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Note. The bullet • and the asterisk ∗ are respectively used to indicate the most relevant results

and complements. The symbol [] follows statements the proof of which has been omitted, whereas

[Ex] is used to propose the reader to fill in the argument as an exercise.

Here are some abbreviations that are used throughout:

a.a. = almost any; resp. = respectively; w.r.t. = with respect to.

p′: conjugate exponent of p, that is, p′ := p/(p− 1) if 1 < p < +∞, 1′ :=∞, ∞′ := 1.

N0 := N \ {0}; RN
+ := RN−1×]0,+∞[. |A| := measure of the measurable set A.

1. Hölder spaces

First we state a result, that provides a procedure to construct normed spaces, and is easily

extended from the product of two spaces to that of a finite family. This technique is very convenient,

and we shall repeatedly use it.

Proposition 1.1 Let A and B be two normed spaces and p ∈ [1,+∞]. Then:

(i) The vector space A×B is a normed space equipped with the p-norm of the product:

‖(v, w)‖p := (‖v‖pA + ‖w‖pB)
1/p

if 1 ≤ p < +∞,
‖(v, w)‖∞ := max {‖v‖A, ‖w‖B} .

(1.1)

Let us denote this space by (A×B)p. These norms are mutually equivalent.

(ii) If A and B are Banach spaces, then (A×B)p is a Banach space.

(iii) If A and B are separable (reflexive, resp.), then (A×B)p is also separable (reflexive, resp.).

(iv) If A and B are uniformly convex and 1 < p < +∞, then (A×B)p is uniformly convex.

(v) If A and B are inner-product spaces (Hilbert spaces, resp.), equipped with the scalar product

(·, ·)A and (·, ·)B, resp., then (A × B)2 is an inner-product space (a Hilbert space, resp.) equipped

with the scalar product(
(u1, v1), (u2, v2)

)
2

:= (u1, u2)A + (v1, v2)B ∀(u1, v1), (u2, v2) ∈ (A×B)2.

‖(·, ·)‖2 is then the corresponding Hilbert norm.

(vi) F ∈ (A × B)′p (the dual space of (A × B)p) iff there exists a (unique) pair (g, h) ∈ A′ × B′
such that

〈F, (u, v)〉 = A′〈g, u〉A + B′〈h, v〉B ∀(u, v) ∈ (A×B)p. (1.2)

In this case

‖F‖(A×B)′p
= ‖(g, h)‖(A′×B′)p′ . (1.3)

The mapping (A×B)′p → (A′ ×B′)p′ : F 7→ (g, h) is indeed an isometric surjective isomorphism.

(We omit the simple argument, that rests upon classical properties of Banach spaces.)

A variant of the above result consists in equipping Banach spaces with the graph norm, associated

to a linear operator.

Spaces of Continuous Functions. Throughout this section, by K we shall denote a compact

subset of RN , and by Ω a (possibly unbounded) domain of RN .
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The linear space of continuous functions K → C, denoted by C0(K), is a Banach space equipped

with the sup-norm pK(v) := supx∈K |v(x)| (this is even a maximum). The corresponding topology

induces the uniform convergence.

The linear space of continuous functions Ω → C, denoted by C0(Ω), is a locally convex Fréchet

space equipped with a family of seminorms: {pKn : K ⊂⊂ Ω}, where {Kn : n ∈ N} is a nonde-

creasing sequence of compact sets that invades Ω, namely
⋃
n∈NKn = Ω. (1) This topology induces

the locally uniform convergence.

The linear space of bounded continuous functions Ω → C, denoted by C0
b (Ω), is also a Banach

space equipped with the sup-norm pΩ(v) := supx∈Ω |v(x)|, and is thus a subspace of C0(Ω).

AsΩ is a metric space, we may also deal with uniformly continuous functions. In the literature, the

linear space of bounded and uniformly continuous functions Ω → C is often denoted by BUC(Ω) or

C0(Ω̄), as these functions have a unique continuous extension to Ω̄. The latter notation is customary

but slightly misleading: for instance,

C0
(
RN

)
6= C0

(
RN

)
(1.4)

although obviously RN = RN . For any domain Ω, C0(Ω̄) is strictly contained in C0
b (Ω). However,

if Ω is bounded then K := Ω̄ is compact, and C0(Ω̄) may be identified with the space C0(K) that

we defined above. Notice that C0(Ω̄) (= BUC(Ω)) is a closed subspace of C0
b (Ω), and the inclusion

is strict; for instance,

{x 7→ sin(1/x)} ∈ C0
b (]0, 1[) \ C0(]0, 1[), {x 7→ sin(x2)} ∈ C0

b

(
R
)
\ C0

(
R̄
)
. (1.5)

In this section we shall see several other spaces over Ω̄ that are included into the corresponding

space over Ω.

Spaces of Hölder-Continuous Functions. Let us fix any λ ∈ ]0, 1]. The bounded continuous

functions v : Ω → C such that

pΩ,λ(v) := sup
x,y∈Ω,x6=y

|v(x)− v(y)|
|x− y|λ

< +∞ (1.6)

are said Hölder-continuous of index (or exponent) λ, and form a linear space that we denote

by C0,λ(Ω̄) and equip with the graph norm. If λ = 1 these functions are said to be Lipschitz

continuous. Obviously Hölder functions are uniformly continuous, so C0,λ(Ω̄) ⊂ C0(Ω̄). The

functional pΩ,λ is a seminorm. [Ex]

Proposition 2.1 For any λ ∈ ]0, 1], C0,λ(Ω̄) is a Banach space when equipped with the norm

pΩ + pΩ,λ.

The functions v : Ω → C that are Hölder-continuous of index λ in any compact set K ⊂ Ω

are called locally Hölder-continuous. They form a Fréchet space, denoted by C0,λ(Ω), when

equipped with the family of seminorms {pK + pK,λ : K ⊂⊂ Ω}. Notice that

C0,λ(Ω̄) ⊂ C0,ν(Ω̄) ∀λ, ν ∈ ]0, 1], ν < λ, [Ex] (1.7)

with continuous injections. (2) For instance for any λ ∈ ]0, 1], the function x 7→ |x|λ is an element of

C0,λ(R), but not of C0,ν(R) for any ν > λ, and not of C0,λ(R̄) (here also the traditional notation

is not very helpful).

(1) We remind the reader that Fréchet spaces are linear spaces that are also complete metric spaces and such
that the linear operations are continuous.

(2) All the injections between function spaces will be continuous; so we shall not point it out any more.
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Notice that
⋃
λ∈]0,1] C

0,λ([0, 1]) 6= C0([0, 1]); e.g., the function

u(x) := (log x)−1 ∀x ∈ ]0, 1/2], u(0) = 0 (1.8)

is continuous, but is not Hölder-continuous for any index λ. Moreover,
⋂
λ∈]0,1[ C

0,λ([0, 1]) 6=
C0,1([0, 1]). [Ex]

Spaces of Differentiable Functions. Let us assume that Ω and λ are as above and that

m ∈ N. Let us recall the multi-index notation, and set Di := ∂/∂xi for i = 1, ..., N .

We claim that the functions Ω → C that are m-times differentiable and are bounded and contin-

uous jointly with their derivatives up to order m form a Banach space, denoted by Cmb (Ω), when

equipped with the norm

pΩ,m(v) :=
∑
|α|≤m

sup
x∈Ω
|Dαv(x)| ∀m ∈ N. (1.9)

This is easily seen because, setting

k(m) :=
(N +m)!

N !m!
= number of the multi-indices α ∈ NN such that |α| ≤ m, (1.10)

the mapping Cmb (Ω) → C0
b (Ω)k(m) : v 7→ {Dαv : |α| ≤ m} is a (nonsurjective) isomorphism

between Cmb (Ω) and its range. Indeed, if Dαun → uα uniformly in Ω for any α ∈ NN such

that |α| ≤ m, then uα = Dαu0; thus un → u0 in Cmb (Ω). For instance, C1
b (R2) is isomorphic

to {(w,w1, w2) ∈ C0
b (R2)3 : wi = ∂w/∂xi in R2, for i = 1, 2}. Here one may define a norm via

Proposition 1.1.

The functions Ω → C that are continuous with their derivatives up to order m form a locally

convex Fréchet space equipped with the family of seminorms {pK,m : K ⊂⊂ Ω}. This space is

denoted by Cm(Ω) (or by Em(Ω)).

The linear space of the functions Ω → C that are bounded with their derivatives up to order m,

and whose derivatives of order m are Hölder-continuous of index λ, may be equipped with the norm

pΩ,m,λ(v) :=
∑
|α|≤m

sup
x∈Ω
|Dαv(x)|+

∑
|α|=m

pΩ,λ(Dαv), (1.11)

with pΩ,λ as above. By Proposition 1.1, this is a Banach space, that we denote by Cm,λ(Ω̄).

The linear space of the functions Ω → C whose derivatives up to order m are Hölder-continuous

of index λ in any compact set K ⊂ Ω can be equipped with the family of seminorms {pK,m,λ :

K ⊂⊂ Ω}. This is a locally convex Fréchet space, denoted by Cm,λ(Ω).

It is also convenient to set

Cm,0(Ω̄) := Cm(Ω̄), Cm,0(Ω) := Cm(Ω) ∀m ∈ N. (1.12)

In passing notice that C∞(Ω̄) is a dense subset of C0(Ω̄) and of Lp(Ω) for any p ∈ [1,+∞[. This

may be proved by convolution with a regularizing kernel.

Some Embeddings. We say that a topological space A is embedded into another topological

space B whenever A ⊂ B and the injection operator A→ B (which is then called an embedding) is

continuous.

For any m ∈ N, we have obvious embeddings within the class of Cm-spaces,

m ≥ ` ⇒ Cm(Ω̄) ⊂ C`(Ω̄), (1.13)
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as well within that of Cm,λ-spaces:

ν ≤ λ ⇒ Cm,λ(Ω̄) ⊂ Cm,ν(Ω̄) ∀m. (1.14)

Concerning inclusions between spaces of the two classes, apart from obvious ones like Cm,λ(Ω̄) ⊂
Cm(Ω̄), some regularity is needed for the domain.

Proposition 2.2 Let either Ω = RN , or Ω ∈ C0,1 and bounded. Then

Cm+1(Ω̄) ⊂ Cm,λ(Ω̄) ∀m,∀λ ∈ [0, 1].[] (1.15)

From the latter inclusion, it easily follows that

Cm2,λ2(Ω̄) ⊂ Cm1,λ1(Ω̄) if m1 < m2,∀λ1, λ2 ∈ [0, 1]. (1.16)

A Counterexample. The next example shows that some regularity is actually needed for (1.15)

to hold. Let us set

Ω := {(x, y) ∈ R2 : x2 + y2 < 1, y < |x|1/2}. (1.17)

Of course Ω ∈ C0,1/2 \ C0,ν for any ν > 1/2. For any a ∈ ]1, 2[, the function v : Ω → R : (x, y) 7→
(y+)a sign(x) belongs to C1(Ω̄) \ C0,ν(Ω̄) for any ν > a/2. [Ex]

We just considered embeddings for Banach spaces “on Ω̄”. It is easy to see that these results

yield the analogous statements for the corresponding Fréchet spaces “on Ω”.

2. Regularity of Euclidean Domains

Open subsets of RN may be very irregular; e.g., consider
⋃
n∈NB(qn, 2

−n), where {qn} is an

enumeration of QN . This set is open and has finite measure, but it is obviously dense in RN .

Several notions may be used to define the regularity of a Euclidean open set Ω, or rather that of

its boundary Γ . Here we just introduce two of them.

Open Sets of Class Cm,λ. Let us denote by BN (x,R) the ball of RN of center x and radius R.

For any m ∈ N and 0 ≤ λ ≤ 1, we say that Ω is of class Cm,λ (here Cm,0 stays for Cm), and write

Ω ∈ Cm,λ, iff for any x ∈ Γ there exist:

(i) two positive constants R = Rx and δx,

(ii) a mapping ϕx : BN−1(x,R)→ R of class Cm,λ,

(iii) a Cartesian system of coordinates y1, ..., yN ,

such that the point x is characterized by y1 = ... = yN = 0 in this Cartesian system, and, for any

y′ := (y1, ..., yN−1) ∈ BN−1(x,R),

yN = ϕ(y′) ⇒ (y′, yN ) ∈ Γ,
ϕ(y′) < yN < ϕ(y′) + δ ⇒ (y′, yN ) ∈ Ω,
ϕ(y′)− δ < yN < ϕ(y′) ⇒ (y′, yN ) 6∈ Ω̄.

(1.16)

This means that Γ is an (N − 1)-dimensional manifold (without boundary) of class Cm,λ, and that

Ω locally stays only on one side of Γ . We say that Ω is a continuous (Lipschitz, Hölder, resp.) open

set whenever it is of class C0 (C0,1, C0,λ for some λ ∈ ]0, 1], resp.). (3)

For instance, the domain

Ωa,b,λ := {(x, y) ∈ R2 : x > 0, ax1/λ < y < bx1/λ} ∀λ ≤ 1,∀a, b ∈ R, a < b (1.17)

(3) This notation refers to the Hölder spaces, that are defined half-a-page ahead ...



5

is of class C0,λ iff a < 0 < b. [Ex]

We say that Ω is uniformly of class Cm,λ iff

Ω ∈ Cm,λ, inf
x∈Γ

Rx > 0, inf
x∈Γ

δx > 0, sup
x∈Γ
‖ϕx‖Cm,λ(BN−1(x,R)) < +∞. (1.18)

For instance, by compactness, this is fulfilled by any bounded domain Ω of class Cm,λ. [Ex]

Cone Property. The above notion of regularity of open sets is not completely satisfactory, in that

it excludes sets like e.g. a ball with deleted center. We then introduce a further regularity notion.

We say that Ω has the cone property iff there exist a, b > 0 such that, defining the finite open

cone

Ca,b :=
{
x := (x1, ..., xN ) : x21 + ...+ x2N−1 ≤ bx2N , 0 < xN < a

}
,

any point of Ω is the vertex of a cone contained in Ω and congruent to Ca,b. For instance, any ball

with deleted center and the plane sets

Ω1 := {(ρ, θ) : 1 < ρ < 2, 0 < θ < 2π} (ρ, θ : polar coordinates),

Ω2 := {(x, y) ∈ R2 : |x|, |y| < 1, x 6= 0}
(1.19)

have the cone property, but are not of class C0. [Ex]

Proposition 2.1 Any bounded Lipschitz domain has the cone property. [Ex]

For unbounded Lipschitz domains this may fail; Ω := {(x, y) ∈ R2 : x > 1, 0 < y < 1/x}
is a counterexample. Note that a domain Ω is bounded whenever it has the cone property and

|Ω| < +∞. []

3. Sobolev Spaces of Positive Integer Order

In this section we introduce the Sobolev spaces of positive integer order, which consist of the

complex-valued functions defined on a domain Ω ⊂ RN that fulfill certain integrability properties

jointly with their distributional derivatives. We then see how these functions can be extended to

RN preserving their Sobolev regularity, and approximate them by smooth functions.

Sobolev Spaces of Positive Integer Order. Henceforth we shall denote by D derivatives in the

sense of distributions. For any domain Ω ⊂ RN , any m ∈ N and any p ∈ [1,+∞], we set

Wm,p(Ω) :=
{
v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), ∀α ∈ NN , |α| ≤ m

}
. (3.1)

(Thus W 0,p(Ω) := Lp(Ω).) This is a vector space over C, that we equip with the norm

‖v‖Wm,p(Ω) :=

( ∑
|α|≤m

‖Dαv‖pLp(Ω)

)1/p

∀p ∈ [1,+∞[, (3.2)

‖v‖Wm,∞(Ω) := max
|α|≤m

‖Dαv‖L∞(Ω). (3.3)

We shall also write ‖ · ‖m,p in place of ‖ · ‖Wm,p(Ω). Equipped with the topology induced by this

norm, Wm,p(Ω) is called a Sobolev space of order m (and of integrability p).

By Proposition 1.1, in Wm,p(Ω) the p-norm is equivalent to any other q-norm:( ∑
|α|≤m

‖Dαv‖qLp(Ω)

)1/q

if 1 ≤ q < +∞, max
|α|≤m

‖Dαv‖L∞(Ω) if q =∞,
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The equivalent 1-norm
∑
|α|≤m ‖Dαv‖L1(Ω) may also be used.

The next result follows from Proposition 1.1.

• Proposition 3.1 For any m ∈ N and any p ∈ [1,+∞] the following occurs:

(i) Wm,p(Ω) is a Banach space over C.

(ii) If 1 ≤ p < +∞, Wm,p(Ω) is separable.

(iii) If 1 < p < +∞, Wm,p(Ω) is uniformly convex (hence reflexive).

(iv) ‖ · ‖m,2 is a Hilbert norm. Wm,2(Ω) (which is usually denoted by Hm(Ω)) is then a Hilbert

space, equipped with the scalar product

(u, v) :=
∑
|α|≤m

∫
Ω

DαuDαv dx ∀u, v ∈Wm,2(Ω). (3.4)

(v) If p 6=∞, then for any F ∈Wm,p(Ω)′ there exists a family {fα}|α|≤m ⊂ Lp
′
(Ω) such that

〈F, v〉 =
∑
|α|≤m

∫
Ω

fαD
αv dx ∀v ∈Wm,p(Ω). (3.5)

This entails that

‖F‖Wm,p(Ω)′ =

( ∑
|α|≤m

‖fα‖p
′

Lp′ (Ω)

)1/p′

if p ∈ ]1,+∞[, (3.6)

‖F‖Wm,1(Ω)′ = max
|α|≤m

‖fα‖L∞(Ω). (3.7)

Conversely, for any family {fα}|α|≤m as above, (3.5) defines a functional F ∈Wm,p(Ω)′.

Extension Operators. We call a linear operator E : L1
loc(Ω) → L1

loc

(
RN

)
a (totally) regular

extension operator iff

(i) Eu = u a.e. in Ω for any u ∈ L1
loc

(
RN

)
, and

(ii) for any m ∈ N, E is a regular m-extension operator. By this we mean that for any p ∈ [1,+∞],

(the restriction of) E is continuous from Wm,p(Ω) to Wm,p(RN ) for any p ∈ [1,+∞]; that is, there

exists a constant Cm,p such that

‖Eu‖Wm,p(RN ) ≤ Cm,p‖u‖W [s],p(Ω) ∀u ∈Wm,p(Ω).

For instance the trivial extension

ũ := u in Ω, ũ := 0 in RN \Ω, (3.8)

is not a regular extension operator, whenever Ω is regular enough. For instance, if Ω is a ball then

u ≡ 1 ∈W 1,p(Ω), but obviously ũ 6∈W 1,p
(
RN

)
. (Loosely speaking, the radial derivative of ũ has a

Dirac measure concentrated along ∂Ω, so that ∇ũ is not even locally integrable.)

• Theorem 3.2 (Calderón-Stein) For any uniformly-Lipschitz domain of RN , there exists a

regular extension operator. []

We illustrate the necessity of assuming some regularity for the domain Ω by means of two coun-

terexamples.

Example 3.1. Let us set Q := ]0, 1[2, fix any λ ∈ ]0, 1[, and set

Ω := {(x, y) ∈ Q : y > xλ}, uγ(x, y) := y−γ ∀(x, y) ∈ Ω, ∀γ > 0. (3.9)
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For any p ∈ [1,+∞[ a direct calculation shows that

uγ ∈W 1,p(Ω) ⇔ p(γ + 1) < 1 + λ−1. [Ex] (3.10)

Let us now assume that (0 <)γ < (1+λ−1)/2−1, namely 2(γ+1) < 1+λ−1; the inequality in (3.10)

is then fulfilled by some p̃ > 2. On the other hand W 1,p̃(Q) ⊂ L∞(Q), by a result that we shall

see in Sect. 3 (cf. Morrey’s Theorem). Therefore the unbounded function uγ cannot be extended to

any element of W 1,p̃(Q).

This example shows that, even for bounded domains, in Theorem 3.2 the hypothesis of Lipschitz

regularity of Ω cannot be replaced by the uniform C0,λ-regularity for any λ ∈ ]0, 1[. Note that for

λ = 1 this construction fails, and actually in that case the Calderón-Stein Theorem 3.2 applies.

Example 3.2. Let us set (using polar coordinates (ρ, θ) besides the Cartesian coordinates (x, y))

Ω = {(x, y) ∈ R2 : 1 < ρ(x, y) < 2, 0 < θ(x, y) < 2π},
u : Ω → R : (x, y) 7→ θ(x, y).

(3.11)

notice that u ∈ Wm,p(Ω) for any m ∈ N (actually, u ∈ Wm,p(Ω) ∩ C∞(Ω)!), but it cannot be

extended to any w ∈ Wm,p(R2) for any m ≥ 1. Actually Ω fulfills the cone property, but is not

even of class C0.

Extension results are often applied to generalize to Wm,p(Ω) properties that are known to hold

for Wm,p(RN ). As the restriction operator is obviously continuous from Wm,p(RN ) to Wm,p(Ω),

under the hypotheses of Theorem 3.2, Wm,p(Ω) consists exactly of the restriction of the functions

of Wm,p(RN ). The next statement then follows.

Corollary 3.3’ Let Ω be a uniformly-Lipschitz domain of RN . For any m ∈ N and any p ∈
[1,+∞], one can equip Wm,p(Ω) with the equivalent quotient norm

‖v‖ := inf{‖w‖Wm,p(RN ) : w ∈Wm,p(RN ), w|Ω = v} ∀v ∈Wm,p(Ω). [Ex] (3.12)

Density results.

• Theorem 3.4 Let m ∈ N and p ∈ [1,+∞[.

(i) (Meyers and Serrin) For any domain Ω ⊂ RN , C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω).

(ii) If Ω is uniformly-Lipschitz, then D(Ω̄) is dense in Wm,p(Ω). [] (4)

It is easy to see that for p =∞ both statements fail (even for m = 0).

As for the regularity of Ω, it is easily seen that part (i) holds for the functions defined in Examples

3.1 and 3.2, whereas part (ii) fails.

Proposition 3.5 (Calculus Rules) Let Ω be any domain of RN and p ∈ [1,+∞].

(i) For any u, v ∈W 1,p(Ω) ∩ Lp′(Ω),

uv ∈W 1,1(Ω), ∇(uv) = (∇u)v + u∇v a.e. in Ω. (3.13)

(ii) For any Lipschitz-continuous function F : C→ C and any u ∈W 1,p
loc (Ω), (4)

F (u) ∈W 1,p
loc (Ω), ∇F (u) = F ′(u)∇u a.e. in Ω. (3.14)

(4) By D(Ω̄) we denote the space of restrictions to Ω of functions of D(RN ). Equivalently, D(Ω̄) is the space

of functions Ω → C that can be extended to elements of D(RN ).
(4) We set W

1,p
loc (Ω) := {v ∈ D′(Ω) : ϕv ∈ W 1,p(Ω),∀ϕ ∈ D(Ω)}. Like L

p
loc(Ω), this is not a normed space.
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By Theorem 3.4(i) both statements can be proved via regularization. [Ex]

For any h ∈ RN and any Ω ⊂ RN , let us denote by τh the shift operator v 7→ v(·+ h).

Theorem 3.6 For any p ∈ [1,+∞],

v ∈W 1,p(RN ) ⇒ ‖τhv − v‖Lp(RN ) ≤ |h|‖∇v‖Lp(RN )N ∀h ∈ RN . (3.15)

The converse holds if p > 1; that is, v ∈ W 1,p(RN ) whenever v ∈ Lp(RN ) and there exists a

constant C > 0 such that for any h ∈ RN , ‖τhv − v‖Lp(RN ) ≤ C|h|. [] It is easily seen that this

converse statement fails for p = 1 and v = H (the Heaviside function).

* Proof. For p =∞ the result is obvious; let us then assume that p < +∞. By the Jensen inequality

we have

|τhv(x)− v(x)|p =
∣∣∣ ∫ 1

0

h · ∇v(x+ th) dt
∣∣∣p ≤ |h|p ∫ 1

0

|∇v(x+ th)|p dt for a.e. x ∈ RN ;

hence

‖τhv − v‖pLp(RN )
≤ |h|p

∫
RN

dx

∫ 1

0

|∇v(x+ th)|p dt

= |h|p
∫ 1

0

dt

∫
RN

|∇v(x+ th)|p dx = |h|p
∫ 1

0

dt

∫
RN

|∇v(x)|p dx = |h|p
∫
RN

|∇v(x)|p dx.
tu

The Reflection Method. We conclude this section by illustrating a technique that yields regular

m-extension operators, for any integer m ≥ 1. For any x ∈ RN , let us set x := (x′, xN ) with

x′ ∈ RN−1 and xN ∈ R, and RN
+ := {(x′, xN ) ∈ RN : xN > 0}.

Theorem 3.7 Let Ω = RN
+ . For any m ≥ 1, there exist a1, ..., am ∈ R such that, defining

Eu(x) :=


u(x) if xN > 0
m∑
j=1

aju(x′,−jxN ) if xN < 0
∀u ∈ L1

loc

(
RN

+

)
, (3.16)

E is a regular m-extension operator.

* Proof. For any p ∈ [1,+∞[ and any u ∈ D(RN
+ ), any derivative of Eu ∈ Lp(RN ) of order up to m

is uniformly bounded in RN \ (RN−1×{0}). It is then clear that Eu ∈Wm,p(RN ) iff all derivatives

of Eu of order up to m− 1 match a.e. along the hyperplane RN−1×{0}, that is,

lim
xN→0+

D`
ND

β
x′Eu(x′, xN ) = lim

xN→0−
D`
ND

β
x′u(x′, xN )

for a.e. x′ ∈ RN−1,∀` ∈ N,∀β ∈ NN−1 : `+ |β| < m.
(3.17)

As

D`
ND

β
x′Eu(x′, xN ) =

m∑
j=1

(−j)`ajD`
ND

β
x′u(x′,−jxN )

∀x′ ∈ RN−1,∀xN < 0,

(3.16) is tantamount to

D`
ND

β
x′Eu(x′, 0) =

m∑
j=1

(−j)`ajD`
ND

β
x′u(x′, 0)

for a.e. x′ ∈ RN−1,∀` ∈ N,∀β ∈ NN−1 : `+ |β| < m.
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By the arbitrariness of u ∈ D(RN
+ ), this holds iff

m∑
j=1

(−j)`aj = 1 for ` = 0, ...,m− 1. (3.18)

This is a linear system of m equations with matrix M = {(−j)i−1}i,j=1,...,m for the unknowns

a1, ..., am. The matrix M is of the Vandermonde class, hence it is nonsingular. Therefore this system

has exactly one solution.

By Theorem 3.4 the space D(RN
+ ) is dense in Wm,p(RN

+ ). E thus maps D(RN
+ ) to Wm,p(RN ).

Finally, E is continuous, since

‖Eu‖Wm,p(RN ) ≤
(
1 +m max

1≤j≤m
max

0≤`≤m−1
j`|aj |

)
‖u‖Wm,p(RN

+
) ∀u ∈ D(RN

+ ).

Therefore E may be extended to a (unique) continuous operator Wm,p(RN
+ )→Wm,p(RN ). tu

The latter result may also be generalized to domains of class Cm, by partition of the unity and

local charts. (We shall not display this argument.)

4. Sobolev Spaces of Real Order

By part (ii) of Theorem 3.4, D(RN ) is dense in Wm,p(RN ) for any p ∈ [1,+∞[ and any m ≥ 1.

This holds for no other domain of class C0; we just illustrate this issue via a simple example.

Let Ω be an open ball of RN , and set u ≡ 1 in Ω; obviously u ∈Wm,p(Ω) for any m ≥ 1 and any

p ∈ [1,+∞[. By contradiction, let us assume that it is possible to approximate u in the topology

of Wm,p(Ω) by means of a sequence {un} ⊂ D(Ω). The trivial extension operator v 7→ ṽ (cf.

(3.8)) is continuous from D(Ω) to D(RN ) w.r.t. the Wm,p-topologies, for it obviously maps Cauchy

sequences to Cauchy sequences; hence ũn → ũ in Wm,p(RN ). But it is clear that ũ 6∈ Wm,p(RN ).

Thus D(Ω) is not dense in Wm,p(Ω).

On account of this negative result, we set

Wm,p
0 (Ω) := closure of D(Ω) in Wm,p(Ω) ∀m ∈ N,∀p ∈ [1,+∞[, (4.1)

for any domain Ω ⊂ RN , and equip this space with the same norm as Wm,p(Ω). The properties of

Proposition 3.1 also hold for Wm,p
0 (Ω), which indeed is a closed subspace of Wm,p(Ω). From this

discussion we infer that Ω = RN is the only domain of class C0 such that Wm,p
0 (Ω) = Wm,p(Ω)

for any m > 0.

By the next statement, for any m > 1 the functions of Wm,p
0 (Ω) may be regarded as vanishing

on ∂Ω jointly with their derivatives up to order m− 1. (Under suitable regularity assumptions for

Ω, this property might be restated in terms of traces — a notion that we introduce ahead, where

the regularity condition “u ∈ Cm−1(Ω̄)” will be dropped.)

Proposition 4.1 Let the domain Ω be of class Cm, m ≥ 1 be an integer, and 1 ≤ p < +∞. Then

(Dαu)
∣∣
∂Ω

= 0 ∀u ∈Wm,p
0 (Ω) ∩ Cm−1(Ω̄),∀α ∈ NN , |α| ≤ m− 1. (4.1′)

Partial Proof. We shall prove this statement just for m = 1, via procedure that however may be

extended to m > 1. We shall also confine ourselves to the case of Ω = RN
+ (:= {(x′, xN ) ∈ RN :

xN > 0}). The result may then be extended to more general sets via partition of unity (by a method

that we shall illustrate ahead).
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Let u ∈W 1,p
0 (RN

+ )∩C0(RN
+ ), and {un} be a sequence in D(RN

+ ) such that un → u in W 1,p
0 (RN

+ ).

Thus

un(x′, xN ) =

∫ xN

0

DNun(x′, t) dt ∀(x′, xN ) ∈ RN
+ ,∀n. (4.1′)

As DNun → DNu in Lp(RN
+ ), this equality is preserved in the limit. Hence un(x′, 0) = 0 for any

x′ ∈ RN−1. tu

Sobolev Spaces of Negative Order. Next we set

W−m,p
′
(Ω) := Wm,p

0 (Ω)′ (⊂ D′(Ω)) ∀m ∈ N,∀p ∈ [1,+∞[, (4.2)

and equip it with the dual norm

‖u‖W−m,p′ (Ω) := sup
{
〈u, v〉 : v ∈Wm,p

0 (Ω), ‖v‖Wm,p(Ω) = 1
}

(here by 〈·, ·〉 we denote the pairing between W−m,p
′
(Ω) and Wm,p

0 (Ω)). (4)

The Sobolev spaces of negative order inherit several properties from their preduals.

Proposition 4.2 For any m ∈ N and any p ∈ [1,+∞[, W−m,p
′
(Ω) is a Banach space.

(i) If 1 < p < +∞, W−m,p
′
(Ω) is separable and reflexive.

(ii) ‖ · ‖−m,2 is a Hilbert norm, and W−m,2(Ω) is a Hilbert space (that is usually denoted by

H−m(Ω)).

Proposition 4.3 (Characterization of Sobolev Spaces of Negative Integer Order) For any m ∈ N

and any p ∈ [1,+∞[,

F ∈W−m,p
′
(Ω) ⇔ ∃{fα}|α|≤m ⊂ Lp

′
(Ω) : F =

∑
|α|≤mD

αfα in D′(Ω). (4.3)

[This representation of F need not be unique.]

Proof. By the Hahn-Banach theorem any F ∈ W−m,p
′
(Ω) can be extended to a functional F̃ ∈

Wm,p(Ω)′. By part (v) of Proposition 3.1 then there exists a family {fα}|α|≤m in Lp
′
(Ω) such that

〈F̃ , v〉 =
∑
|α|≤m

(−1)|α|
∫
Ω

fαD
αv dx ∀v ∈Wm,p(Ω),

Restricting this equality to v ∈ D(Ω), we then get F =
∑
|α|≤mD

αfα in D′(Ω).

Conversely, any distribution of this form is obviously a functional of W−m,p
′
(Ω). tu

Sobolev Spaces of Positive Noninteger Order. Let us fix any p ∈ [1,+∞[, any λ ∈ ]0, 1[, set

[aλ,p(v)](x, y) :=
v(x)− v(y)

|x− y|
N
p +λ

∀x, y ∈ Ω (x 6= y),∀v ∈ L1
loc(Ω), (4.4)

Wλ,p(Ω) :=
{
v ∈ Lp(Ω) : aλ,p(v) ∈ Lp(Ω2)

}
, (4.5)

and equip this space with the p-norm of the graph

‖v‖λ,p :=
(
‖v‖pLp(Ω) + ‖aλ,p(v)‖pLp(Ω2)

)1/p
. (4.6)

(4) Notice that we have thus defined W−m,q(Ω) only for 1 < q ≤ +∞, and that for m = 0 we retrieve

W 0,p′(Ω) = Lp
′
(Ω).
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In order to complete this picture we also set

Wλ,∞(Ω) := C0,λ(Ω̄) ∀λ ∈ ]0, 1[. (4.7)

For λ = 1 this equality holds [as a result, not as a definition!], only if the domain Ω is regular

enough. (See (1.15) and the related counterexample; see also ahead.)

Let us next fix any positive m ∈ N, and, still for any p ∈ [1,+∞[, set

Wm+λ,p(Ω) :=
{
v ∈Wm,p(Ω) : Dαv ∈Wλ,p(Ω), ∀α ∈ NN , |α| = m

}
; (4.8)

this is a normed space over C equipped with the p-norm of the graph

‖v‖m+λ,p :=

(
‖v‖pm,p +

∑
|α|=m

‖Dαv‖pλ,p

)1/p

=

(∑
|α|≤m

∫
Ω

|Dαv|p dx+
∑
|α|=m

∫∫
Ω2

|[aλ,p(Dαv)](x, y)|p dxdy

)1/p

.

(4.9)

Let us also set

Wm+λ,∞(Ω) := Cm,λ(Ω̄) ∀m ∈ N,∀λ ∈ ]0, 1[. (4.10)

The spaces Wm+λ,p(Ω) are called Sobolev spaces of fractional order (sometimes just fractional

Sobolev spaces), or also Slobodeckĭı spaces.

Proposition 4.4 For any s ∈ R+, the following occurs:

(i) If any p ∈ [1,+∞[, W s,p(Ω) is a Banach space over C. equipped with the norm of the graph.

(ii) If p < +∞, W s,p(Ω) is separable.

(iii) If 1 < p < +∞, W s,p(Ω) is uniformly convex (hence reflexive).

(iv) ‖·‖s,2 is a Hilbert norm. W s,2(Ω) (that will be denoted by Hs(Ω)) is a Hilbert space, equipped

with the scalar product (here by m we denote the integer part of s)

(u, v) :=
∑
|α|≤m

∫
Ω

Dαu(x)Dαv(x) dx+
∑
|α|=m

∫∫
Ω2

[aλ,2(Dαu)](x, y) [aλ,2(Dαv)](x, y) dxdy

∀u, v ∈W s,2(Ω).

(4.11)

Outline of the Proof. If p = +∞ we already know that Wm+λ,∞(Ω) := Cm,λ(Ω̄) is a Banach

space. If p < +∞, we set

L1(v) := {Dαv : |α| ≤ m}, L2(v) := {aλ,p(Dαv) : |α| = m} ∀v ∈ Lp(Ω);

the thesis then follows by applying Proposition 1.1. tu

Proposition 4.5 Let Ω be any nonempty domain of RN , and set Ωn :=
{
x ∈ Ω : d

(
x,RN \Ω

)
>

1/n
}

for any n ∈ N. Then

‖u‖W s,p(Ωn) → ‖u‖W s,p(Ω) ∀u ∈W s,p(Ω),∀s ≥ 0,∀p ∈ [1,+∞]. (4.12)

Outline of the Proof. With no loss of generality one may assume that Ω is bounded. For p 6= ∞,

the statement then follows from the absolute continuity of the integral. For p =∞ the proof is even

simpler. [Ex] tu
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Sobolev Spaces of Negative Noninteger Order. This construction mimics that of Sobolev

spaces of negative integer order. First we set

W s,p
0 (Ω) := closure of D(Ω) in W s,p(Ω) ∀s ≥ 0,∀p ∈ [1,+∞[, (4.13)

and equip it with the topology induced by W s,p(Ω). The properties stated in Proposition 3.1

hold also for W s,p
0 (Ω). (5) This is a normal space of distributions, hence its dual is also a space of

distributions. We then set

W−s,p
′
(Ω) := W s,p

0 (Ω)′ (⊂ D′(Ω)) ∀s ≥ 0,∀p ∈ [1,+∞[, (4.14)

and equip it with the dual norm

‖u‖−s,p′ := sup
{
〈u, v〉 : v ∈W s,p

0 (Ω), ‖v‖s,p = 1
}
.

A result analogous to Proposition 4.2 holds for W−s,p
′
(Ω).

We have thus completed the definition of the scale of Sobolev spaces. In the next statement we

gather their main properties.

Proposition 4.7 Let s ∈ R and p ∈ ]1,+∞] (with p = 1 included if s ≥ 0). Then:

(i) W s,p(Ω) is a Banach space over C.

(ii) If p < +∞, W s,p(Ω) is separable.

(iii) If 1 < p < +∞, W s,p(Ω) is reflexive.

(iv) ‖ · ‖s,2 is a Hilbert norm, and W s,2(Ω) (=: Hs(Ω)) is a Hilbert space.

(v) If s ≥ 0, the same properties hold for W s,p
0 (Ω), the closure of D(Ω) in W s,p(Ω).

Let us set

W s,p
loc (Ω) :=

{
v ∈ D′(Ω) : ϕv ∈W s,p(Ω),∀ϕ ∈ D(Ω)

}
∀s ∈ R,∀p ∈ [1,+∞]. (4.15)

This is a Fréchet space, equipped with the family of seminorms {v 7→ ‖ϕv‖s,p : ϕ ∈ D(Ω)}; indeed

this topology can be generated by a countable family of these seminorms.

* Other Classes of Sobolev-Type Spaces. There are also other Sobolev-type spaces of noninte-

ger order. For instance, one may interpolate the Sobolev spaces of integer order, or use the Fourier

transformation. By the latter method one sets (6)

H̃s,p :=
{
v ∈ S ′ : F−1[(1 + |ξ|2)s/2F(v)] ∈ Lp} ∀s ∈ R,∀p ∈ [1,+∞],

‖v‖H̃s,p = ‖F−1[(1 + |ξ|2)s/2F(v)]‖Lp ∀v ∈ H̃s,p.
(4.16)

These are known as spaces of Bessel potentials (or just Bessel potentials), or Lebesgue spaces, or

Liouville spaces, or Lizorkin spaces, and so on... (7)

These are Banach spaces. If p ∈ [1,+∞[ this space is separable, if p ∈ ]1,+∞[ it is reflexive.

H̃s,2 is a Hilbert space and is denoted by H̃s. In the definition of the latter space, the inverse

transformation F−1 may be dropped, since F is an isometry in L2.

For p = 2 the Plancherel theorem yields∫
RN

uv dx =

∫
RN

ûv̂ dξ =

∫
RN

[(1 + |ξ|2)s/2û] [(1 + |ξ|2)−s/2v̂] dξ

≤ ‖u‖H̃s ‖v‖H̃−s ∀u, v ∈ S,∀s ∈ R;

(4.17)

(5) Theorems 3.2—3.4 hold for fractional indices, too. []
(6) We still write Lp instead of Lp(RN ) and similarly, and denote the Fourier transform of any v ∈ S ′ by

F(v) or v̂.
(7) This class of spaces is so natural, that one may expect that they have been discovered over and over.
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Hence H̃−s ⊂ (H̃s)′ with continuous injection. The opposite inclusion may also be proved. []

For any sufficiently smooth domain Ω ⊂ RN (e.g. uniformly of Lipschitz class), the spaces

H̃s,p(Ω) are defined as follows, in analogy with (3.12):

H̃s,p(Ω) =
{
w
∣∣
Ω

: w ∈ H̃s,p(RN )
}

∀s ∈ R,∀p ∈ ]1,+∞[,

‖v‖H̃s,p(Ω) = inf
{
‖w‖H̃s,p(RN ) : w

∣∣
Ω

= v
}

∀v ∈ H̃s,p.
(4.18)

On the basis of the next statement, these spaces may be regarded as an alternative to Sobolev

spaces of real order.

Theorem 4.6 For any domain Ω uniformly of Lipschitz class, the following holds:

(i) For any m ∈ Z and any p ∈ ]1,+∞[, H̃m,p(Ω) = Wm,p(Ω).

(ii) For any s ∈ R, H̃s(Ω) = Hs(Ω).

(iii) The classes of the spaces H̃s,p(Ω) and W s,p(Ω) are contiguous (in the sense of Gagliardo),

that is,

Hs+ε,p(Ω) ⊂W s,p(Ω) ⊂ Hs−ε,p(Ω) ∀s ∈ R,∀p ∈ ]1,+∞[,∀ε > 0. (4.19)

However, Hs,p(Ω) 6= W s,p(Ω) whenever s 6∈ Z and p 6= 2.

Partial Proof. It suffices to prove these results for Ω = RN . The proof of the statement (ii) may

be found e.g. in [Baiocchi-Capelo, p. 76-79]. Here we just show that

H̃m = Hm ∀m ∈ Z. (4.20)

The equivalence between the norms of H̃m and Hm is easily checked, since for any α ∈ NN

F(Dαu) = (iξ)αû, whence by the Plancherel theorem

‖Dαu‖L2 = ‖F(Dαu)‖L2 = ‖ξαû‖L2 .

Moreover

∃C1, C2 > 0 : ∀α ∈ NN ,∀ξ ∈ RN , C1(1 + |ξ|2)|α|/2 ≤ 1 + |ξ||α| ≤ C2(1 + |ξ|2)|α|/2. [Ex]

By the definition of the norm of H̃m(Ω), it follows that H̃m(Ω) = Hs(Ω). tu

5. Sobolev and Morrey Embeddings

Basic Embeddings. Obviously

|Ω| < +∞ ⇒ Cm(Ω̄) ⊂Wm,p(Ω) ∀m ∈ N,∀p ∈ [1,+∞], (5.1)

with strict inclusion, and Cm,1(Ω̄) ⊂Wm+1,∞(Ω) for any domain Ω. Moreover

Ω ∈ C0 ⇒ Cm,1(Ω̄) = Wm+1,∞(Ω) ∀m ∈ N. [] (5.2)

The following simple counterexample shows that the latter equality fails if Ω is not regular enough.

Let Ω1 be as in (2.4), and set u(ρ, θ) = θ for any (ρ, θ) ∈ Ω1. Then u ∈ Wm,p(Ω1) for any m ∈ N

and any p ∈ [1,+∞], but u 6∈ C0(Ω̄1). Actually the domain Ω1 fulfills the cone property but is not

of class C0.

In (4.10) we already defined

Wm+λ,∞(Ω) := Cm,λ(Ω̄) ∀m ∈ N,∀λ ∈ ]0, 1[. (5.3)
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Next we compare Sobolev spaces having either different differentiability indices, m, and/or dif-

ferent integrability indices, p. Here we shall confine ourselves to the case of integer differentiability

indices, although most of these results take over to real indices.

Proposition 5.1 For any domain Ω ⊂ RN , any m ∈ N and any p1, p2 ∈ [1,+∞],

|Ω| < +∞, p1 < p2 ⇒
Wm,p2(Ω) ⊂Wm,p1(Ω)

Wm,p2
0 (Ω) ⊂Wm,p1

0 (Ω)
(with density). (5.4)

For any Ω, the same inclusion holds for the corresponding Wloc-spaces.

Proof. (5.4) directly follows from the analogous inclusions between Lp-spaces. tu

Proposition 5.2 For any m1,m2 ∈ N and for any p ∈ [1,+∞],

m1 ≤ m2 ⇒ Wm2,p
0 (Ω) ⊂Wm1,p

0 (Ω) (with density). (5.5)

If moreover Ω is uniformly-Lipschitz, then

m1 ≤ m2 ⇒ Wm2,p(Ω) ⊂Wm1,p(Ω) (with density). (5.5′)

For any Ω, the same inclusion holds for the corresponding Wloc-spaces.

Proof. These inclusions are obvious. As by Theorem 3.4 D(Ω̄) is dense in both spaces, the density

follows. tu

The Sobolev Theorem. Two further classes of embeddings are of paramount importance in the

theory of Sobolev spaces; these are embeddings between Sobolev spaces and from Sobolev to Hölder

spaces:

W r,p(Ω) ⊂W s,q(Ω) and W r,p(Ω) ⊂ C`,λ(Ω̄) (for suitable indices). (5.6)

These results are first proved for Ω = RN and then generalized to any uniformly-Lipschitz domain

via Calderón-Stein’s Theorem 3.2.

In Propositions 5.1 and 5.2 we already considered the case in which the indices m and p vary

in the same direction. What happens if one of these two indices increased and the other one is

decreased? We shall see that, under appropriate restrictions on the integrability indices, the larger

is m the smaller is the space. The converse always fails: for any domain Ω,

∀m1,m2 ∈ N,∀p, q ∈ [1,+∞], m1 < m2 ⇒ Wm1,p(Ω) 6⊂Wm2,q(Ω).[Ex] (5.7)

The same applies if both W -type spaces are replaced by the corresponding W0- or Wloc-spaces.

Nontrivial embeddings between Sobolev spaces rest on the following fundamental inequality due

to Sobolev.

• Theorem 5.3 (Sobolev Inequality) For any N > 1 and any p ∈ [1, N [, there exists a constant

C = CN,p > 0 such that, setting p∗ := Np/(N − p),

‖u‖Lp∗ (RN ) ≤ C‖∇u‖Lp(RN )N ∀u ∈ D(RN ). [] (5.8)

Although this inequality only applies to functions with bounded support (u ≡ 1 is an obvious

counterexample), the constant C does not depend on the support.
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Proof for p = 1 and N = 2. In this case the argument is much simpler than in the general setting.

For any u ∈ D(R2),

|u(x, y)| =
∣∣∣ ∫ x

−∞

∂u

∂x̃
(x̃, y) dx̃

∣∣∣ ≤ ∫
R

|∇u(x̃, y)| dx̃ ∀(x, y) ∈ R2,

and similarly |u(x, y)| ≤
∫
R
|∇u(x, ỹ)| dỹ. Therefore∫∫

R2

|u(x, y)|2 dxdy ≤
∫∫

R2

(∫
R

|∇u(x̃, y)| dx̃
)(∫

R

|∇u(x, ỹ)| dỹ
)
dxdy

=

∫∫
R2

|∇u(x̃, y)| dx̃dy
∫∫

R2

|∇u(x, ỹ)| dxdỹ

=
(∫∫

R2

|∇u(x, y)| dxdy
)2
,

that is, ‖u‖L2(R2) ≤ ‖∇u‖L1(R2)2 . Of course 1∗ = 2 for N = 2. tu

Remark. If we assume that an inequality of the form (5.8) is fulfilled for some pair p, p∗, then we

can establish the relation between p∗ and p via the following simple scaling argument. Let us fix

any u ∈ D(RN ) and set vt(x) := u(tx) for any x ∈ RN and any t > 0. Writing (5.8) for vt we get

t−N/p
∗
‖u‖Lp∗ (RN ) ≤ Ct1−N/p‖∇u‖Lp(RN )N ∀u ∈ D(RN ),∀t > 0.[Ex]

This inequality may hold for all t > 0 only if −N/p∗ = 1−N/p, that is, p∗ := Np/(N − p).

Sobolev Embeddings. As obviously ‖∇u‖Lp(RN )N ≤ ‖u‖W 1,p(RN )N and D(RN ) is dense in

W 1,p(RN ), the Sobolev inequality (5.8) entails that

‖u‖Lp∗ (RN ) ≤ C‖∇u‖W 1,p(RN ) ∀u ∈W 1,p(RN ).

This yields the basic Sobolev imbedding

W 1,p(RN ) ⊂ Lp
∗
(RN )

(
=: W 0,p∗(RN )

)
∀p ∈ [1, N [,∀N > 1. (5.9)

On this basis one can prove the following more general result.

• Theorem 5.4 (Sobolev Embeddings) Let Ω be a uniformly-Lipschitz domain of RN . For any

`,m ∈ N and any p, q ∈ [1,+∞],

p ≤ q, `− N

q
≤ m− N

p
⇒ Wm,p(Ω) ⊂W `,q(Ω) (5.10)

with continuous injection, and also with density if q 6= +∞.

These statements hold for any domain Ω if both W -spaces are replaced either by the corresponding

W0-spaces, or by the corresponding Wloc-spaces. In these two cases Ω may be any domain of RN .

Proof. On account of the regularity of Ω, by the Calderón-Stein’s Theorem 3.2 it suffices to prove

the inclusion for Ω = RN . It also suffices to deal with m = 1 and ` = 0, since by applying this

result iteratively one can then get it in general.

Notice that

p ≤ q ≤ p∗ ⇒ W 1,p(RN ) ⊂ Lp(RN ) ∩ Lp
∗
(RN ) ⊂ Lq(RN )
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The first inclusion follows from the trivial embedding W 1,p(RN ) ⊂ Lp(RN ) and the Sobolev em-

bedding (5.9); the second inclusion is easily checked. [Ex] We conclude that W 1,p(RN ) ⊂ Lq(RN )

whenever p ≤ q ≤ p∗.
We claim that the injection operator j : Wm,p(Ω)→W `,q(Ω) is continuous. By the Closed Graph

Theorem, it suffices to show that the set G := {(v, jv) : v ∈ Wm,p(Ω)} is closed in Wm,p(Ω) ×
W `,q(Ω). Now, if (vn, jvn)→ (v, w) in the latter space, then there exists a subsequence {vn′} such

that vn′ → v a.e. in Ω. Hence w = jv a.e. in Ω. tu

Remarks. (i) We have p ≤ q and `−N/q ≤ m−N/p only if ` ≤ m, consistently with (5.7).

(ii) If |Ω| < +∞, then in (5.10) the hypothesis p ≤ q may be replaced by ` ≤ m. [Ex]

Morrey Embeddings. Next we come to our second important class of embeddings, that read

Wm,p(Ω) ⊂ C`,λ(Ω̄) under suitable hypotheses on m, p, `, λ. By an inclusion like this we mean that

for any v ∈ Wm,p(Ω) there exists a (necessarily unique) v̂ ∈ C`,λ(Ω̄) such that v̂ = v a.e. in Ω.

That is, the equivalence class associated to any element of Wm,p(Ω) contains one (and only one)

function of C`,λ(Ω̄). Henceforth we shall systematically assume this convention.

The next result applies to the case of (m−`)p > N , which is not covered by Sobolev’s Theorem 5.4.

• Theorem 5.5 (Morrey Embeddings) Let Ω be a uniformly-Lipschitz domain of RN , `,m ∈ N,

1 ≤ p < +∞ and 0 < λ < 1. Then

`+ λ ≤ m− N

p
⇒ Wm,p(Ω) ⊂ C`,λ(Ω̄). (5.11)

Moreover, (8)

Wm+N,1(Ω) ⊂ Cmb (Ω). (5.12)

In both cases the corresponding injection is continuous. []

Proof of (5.12). It suffices to show this statement for Ω = RN and for m = 0. We have

|u(x1, . . . , xN )| =
∣∣∣∣ ∫ x1

−∞
dy1 · · ·

∫ xN

−∞
dyN

∂Nu

∂y1 · · · ∂yN
(y1, . . . , yN )

∣∣∣∣
≤
∥∥∥ ∂Nu

∂y1 · · · ∂yN

∥∥∥
L1(RN )

≤ ‖u‖WN,1(RN ) ∀u ∈ D(RN ).

By density we then get ‖u‖C0
b
(RN ) ≤ ‖u‖WN,1(RN ) for any u ∈WN,1(RN ). [Ex] tu

Remarks. (i) Although for N = 1 (5.12) entails that W 1,1(Ω) ⊂ L∞(Ω), we have

W 1,N (Ω) 6⊂ L∞(Ω) ∀N > 1. (5.13)

For instance, setting Ω := B(0, 1/2) (the ball of center the origin and radius 2) and

vα(x) := (− log |x|)α ∀x ∈ Ω, ∀α ∈ ]0, 1− 1/N [, (5.14)

it is easy to check that vα ∈W 1,N (Ω), although of course vα 6∈ L∞(Ω).

(ii) The above results are extended to fractional Sobolev spaces. After (5.3), for any domain Ω,

Cm,λ(Ω̄) = Wm+λ,∞(Ω). Setting N/∞ := 0, the Morrey embedding (5.11) might then be regarded

(8) By Cmb (Ω) we denote the space of functions Ω → C that are continuous and bounded with their derivatives

up to order m, possibly without being uniformly continuous.
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as a limit case of the Sobolev embedding (5.10) for q =∞. In this case however the Sobolev theorem

does not apply, as (m− `)p > N . tu

Regularity Indices. Defining

the Sobolev index IS(m, p) := m−N/p, (5.15)

the Hölder index IH(m,λ) := m+ λ, (5.16)

the Sobolev and Morrey embeddings (5.10) and (5.11) respectively also read

p ≤ q, IS(`, q,N) ≤ IS(m, p,N) ⇒ Wm,p(Ω) ⊂W `,q(Ω), (5.17)

IH(`, λ) ≤ IS(m, p) ⇒ Wm,p(Ω) ⊂ C`,λ(Ω̄). (5.18)

Next we see that if Ω is bounded and the inequality between the indices is strict, then these

injections are compact.

• Theorem 5.6 (Compactness) Let Ω be a bounded Lipschitz domain of RN , `,m ∈ N0, 1 ≤
p < +∞ and 0 < λ < 1. Then:

p ≤ q, m−N/p > `−N/q ⇒ Wm,p(Ω) ⊂⊂W `,q(Ω), (5.19)

m−N/p > `+ λ ⇒ Wm,p(Ω) ⊂⊂ C`,λ(Ω̄), (5.20)

m2 + ν2 > m1 + ν1 ⇒ Cm2,ν2(Ω̄) ⊂⊂ Cm1,ν1(Ω̄). (5.21)

These W -spaces may be replaced by the corresponding either W0- or Wloc-spaces; in either case

Ω may be any domain of RN .

Exercises.

— * Let Ω be a uniformly-Lipschitz domain of RN and 1 ≤ p ≤ +∞. For any s ∈ R, let

us denote by W s,p
c (Ω) the subspace of compactly supported distributions of W s,p(Ω). Prove the

following equalities:

⋂
s∈R

W s,p
c (Ω) = D(Ω),

⋃
s∈R

W s,p
c (Ω) = E ′(Ω),

⋂
s∈R

W s,p
loc (Ω) = E(Ω),

⋃
s∈R

W s,p
loc (Ω) = D′F (Ω)

(the latter is the space of distributions of finite order).

— Check that the bounded and uniformly continuous functions Ω → C have a unique continuous

extension to Ω̄, even if the domain Ω is irregular.

— Why are not the Hölder spaces C0,λ(Ω) defined for any λ > 1?

— Check that f(x) = 1/ log |x/2| ∈ C0([−1, 1]) but it belongs to no Hölder space.

— Find a domain of R2 that has the cone property but is not of class C0,λ for any λ ∈ ]0, 1].

— Let a, b, r, s ∈ R be such that a < b and 1 < r < s. Discuss the regularity of the domain

{(x, y) ∈ R2 : x2 + y2 < 1, x > 0, axs < y < bxr} for different choices of the parameters a, b, r, s.

— Give an example of a domain with boundary not of class C0.
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6. Traces

Dealing with PDEs it is of paramount importance to prescribe boundary- (and/or initial-) values.

However, for functions of Sobolev spaces the restriction to a lower dimensional manifold M⊂ Ω̄ is

meaningless, since M has vanishing Lebesgue measure and these functions are only defined a.e. in

Ω. Nevertheless by means of functional methods one can generalize the concept of restriction by

introducing the notion of trace.

For instance, let x0 ∈ Ω = ]0, 1[ and M = {x0}. For any v ∈ C1([0, 1]) and any x ∈ ]0, 1[, we

have v(x0) = v(x) +
∫ x0

x
v′(ξ) dξ; hence

|v(x0)| =
∫ 1

0

|v(x0)| dx ≤
∫ 1

0

(
|v(x)|+

∫ x0

x

|v′(ξ)| dξ
)
dx ≤ ‖v‖W 1,1(0,1).

The restriction v 7→ v(x0) may thus be extended to a uniquely-defined continuous operatorW 1,1(0, 1)

→ R. Let us now set Ω = ]0, 1[2. By a similar argument, one can easily check that v(0, ·) ∈ Lp(0, 1)

whenever v,Dx1
v ∈ Lp(Ω), and moreover, for a suitable constant C > 0,

‖v(0, ·)‖Lp(0,1) ≤ C
(
‖v‖Lp(Ω) + ‖Dx1v‖Lp(Ω)

)
if v,Dx1v ∈ Lp(Ω). (6.1)

Sobolev Spaces on a Manifold. LetM⊂ Ω be a nonflat (M−1)-dimensional manifoldM⊂ Ω.

For any s ≥ 0 and any p ∈ [1,+∞], if M∈ Cs,1 ([s] := integral part of s) and is compact, then the

Sobolev space W s,p(M) may be defined via a local Cartesian representation of M as follows.

Let {Ωi}i=1,...,m be a finite open covering of M, such that, for any i, M∩ Ωi is the graph of a

function Bi → C of class C [s],1, the Bi’s being balls of RM−1. That is, there exist

(i) a mapping ϕi : Bi → R of class Cm,λ, and

(ii) a Cartesian system of coordinates y = A · x, A being an orthogonal matrix, such that

M∩Ωi = {(y′, ϕi(y′)) : y′ := (y1, ..., yN−1) ∈ Bi}. (6.2)

Let {ψi} be a partition of unity of class C∞ subordinate to the covering {Ωi}, and, for any

function u :M→ C, let us set

ui(y) := (ψiu)(y, ϕi(y)) ∀y ∈ Bi, (6.3)

W s,p(M) := {u :M→ C measurable: ui ∈W s,p(Bi),∀i}. (6.4)

This linear space may be equipped with the norm

‖u‖W s,p(M) :=

( m∑
i=1

‖ui‖pW s,p(Bi)

)1/p

if p < +∞,

‖u‖W s,∞(M) := max
i=1,...,m

‖ui‖W s,∞(Bi).

(6.5)

Although this norm depends on {(Ωi, ϕi, fi)}i=1,...,m, different choices of these families correspond

to equivalent norms for the same space. []

Other function spaces may also be constructed onM via a similar local Cartesian representation.

The class of regularity of these functions cannot be higher than that of M: e.g., if M ∈ Cm then

one can define C`(M) only for ` ≤ m. If M ∈ C∞ then one can also define test functions and

distributions on M.

Spaces over manifolds share several properties with spaces over (flat) Euclidean domains, and

most of the results of the previous sections can be extended to this setting.
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Traces. Next we state two basic trace results. First notice that Γ = ∂Ω may be equipped with

the (N − 1)-dimensional Hausdorff measure whenever Ω is of class C0,1. One can then define the

Banach space Lp(Γ ) for any p ∈ [1,+∞].

• Theorem 6.1 (Traces) Let 1 < p < +∞, s > 1/p, and Ω be a bounded domain of RN of class

C0,1. Then
∃γ0 : W s,p(Ω)→ Lp(Γ ) linear and continuous,

such that γ0v = v|Γ ∀v ∈ D(Ω̄).[]
(6.6)

Under appropriate regularity conditions, the trace of order 0, γ0, determines the first-order tan-

gential derivatives (i.e., the tangential components of the gradient on the boundary). Jointly with

the first-order normal derivative (i.e., the normal component of the gradient), γ0 thus determines

the boundary behaviour of all first-order derivatives. It is then of interest to represent the bound-

ary value of this normal derivative, namely, the normal trace. (8) By applying these results to the

derivatives, one may also deal with the trace of higher-order derivatives.

• Theorem 6.2 (Normal Traces – I) Let 1 < p < +∞, s > 1 + 1/p, and Ω be a bounded domain

of RN of class C0,1. Then

∃γ1 : W s,p(Ω)→ Lp(Γ ) linear and continuous,

such that γ1v = ∂v/∂~ν (= ~ν ·∇v) on Γ,∀v ∈ D(Ω̄).[]
(6.7)

Next we confine ourselves to the Hilbert setup. Let Ω be a domain of RN of class C0,1, set

L2
div(Ω)N := {~v ∈ L2(Ω)N : ∇ · ~v ∈ L2(Ω)}, (6.8)

and equip it with the graph norm

‖~v‖L2
div

(Ω)N :=
(
‖~v‖2L2(Ω)N + ‖∇ · ~v‖2L2(Ω)

)1/2
. (6.9)

By means of Proposition 1.1, it is easily checked that this is a Banach space, actually a subspace of

H1(Ω)N .

Theorem 6.3 (Normal Traces – II) Let Ω be a bounded domain of RN of class C0,1. There

exists a unique linear and continuous operator γν : L2
div(Ω)N → H−1/2(Γ ) (= H1/2(Γ )′) such that

γν~v = ~v ·~ν on Γ for any ~v ∈ D(Ω̄)N .

Moreover the following generalized formula of partial integration holds:

−
∫
Ω

(∇ · ~u)v dx =

∫
Ω

~u·∇v dx− H−1/2(Γ )〈γν~u, v〉H1/2(Γ ) ∀~u ∈ L2
div(Ω)N ,∀v ∈ D(Ω̄). (6.10)

Outline of the Proof. Let us write the classical formula of partial integration (or Gauss-Green’s

theorem) for a sequence {~un} ⊂ D(Ω̄)N that approximates ~u in L2
div(Ω)N :

−
∫
Ω

(∇ · ~un)v dx =

∫
Ω

~un ·∇v dx−
∫
Γ

~un ·~ν v dS ∀v ∈ D(Ω̄) (6.10)′

(by dS we denote the (N − 1)-dimensional area element of Γ ). By comparing the terms of this

formula, it is easily checked that (for suitable constants C, Ĉ)

‖~un ·~ν‖H1/2(Γ )′ ≤ C
(
‖~un‖L2(Ω)N + ‖∇ · ~un‖L2(Ω)

)
≤ C‖~un‖L2

div
(Ω)N ∀n.

(8) What we are saying for the first-order normal derivative applies to any other first-order nontangential
derivative.
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By passing to the limit in this inequality, we get the stated properties of the operator γν . By passing

to the limit in (6.10)’, (6.10) follows. tu

Let Ω still be a domain of RN of class C0,1, set

L2
∆(Ω) := {v ∈ L2(Ω) : ∆v ∈ L2(Ω)}, (6.11)

and equip it with the graph norm

‖v‖L2
∆
(Ω) :=

(
‖v‖2L2(Ω) + ‖∆v‖2L2(Ω)

)1/2
. (6.12)

By means of Proposition 1.1, it is easily checked that this is a Banach space, actually a subspace of

H2(Ω).

By applying Theorem 6.3 to the gradient of u, one easily gets the next statement.

Corollary 6.4 (Normal Traces – III) Let Ω be a bounded domain of RN of class C0,1. There exists

a unique linear and continuous operator γ̃ν : L2
∆(Ω)→ H−1/2(Γ ) such that γ̃νv = ∂v/∂~ν (= ~ν ·∇v)

on Γ for any v ∈ D(Ω̄).

Moreover the following generalized formula of partial integration holds:

−
∫
Ω

∆uv dx =

∫
Ω

∇u·∇v dx− H−1/2(Γ )〈γ̃νu, v〉H1/2(Γ ) ∀~u ∈ L2
∆(Ω)N ,∀v ∈ D(Ω̄). (6.13)

Next we characterize the spaces W 1,p
0 and W 2,p

0 in terms of traces (cf. Proposition 4.1):

• Proposition 6.5 Let Ω be a bounded domain of RN of class C1,1. For any p ∈ [1,+∞],

W 1,p
0 (Ω) = {v ∈W 1,p(Ω) : γ0v = 0 a.e. on Γ}, (6.14)

W 2,p
0 (Ω) = {v ∈W 2,p(Ω) : γ1v = γ0v = 0 a.e. on Γ}. (6.15)

More generally, for any integer k ≥ 1, W k,p
0 (Ω) is the space of all functions of W k,p(Ω) such that

all the traces that make sense in W k,p(Ω) vanish a.e on Γ . [] Thus for instance

W 2,p(Ω) ∩W 1,p
0 (Ω) = {v ∈W 2,p(Ω) : γ0v = 0 a.e. on Γ} 6= W 2,p

0 (Ω). (6.16)

The Friedrichs Inequality. The next result is often applied in the study of PDEs with Dirichlet

boundary conditions.

Theorem 6.6 (Friedrichs Inequality) Assume that Ω is a bounded domain of RN of class C0,1,

let Γ1 ⊂ Γ have positive (N − 1)-dimensional measure, and p ∈ [1,+∞]. Then (9)

v 7→ ‖v‖ :=
(
‖∇v‖p

Lp(Ω)N
+ ‖γ0v‖pLp(Γ1)

)1/p
(6.17)

is an equivalent norm in W 1,p(Ω).

* Proof. By the continuity of the trace operator W 1,p(Ω) → Lp(Γ1), there exists C > 0 such that

‖v‖ ≤ C‖v‖1,p for any v ∈ W 1,p(Ω). The converse inequality holds if we show that there exists

Ĉ > 0 such that

‖v‖Lp(Ω) ≤ Ĉ
(
‖∇v‖p

Lp(Ω)N
+ ‖γ0v‖pLp(Γ1)

)1/p ∀v ∈W 1,p(Ω).

(9) Γ1 is a manifold with boundary, and above we just defined Sobolev spaces on manifold without boundary.
Anyway, we may define ‖γ0v‖Lp(Γ1) := ‖χΓ1

γ0v‖Lp(Γ ), where by χΓ1
: Γ → R we denote the characteristic

function of Γ1.
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By contradiction, let us assume that for any n ∈ N there exists vn ∈W 1,p(Ω) such that

‖vn‖Lp(Ω) > n
(
‖∇vn‖pLp(Ω)N

+ ‖γ0vn‖pLp(Γ1)

)1/p
. (6.18)

Possibly dividing this inequality by ‖vn‖Lp(Ω), we can assume that ‖vn‖Lp(Ω) = 1 for any n. Thus

(
‖∇vn‖pLp(Ω)N

+ ‖γ0vn‖pLp(Γ1)

)1/p
< 1/n ∀n. (6.19)

Therefore there exists v ∈W 1,p(Ω) such that, possibly extracting a subsequence, vn → v weakly in

W 1,p(Ω). By (6.19), ∇vn → 0 strongly in Lp(Ω)N and γ0vn → 0 strongly in Lp(Γ1). Hence ∇v = 0

a.e. in Ω and γ0v = 0 a.e. on Γ1. As Ω is connected, this entails that v = 0 a.e. in Ω. (9) On the

other hand, as the injection W 1,p(Ω)→ Lp(Ω) is compact, (10) ‖v‖Lp(Ω) = limn→+∞ ‖vn‖Lp(Ω) = 1,

and this is a contradiction. tu

Exercises. (i) Characterize the closure of {v ∈ D(Ω)N : ∇·v = 0} in the topology of L2(Ω).

(ii) Characterize the closure of {v ∈ D(Ω)N : ∇·v ∈ L2(Ω)} in the topology of L2(Ω).

(iii) Characterize the closure of {v ∈ D(Ω) : ∆v = 0} in the topology of L2(Ω).

(iv) Characterize the closure of {v ∈ D(Ω) : ∆v ∈ L2(Ω)} in the topology of L2(Ω).

(9) Domain = connected open set...
(10) This property will be seen ahead...


