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Abstract 

In [1], boundary integral equations for Maxwell-type problems have been discussed in terms of differential forms. 
Such problems are governed by the equation , where d denotes the exterior derivative, δ 
the co-derivative, and ω is a differential form of degree p. This problem class generalizes curl curl- and div grad-
types of problems in three dimensions. In the differential forms framework, kernels of integral transformations are 
described by double forms. A double p-form is defined for p > 0 by its action on a pair of p-tupels of tangent vectors 
anchored in observation point X and source point Y, respectively. The relevant Green’s double form is given as fun-
damental solution of the Helmholtz equation, . Herein, ∆ is the Hodge-Laplacian, G the 
Green’s double form, δ the Dirac delta distribution, and I the identity double form. In contrast to the classical vector 
analysis formulation in Euclidean space, the differential forms-based formulation and analysis remains valid in 
curved spaces as well. Some care has to be taken regarding solvability, though. 

In flat space, the Green’s double form of bi-degree p>0 can be easily constructed from scalar Green’s function (p=0) 
and the identity double form of bi-degree p. This construction leverages the fact that in flat space there is a path-
independent notion of parallel transport. In general, the Green’s double forms need to be derived for each bi-degree p 
separately, though. 

We consider Riemannian manifolds with constant curvature. It turns out that Green’s double forms can be reduced to 
certain solutions of the hypergeometric differential equation [2]. 

The simplest case n=2, p=0 with constant positive curvature has been treated in [3]. The Green’s function can be 
interpreted as electrostatic potential of a point charge on the sphere, with an opposite point charge in the antipodal 
point. Hodge duality yields the case n=2, p=2. However, an explicit expression of Green’s double form for n=2, p=1 
seems to be lacking from literature so far. 

In this contribution, a closed-form expression for this Green’s double form is derived, hence enabling integral opera-
tors for magnetostatics on the sphere. To that end, concepts like geodesic distance, parallel propagator and Fermi 
normal coordinates [4] are invoked. Also, the feasibility of the differential forms framework in a non-Euclidean 
space is highlighted. 
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