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Abstract. We present some properties of a first order differential operator Dn on the real
Clifford algebra R0,n. The operator Dn extends the Dirac and Weyl operators to functions that
can depend on all the coordinates of the algebra. Our starting point is a modified Cauchy-
Riemann-Fueter operator on the quaternions, which is the sum of two one-variable Cauchy-
Riemann operators. The operator Dn behaves well both w.r.t. monogenic functions and w.r.t.
the powers of the (complete) Clifford variable x. This last property relates the operatorDn with
the recent theory of slice monogenic and slice regular functions.
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1 INTRODUCTION

In this paper we study some basic properties of a first order differential operator on the real
Clifford algebra Rn := R0,n which generalizes the Weyl operator used in the theory of mono-
genic functions (for which we refer to [1], [2], [5]). While monogenic functions are usually
defined on open subsets of the paravector space, the operator we consider acts on functions
that can depend on all the coordinates of the algebra. This is similar to what happens on the
quaternionic space H ' R2, where the Cauchy-Riemann-Fueter operator acts on the whole
space, not only on the reduced quaternions H3 = 〈1, i, j〉. Our starting point is the modified
Cauchy-Riemann-Fueter operator on the quaternions:

D =
1

2
(∂x0 + i∂x1 + j∂x2 − k∂x3) (1)

(see [12] and [9] for some properties of this and related operators). When written in the notation
of the Clifford algebra R2, it becomes the operator

D2 =
1

2
(∂x0 + e1∂x1 + e2∂x2 − e12∂x12) . (2)

If D1 = ∂z̄1 = 1
2

(∂x0 + e1∂x1) and D1,2 = 1
2

(∂x2 + e1∂x12) are the one-variable Cauchy–
Riemann operators w.r.t. the complex variables z1 = x0 + e1x1, z2 = x2 + e1x12, then D2 =
D1 + e2D1,2. This observation suggests a recursive definition of a differential operator Dn on
Rn. Even if the definition of Dn is not symmetric w.r.t. the basis vectors, the operator we obtain
is symmetric, and has the following explicit form:

Dn =
1

2

∑
K

e∗K∂xK
(3)

where e∗K = (−1)
k(k−1)

2 eK is obtained by applying to eK the reversion anti-involution.
When restricted to functions of paravector variable (x0, x1, . . . , xn), Dn is equal (up to a

factor 1/2) to the Weyl (cf. e.g. [2, §4.2]), or Cauchy-Riemann (as in [5, §5.3]) operator of Rn.
Therefore every Rn-valued monogenic function defined on an open domain of Rn+1 ⊂ Rn is
in the kernel of Dn. Moreover, the identity function x of Rn is in the kernel of Dn, while its
restriction to the paravector variable is not monogenic.

The operator Dn behaves well also w.r.t. powers of the (complete) Clifford variable x. We
show that every power xm is in the kernel of Dn when n is odd. For even n, the same property
holds on the so-called quadratic cone of the algebra (cf. [7]). These properties link the operators
Dn to the recent theory of slice monogenic [3] and slice regular functions on Rn [6, 7].

Operators similar to Dn have already been considered in the literature (e.g. in [10], [4] and
[11]). However, it seems that the operators Dn are particularly well adapted to the theory of
polynomials

∑
k x

kak or more generally of slice regular functions on a Clifford algebra.
On the negative side, the operatorDn is not elliptic for n > 2 and its kernel is very large if we

do not restrict the domains where functions are defined. In the last section, we focus on the case
n = 3 and show a more strict relation of D3 with the Weyl operator. This suggests to consider a
proper subspace of the kernel of D3, where the condition of Cliffordian holomorphicity [8] has
a role. We get in this way the real analyticity in R3 and an integral representation formula on
domains of polydisc type.
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2 THE FULL DIRAC OPERATORS

Denote by e1, . . . , en the generators of Rn. Let x =
∑

K xKeK ∈ Rn, whereK = (i1, . . . , ik)
is a multiindex, with 0 ≤ |K| := k ≤ n, xK ∈ R, eK = ei1 · · · eik .

Definition 1. Let D1 = 1
2

(∂x0 + e1∂x1) and D1,2 = 1
2

(∂x2 + e1∂x12). For n > 1, define
recursively

Dn := Dn−1 + enDn−1,n (4)

where we consider Rn−1 embedded in Rn and Dn−1,n is the operator defined as Dn−1 w.r.t. the
2n−1 variables xn, x1n, x2n, . . . , x12n, . . . , x12···n. Since Dn depends on all the basis coordinates
of Rn, we call it the full Dirac operator on Rn.

Remark 1. The operator D1 is the standard Cauchy–Riemann operator on R1 ' C. D2 is the
modified Cauchy-Riemann-Fueter operator on R2 ' H:

D2 =
1

2
(∂x0 + e1∂x1 + e2∂x2 − e12∂x12) . (5)

D3 = D2 + e3D2,3 is the following operator

D3 =
1

2
(∂x0 + e1∂x1 + e2∂x2 + e3∂x3 − e12∂x12 − e13∂x13 − e23∂x23 − e123∂x123) .

An easy inductive procedure shows that, despite its recursive definition, the operator Dn is
symmetric w.r.t. the basis elements e1, . . . , en.

Proposition 1. The operator Dn can be written in the following form:

Dn =
1

2

∑
|K|≤n

e∗K∂xK
(6)

where e∗K = (−1)
k(k−1)

2 eK is obtained by applying to eK the reversion anti-involution x 7→ x∗.
Moreover, Dn−1,n = 1

2

∑
H 63n e

∗
H∂x(Hn)

.

On functions depending only on paravectors, the operator Dn is equal to the 1
2
Wn, where

Wn is the Weyl operatorWn = ∂x0 +
∑n

i=1 ei∂xi
.

Corollary 2. Every monogenic function (i.e. in the kernel ofWn) defined on an open subset of
the paravector subspace Rn+1 ⊂ Rn can be identified with an element of kerDn.

We can define also the conjugated operator Dn and the auxiliary operator D∗n.

Definition 2. {
D1 = ∂z1 = 1

2
(∂x0 − e1∂x1) , D∗1 = ∂z̄1 = 1

2
(∂x0 + e1∂x1)

Dn = Dn−1 − enD∗n−1,n, D∗n = D∗n−1 + enDn−1,n

where D∗n−1,n and Dn−1,n are defined as D∗n−1 and Dn−1 w.r.t. the 2n−1 variables xn, x1n, . . .,
x12n,. . . , x12···n.
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The operators Dn and D∗n have the following explicit forms:

Proposition 3.

Dn =
1

2

∑
|K|≤n

ẽK∂xK
(7)

where ẽK = (−1)keK is obtained by applying to eK the principal involution x 7→ x̃. Moreover,

D∗n =
1

2

∑
|K|≤n

eK∂xK
, D∗n−1,n =

1

2

∑
H 63n

eH∂xHn
(8)

Remark 2. The identity function x of R3 is in the kernel of D2 and D3 (and of course of D1).
Starting from D1x = 0, D1,2x = 0 on R2, we get recursively that Dnx = 0 on Rn for every n.
Note that even if D∗1x = D∗1,2x = 0, the identity function does not belong to the kernels of D∗n
or Dn for every n.

The operatorD∗n has already been considered in the literature (cf. [10] and [4]). The property
given in the preceding remark and the behavior of Dn w.r.t. power functions (see Theorem (5))
indicate that these operators are better suited than D∗n or Dn to the theory of polynomials or
more generally slice regular functions on a Clifford algebra. In [11] Dirac operators on the
subspace of l-vectors have been studied. They coincide (up to sign) with the restriction of Dn

to l-vectors. Since we are interested in the global behavior of the operator on the algebra, the
choice of the grade-depending sign for the coefficients of Dn is essential.

We are interested in the values of Dn on the powers of the complete Clifford variable x. To
express our computation, we need some definitions and results from the theory of slice regular
functions on Rn (see [6, 7]).

Definition 3. Let t(x) = x + x̄ be the trace of x and n(x) = xx̄ the norm of x ∈ Rn. The
quadratic cone of Rn is the subset

Qn := R ∪ {x ∈ Rn | t(x) ∈ R, n(x) ∈ R, 4n(x) > t(x)2}.

Let Sn := {J ∈ Qn | J2 = −1} = {x ∈ Rn | t(x) = 0, n(x) = 1}.

Proposition 4 ([6, 7]). The quadratic cone Qn satisfies the following properties:

1. Qn = Rn only for n = 1, 2.

2. Qn contains the subspace of paravectors Rn+1 := {x ∈ Rn | [x]k = 0 for every k > 1}.

3. Qn is the real algebraic subset (proper for n > 2) of Rn defined by the equations

xK = 0, x · (xeK) = 0 ∀eK 6= 1 such that e2
K = 1.

4. For J ∈ Sn, let CJ := 〈1, J〉 ' C be the subalgebra generated by J . Then Qn =⋃
J∈Sn CJ and CI ∩ CJ = R for every I, J ∈ Sn, I 6= ±J . As a consequence, if x

belongs to Qn, also the powers xm belong to Qn.
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Slice regular functions are defined only on subdomains of the quadratic cone (we refer to
[6, 7] for full details). However, if the domain intersects the real axis, then the class of slice
regular functions coincides with that of functions having local power series expansion centered
at real points. Now we compute the values of Dn(xm).

Theorem 5. Let x =
∑
|K|≤n xKeK denote the complete Clifford variable in Rn.

1. If n is an odd integer, thenDn(xm) = 0 on the whole algebra Rn for every integerm ≥ 1.

2. If n is an even integer, n > 2, thenDn(xm) = 0 on the quadratic coneQn of Rn for every
integer m ≥ 1.

3. D2(xm) = 0 on the subset of reduced quaternions H3 ⊆ R2 for every integer m ≥ 1.

For the proof of the Theorem we apply the following algebraic lemma:

Lemma 6. For every x ∈ Rn, it holds∑
H 63n

e∗HxeH = 2n−1(xnen + x(1···n−1)e(1···n−1)) for odd n (9)∑
H 63n

e∗HxeH = 2n−1(xnen + xNeN) for even n. (10)

where xN = x(1···n) and eN = e(1···n) is the pseudoscalar in Rn.

Proof of the Theorem. Case (1): n odd. We show that Dn−1x
m = −enDn−1,nx

m by induc-
tion on m. Since Dnx = 0, the equality is valid for m = 1. Take m > 1 and assume that
Dn−1x

m−1 = −enDn−1,nx
m−1. We have the following product formula:

Dn−1,nx
m = (Dn−1,nx

m−1)x+
1

2

∑
H 63n

e∗Hx
m−1e(Hn) (11)

= (Dn−1,nx
m−1)x+

1

2

(∑
H 63n

e∗Hx
m−1eH

)
en. (12)

Since, from Lemma 6,(∑
H 63n

e∗HxeH

)
en = 2n−1(−xn + x(1···n−1)eN), (13)

the last term in equation (11) belongs to the center 〈1, eN〉 of Rn. Therefore, from (11) we get

− enDn−1,nx
m = −en(Dn−1,nx

m−1)x+
1

2

∑
H 63n

e∗Hx
m−1eH . (14)

On the other hand, we also have

Dn−1x
m = (Dn−1x

m−1)x+
1

2

∑
H 63n

e∗Hx
m−1eH (15)
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and then the inductive hypothesis gives the equality Dn−1x
m = −enDn−1,nx

m, which is equiv-
alent to Dnx

m = 0.
Case (2): n even. We show that

Dnx
m = (Dnx

m−1)x+ 2n−1
[
xm−1

]
N
eN (16)

where [a]N denotes the coefficient of the pseudoscalar eN in a ∈ Rn. If m = 1, Dnx = 0 and
the equality 16 is true. Let m > 1. Then

Dnx
m = Dn−1x

m + enDn−1,nx
m (17)

= (Dn−1x
m−1)x+ 1

2

∑
H 63n

e∗Hx
m−1eH + en((Dn−1,nx

m−1)x+ 1
2

∑
H 63n

e∗Hx
m−1eHen)

(18)

From Lemma 6, since n is even we have∑
H 63n

e∗Hx
m−1eH + en

∑
H 63n

e∗Hx
m−1eHen = 2n

[
xm−1

]
N
eN (19)

and therefore, from (18) and (19)

Dnx
m = (Dnx

m−1)x+ 2n−1
[
xm−1

]
N
eN . (20)

Now we prove by induction on m that Dnx
m vanishes on the quadratic cone Qn. For m = 1,

Dnx = 0 on the whole algebra. Let m > 1 and assume that Dnx
m−1 = 0 on every point of

Qn. Since the power function maps Qn in Qn, for every x ∈ Qn we have [xm−1]N = 0. The
equality (20) and the inductive hypothesis allow to conclude that Dnx

m = 0 at x ∈ Qn.
Case (3): n = 2. Formula (20) is valid also for n = 2. Since the power function maps the

set of reduced quaternions to itself, the inductive argument given above for case (2) shows that
D2x

m vanishes at every point x of R2 with x12 = 0, i.e. at every reduced quaternion.

Corollary 7. Let n ≥ 3. Let p(x) =
∑m

j=0 x
jaj be a polynomial in the complete Clifford

variable x =
∑
|K|≤n xKeK with right Clifford coefficients. If n is odd, then p is in the kernel

of Dn. If n is even, then the restriction of Dn(p) to the quadratic cone Qn vanishes.

Polynomials p(x) =
∑m

j=0 x
jaj and convergent power series

∑
k x

kak with right Clifford
coefficients are examples of slice regular functions on the intersection ofQn with a ball centered
in the origin (cf. [6, 7] for this function theory). If n ≥ 3, slice regularity generalizes the
concept of slice monogenic functions introduced in [3]: if f is slice regular on a domain which
intersects the real axis, then the restriction of f to the paravectors is a slice monogenic function
and conversely. Since every slice monogenic function has a power expansions centered at real
points, every slice monogenic or slice regular function on a domain Ω with Ω ∩ R 6= ∅ satisfies
the property stated in Corollary (7).

Remark 3. For n = 1, 2 the operators Dn are elliptic, since in this case

4DnDn = 4DnDn = ∆R2n . (21)

For n = 3 it holds

4D3D3 = 4D3D3 = ∆R8 + L3, (22)
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where L3 = −2 (∂x0∂x123 − ∂x1∂x23 + ∂x2∂x13 − ∂x3∂x13) e123. For n ≥ 4,

4DnDn = ∆R2n + Ln and 4DnDn = ∆R2n + L′n (23)

where Ln =
∑

H 6=K t(e
∗
H ẽK)∂xH

∂xK
and L′n =

∑
H 6=K t(ẽHe

∗
K)∂xH

∂xK
are different operators

(the summations are made over multindices H,K without repetitions). In particular, for n ≥ 3
the operators Dn are not elliptic. Note that the symbol of the differential operator L3 is, up to a
multiplicative constant, the polynomial x0x123 − x1x23 + x2x13 − x3x12 whose zero set is the
normal cone of the Clifford algebra R3 (cf. [6] for its definition). A similar relation holds for
the symbols of Ln and L′n and the equations of the normal cone of Rn for n > 3.

3 THE CASE OF D3

3.1 Algebraic decomposition

Denote by I = e123 the pseudoscalar of R3, and by I± = 1
2

(1± I) the central elements with
properties I2

± = I±, I+I− = 0, I+ + I− = 1.
Let X = x0 + x1e1 + x2e2 + x3e3 be the paravector variable and X ′ = x −X = x12e12 +

x13e13 + x23e23 + x123e123. We can define two new (rotated) paravector variables Y = y0 +
y1e1 + y2e2 + y3e3 and Z = z0 + z1e1 + z2e2 + z3e3 by setting

2Y = X +X ′I, 2Z = X −X ′I,

from which we get the decomposition

x = X +X ′ = Y + Z + (Y − Z)I = 2Y I+ + 2ZI−. (24)

Since product by I± gives two orthogonal projections, for every positive integer m it holds

xm = (2Y )mI+ + (2Z)mI−, (25)

and therefore for every polynomial, power series or in general for a slice regular function f on
a domain which intersect the real axis, we can write

f(x) = f(2Y )I+ + f(2Z)I−. (26)

The operator D3 decomposes as D3 = 1
2
(∂X − ∂X′), where ∂X = ∂x0 + e1∂x1 + e2∂x2 + e3∂x3

is the Weyl operator of R3 and ∂X′ = e12∂x12 + e13∂x13 + e23∂x23 + e123∂x123 . Denote by ∂Y and
∂Z the Weyl operators w.r.t. Y and Z respectively. Then

2∂X = ∂Y + ∂Z , 2∂X′ = (∂Y − ∂Z)I, (27)

and therefore in the variables Y, Z the operator D3 has the following form:

D3 = I−∂Y + I+∂Z = ∂Y I− + ∂ZI+. (28)

This decomposition implies that a function f belongs to the kernel of D3 if and only if its
projections f− := fI− and f+ := fI+ belong to the kernels of the Weyl operators ∂Y and
∂Z respectively. In particular, every pair of arbitrary functions g(Y ), h(Z) define a function
f(Y, Z) = I−h(Z) + I+g(Y ) in the kernel of D3. This property shows again that D3 is not an
elliptic operator, as can be seen also from formula (22) expressed in the variables Y, Z:

4D3D3 = 4D3D3 =
1

2
(∆Y + ∆Z)− 1

2
(∆Y −∆Z)I = I−∆Y + I+∆Z (29)

where ∆Y is the Laplacian w.r.t. the variables y0, y1, y2, y3 and similarly for ∆Z .
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3.2 The space F(Ω)

In view of the non-ellipticity of D3, we consider a proper subspace of kerD3. Let ∆X =
∂X∂X , ∆X′ = ∂X′∂X′ and ∆ = ∂X∂X + ∂X′∂X′ = ∆R8 .

Definition 4. Let Ω be an open subset of R3. We define

F(Ω) := {f ∈ C1(Ω) | D3f = 0, ∆X∂Xf = 0 on Ω}.

Proposition 8. Let Ω ⊆ R3 be open. The space F(Ω) can be expressed in the variables Y, Z as

F(Ω) = {f ∈ C1(Ω) | D3f = 0, ∆Y ∂Y f = ∆Z∂Zf = 0 on Ω}.

Every f ∈ F(Ω) is biharmonic on Ω (i.e. ∆2f = 0) and also biharmonic w.r.t. the variables Y
and Z separately. In particular, it is real analytic on Ω. Moreover, f = f− + f+ ∈ F(Ω) if and
only if its projections f− and f+ satisfy

∂Y f− = ∆Z∂Zf− = 0, ∂Zf+ = ∆Y ∂Y f+ = 0. (30)

Proof. If D3f = 0, then ∂Xf = ∂X′f . Therefore ∆f = (∂X∂X + ∂X′∂X′)f = 2∆Xf .
Moreover, from (27) it follows that ∂Zf = (∂X − I∂X′)f = (∂X − I∂X)f = 2I−∂Xf . Then
∆Zf = ∂Z∂Zf = 4I−∂X∂Xf = 4∆Xf− = 2∆f− and therefore ∆Z∂Zf = 8∆X∂Xf−. A
similar computation gives ∆Y ∂Y f = 8∆X∂Xf+. Then ∆X∂Xf = 0 if and only if ∆Z∂Zf =
∆Y ∂Y f = 0.

If f ∈ F(Ω), then 0 = ∂Z∂Z∆Zf = ∆2
Zf and 0 = ∂Y ∂Y ∆Y f = ∆2

Y f . From these
equalities we get 4∆2f− = ∆2

Zf = 0, 4∆2f+ = ∆2
Y f = 0 and then ∆2f = 0.

The last statement is immediate from (28).

Remark 4. The preceding Proposition tells that every function in the space F(Ω) is (separately)
holomorphic Cliffordian (cf. [8]) in the paravector variables X , Y and Z.

Corollary 9. Every polynomial p(x) =
∑m

j=0 x
jaj in the Clifford variable x =

∑
K∈P(3) xKeK

belongs to F(R3). The same holds for every slice regular function on a domain inQ3 intersect-
ing the real axis. If f(X) is a function depending only on the paravector variable X of R3, then
f ∈ F if and only if it is monogenic, i.e. ∂Xf = 0.

Proof. From (25) every power of x can be expressed by means of powers of Y and Z. Since
every power of a paravector variableX is holomorphic Cliffordian [8], i.e. ∆X∂Xf = 0, the first
two statements follow from Theorem (5) and Corollary (7). The last statement is an immediate
consequence of Corollary (2).

Let B denote the eight-dimensional unit ball in R3. Let T ' S3 × S3 be the subset of the
unit sphere ∂B defined by T := {|Y | = |Z| = 1/2} and P := {|Y | < 1/2} ∩ {|Z| < 1/2}.
Since |x|2 = 2|Y |2 + 2|Z|2, P ⊂ B and T ⊂ ∂P .

Note that T is contained in the normal coneN3, which has equation |Y | = |Z| in the variables
Y, Z.

Proposition 10 (Integral Representation Formula). There is an integral representation formula
for functions f ∈ F(P ) ∩ C2(P ) with T as domain of integration. The values of f on P are
determined by the values on T of f , ∂Xf and the second derivatives ∂

∂xK
(∂Xf).
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Sketch of the proof. Consider the component f− ∈ F(P ). Since ∂Y f− = 0, we can apply the
representation formula for the Weyl operator ∂Y (cf. [1]) and reconstruct f− on the set {|Y | <
1/2, |Z| = 1/2}. Since ∂Y ∂Zf− = 0, we can do the same for ∂Zf−. Since ∆Z∂Zf− = 0, we
can now apply the integral representation formula for holomorphic Cliffordian functions (see
[8]) w.r.t. the paravector variable Z and obtain the values of f− on P . A similar reasoning for
f+ gives the result.
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