (i) of the definition of

Γ -convergence is thus fulfilled. The most delicate step of the argument is to construct a sequence

{un} as required in (3.2). tu

Corollary 3.6 Let {fn} and f be defined as in the latter theorem, and {un} be such that fn(un) =

inf fn for any n. Then there exists u ∈ S such that, possibly extracting a subsequence,

un → u strongly in L1
(
RN

)
. (3.14)

By Proposition 3.2 this entails that fn(un)→ f(u) = inf f .

Proof. By (3.12),
∫
RN |∇ϕ(un)| ≤ fn(un) for any n; by (3.2), {fn(un)} is bounded from above. By

the compactness of the injection BV
(
RN

)
⊂ L1

(
RN

)
, (3.14) then follows. tu

The Γ -convergence can be extended to topological spaces.

Convergence in the Sense of Kuratowski.
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Definition. Let (X, d) be a metric space, {An} be a sequence of subsets of X, and A ⊂ X. We say

that An converges to A in the sense of Kuratowski iff:

(i) for any u ∈ X, for any sequence {un ∈ An}, if un → u, then u ∈ A;

(ii) for any u ∈ A, there exists a sequence {un ∈ An} such that un → u.

On the basis of the following result, Γ -convergence has also been named epi-convergence.

Proposition 3.7 Let (X, d) be a metric space, and {fn} be a sequence of functions X → [−∞,+∞].

Then fn →Γ f iff epi(fn)→ epi(f) in the sense of Kuratowski in X×R. Moreover, for any sequence

of subsets {An} of X, IAn
→Γ IA iff An → A in the sense of Kuratowski in X. []

4. The Duality Mapping.

Let B be a real normed space B, denote its dual by B∗, its norm by ‖ · ‖ and the dual norm by

‖ · ‖∗. The possibly multi-valued mapping

F : B → 2B
∗

: u 7→ {u∗ ∈ B∗ : 〈u∗, u〉 = ‖u‖2 = ‖u∗‖2∗} (4.1)

is called the duality mapping of B (relative to the norm ‖ · ‖). It is easy to see that

F (u) =
{
u∗ ∈ B∗ : 〈u∗, u〉 =

1

2
‖u‖2 +

1

2
‖u∗‖2∗

}
∀u ∈ B. (4.2)

Moreover, F−1 is the duality mapping of B∗ (relative to the dual norm).

We claim that F (u) 6= ∅ for any u ∈ B. Let us define the linear functional f : λu 7→ λ‖u‖2 on the

one-dimensional space B1 := {λu : λ ∈ R}; note that ‖f‖B∗1 = ‖u‖. By the Hahn-Banach theorem,

f can be extended to a functional u∗ ∈ B∗ such that ‖u∗‖∗ = ‖u‖. As 〈u∗, u〉 = 〈f, u〉 = ‖u‖2, we

have u∗ ∈ F (u).

For instance, for any compact set K the duality mapping F of C0(K) (4) is defined as follows:

〈u∗, v〉 := max
{x∈K:|u(x)|=‖u‖}

‖u‖ sign(u(x)) v(x) ∀u, v ∈ C0(K),∀u∗ ∈ F (u). (4.3)

For any measurable domain Ω of RN and any p ∈ [1,+∞[, the duality mapping F of Lp(Ω) is

defined as follows:

u∗ :=

{
‖u‖2−p sign(u)|u|p−1 if u 6≡ 0

0 if u ≡ 0
a.e. in Ω, ∀u ∈ Lp(Ω),∀u∗ ∈ F (u). (4.4)

The duality mapping has the following geometric interpretation.

Proposition 4.1 For any u ∈ B and any u∗ ∈ B∗ \ {0}, the following three conditions are

equivalent:

(i) u∗ ∈ F (u);

(ii) 〈u∗, u−v〉 ≥ 0 for any v ∈ B(0, ‖u‖) (the closed ball of B of radius ‖u‖), and 〈u∗, u〉 = ‖u‖2;

(iii) the closed affine hyperplane {v ∈ B : 〈u∗, v〉 = ‖u‖2} supports B(0, ‖u‖) at u.

Proposition 4.2 For any u ∈ B and u∗ ∈ B∗, setting ϕ(u) := 1
2‖u‖

2 we have ϕ∗(u∗) := 1
2‖u
∗‖2

and F (u) = ∂ϕ(u). (5)

Proof. It suffices to recall (4.2) and the Fenchel identity. tu

(4) In this chapter we deal with real normed spaces and with real-valued functions. In the framework of
monotonicity this is fairly natural.

(5) It is also of interest to define the modified duality mapping J := ∂ψ, where ψ(u) := ‖u‖.


