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Abstract

We introduce a propositional many-valued modal logic which is an extension

of the Continuous Propositional Logic to a modal system. Otherwise said, we

extend the minimal modal logic K to a Continuous Logic system. After introducing

semantics, axioms and deduction rules, we establish some preliminary results. Then

we prove the equivalence between consistency and satisfiability. As straightforward

consequences, we get compactness and an approximated completeness theorem, in

the vein of Continuous Logic.

1. Introduction

In this paper we introduce a modal extension of Continuous Propo-
sitional Logic (see [4] or [3]). Indeed, the system that we present can
equally be regarded as a continuous extension (in the sense of Contin-
uous Logic) of Propositional Modal Logic K (see [5]). Throughout this
paper, [0,1] denotes the real unit interval.

Modal logic has a long tradition in mathematical logic. Contin-
uous Logic is quite new in its current formulation. For this reason
we will spend a few words on it. Continuous Logic was preceded
by  Lukasiewicz’s [0,1]–valued logic, Chang and Keisler’s Continuous
Model Theory and the Henson’s logic of positive bounded formulas. It
aims at providing a suitable logic to deal with first order versions of
higher order structures that come equipped with a metric space struc-
ture: the so called metric structures that cover virtually all structures
that are of interest to functional analysis, but also probability struc-
tures. Each continuous function from [0,1]n to [0,1], where n is any
natural number, plays the role of an n-ary connective and the classi-
cal quantifiers are replaced by the quantifiers sup and inf. Continuous
Predicate Logic has a nice model theory. See [2].

In this paper we are not concerned with the model theoretic aspects
of Continuous Logic. We rather want to regard it as a logic per se and
to introduce a modal extension of its propositional fragment. We recall
that the latter is an extension of [0,1]–valued  Lukasiewicz logic. Hence
we will be dealing with an infinitely valued logic.

2010 Mathematics Subject Classification Primary: 03B50 Secondary: 03B45

Keywords: Continuous logic, propositional modal logic, approximated
completeness.

1



2

Ours is a first step towards a logic merging predicate continuous logic
and a suitable modal (or temporal) system. There are some motiva-
tions for doing it. Firstly a possible intrinsic interest of such a logic.
Secondly, we would like to devise a modal system that can formally
express “metric” statements. To explain what we mean, let us con-
sider the simplest example of a metric structure: a complete bounded
metric space ⟨M,d⟩. Deformations of the set M (topological, physical,
etc. . . ) might be described by a family of metrics indexed on some set
endowed with a binary relation. Let us assume that this set represents
time and that the relation is a partial ordering, not necessarily linear,
describing the time flow. Thus we have a system which nondetermin-
istically evolves along time. Let m,m′ ∈ M. We may want to be able
to express properties like “from now on, no matter what deformation
will occur, the distance between m and m′ will always be less or equal
to 1/2”; “at some future time instant m and m′ will collapse on each
other” (i.e. their distance will reduce to zero) or, when A and B are
definable subregions of M, “from some future time instant onwards,
the distance between A and B will always be greater than 1/3” (no-
tice that the latter involves a quantification in the sense of continuous
logic). The more the underlying metric structure is rich (a Banach
space, a Banach algebra, a C∗-algebra. . . ), the more the expressive
power increases and the examples become interesting. Mostly, but not
exclusively, from the mathematical viewpoint. In the future, we aim at
a reasonably well-behaved predicate logic which can formally express
statements like those above.

Going back to the propositional logic of this paper, the main obstacle
in proving completeness is to make a modal system and a continuous
one work well together. Indeed they have been conceived for different
purposes. Techniques for establishing completeness which are available
for each of the systems may not be sufficiently compatible. Actually,
in Section 4 we prove an approximated completeness result (see Corol-
lary 21 below). As pointed out in the comment at the beginning of
Section 4, in presence of the Continuos Logic component, this is the
best that we can achieve.

Comparison with the existing literature. Many valued and fuzzy
systems with modal operators have been and are extensively studied.
In the following we comment on some contributions that are related to
our work. We believe that a thorough comparison with the extensive
literature on many valued modal logics and fuzzy modal systems is
beyond the scope of this paper.
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Among the early investigations, we mention [9, 10]. Fitting’s mo-
tivation was to devise a system for dealing with opinions of experts
with a dominance relation among them. In [10] he proves a complete-
ness theorem for a modal system where the formulas, as well as the
accessibility relations, take values in the same finite Heyting algebra.
To this end, Fitting introduces an adaptation of the canonical model
construction in modal logic which is essentially the one used in this
paper.

It is easily verified that the standard ordering naturally induces a
Heyting algebra structure on the [0,1] interval, but this is not the
algebraic structure that we consider in this paper. As we already
mentioned, the propositional logic underlying Continuous Logic is the
[0,1]–valued  Lukasiewicz logic. For this reason, we are concerned with
the standard MV–algebra structure on [0,1], rather than with its nat-
ural Heyting algebra structure. Loosely speaking, we may say that we
aim at merging modal and continuous systems, rather than modal and
intuitionistic ones.

At this point we stress that the semantics of the operator ◻ in a many
valued modal logic is the natural extension of the Kripke semantics
to a many-valued setting. It is the one adopted in all the literature.
Different semantics can be assigned to ◻ in fuzzy systems, depending
on the intended meaning of ◻.

We have already mentioned that, in [10], the accessibility relations
are many–valued. In this paper they will always be {0,1}–valued
(briefly: crisp). This is needed to have a normal modal component
in our system. In this regard, Remark 4 in Section 3 below shows that,
if we allow for many–valued accessibility relations, the validity of the
characteristic axiom (also known as the normal axiom) of modal logic
K fails with respect to the proposed semantics. The normality of the
modal component plays a crucial role in our main result.

The non-validity of the normal axiom when the accessibility relations
are many-valued is pointed out also in [6]. In the latter, the authors
investigate minimum many-valued modal logics for the modal operator
◻ defined on top of logics of finite residuated lattices. They succeed
in finding such logics in a number of cases depending on the class of
Kripke frames (the accessibility relations may take values on the whole
residuate lattice under consideration or on its idempotent elements,
etc. . . ) and on the kind of logical consequence relation (local or global).
We anticipate that, in this paper, we will prove a local theorem. In our
opinion the local consequence relation (see (3) after Remark 1 below)
is better suited to describe the evolution of a metric structure.
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Same as in [10], in [6] canonical constants (i.e names for elements
of the underlying lattice) occur in the language, for technical reasons.
Finiteness of the lattice plays a crucial role. A canonical model con-
struction is used.

The part of [6] which is most related to our work is Section 5. Local
and global complete axiomatizations are provided therein for a modal
extension of the logic of an arbitrary finite MV-chain, under the as-
sumption of crisp accessibility relations. Actually the authors point out
that the same result had been previously obtained in [8] with respect
to the global consequence relation.

More interesting to us, in [8, Section 6] Hansoul and Teheux prove a
completeness result with respect to the local logical consequence rela-
tion for classes of many-valued modal logics extending modal logic K.
For a comparison with our system, let us fix among the logics studied
in [8] the one based on the [0,1]-valued  Lukasiewicz logic and let us
denote it by L. The L-axiom system includes, in addition to an axiom-
atization of  Lukasiewicz logic and the normal axiom of K, a number of
axiom schemas whose intuitive meaning is that the necessity operator
behaves well with respect to the MV-algebra structure. There are sim-
ilar, but simpler, axiom schemas in our system (see A8 and A9 below).
In order to get their completeness result, Hansoul and Teheux claim
that they introduce a new infinitary deduction rule. In our opinion it
would be more appropriate to say that they define a notion of “infini-
tary provability”, denoted by ⊢∞L , but they do not extend the deductive
system to fully accommodate the infinitary rule. Indeed the relation
⊢∞L is defined in terms of infinitely many instances of the finitary prov-
ability relation ⊢L (see [8, Definition 6.5]). Otherwise said, application
of the infinitary rule is allowed at most once in a proof, at the very end
of it.

The interested reader may find in [1] an extension of propositional
continuos logic by means of an infinitary rule which allows to strengthen
the approximate completeness theorem of continuous logic to an “ex-
act” theorem. Unfortunately the resulting system lacks good proof-
theoretic properties like, for instance, a deduction theorem extending
that of the finitary system. In order to restore the validity of the latter
theorem, ad hoc restrictions on the application of the infinitary rule
need to be imposed.

Returning to a comparison with [8], apart from the different ap-
proach (the use of MV-algebra homomorphisms instead of maximal
consistent sets), Hansoul and Teheux’s canonical model construction is
based on the same idea as in [9] and in our paper (see the definition of
the canonical structure after Theorem 17 below). We stress that the
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canonical model construction is completely driven by the semantics of
the modal operator ◻. For this reason it is the natural adaptation of
the canonical model construction relative to K. Furthermore, once the
necessary translations from one formalization to the other have been
made, it can be seen that the premisses of the infinitary deduction
rule in [8] describe the same situation as the right-hand side of our ap-
proximated completeness theorem (Corollary 21). Roughly speaking,
in both [8, Proposition 6.6] and Corollary 21, an equivalence between
logical consequence and provability of a formula “up to any prescribed
degree of accuracy” is established. In this author’s opinion the mean-
ing of such equivalence is better understood if stated in the continuos
logic setting.

Apart from their intrinsic interest, Hansoul and Teheux seem not
provide extra-logical motivations for developing their systems the way
they do. They claim that they are guided by the will to consider
many-valued modal systems for which algebraic tools already exist. In
this regard, it is quite remarkable that different starting points lead to
essentially the same result.

Eventually we mention [7]. In that paper the authors endow the
members of a suitable class of logics, each based on the monoidal t-
norm logic MTL, with a modal operator. They call such an operator a
truth stresser modality. Indeed they are mostly concerned with fuzzy
operators. The algebraic counterpart of each logic is given by some class
of residuated lattices, where the modality ◻ is interpreted by a unary
operator. Hypersequent calculi are provided and completeness results
with respect to algebras based on t-norms are established, together with
related results. The class of logics under consideration is quite rich but
does not include the [0,1]-valued  Lukasiewicz logic (see [7, Section 2]).
For this reason, we are not able to make a thorough comparison with
our work.

Structure of the paper. In Sections 2 and 3 we introduce the seman-
tics and the deductive system respectively. As already said, structures
are [0,1]-valued Kripke structures and the semantics is the natural
extension of that of propositional Continuous Logic to a modal frame-
work. The axioms are those of Continuous Propositional Logic, to-
gether with the characteristic axiom of modal logic K and some other
quite natural axioms. We will comment on those axioms just after
introducing them. We have two inference rules: modus ponens and
necessitation.

In Section 4 we prove the equivalence of consistency and satisfia-
bility; the above mentioned approximated completeness theorem and
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compactness of our logic, as consequences of our main technical result
(Theorem 18).

Eventually we discuss whether our system is a conservative exten-
sion of  Lukasiewicz and of Continuous Logic and we point out a curious
connection between modal logic S5 and the use of [0,1]–valued acces-
sibility relations.

2. Language, structures, semantics

Let Σ0 = {Pi ∶ i ∈ I} be a set of pairwise distinct proposition symbols.
Let Σ1 = {� ,¬, 1

2} ∪ {◻}, where ¬ and 1
2 are unary connectives, � is a

binary connective and ◻ is a modal operator. As usual, we have the
brackets are auxiliary symbols.

The set F of formulas is the least set that contains the proposition
letters and is closed under application of the connectives and of ◻.
We shall use abbreviations like ϕ1 �ϕ2 � . . . �ϕn, assuming that the
missing brackets are associated to the left. We also assume that ◻
binds more tightly than all the connectives and that ¬ binds more
tightly than � .

We call  Lukasiewicz formula (briefly:  L–formula) a formula whose
connectives are in the set {� ,¬}. We call Continuous formula (briefly:
CL–formula) a ◻–free formula. We denote by FL and FC the sets of
 L– and of CL–formulas respectively. We may use ◇ as an abbreviation
for ¬ ◻ ¬.

Next we introduce an extension of Kripke structures. In the follow-
ing, a structure is a triple

⟨M,r ∶M ×M → {0,1}, v ∶M ×Σ0 → [0,1]⟩
where M is a nomempty set, r and v are binary functions and [0,1] is
the real unit interval. The function r is the characteristic function of the
accessibility relation between elements of M. We make the convention
that, for all k,m ∈ M, the world k is accessible from m if and only
if r(m,k) = 0. This convention agrees with the semantics described
below, where 0 is the highest truth value.

When no confusion arises, we shall write just M to denote the above
triple. If M is a singleton, we say that M is a  Lukasiewicz structure
(briefly:  L–structure), or a Continuous Logic structure (briefly: CL–
structure), depending on the setting.

Mapping v ∶ M × Σ0 → [0,1] uniquely extends to a mapping, also
denoted by the same name, v ∶M × F → [0,1] as follows:

(1) v(m, 1
2ϕ) = 1

2v(m,ϕ);
(2) v(m,¬ϕ) = 1 − v(m,ϕ);
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(3) v(m,ϕ�ψ) = max(v(m,ϕ) − v(m,ψ),0));
(4) v(m,◻ϕ) = sup{v(k,ϕ)� r(m,k) ∶ k ∈M}.

Next we comment on the semantics, for reader’s convenience. As
anticipated, in the current semantics the values 0 and 1 play the role
of “absolute truth” and “absolute falsehood” respectively. The reals in
the open interval ]0,1[ play the role of intermediate truth values (the
higher the real, the lower its degree of truth). Of course, we may reverse
the role of 0 and 1 and modify the semantics accordingly. We stick to [3]
so that we can directly refer to the results therein. Actually, the choice
made in [3] (which was inherited from [2]) is related to a feature of
continuous logic that we would like to describe. In its predicate version,
it is a logic without equality. The natural many-valued counterpart of
the equality predicate, relative to the domain A of a continuous logic
structure, is a metric d ∶ A × A → [0,1]. (Boundedness of the metric
is a technical requirement that can be bypassed. See [2].) Equality
between elements of A can be recovered from the metric by noticing
that, for all a, b ∈ A,

a = b ⇔ d(a, b) = 0.

Hence the value 0 yields the highest degree of equality.

As noticed in [3, Remark 2.3], the connective � plays the role of
reverse implication, in the sense that ϕ�ψ may be interpreted as “ϕ
is implied by ψ”. Actually, if the truth degree of ϕ is greater or equal
to that of ψ with respect to some truth valuation v (remember that
this means v(ϕ) ≤ v(ψ)), then the truth degree of ϕ�ψ is the highest
possible, i.e. v(ϕ�ψ) = 0. In our opinion the choice of � as a primitive
connective, rather than the implication, does lead to some notational
and computational simplification. However, our main motivation for
sticking to � is compliance with [3].

Concerning the role of the connective 1
2 , roughly speaking we want

a set of connectives with the property that every real in the unit in-
terval is the limit of a converging sequence of rationals which can be
obtained by application of the connectives. So we start by writing 1
as an abbreviation for ¬(ϕ�ϕ), where ϕ is any formula, and 0 as an
abbreviation for ¬1. Then, for each r ∈ [0,1] ∩Q, we may introduce a
unary connective r and stipulate that r1 is a formula (with the obvious
semantics). So doing, the notation and the formulation of the axiom
system would be unnecessarily complicated. We write 2−n as an abbre-
viation for 1

2 . . .
1
2²

n times

1. Loosely speaking, by closing {1} with respect to

the application of the connectives in Σ1 we get what we may call the



8

set D of dyadic logic constants. Formally speaking, in all structures
⟨M,r, v⟩, for all m ∈ M we have v(m,D) = D, where D is the set of
dyadic rationals in [0,1]. As in [3], for simplicity of notation from now
on we identify the set D with its valuation D and we avoid the use of
boldface constants.

Finally, we recall that D is a dense subset of the real unit interval.
Hence every real in [0,1] is the limit of a sequence of dyadic rationals.
We may achieve an analogous result by using, for instance, the connec-
tive 1

3 (indeed every real in the unit interval has a ternary expansion),
but the axioms corresponding to A5 and A6 below would not be equally
simple.

We comment about the semantics of ◻ in the following remark.

Remark 1. By letting R = {(m,k) ∈ M2 ∶ r(m,k) = 0}, we may
equivalently define

v(m,◻ϕ) = sup{v(k,ϕ) ∶ (m,k) ∈ R},
with the convention that sup∅ = 0. Hence a formula ◻ϕ is absolutely
true at a world m exactly when ϕ is absolutely true at all worlds that
are accessible from m or there is no accessible world from m.

We shall write ϕM(m) for v(m,ϕ). If ∆ ⊆ F, we also write

(1) M,m ⊧∆ if δM(m) = 0 for all δ ∈ ∆;
(2) M ⊧∆ if M,m ⊧∆ for all m ∈M ;
(3) ∆ ⊧ ϕ if, for all M and all m ∈M, M,m ⊧∆ implies M,m ⊧ ϕ.

If there exist a structure M and m ∈M such that M,m ⊧∆, we say
that ∆ is satisfiable. If ∆ ⊧ ϕ we say that ϕ is a logical consequence of
∆. Notice that we are dealing with a local notion of logical consequence.

Notice also that every CL–formula can be assigned a truth value
in a CL–structure. (The accessibility relation plays no role here.) If
M = {m}, we shall write ϕM for ϕM(m). We shall denote by ⊧L and by
⊧CL the logical consequence relations in  Lukasiewicz and in Continuous
Logic respectively.

3. Axioms, rules and validity

From now on, the abbreviations and the notational conventions in-
troduced in Section 2 are in force, specifically those related to the
connective 1

2 and the dyadic logic constants.

The first four axioms in the list below yield an axiomatization of
 Lukasiewicz [0,1]–valued Logic:

A1. (ϕ�ψ)�ϕ
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A2. ((η �ϕ)� (η �ψ))� (ψ �ϕ)
A3. (ϕ� (ϕ�ψ))� (ψ � (ψ �ϕ))
A4. (ϕ�ψ)� (¬ψ �¬ϕ)
The next set of axioms describes the behavior of the connective 1

2 .

A5. 1
2ϕ� (ϕ� 1

2ϕ)
A6. ϕ� 1

2ϕ� 1
2ϕ

Axioms A1–A6 provide the axiomatization of propositional Contin-
uos Logic presented in [3].

In order to clarify the meaning of A5 and A6, it is convenient to in-
troduce some derived connectives. Let us define +̇ as follows: ϕ +̇ψ ∶=
¬(¬ϕ�ψ). Its semantics is the following: r +̇ s = min(r + s,1). Con-
junction can also be defined in terms of the connectives in Σ1. Let us
write ϕ = ψ as an abbreviation for (ϕ�ψ) ∧ (ψ �ϕ). Finally, it is just
a matter of “algebraic” manipulations to rewrite axioms A5 and A6 as
follows: 1

2ϕ +̇ 1
2ϕ = ϕ. Therefore the meaning of A5 and A6 is that 1

2

really behaves as expected.

The modal axioms come next:

A7. (◻ϕ� ◻ ψ)� ◻ (ϕ�ψ)
A8. ◻(ϕ�d)� (◻ϕ�d) for all d ∈ D.
A9. (◻ϕ�d)� ◻ (ϕ�d) for all d ∈ D.
Axiom A7 is just a reformulation in the continuous setting of the

characteristic axiom of modal logic K. (see [5]). So it is appropriate to
say that we are dealing with a continuous version of K.

The meaning of A8 and A9 is that, for all d ∈ D and all formulas
ϕ, the formulas ◻(ϕ�d) and ◻ϕ�d are provably equivalent. (Easy
calculations show that both schemata are valid.) Since d ranges over
D, A8 and A9 introduce a countable family of schemata. It is an open
problem whether they can be replaced by finitely many schemata.

Finally, the inference rules are:

ϕ ψ �ϕ
ψ

MP
⊢ ϕ
⊢ ◻ϕ N

Derivations are defined in the usual manner. Notice that application
of N rule is restricted to the case when a proof of ϕ does not depend
on any extralogical assumption.

Let ∆ ⊆ F and ϕ ∈ F. We write ∆ ⊢ ϕ if there exists a derivation of
ϕ whose set of assumptions is included in ∆. In such case we say, as
usual, that ϕ is provable from ∆.

We shall refer to the logical system just described as to CML (short-
ening for Continuous Modal Logic). We will discuss whether CML is a
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conservative extension of  Lukasiewicz Logic and of Continuos Logic in
Section 4, after establishing our main result.

We shall denote by ⊢ L and ⊢CL provability in  Lukasiewicz Logic and
in Continuous Logic respectively.

Remark 2. Let ϕ(P1, . . . , Pn) be a formula of Continuous Logic whose
proposition letters are among those displayed. Suppose ⊢CL ϕ(P1, . . . , Pn).
As CML extends Continuous Logic, by substitution we get ⊢ ϕ(ψ1, . . . , ψn),
for all ψ1, . . . , ψn in F. An analogous consideration applies to  Lukasiewicz
logic. In the following we shall use these facts without further mention.

It is a matter of easy calculation to check that, for f, g ∶M → [0,1],

sup
k∈M

f(k)� sup
k∈M

g(k) ≤ sup
k∈M

(f � g)(k).

Also, for all m,k ∈M and all r ∶M ×M → {0,1}, we have

(f(k)� r(m,k))� (g(k)� r(m,k)) = (f(k)� g(k))� r(m,k)

Therefore we get at once the following

Lemma 3. Let M be a structure. Then, for all m ∈M,

(◻ϕ� ◻ ψ)M(m) ≤ (◻(ϕ�ψ))M(m).

Remark 4. The previous lemma does non hold for arbitrary r ∶ M ×
M → [0,1]. A counterexample is as follows: let M be any set and let
P,Q be distinct proposition letters. Let v(m,P ) = 1, v(m,Q) = 1/2 and
r(m,k) = 1/2 for all m,k ∈M.

Proposition 5. All the axioms are valid with respect to the CM se-
mantics.

Proof. Axioms A1,. . . , A6 are valid because CML semantics extends
Continuous Logic. Lemma 3 states validity of A7. Finally, easy calcu-
lations show that the remaining axioms are valid. �

Proposition 6. (Soundness) For all ∆ ⊆ F and all ϕ ∈ F

∆ ⊢ ϕ ⇒ ∆ ⊧ ϕ.

Proof. By induction on the length of a derivation of ϕ from ∆, with
the use of Proposition 5. Concerning the deduction rules, their validity
can be easily verified. �
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4. Approximated completeness

In this section, we want to establish a partial converse of Proposi-
tion 6. We will prove an approximated completeness theorem of the
form: for all ∆ ∪ {ϕ} ⊆ F

∆ ⊧ ϕ ⇒ ∆ ⊢ ϕ�2−n for all n ∈ ω.
We point out that the conclusion of the above implication cannot be

strengthened. Indeed let P be a propositional variable. It can be easily
verified that {P �2−n ∶ n ∈ ω} ⊧ P. If it were that {P �2−n ∶ n ∈ ω} ⊢ P
then, for some k ∈ ω, {P �2−n ∶ n < k} ⊢ P (provability in CML is a
finitary relation). Hence {P �2−n ∶ n < k} ⊧ P , which is not the case.

We begin with some preliminary notions and results.

Definition 7. Let ∆ ⊆ F and let ϕ ∈ F.
(1) ∆ is consistent if ∆ /⊢ ψ for some ψ ∈ F ;
(2) ∆ is ϕ–consistent if ∆ /⊢ ϕ.

The same definition of consistency as above is given, mutatis mu-
tandis, in  Lukasiewicz and in Continuous Logic. It is clear that ϕ–
consistency implies consistency.

The following fact are thoroughly discussed and properly credited in
[3].

Fact 8. (Weak Completeness for  Lukasiewicz Logic) For every formula
ϕ of  L–logic

⊧ L ϕ ⇔ ⊢ L ϕ

Fact 9. Let ∆ ⊆ FCL. Then ∆ is satisfiable if and only if it is consistent.

Fact 10. (Approximated Strong Completeness for Continuous Logic)
For any ∆ ∪ {ϕ} ⊆ FCL

∆ ⊧CL ϕ ⇔ ∆ ⊢CL ϕ�2−n for all n ∈ ω.
Fact 11. Let ∆ ⊆ FCL. Then ∆ is inconsistent if and only if ∆ ⊢CL d,
for some d ∈ D ∖ {0}. We prove the nontrivial implication. Remember
that we are identifying each dyadic logic constant with its valuation
(see the above comments on the role of the connective 1

2). Let 0 < d ∈
D be such that ∆ ⊢CL d. By Soundness, in any model M of ∆, the
rational d must take value zero, which is impossible. It follows that ∆
is unsatisfiable, hence inconsistent by Fact 9.

Fact 12. Let ∆ ∪ {ϕ} ⊆ FCL be finite. Then

∆ ⊧CL ϕ ⇔ ∆ ⊢CL ϕ.
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Remark 13.

(1) ∆ ⊆ F is inconsistent if and only if ∆ ⊢ d for some d ∈ D∖ {0}:
for the “if” part, suppose ∆ ⊢ d, for some positive dyadic d. As
d ⊢CL P for any propositional letter P, by substitution we get
∆ ⊢ ϕ for all ϕ ∈ F.

(2) Every ϕ–consistent set extends to a maximal ϕ–consistent set,
by a standard application of Zorn’s Lemma.

(3) Suppose ∆ is maximal ϕ–consistent and ∆ ⊢ ψ Then ∆, ψ /⊢ ϕ.
By maximality, ψ ∈ ∆. Hence ∆ is closed under provability.

We recursively define ϕ�nψ, n ∈ ω, as follows:

ϕ�0ψ = ϕ; ϕ� (n + 1)ψ = (ϕ�nψ)�ψ.
Same as in [3], We have the following

Theorem 14. (Deduction Theorem) Let ∆ ⊆ F and let ϕ,ψ ∈ F. Then
∆, ψ ⊢ ϕ if and only if ∆ ⊢ ϕ�nψ for some n ∈ ω.
Proof. We repeat the proof of [3, Theorem 8.1]. Concerning the non-
trivial implication, first of all we observe that, for all α,β, γ and and
all n,m ∈ ω,

⊢L ((β � (n +m)α)� ((β �γ)�nα))� (γ �mα).
This can be shown using completeness of  Lukasiewicz propositional
logic with respect to the MV-algebra [0,1].

The proof then proceeds by induction on a derivation of ϕ from
∆ ∪ {ψ}. Notice that the presence of additional axioms to those in [3]
and of N rule poses non problem. Indeed the N rule can only be applied
when the set premises is empty.

�

Proposition 15. Let ∆ ⊆ F and let ϕ,ψ, η ∈ F. If ∆, ϕ�ψ ⊢ η and
∆, ψ �ϕ ⊢ η then ∆ ⊢ η.
Proof. By the Deduction Theorem, there exist m,n ∈ ω such that ∆ ⊢
η �m(ϕ�ψ) and ∆ ⊢ η �n(ψ �ϕ). Notice that

⊢ L P � (P �m(Q�R))� (P �n(R�Q))
for all proposition letters P,Q,R and all m,n ∈ ω. Hence the conclusion
follows by a double application of MP. �

Now we discuss properties of maximal ϕ–consistent sets, where ϕ is
an arbitrary formula.

Proposition 16. Let ∆ ⊆ F be maximal ϕ–consistent, For all ψ, η ∈ ∆
at least one of ψ � η and η �ψ is in ∆.



13

Proof. By contraposition. Suppose ψ � η ∉ ∆ and η �ψ ∉ ∆, for some
ψ, η. Then, by maximality, ∆, ψ � η ⊢ ϕ and ∆, η �ψ ⊢ ϕ. By Proposi-
tion 15 we get ∆ ⊢ ϕ.

�

Theorem 17. Let ∆ ⊆ F be maximal ϕ–consistent, Then, for every
ψ ∈ F,

sup{s ∈ D ∶ s�ψ ∈ ∆} = inf{s ∈ D ∶ ψ � s ∈ ∆}.

Proof. If the left–hand side were smaller than the right–hand side, pick
s ∈ D strictly between sup and inf . By Proposition 16, at least one of
s�ψ,ψ � s is in ∆, but s�ψ ∈ ∆ contradicts to the sup being smaller
than s and ψ � s ∈ ∆ contradicts to the inf being greater than s.

Furthermore, the left-hand side cannot be greater than the right-
hand side, otherwise s�ψ and ψ � t both belong to ∆ for some s, t ∈ D
such that s > t. Then, by axiom A2, ∆ ⊢ (s� t). Hence ∆ would be
inconsistent (see Fact 11), contrary to our assumption.

�

Let ∆ be maximal ϕ–consistent and let ψ ∈ F. According to Theorem
17, we let

ψ∆ = sup{s ∈ D ∶ s�ψ ∈ ∆} = inf{s ∈ D ∶ ψ � s ∈ ∆}.

Next we take inspiration from Fitting’s construction of a canonical
model for a many-valued modal logic (see [10]) and we define a canon-
ical structure ⟨M,r, v⟩, where

(1) elements of M are maximal ϕ–consistent sets, for some ϕ ∈ F ;
(2) r(∆,Γ) = 0 if and only if ψΓ ≤ (◻ψ)∆, for all ψ ∈ F ;
(3) v(∆, P ) = P∆ for all ∆ ∈M and all proposition letters P.

Notice that condition (2) above, in classical modal logic translates
into

∆RΓ ⇔ for all formulas ψ (◻ψ ∈ ∆ ⇒ ψ ∈ Γ),
which is the standard requirement on the accessibility relation R when
constructing a canonical model.

Theorem 18. For all ψ ∈ F and all ∆ ∈M, ψM(∆) = ψ∆.

Proof. By induction on ψ.

(a) For atomic ψ the conclusion holds by condition (3) above.
(b) Let ψ be of the form 1

2η. Let us assume ηM(∆) = η∆. Then

ψM(∆) = 1

2
ηM(∆) = 1

2
η∆ = 1

2
sup{d ∈ D ∶ (d� η) ∈ ∆} = sup{1

2
d ∶ (d� η) ∈ ∆}.
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As ∆ is is closed under provability and (d� η) is provably
equivalent to (1

2d� 1
2η) in Continuous Logic, the last term in

the above chain of equalities is just (1
2η)∆.

(c) Let ψ be of the form ¬η. Let us assume ηM(∆) = η∆. Then

ψM(∆) = 1 − ηM(∆) = 1 − η∆ = 1 − sup{d ∈ D ∶ (d� η) ∈ ∆}.
Since α�β and ¬β �¬α are provably equivalent in  Lukasiewicz

logic for all α,β, it follows from closure under provability of ∆
that (d� η) ∈ ∆ if and only if (¬η � (1 − d)) ∈ ∆. So the last
term in the above chain of equalities is equal to inf{1 − d ∶
(¬η � (1 − d)) ∈ ∆} = (¬η)∆.

(d) Let ψ be of the form η � ξ. Let us assume ηM(∆) = η∆ and
ξM(∆) = ξ∆. Then (η � ξ)M = η∆ � ξ∆ = sup{d ∶ d� η ∈ ∆}� inf{e ∶
ξ � e ∈ ∆} = sup{d� e ∶ d� η ∈ ∆ and ξ � e ∈ ∆} ≤ sup{d ∶
d� (η � ξ) ∈ ∆} = (η � ξ)∆, where, for the last inequality, we
notice that

d � P,Q � e ⊧CL (d � e) � (P �Q),
for all propositional letters P,Q. Hence, by Fact 12 and by
Remark 2, we get

d� η ∈ ∆ and ξ � e ∈ ∆ ⇒ ((d� e)� (η � ξ)) ∈ ∆.

Similarly, η∆ � ξ∆ = inf{d ∶ (η �d) ∈ ∆}� sup{e ∶ (e� ξ) ∈
∆} = inf{d� e ∶ (η �d) ∈ ∆ and (e� ξ) ∈ ∆} ≥ inf{d ∶ (d� (η � ξ)) ∈
∆} = (η � ξ)∆, where the last inequality follows form the above
implication.

(e) Let ψ be of the form ◻η.
In the following we repeatedly use that ⊢CL (P �d1)� (P �d2)

for all proposition letters P and all d1, d2 ∈ D such that d2 ≤ d1.
(To show this, use Fact 12). Hence, for all χ ∈ F and all d2 ≤ d1

in D,
⊢ (χ�d1)� (χ�d2).

Let us inductively assume that ηM(∆) = η∆ for all ∆ ∈ M.
Let ∆ ∈M be ϕ–consistent. First of all, recalling Remark 1 and
condition (2) above, we have that

(◻η)M(∆) = sup
∆RΓ

ηM(Γ) = sup
∆RΓ

ηΓ ≤ (◻η)∆.

For sake of contradiction, assume that (◻η)M(∆) < (◻η)∆.
Let d̄ ∈ D be such that (◻η)M(∆) < d̄ < (◻η)∆. Let

∆′ = ⋃
ξ∈F

{ξ �d ∶ d ∈ D and d > (◻ξ)∆}.
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We claim that ∆′ /⊢ η � d̄. Otherwise there exist k, ξi ∈ F and
di > (◻ξi)∆, 1 ≤ i ≤ k, such that

ξ1 �d1, . . . , ξk �dk ⊢ η � d̄.
By repeated applications of the Deduction Theorem, we get

⊢ (η � d̄)�n1(ξ1 �d1)� . . . �nk(ξk �dk),
for some n1, . . . , nk ∈ ω.

Application of N rule yields

⊢ ◻((η � d̄)�n1(ξ1 �d1)� . . . �nk(ξk �dk)).
By multiple applications of axioms A7, A8, A9 and of MP,

we get
◻ξ1 �d1, . . . ,◻ξk �dk ⊢ ◻η � d̄.

Since (◻ξi �di) ∈ ∆ for all 1 ≤ i ≤ k, we get that ∆ ⊢ ◻η � d̄.
So, by Remark 13 (3), (◻η � d̄) ∈ ∆, contradicting to our choice
of d̄. Therefore ∆′ /⊢ η � d̄.

Let Σ be a maximal (η � d̄)–consistent extension of ∆′. By
definition of ∆′ we have that, for every ξ ∈ F, ξΣ ≤ (◻ξ)∆.
Hence ∆RΣ.

By construction, η � d̄ ∉ Σ, so ηΣ > (◻η)M(∆). On the other
hand,

(◻η)M(∆) = sup
∆RΓ

ηM(Γ) = sup
∆RΓ

ηΓ ≥ ηΣ,

hence a contradiction. Therefore (◻η)M(∆) = (◻η)∆ for all
∆ ∈M.

�

Corollary 19. The following are equivalent for all ∆ ⊆ F .

(1) ∆ is satisfiable;
(2) ∆ is consistent.

Proof. As for the nontrivial implication, let Γ be a maximal consistent
extension of a consistent ∆. Then, by Theorem 18 above, we have that,
with respect to the canonical structure M previously defined,

0 = δΓ = δM(Γ) for all δ ∈ ∆.

Hence ∆ is satisfiable. �

Since the provability relation is finitary, from the previous corollary
we easily get the following:

Corollary 20. (Compactness of CML) A set of formulas is satisfiable
if and only if it is finitely satisfiable.
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Corollary 21. (Approximated Completeness Theorem for CML) For
all ∆ ∪ {ϕ} ⊆ F

∆ ⊧ ϕ ⇔ ∆ ⊢ ϕ�2−n for all n ∈ ω.
Proof. As for the nontrivial implication, suppose ∆ /⊢ ϕ�2−n, for some
n ∈ ω. Let Γ be a maximal (ϕ�2−n)–consistent extension of ∆. By
Theorem 18, in the canonical structure M it holds that ϕM(Γ) = ϕΓ ≥
2−n. Since δM(Γ) = 0 for all δ ∈ ∆, we get ∆ /⊧ ϕ. �

By importing the modal terminology into the current setting, we
have that ⊧ ϕ means that ϕ is valid with respect to the class of crisp
frames (in case of provability from the empty set of assumptions, the
global and the local logical consequence relation are the same). From
Corollary 21 we derive that the validity of ϕ with respect to the class
of crisp frames is in turn equivalent to ϕ being an approximated logical
theorem, where the attribute approximated is explained by the right-
hand side of the equivalence in Corollary 21.

It is an open question whether Corollary 21 can be strengthened by
replacing the right–hand side of the equivalence with ∆ ⊢ ϕ, when ∆
is finite. (Compare with Fact 12.) Notice that the canonical model
construction does not provide an answer at once.

Remark 22. CML is a conservative extension of  Lukasiewicz logic in
the following sense: for every formula ϕ in the language of  Lukasiewicz
logic it holds that

⊢ ϕ ⇔ ⊢L ϕ.
Concerning the left-to-right implication, we have ⊢ ϕ ⇒ ⊧ ϕ, by the
Soundness Theorem. A fortiori, ϕ is valid in the MV-algebra [0,1]
under all assignments of values to its propositional variables. Hence,
by weak completeness of  Lukasiewicz logic with respect to the [0,1]-
algebra, we conclude that ⊢L ϕ.

We can also establish a conservativity result of CML relative to CL.
The following hold for every formula ϕ in the language of CL:

⊢ ϕ�2−n for all n ∈ ω ⇐⇒ ⊢CL ϕ�2−n for all n ∈ ω.
As for the left-to-right implication, let us denote by ⊧CL the logical

consequence relation in CL. By Corollary 21, ⊢ ϕ�2−n for all n ∈ ω ⇒
⊧ ϕ. A fortiori, ⊧CL ϕ holds. By the Theorem of Approximated Com-
pleteness for CL (Fact 10 above), we get the conclusion.

Next we make a very final comment. We have shown in Remark 4
that the characteristic axiom of modal logic K becomes an unsound
formula if allow for [0,1]–valued accessibility relations. Let us do it
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anyway. First of all we notice that, for all structures ⟨M,r ∶M ×M →
[0,1], v ∶M ×Σ0 → [0,1]⟩ and all m ∈M, it holds that

r(m,m) = 0 ⇒ ∀ϕ (M,m ⊧ ϕ � ◻ϕ);
∀k,n ∈M(r(m,n) ≤ r(m,k) + r(k,n)) ⇒ ∀ϕ (M,m ⊧ ◻ ◻ ϕ � ◻ϕ);

∀k ∈M(r(m,k) ≤ r(k,m)) ⇒ ∀ϕ (M,m ⊧ ◻◇ ϕ � ϕ).

We say that the accessibility relation r is symmetric if whenever
r(m,k) = 0 then r(k,m) = 0. We define reflexivity and transitivity as
expected.

In addition to r being [0,1]–valued, let us also assume that M is full,
i.e. for every function f ∶M → [0,1] there exists a proposition symbol
P such that PM = f. (Admittedly a strong assumption.) Then all the
above implications are indeed equivalences. It follows that

∀ϕ (M ⊧ ϕ � ◻ϕ) ⇒ r is reflexive;
∀ϕ (M ⊧ ◻◇ ϕ � ϕ) ⇒ r is symmetric;
∀ϕ (M ⊧ ◻ ◻ ϕ � ◻ϕ) ⇒ r is transitive,

Finally notice that the last three implications are reminiscent of
modal logic S5.
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