
Notes on Sobolev Spaces — A. Visintin

Contents: 1. Distributions. 2. Regularity of Euclidean domains. 3. Sobolev spaces of positive

integer order. 4. Sobolev spaces of real integer order and traces. 5. Sobolev and Morrey imbeddings.

Note. The bullet • and the asterisk ∗ are respectively used to indicate the most relevant results

and complements. The symbol [] follows statements the proof of which has been omitted, whereas

[Ex] is used to propose the reader to fill in the argument as an exercise.

Here are some abbreviations that are used throughout:

a.a. = almost any; resp. = respectively; w.r.t. = with respect to.

p′: conjugate exponent of p, that is, p′ := p/(p− 1) if 1 < p < +∞, 1′ :=∞, ∞′ := 1.

N0 := N \ {0}; RN
+ := RN−1×]0,+∞[. |A| := measure of the measurable set A.

1. Distributions: omissis

2. Regularity of Euclidean Domains

Several notions may be used to define the regularity of a Euclidean open set Ω, or rather that of

its boundary Γ . Here we just introduce two of them.

Open Sets of Class Cm,λ. Let us denote by BN (x,R) the ball of RN of center x and radius R.

For any m ∈ N and 0 ≤ λ ≤ 1, we say that Ω is of class Cm,λ (here Cm,0 stays for Cm), and write

Ω ∈ Cm,λ, iff for any x ∈ Γ there exist:

(i) two positive constants R = Rx and δ,

(ii) a mapping ϕ : BN−1(x,R)→ R of class Cm,λ,

(iii) a Cartesian system of coordinates y1, ..., yN ,

such that the point x is characterized by y1 = ... = yN = 0 in this Cartesian system, and, for any

y′ := (y1, ..., yN−1) ∈ BN−1(x,R),

yN = ϕ(y′) ⇒ (y′, yN ) ∈ Γ,
ϕ(y′) < yN < ϕ(y′) + δ ⇒ (y′, yN ) ∈ Ω,
ϕ(y′)− δ < yN < ϕ(y′) ⇒ (y′, yN ) 6∈ Ω̄.

(2.1)

This means that Γ is an (N − 1)-dimensional manifold (without boundary) of class Cm,λ, and that

Ω stays only on one side of Γ . We say that Ω is a continuous (Lipschitz, Hölder, resp.) open set

whenever it is of class C0 (C0,1, C0,λ for some λ ∈ ]0, 1], resp.). (1)

For instance, the domain

Ωa,b,λ := {(x, y) ∈ R2 : x > 0, ax1/λ < y < bx1/λ} ∀λ ≤ 1,∀a, b ∈ R, a < b (2.2)

is of class C0,λ iff a < 0 < b. [Ex]

We say that Ω is uniformly of class Cm,λ iff

Ω ∈ Cm,λ, inf
x∈Γ

Rx > 0, sup
x∈Γ
‖ϕx‖Cm,λ < +∞. (2.3)

For instance this is fulfilled by any bounded domain Ω of class Cm,λ. [Ex]

Cone Property. The above notion of regularity of open sets is not completely satisfactory, in that

it excludes natural sets like balls with deleted center. We then introduce a further regularity notion.

(1) This notation refers to the Hölder spaces, that are defined half-a-page below ...
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We say that Ω has the cone property iff there exist a, b > 0 such that, defining the finite open

cone

Ca,b :=
{
x := (x1, ..., xN ) : x21 + ...+ x2N−1 ≤ bx2N , 0 < xN < a

}
,

any point of Ω is the vertex of a cone contained in Ω and congruent to Ca,b. For instance, any ball

with deleted center and the plane domains

Ω1 := {(ρ, θ) : 1 < ρ < 2, 0 < θ < 2π} (ρ, θ : polar coordinates),

Ω2 := {(x, y) ∈ R2 : |x|, |y| < 1, x 6= 0}
(2.4)

have the cone property, but are not of class C0. [Ex]

Proposition 2.1 Any bounded Lipschitz domain has the cone property. [Ex]

For unbounded Lipschitz domains this may fail; Ω := {(x, y) ∈ R2 : x > 1, 0 < y < 1/x}
is a counterexample. Note that a domain Ω is bounded whenever it has the cone property and

|Ω| < +∞. []

Hölder Spaces. Let us fix any λ ∈ ]0, 1]. The bounded continuous functions v : Ω → C such that

sup
x,y∈Ω,x6=y

|v(x)− v(y)|
|x− y|λ

< +∞

are said Hölder-continuous of exponent (or index) λ, and form a vector Banach space, that we

denote by C0,λ(Ω̄), equipped with the norm

‖v‖ := sup
x∈Ω
|v(x)|+ sup

x,y∈Ω,x6=y

|v(x)− v(y)|
|x− y|λ

. (2.5)

If λ = 1 these functions are said Lipschitz-continuous.

It is known that, for any m ∈ N, the functions Ω → C that are bounded and uniformly continuous

jointly with their derivatives up to order m form a Banach space denoted by Cm(Ω̄). The vector

space of the functions Ω → C that are bounded with their derivatives up to order m, and whose

derivatives are Hölder-continuous of exponent λ, form a Banach space equipped with the norm∑
|α|≤m

sup
x∈Ω
|Dαv(x)|+

∑
|α|=m

sup
x,y∈Ω,x6=y

|Dαv(x)−Dαv(y)|
|x− y|λ

, (2.6)

that we denote by Cm,λ(Ω̄).

Some Imbeddings. We say that a topological space A is imbedded in another topological space

B whenever A ⊂ B and the injection operator A → B (which is then called an imbedding) is

continuous.

Setting Cm,0 := Cm for any m ∈ N, we have the next obvious imbeddings:

Cm,λ(Ω̄) ⊂ Cm,ν(Ω̄) ∀λ, ν ∈ ]0, 1], ν ≤ λ,

Cm+1,λ(Ω̄) ⊂ Cm,λ(Ω̄) ∀m ∈ N,∀λ ∈ [0, 1]. (2.7)

Proposition 2.2 Let either Ω = RN , or Ω = RN−1×]0,+∞[
(

=: RN
+

)
, or Ω ∈ C0,1 and

bounded. Then:

(i) For any m1,m2 ∈ N, for any λ1, λ2 ∈ [0, 1],

Cm2,λ2(Ω̄) ⊂ Cm1,λ1(Ω̄) if either m1 < m2, or m1 = m2, λ1 ≤ λ2. (2.8)
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(ii) Any function of Cm,λ(Ω̄) can be extended to an element of Cm,λ
(
RN

)
. [On the other hand,

the restriction obviously preserves the regularity.] []

The next counterexample shows that some regularity is actually needed for (2.8) to hold. Let us

fix any λ ∈ ]0, 1[, and set

Ω := {(x, y) ∈ R2 : x2 + y2 < 1, y < |x|1/2}. (2.9)

Of course Ω ∈ C0,1/2 \ C0,ν for any ν > 1/2. For any a ∈ ]1, 2[, the function v : Ω → R : (x, y) 7→
(y+)a sign(x) belongs to C1(Ω̄) (=: C1,0(Ω̄)), but not to C0,ν(Ω̄) for any ν > a/2. [Ex]

The next statement provides a procedure to construct new normed spaces, and is easily extended

from the product of two spaces to that of a finite family.

Proposition 2.3 Let A and B be two normed spaces and p ∈ [1,+∞]. Then:

(i) The vector space A×B is a normed space equipped with the p-norm of the product:

‖(v, w)‖p := (‖v‖pA + ‖w‖pB)
1/p

if 1 ≤ p < +∞,
‖(v, w)‖∞ := max {‖v‖A, ‖w‖B} .

(2.10)

We denote this space by (A×B)p. These norms are mutually equivalent.

(ii) If A and B are Banach spaces, then (A×B)p is a Banach space.

(iii) If A and B are separable (reflexive, resp.), then (A×B)p is also separable (reflexive, resp.).

(iv) If A and B are uniformly convex and 1 < p < +∞, then (A×B)p is uniformly convex.

(v) If A and B are inner-product spaces (Hilbert spaces, resp.), equipped with the scalar product

(·, ·)A and (·, ·)B, resp., then (A × B)2 is an inner-product space (a Hilbert space, resp.) equipped

with the scalar product(
(u1, v1), (u2, v2)

)
2

:= (u1, u2)A + (v1, v2)B ∀(u1, v1), (u2, v2) ∈ (A×B)2.

‖(·, ·)‖2 is then the corresponding Hilbert norm.

(vi) F ∈ (A × B)′p (the dual space of (A × B)p) iff there exists a (unique) pair (g, h) ∈ A′ × B′
such that

〈F, (u, v)〉 = A′〈g, u〉A + B′〈h, v〉B ∀(u, v) ∈ (A×B)p. (2.11)

In this case

‖F‖(A×B)′p
= ‖(g, h)‖(A′×B′)p′ . (2.12)

The mapping (A×B)′p → (A′ ×B′)p′ : F 7→ (g, h) is indeed an isometric surjective isomorphism.

3. Sobolev Spaces of Positive Integer Order

In this section we introduce the Sobolev spaces of positive integer order, which consist of the

complex-valued functions defined on a domain Ω ⊂ RN that fulfill certain integrability properties

jointly with their distributional derivatives. We then see how these functions can be extended to

RN preserving their Sobolev regularity, and approximate them by smooth functions.

Sobolev Spaces of Positive Integer Order. Henceforth we shall denote by D derivatives in the

sense of distributions. For any domain Ω of RN , any m ∈ N and any p ∈ [1,+∞], we set

Wm,p(Ω) :=
{
v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), ∀α ∈ NN , |α| ≤ m

}
. (3.1)
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(Thus W 0,p(Ω) := Lp(Ω).) This is a vector space over C, that we equip with the norm

‖v‖Wm,p(Ω) :=

( ∑
|α|≤m

‖Dαv‖pLp(Ω)

)1/p

∀p ∈ [1,+∞[, (3.2)

‖v‖Wm,∞(Ω) := max
|α|≤m

‖Dαv‖L∞(Ω). (3.3)

We shall also write ‖ · ‖m,p in place of ‖ · ‖Wm,p(Ω). Equipped with this norm or with an equivalent

one (cf. Proposition 2.3), Wm,p(Ω) is called a Sobolev space of order m (and of integrability p).

• Proposition 3.1 For any m ∈ N and any p ∈ [1,+∞] the following occurs:

(i) Wm,p(Ω) is a Banach space over C.

(ii) If 1 ≤ p < +∞, Wm,p(Ω) is separable.

(iii) If 1 < p < +∞, Wm,p(Ω) is uniformly convex (hence reflexive).

(iv) ‖ · ‖m,2 is a Hilbert norm. Wm,2(Ω) (which is usually denoted by Hm(Ω)) is then a Hilbert

space, equipped with the scalar product

(u, v) :=
∑
|α|≤m

∫
Ω

DαuDαv dx ∀u, v ∈Wm,2(Ω). (3.4)

(v) If p 6=∞, then for any F ∈Wm,p(Ω)′ there exists a family {fα}|α|≤m ⊂ Lp
′
(Ω) such that

〈F, v〉 =
∑
|α|≤m

∫
Ω

fαD
αv dx ∀v ∈Wm,p(Ω). (3.5)

This entails that

‖F‖Wm,p(Ω)′ =

( ∑
|α|≤m

‖fα‖p
′

Lp′ (Ω)

)1/p′

if p ∈ ]1,+∞[, (3.6)

‖F‖Wm,1(Ω)′ = max
|α|≤m

‖fα‖L∞(Ω). (3.7)

Conversely, for any family {fα}|α|≤m as above, (3.5) defines a functional F ∈Wm,p(Ω)′. []

Proof. Parts (ii)—(v) can easily be proved by applying Proposition 2.3. [Ex] tu

Extension Operators. We call a linear operator E : L1
loc(Ω)→ L1

loc

(
RN

)
a regular extension

operator iff Eu = u a.e. in Ω for any u ∈ L1
loc

(
RN

)
, and its restriction is continuous from Wm,p(Ω)

to Wm,p(RN ) for any m ∈ N and any p ∈ [1,+∞]. For instance the trivial extension

ũ := u in Ω, ũ := 0 in RN \Ω, (3.8)

is not a regular extension operator, whenever Ω is regular enough. For instance, if Ω is a ball then

u ≡ 1 ∈W 1,p(Ω), but obviously ũ 6∈W 1,p
(
RN

)
.

• Theorem 3.2 (Calderón-Stein) For any uniformly-Lipschitz domain of RN , there exists a

regular extension operator. []

We illustrate the necessity of assuming some regularity for the domain Ω by means of two coun-

terexamples.
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Example 3.1. Let us set Q := ]0, 1[2, fix any λ ∈ ]0, 1[, and set

Ω := {(x, y) ∈ Q : y > xλ}, uγ(x, y) := y−γ ∀(x, y) ∈ Ω, ∀γ > 0. (3.9)

For any p ∈ [1,+∞[ a direct calculation shows that

uγ ∈W 1,p(Ω) ⇔ p(γ + 1) < 1 + λ−1. [Ex] (3.10)

Let us now assume that (0 <)γ < (1+λ−1)/2−1, namely 2(γ+1) < 1+λ−1; the inequality in (3.10)

is then fulfilled by some p̃ > 2. On the other hand W 1,p̃(Q) ⊂ L∞(Q), by a result that we shall

see in Sect. 3 (cf. Morrey’s Theorem). Therefore the unbounded function uγ cannot be extended to

any element of W 1,p̃(Q).

This example shows that, even for bounded domains, in Theorem 3.2 the hypothesis of Lipschitz

regularity of Ω cannot be replaced by the uniform C0,λ-regularity for any λ ∈ ]0, 1[. Note that for

λ = 1 this construction fails, and actually in that case the Calderón-Stein Theorem 3.2 applies.

Example 3.2. Let us set

Ω := {(x, y) ∈ R2 : |x|, |y| < 1, x 6= 0}, u : Ω → R : (x, y) 7→ sign(x); (3.11)

notice that u ∈ Wm,p(Ω) for any m ∈ N (actually, u ∈ Wm,p(Ω) ∩ C∞(Ω)!), but it cannot be

extended to any w ∈ Wm,p(R2) for any m ≥ 1. Actually Ω fulfills the cone property, but is not of

class C0,1.

Extension results are often applied to generalize to Wm,p(Ω) properties that are known to hold

for Wm,p(RN ). As the restriction operator is obviously continuous from Wm,p(RN ) to Wm,p(Ω),

under the hypotheses of Theorem 3.2, Wm,p(Ω) consists exactly of the restriction of the functions

of Wm,p(RN ). The next statement then follows.

Corollary 3.3 Let Ω be a uniformly-Lipschitz domain of RN . For any m ∈ N and any p ∈
[1,+∞], one can equip Wm,p(Ω) with the equivalent quotient norm

‖v‖ := inf{‖w‖Wm,p(RN ) : w ∈Wm,p(RN ), w|Ω = v} ∀v ∈Wm,p(Ω). [Ex] (3.12)

• Theorem 3.4 (Density) Let m ∈ N and p ∈ [1,+∞[.

(i) (Meyers and Serrin) For any domain Ω of RN , C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω).

(ii) If Ω is uniformly-Lipschitz, then D(Ω̄) is dense in Wm,p(Ω). [] (2)

It is easy to see that for p =∞ both statements fail.

As for the regularity of Ω, it is easily seen that part (i) holds for the functions defined in Examples

3.1 and 3.2, whereas part (ii) fails.

Proposition 3.5 (Calculus Rules) Let Ω be any domain of RN and p ∈ [1,+∞].

(i) For any u, v ∈W 1,p(Ω) ∩ Lp′(Ω),

uv ∈W 1,1(Ω), ∇(uv) = (∇u)v + u∇v a.e. in Ω. (3.13)

(ii) For any Lipschitz-continuous function F : C→ C and any u ∈W 1,p
loc (Ω), (2)

F (u) ∈W 1,p
loc (Ω), ∇F (u) = F ′(u)∇u a.e. in Ω. (3.14)

(2) By D(Ω̄) we denote the space of restrictions to Ω̄ of functions of D(RN ). Equivalently, D(Ω̄) is the space

of functions Ω̄ → C that can be extended to elements of D(RN ).
(2) We set W

1,p
loc (Ω) := {v ∈ D′(Ω) : ϕv ∈ W 1,p(Ω),∀ϕ ∈ D(Ω)}. Like L

p
loc(Ω), this is not a normed space.
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By Theorem 3.4(i) both statements can be proved via regularization. [Ex]

For any h ∈ RN and any Ω ⊂ RN , let us denote by τh the shift operator v 7→ v(·+ h).

Theorem 3.6 For any p ∈ [1,+∞],

v ∈W 1,p(RN ) ⇒ ‖τhv − v‖Lp(RN ) ≤ |h|‖∇v‖Lp(RN )N ∀h ∈ RN . (3.15)

The converse also holds if p > 1; that is, v ∈ W 1,p(RN ) whenever there exists a constant C > 0

such that for any h ∈ RN , ‖τhv − v‖Lp(RN ) ≤ C|h|. []

* Proof. For p =∞ the result is obvious; let us then assume that p < +∞. By the Jensen inequality

we have

|τhv(x)− v(x)|p =
∣∣∣ ∫ 1

0

h · ∇v(x+ th) dt
∣∣∣p ≤ |h|p ∫ 1

0

|∇v(x+ th)|p dt for a.e. x ∈ RN ;

hence

‖τhv − v‖pLp(RN )
≤ |h|p

∫
RN

dx

∫ 1

0

|∇v(x+ th)|p dt

= |h|p
∫ 1

0

dt

∫
RN

|∇v(x+ th)|p dx = |h|p
∫ 1

0

dt

∫
RN

|∇v(x)|p dx = |h|p
∫
RN

|∇v(x)|p dx.
tu

4. Sobolev Spaces of Real Order and Traces

By part (ii) of Theorem 3.4, D(RN ) is dense in Wm,p(RN ) for any p ∈ [1,+∞[ and any m ≥ 1.

This holds for no other domain of class C0; we just illustrate this issue via a simple example.

Let Ω be an open ball of RN , and set u ≡ 1 in Ω; obviously u ∈Wm,p(Ω) for any m ≥ 1 and any

p ∈ [1,+∞[. By contradiction, let us assume that it is possible to approximate u in the topology of

Wm,p(Ω) by means of a sequence {un} ⊂ D(Ω). The trivial extension operator v 7→ ṽ (cf. (3.8)) is

obviously continuous from D(Ω) to D(RN ) w.r.t. the Wm,p-topologies, for it obviously maps Cauchy

sequences to Cauchy sequences; hence ũn → ũ in Wm,p(RN ). But we saw that ũ 6∈ Wm,p(RN ).

Thus D(Ω) is not dense in Wm,p(Ω).

On account of this negative result, we set

Wm,p
0 (Ω) := closure of D(Ω) in Wm,p(Ω) ∀m ∈ N,∀p ∈ [1,+∞[, (4.1)

for any domain Ω ⊂ RN , and equip this space with (the restriction of) the norm of Wm,p(Ω).

The properties of Proposition 3.1 also hold for Wm,p
0 (Ω), which indeed is a closed subspace of

Wm,p(Ω). From this discussion we infer that Ω = RN is the only domain of class C0 such that

Wm,p
0 (Ω) = Wm,p(Ω) for any m > 0.

By the next statement, for any m > 1 the functions of Wm,p
0 (Ω) may be regarded as vanishing

on ∂Ω jointly with their derivatives up to order m− 1. (Under suitable regularity assumptions for

Ω, this property might be restated in terms of traces — a notion that we introduce ahead.)

Proposition 4.1 If m is a positive integer and the domain Ω is of class Cm, then

(Dαv)
∣∣
∂Ω

= 0 ∀v ∈Wm,p
0 (Ω) ∩ Cm−1(Ω̄),∀α ∈ NN , |α| ≤ m− 1.

Sobolev Spaces of Negative Order. Next we set

W−m,p
′
(Ω) := Wm,p

0 (Ω)′ (⊂ D′(Ω)) ∀m ∈ N,∀p ∈ [1,+∞[, (4.2)
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and equip it with the dual norm

‖u‖W−m,p′ (Ω) := sup
{
〈u, v〉 : v ∈Wm,p

0 (Ω), ‖v‖Wm,p(Ω) = 1
}

(here by 〈·, ·〉 we denote the pairing between W−m,p
′
(Ω) and Wm,p

0 (Ω)). (2)

The Sobolev spaces of negative order inherit several properties from their preduals.

Proposition 4.2 For any m ∈ N and any p ∈ [1,+∞[, W−m,p
′
(Ω) is a Banach space.

(i) If 1 < p < +∞, W−m,p
′
(Ω) is separable and reflexive.

(ii) ‖ · ‖−m,2 is a Hilbert norm, and W−m,2(Ω) is a Hilbert space (that is usually denoted by

H−m(Ω)).

Proposition 4.3 (Characterization of Sobolev Spaces of Negative Integer Order) For any m ∈ N

and any p ∈ [1,+∞[,

F ∈W−m,p
′
(Ω) ⇔ ∃{fα}|α|≤m ⊂ Lp

′
(Ω) : F =

∑
|α|≤mD

αfα in D′(Ω). (4.3)

[This representation of F need not be unique.]

Proof. By the Hahn-Banach theorem any F ∈ W−m,p
′
(Ω) can be extended to a functional F̃ ∈

Wm,p(Ω)′. By part (v) of Proposition 3.1 then there exists a family {fα}|α|≤m in Lp
′
(Ω) such that

〈F̃ , v〉 =
∑
|α|≤m

(−1)|α|
∫
Ω

fαD
αv dx ∀v ∈Wm,p(Ω),

Restricting this equality to v ∈ D(Ω), we then get F =
∑
|α|≤mD

αfα in D′(Ω).

Conversely, any distribution of this form is obviously a functional of W−m,p
′
(Ω). tu

Sobolev Spaces of Positive Noninteger Order. Let us fix any p ∈ [1,+∞[, any λ ∈ ]0, 1[, set

[aλ,p(v)](x, y) :=
v(x)− v(y)

|x− y|
N
p +λ

∀x, y ∈ Ω (x 6= y),∀v ∈ L1
loc(Ω), (4.4)

Wλ,p(Ω) :=
{
v ∈ Lp(Ω) : aλ,p(v) ∈ Lp(Ω2)

}
, (4.5)

and equip this space with the p-norm of the graph

‖v‖λ,p :=
(
‖v‖pLp(Ω) + ‖aλ,p(v)‖pLp(Ω2)

)1/p
. (4.6)

In order to complete this picture we also set

Wλ,∞(Ω) := C0,λ(Ω̄) ∀λ ∈ ]0, 1[. (4.7)

Let us next fix any positive m ∈ N, and set

Wm+λ,p(Ω) :=
{
v ∈Wm,p(Ω) : Dαv ∈Wλ,p(Ω), ∀α ∈ NN , |α| = m

}
; (4.8)

(2) Notice that we have thus defined W−m,q(Ω) only for 1 < q ≤ +∞, and that for m = 0 we retrieve

W 0,p′(Ω) = Lp
′
(Ω).
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this is a normed space over C equipped with the p-norm of the graph

‖v‖m+λ,p :=

(
‖v‖pm,p +

∑
|α|=m

‖Dαv‖pλ,p

)1/p

=

(∑
|α|≤m

∫
Ω

|Dαv|p dx+
∑
|α|=m

∫∫
Ω2

|[aλ,p(Dαv)](x, y)|p dxdy

)1/p

.

(4.9)

Let us also set

Wm+λ,∞(Ω) := Cm,λ(Ω̄) ∀m ∈ N,∀λ ∈ ]0, 1[. (4.10)

The spaces Wm+λ,p(Ω) are called Sobolev spaces of fractional order (sometimes just fractional

Sobolev spaces), or also Slobodeckĭı spaces.

Proposition 4.4 For any m ∈ N, any 0 < λ < 1 and any p ∈ [1,+∞[, setting s := m + λ the

following occurs:

(i) W s,p(Ω) is a Banach space over C. For any q ∈ [1,+∞], W s,p(Ω) may also be equipped with

the q-norm of the graph, and these norms are equivalent.

(ii) If p < +∞, W s,p(Ω) is separable.

(iii) If 1 < p < +∞, W s,p(Ω) is uniformly convex (hence reflexive).

(iv) ‖·‖s,2 is a Hilbert norm. W s,2(Ω) (that will be denoted by Hs(Ω)) is a Hilbert space, equipped

with the scalar product

(u, v) :=
∑
|α|≤m

∫
Ω

Dαu(x)Dαv(x) dx+
∑
|α|=m

∫∫
Ω2

Dαu(x)Dαv(y)

|x− y|N+2λ
dxdy

∀u, v ∈W s,2(Ω).

(4.11)

Outline of the Proof. Let us denote by k(m) (k̃(m), resp.) the number of multi-indices α ∈ NN

such that |α| ≤ m (|α| = m, resp.). If p = +∞ we already know that Wm+λ,∞(Ω) := Cm,λ(Ω̄) is

a Banach space. If p < +∞, we set

L1(v) := {Dαv : |α| ≤ m}, L2(v) := {aλ,p(Dαv) : |α| = m} ∀v ∈ Lp(Ω);

the thesis then follows by applying Proposition 2.2. tu

Proposition 4.5 Let Ω be any nonempty domain of RN , and set Ωn :=
{
x ∈ Ω : d

(
x,RN \Ω

)
>

1/n
}

for any n ∈ N. Then

‖u‖W s,p(Ωn) → ‖u‖W s,p(Ω) ∀u ∈W s,p(Ω),∀s ≥ 0,∀p ∈ [1,+∞]. (4.12)

Outline of the Proof. With no loss of generality one may assume that Ω is bounded. For p 6= ∞,

the statement then follows from the absolute continuity of the integral. For p =∞ the proof is even

simpler. [Ex] tu

Hilbert-Type Sobolev Spaces of Fractional Order. For any u ∈ L1, (3) we set

H̃s :=
{
v ∈ S ′ : (1 + |ξ|2)s/2v̂ ∈ L2} ∀s ∈ R, (4.13)

which is a Hilbert space equipped with the norm

‖v‖H̃s := ‖(1 + |ξ|2)s/2v̂‖L2 ∀v ∈ H̃s. (4.14)

(3) We still write L1 instead of L1(RN ) and similarly, and denote the Fourier transform of any u ∈ S ′ by û.
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By the Plancherel theorem∫
RN

uv dx =

∫
RN

ûv̂ dx =

∫
RN

[(1 + |ξ|2)s/2û] [(1 + |ξ|2)−s/2v̂] dx

≤ ‖u‖H̃s ‖v‖H̃−s ∀u, v ∈ S,∀s ∈ R.

(4.15)

One can then show that (H̃s)′ can be identified with H̃−s for any real s.

Proposition 4.6 For any s ∈ R, H̃s = Hs.

For any m ∈ Z, the equivalence between the norms of H̃m and Hm is easily checked, since for

any α ∈ NN F(Dαu) = (2πiξ)αû, whence by the Plancherel theorem

‖Dαu(x)‖L2 = ‖F [Dαu(x)]‖L2 = (2π)|α|‖ξαû(ξ)‖L2 .

Moreover

∃C > 0 : ∀ξ ∈ RN C(1 + |ξ|2)|α|/2 ≤ |ξ||α| ≤ (1 + |ξ|2)|α|/2. [Ex]

The Hilbert spaces H̃s (with s ∈ R) may thus be regarded as Sobolev spaces (of real order).

The definition of the spaces H̃s (= H̃s(RN )) is then extended to H̃s(Ω) for any uniformly

Lipschitz domain Ω ⊂ RN as follows, in analogy with (3.12):

H̃s(Ω) =
{
w|Ω : w ∈ H̃s(RN )

}
,

‖v‖H̃s(Ω) = inf{‖w‖H̃s(RN ) : w|Ω = v} ∀s > 0.
(4.16)

Therefore H̃s(Ω) = Hs(Ω) (= W s,2(Ω)) for any s ∈ R.

Sobolev Spaces of Negative Noninteger Order. This construction mimics that of Sobolev

spaces of negative integer order. First we set

W s,p
0 (Ω) := closure of D(Ω) in W s,p(Ω) ∀s ≥ 0,∀p ∈ [1,+∞[, (4.17)

and equip it with the topology induced by W s,p(Ω). The properties stated in Proposition 3.1

hold also for W s,p
0 (Ω). (4) This is a normal space of distributions, hence its dual is also a space of

distributions. We then set

W−s,p
′
(Ω) := W s,p

0 (Ω)′ (⊂ D′(Ω)) ∀s ≥ 0,∀p ∈ [1,+∞[, (4.18)

and equip it with the dual norm

‖u‖−s,p′ := sup
{
〈u, v〉 : v ∈W s,p

0 (Ω), ‖v‖s,p = 1
}
.

A result analogous to Proposition 4.2 holds for W−s,p
′
(Ω).

We have thus completed the definition of the scale of Sobolev spaces. In the next statement we

gather their main properties.

Proposition 4.7 Let s ∈ R and p ∈]1,+∞] (with p = 1 included if s ≥ 0). Then:

(i) W s,p(Ω) is a Banach space over C.

(ii) If p < +∞, W s,p(Ω) is separable.

(iii) If 1 < p < +∞, W s,p(Ω) is reflexive.

(4) Theorems 3.2—3.4 also hold for fractional indices, too. []
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(iv) ‖ · ‖s,2 is a Hilbert norm, and W s,2(Ω) (=: Hs(Ω)) is a Hilbert space.

(v) If s ≥ 0, the same properties hold for W s,p
0 (Ω), the closure of D(Ω) in W s,p(Ω).

Let us set

W s,p
loc (Ω) :=

{
v ∈ D′(Ω) : ϕv ∈W s,p(Ω),∀ϕ ∈ D(Ω)

}
∀s ∈ R,∀p ∈ [1,+∞]. (4.19)

This is a Fréchet space, equipped with the family of seminorms {v 7→ ‖ϕv‖s,p : ϕ ∈ D(Ω)}; indeed

this topology can be generated by a countable family of these seminorms.

Traces. Dealing with PDEs it is of paramount importance to prescribe boundary- (and/or initial-)

values. However, for functions of Sobolev spaces the restriction to a lower dimensional manifold

M⊂ Ω̄ is meaningless, forM has vanishing Lebesgue measure and these functions are only defined

a.e. in Ω. Nevertheless by means of functional methods one can generalize the concept of restriction

by introducing the notion of trace.

For instance, let Ω := ]0, 1[ andM := {x0}. For any v ∈ C1([0, 1]) and any x, x0 ∈ [0, 1], we have

v(x0) = v(x) +
∫ x0

x
v′(ξ) dξ; hence

|v(x0)| =
∫ 1

0

|v(x0)| dx ≤
∫ 1

0

(
|v(x)|+

∫ x0

x

|v′(ξ)| dξ
)
dx ≤ ‖v‖W 1,1(0,1).

The restriction v 7→ v(x0) may thus be extended to a uniquely defined continuous operatorW 1,1(0, 1)→
R. Let us now set Ω :=]0, 1[2. By a similar argument, one can easily check that v(0, ·) ∈ Lp(0, 1)

whenever v,Dx1v ∈ Lp(Ω), and moreover, for a suitable constant C > 0,

‖v(0, ·)‖Lp(0,1) ≤ C
(
‖v‖Lp(0,1) + ‖Dx1v‖Lp(0,1)

)
if v,Dx1v ∈ Lp(Ω).

Next we state two basic trace results. First notice that Γ may be equipped with the (N − 1)-

dimensional Hausdorff measure whenever Ω is (e.g.) of class C0,1. One can then define the Banach

space Lp(Γ ) for any p ∈ [1,+∞].

• Theorem 4.8 (Traces) Let 1 ≤ p ≤ +∞, s > 1/p, and Ω be a bounded domain of RN of class

C0,1. There exists a (unique) linear and continuous trace operator γ0 : W s,p(Ω)→ Lp(Γ ) such that

γ0v = v on Γ for any v ∈ D(Ω̄). []

• Theorem 4.9 (Normal Traces) Let 1 ≤ p ≤ +∞, s > 1 + 1/p, Ω be a bounded domain of RN

of class C1,1, and ~ν be the outward-oriented unit normal vector field on Γ . There exists a (unique)

linear and continuous normal trace operator γ1 : W s,p(Ω) → Lp(Γ ) such that γ1v = ∂v/∂~ν on Γ

for any v ∈ D(Ω̄). []

Notice that the normal trace is the trace of the derivative in the normal direction: γ1v = γ0(~ν·∇v),

after that the normal field has been smoothly extended to a neighbourhood of ∂Ω.

We can also characterize the spaces W 1,p
0 and W 2,p

0 in terms of traces (cf. Proposition 4.1):

• Proposition 4.9 Let Ω be a bounded domain of RN of class C1,1. For any p ∈ [1,+∞],

W 1,p
0 (Ω) = {v ∈W 1,p(Ω) : γ0v = 0 a.e. on Γ}, (4.20)

W 2,p
0 (Ω) = {v ∈W 2,p(Ω) : γ1v = γ0v = 0 a.e. on Γ}. (4.21)

More generally, for k = 1, 2, W k,p
0 (Ω) is the space of all functions of W k,p(Ω) such that all the

traces that make sense in W k,p(Ω) vanish. [] Thus for instance

W 2,p(Ω) ∩W 1,p
0 (Ω) = {v ∈W 2,p(Ω) : γ0v = 0 a.e. on Γ} 6= W 2,p

0 (Ω). (4.22)
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The next result is often applied in the study of PDEs with Dirichlet boundary conditions.

Theorem 4.10 (Friedrichs Inequality) Assume that Ω is a bounded Lipschitz domain of RN , let

Γ1 ⊂ Γ have positive (N − 1)-dimensional measure, and p ∈ [1,+∞]. Then

v 7→ ‖v‖ :=
(
‖∇v‖p

Lp(Ω)N
+ ‖γ0v‖pLp(Γ1)

)1/p
(4.23)

is an equivalent norm in W 1,p(Ω).

* Proof. By the continuity of the trace operator W 1,p(Ω) → Lp(Γ1), there exists C > 0 such that

‖v‖ ≤ C‖v‖1,p for any v ∈ W 1,p(Ω). The converse inequality holds if we show that there exists

Ĉ > 0 such that

‖v‖Lp(Ω) ≤ Ĉ
(
‖∇v‖p

Lp(Ω)N
+ ‖γ0v‖pLp(Γ1)

)1/p ∀v ∈W 1,p(Ω).

By contradiction, let us assume that for any n ∈ N there exists vn ∈W 1,p(Ω) such that

‖vn‖Lp(Ω) > n
(
‖∇vn‖pLp(Ω)N

+ ‖γ0vn‖pLp(Γ1)

)1/p
. (4.24)

Possibly dividing this inequality by ‖vn‖Lp(Ω), we can assume that ‖vn‖Lp(Ω) = 1 for any n. We

infer that there exists v ∈W 1,p(Ω) such that, possibly extracting a subsequence, vn → v weakly in

W 1,p(Ω). By (4.24), ∇vn → 0 strongly in Lp(Ω)N and γ0vn → 0 strongly in Lp(Γ1). Hence ∇v = 0

a.e. in Ω and γ0v = 0 a.e. on Γ1. This entails that v = 0 a.e. in Ω, as Ω is connected. On the other

hand, as the injection W 1,p(Ω) → Lp(Ω) is compact, (5) ‖v‖Lp(Ω) = limn→+∞ ‖vn‖Lp(Ω) = 1, and

this is a contradiction. tu

Exercises.

— Let Ω be a uniformly-Lipschitz domain of RN and 1 ≤ p ≤ +∞. For any s ∈ R, let us denote

by W s,p
c (Ω) the subspace of compactly supported distributions of W s,p(Ω). Show that⋂

s∈R

W s,p
c (Ω) = D(Ω),

⋃
s∈R

W s,p
c (Ω) = E ′(Ω),

⋂
s∈R

W s,p
loc (Ω) = E(Ω),

⋃
s∈R

W s,p
loc (Ω) = D′F (Ω)

(the latter is the space of distributions of finite order).

5. Sobolev and Morrey Imbeddings

Basic Imbeddings. Obviously

|Ω| < +∞ ⇒ Cm(Ω̄) ⊂Wm,p(Ω) ∀m ∈ N,∀p ∈ [1,+∞], (5.1)

whereas the opposite inclusion fails, and Cm,1(Ω̄) ⊂Wm+1,∞(Ω) for any domain Ω. Moreover

Ω ∈ C0 ⇒ Cm,1(Ω̄) = Wm+1,∞(Ω) ∀m ∈ N. [] (5.2)

The following simple counterexample shows that this equality fails if Ω is not regular enough.

Let Ω1 be as in (2.4XXX), and set u(ρ, θ) = θ for any (ρ, θ) ∈ Ω1. Then u ∈ Wm,p(Ω1) for any

m ∈ N and any p ∈ [1,+∞], but u 6∈ C0(Ω̄1). Actually the domain Ω1 fulfills the cone property

but is not of class C0.

(5) This property will be seen ahead...
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For reasons that will appear ahead, we shall set

Wm+λ,∞(Ω) := Cm,λ(Ω̄) ∀m ∈ N,∀λ ∈ ]0, 1[,∀ domain Ω ⊂ RN . (5.3)

Next we compare Sobolev spaces having either different differentiability indices, m, or different

integrability indices, p. We shall see that the larger is either index, the smaller is the space (under

appropriate hypotheses).

Proposition 5.1 For any domain Ω ⊂ RN and any m ∈ N and any p1, p2 ∈ [1,+∞],

|Ω| < +∞, p1 < p2 ⇒
Wm,p2(Ω) ⊂Wm,p1(Ω)

Wm,p2
0 (Ω) ⊂Wm,p1

0 (Ω)
(with density). (5.4)

Proof. (5.4) directly follow from the analogous inclusion between Lp-spaces. tu

Proposition 5.2 Let Ω be a uniformly-Lipschitz domain of RN . For any m1,m2 ∈ N and for

any p ∈ [1,+∞],

m1 ≤ m2 ⇒
Wm2,p(Ω) ⊂Wm1,p(Ω)

Wm2,p
0 (Ω) ⊂Wm1,p

0 (Ω)
(with density). (5.5)

Proof. The inclusions are obvious. As by Theorem 3.4 D(Ω̄) is dense in both spaces, the density

follows. tu

The Sobolev Theorem. Two further classes of imbedding results are of paramount importance

in the theory of Sobolev spaces, and respectively concern imbeddings between Sobolev spaces and

from Sobolev to Hölder spaces:

W r,p(Ω) ⊂W s,q(Ω) and W r,p(Ω) ⊂ C`,λ(Ω̄) (for suitable indices).

These results are first proved for Ω = RN and then generalized to any uniformly-Lipschitz domain

via Calderón-Stein’s Theorem 3.2.

After Propositions 5.1 and 5.2 we already know that the larger are either the differentiability

index m or the integrability index p or both, the smaller is Wm,p(Ω). What happens when these

two indices vary in opposite directions? We shall see that, under appropriate restrictions on the

integrability indices, the larger is m the smaller is the space. (Loosely speaking, the differentiability

prevails over the integrability.) The converse always fails:

m1 < m2 ⇒ Wm1,p(Ω) 6⊂Wm2,q(Ω)

∀m1,m2 ∈ N,∀p, q ∈ [1,+∞],∀Ω.
[Ex] (5.7)

Nontrivial imbeddings between Sobolev spaces rest on the following fundamental inequality due

to Sobolev.

• Theorem 5.3 (Sobolev Inequality) For any N > 1 and any p ∈ [1, N [, there exists a constant

C = CN,p > 0 such that, setting p∗ := Np/(N − p),

‖u‖Lp∗ (RN ) ≤ C‖∇u‖Lp(RN )N ∀u ∈ D(RN ). [] (5.8)

Although this inequality only applies to functions with bounded support (u ≡ 1 is an obvious

counterexample), the constant C does not depend on the support.
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Proof for p = 1. In this case the argument is much simpler than in the general setting. We just

illustrate the procedure for N = 2, however the extension to any N is trivial. For any u ∈ D(R2),

|u(x, y)| =
∣∣∣ ∫ x

−∞

∂u

∂x̃
(x̃, y) dx̃

∣∣∣ ≤ ∫
R

|∇u(x̃, y)| dx̃ ∀(x, y) ∈ R2,

and similarly |u(x, y)| ≤
∫
R
|∇u(x, ỹ)| dỹ. Therefore∫∫

R2

|u(x, y)|2 dxdy ≤
∫
R2

(∫
R

|∇u(x̃, y)| dx̃
)(∫

R

|∇u(x, ỹ)| dỹ
)
dxdy

=

∫
R2

|∇u(x̃, y)| dx̃dy
∫
R2

|∇u(x, ỹ)| dxdỹ =
(∫

R2

|∇u(x, y)| dxdy
)2
,

that is, ‖u‖L2(R2) ≤ ‖∇u‖L1(R2)2 . Of course here 2∗ = 1 (for N = 2). tu

Remark. If we assume that an inequality of the form (5.8) is fulfilled, we can establish the relation

between p∗ and p via the following simple scaling argument. Let us fix any u ∈ D(RN ) and set

vt(x) := u(tx) for any x ∈ RN and any t > 0. Writing (5.8) for vt we then get

‖u‖Lp∗ (RN ) ≤ Ct1+N/p
∗−N/p‖∇u‖Lp(RN )N ∀u ∈ D(RN ),∀t > 0.

This inequality may hold only if 1 +N/p∗ −N/p = 0, that is, p∗ := Np/(N − p).

Sobolev’s Imbeddings. As obviously ‖∇u‖Lp(RN )N ≤ ‖u‖1,p, by the density of D(RN ) in

W 1,p(RN ) the Sobolev inequality (5.8) entails

W 1,p(RN ) ⊂ Lp
∗
(RN )

(
=: W 0,p∗(RN )

)
. (5.9)

On this basis one can prove the following more general result.

• Theorem 5.4 (Sobolev Imbeddings) Let Ω be a uniformly-Lipschitz domain of RN . For any

`,m ∈ N and any p, q ∈ [1,+∞],

p ≤ q, `− N

q
≤ m− N

p
⇒ Wm,p(Ω) ⊂W `,q(Ω) (5.10)

(with density if q 6= +∞). This statement also holds if both W -spaces are replaced either by the

corresponding W0-spaces, or by the corresponding Wloc-spaces. In the two latter cases Ω may be

any domain of RN .

* Proof. On account of the regularity of Ω, by the Calderón-Stein’s Theorem 3.2 it suffices to prove

the inclusion for Ω = RN . It also suffices to deal with m = 1 and ` = 0, since by applying this

result iteratively one may then get it in general.

The Sobolev inequality (3.7) yields W 1,p(RN ) ⊂ Lp
∗
(RN ). Let q ∈ [p, p∗]; as W 1,p(RN ) ⊂

Lp(RN ) and Lp(RN ) ∩ Lp∗(RN ) ⊂ Lq(RN ), [Ex] we conclude that W 1,p(RN ) ⊂ Lq(RN ).

We claim that the injection operator j : Wm,p(Ω)→W `,q(Ω) is continuous. By the Closed Graph

Theorem, it suffices to show that the set G := {(v, jv) : v ∈ Wm,p(Ω)} is closed in Wm,p(Ω) ×
W `,q(Ω). Now, if (vn, jvn)→ (v, w) in the latter space, then there exists a subsequence {vn′} such

that vn′ → v a.e. in Ω. Hence w = jv a.e. in Ω. tu

Remarks. (i) p ≤ q and `−N/q ≤ m−N/p entail ` ≤ m, consistently with (5.7).

(ii) If |Ω| < +∞, then in (5.10) the hypothesis p ≤ q may be replaced by ` ≤ m. [Ex]
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Morrey Imbeddings. Next we come to another important class of imbeddings, that read Wm,p(Ω)

⊂ C`,λ(Ω̄) under suitable hypotheses on m, p, `, λ. By an inclusion like this we mean that for any

v ∈Wm,p(Ω) there exists a (necessarily unique) v̂ ∈ C`,λ(Ω̄) such that v̂ = v a.e. in Ω. That is, the

equivalence class Wm,p(Ω) contains one (and only one) function of C`,λ(Ω̄). Henceforth we shall

systematically assume this convention.

The next result applies to the case of p > N , which is not covered by Sobolev’s Theorem 5.4.

• Theorem 5.5 (Morrey Imbeddings) Let Ω be a uniformly-Lipschitz domain of RN , `,m ∈ N,

1 ≤ p < +∞ and 0 < λ < 1. Then

`+ λ ≤ m− N

p
⇒ Wm,p(Ω) ⊂ C`,λ(Ω̄). (5.11)

Moreover, (6)

Wm+N,1(Ω) ⊂ Cmb (Ω). [] (5.12)

Proof of (5.12). It suffices to show this statement for Ω = RN and for m = 0. We have

|u(x1, . . . , xN )| =
∣∣∣∣ ∫ x1

−∞
dy1 · · ·

∫ xN

−∞
dyN

∂Nu

∂y1 · · · ∂yN
(y1, . . . , yN )

∣∣∣∣
≤
∥∥∥ ∂Nu

∂y1 · · · ∂yN

∥∥∥
L1(RN )

≤ ‖u‖N,1 ∀u ∈ D(RN ).

By density we then get ‖u‖C0
b
(RN ) ≤ ‖u‖N,1 for any u ∈WN,1(RN ). [Ex] tu

Remarks. (i) In particular (5.12) yields W 1,1(Ω) ⊂ L∞(Ω) if N = 1. However

W 1,N (Ω) 6⊂ L∞(Ω) ∀N > 1. (5.13)

For instance, setting Ω := B(0, 1/2) (the ball of center the origin and radius 2) and

vα(x) := (− log |x|)α ∀x ∈ Ω, ∀α ∈ ]0, 1− 1/N [, (5.14)

it is easy to check that vα ∈W 1,N (Ω)), although of course vα 6∈ L∞(Ω).

(ii) After (5.3), setting N/∞ := 0 the Morrey imbedding (5.11) might be regarded as a limit case

of the Sobolev imbedding (5.9) for q =∞.

Regularity Indices. Defining

the Sobolev index IS(m, p) := m−N/p for the Sobolev space Wm,p(Ω), (5.15)

the Hölder index IH(m,λ) := m+ λ for the Hölder space Cm,λ(Ω̄), (5.16)

the implications (5.10) and (5.11) of the Sobolev and Morrey imbeddings respectively also read

p ≤ q, ` ≤ m, IS(`, q) ≤ IS(m, p) ⇒ Wm,p(Ω) ⊂W `,q(Ω), (5.17)

` ≤ m, IH(`, λ) ≤ IS(m, p) ⇒ Wm,p(Ω) ⊂ C`,λ(Ω̄). (5.18)

• Theorem 5.6 (Compactness) Let Ω be a bounded Lipschitz domain of RN , `,m ∈ N0, 1 ≤
p ≤ q ≤ +∞, and 0 ≤ λ ≤ 1. Then:

(i) (Rellich-Kondrachov) If in (5.10) `−N
q < m−N

p , then the corresponding injection is compact.

(ii) If m1 + ν1 < m2 + ν2, then Cm2,ν2(Ω̄) ⊂ Cm1,ν1(Ω̄) with continuous and compact injection.

(iii) If in (5.11) the inequality is strict, then the corresponding injection is compact.

Parts (i) and (iii) hold also if the W -spaces are replaced by the corresponding either W0- or

Wloc-spaces; in either case Ω may be any domain of RN .

(6) By Cmb (Ω) we denote the space of functions Ω → C that are continuous and bounded with their derivatives

up to order m, possibly without being uniformly continuous. Notice that Cmb (Ω) = Cm(Ω̄) iff Ω is bounded.)


