
1 Mathematics of principal component analysis (PCA)

Assume we have some observations on p variables, X1, . . . Xp. Main aim of principal
component analysis is reducing the dimensionality of data, finding a subspace of dimension
q < p on which original data can be projected with a small error.

Mathematically, we ask the following problem. Given a p−dimensional random vari-
able X = (X1, . . . Xp), consider the transformations

Y = m+ P (X −m) (1)

where m ∈ Rp and P is an orthogonal projection on a subspace of dimension q < p. We
wish to find m and P such that E(‖X−Y ‖2) is minimal. If p = 2 and q = 1, the problem
becomes finding a line r such that the square distance (measured as orthogonal distance)
between the distribution of X and the line is minimal. We will assume that E(X) = µ
and the variance-covariance matrix Cov(X) = S.

In order to show how to find m and P , I recall some properties that can be proved
with simple computations:

1. if X is a p-dimensional random variable with E(X) = µ, then

E(‖X − µ‖2) ≤ E(‖X −m‖2) ∀ m ∈ Rp.

2. if X is a (p−dimensional) random variable with E(X) = µ and Cov(X) = S, and A
is a matrix k × p, then E(AX) = Aµ and Cov(AX) = ASAt.

3. A projection is an operator such that P 2 = P . The subspace on which it projects
is V = Im(P ). If P is a projection, also I − P is a projection (the complementary
one). P is an orthogonal projection if P t = P . The orthogonal projection on a
subspace V can be written as follows: let A a matrix (p × q) whose columns are
an orthogonal base of V (hence AtA = Iq, the q-dimensional identity matrix); then
P = AAt.

Let Y given by (1). Then

E(‖X − Y ‖2) = E(‖X −m− P (X −m)‖2)

= E(‖(I − P )X − (I − P )m‖2) ≥ E(‖(I − P )X − (I − P )µ‖2
(2)

because of the property 1. Hence, whichever is the projection P , the optimal choice to
minimize E(‖X − Y ‖2) is m = µ in (1).

From here onwards, we will take m = µ.
Let us consider now

E(‖(I − P )(X − µ)‖2 =
∑p

i=1 E(((I − P )(X − µ))2i ) =
∑p

i=1(Cov((I − P )X)ii

= tr(Cov((I − P )X)) = tr((I − P )S(I − P )t).
(3)

Now use the property that, for all matrices A and B such that both AB and BA are
well-defined, tr(AB) = tr(BA). Then, from (3), we get

E(‖(I − P )(X − µ)‖2 = tr((I − P )S(I − P )t) = tr((I − P )2S)

= tr((I − P )S) = tr(S)− tr(PS)
(4)

using the assumption that P is an orthogonal projection.
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Since tr(S) is a given number, minimizing E(‖X − Y ‖2) is equivalent to maximizing
tr(PS).

For the sake of simplicity, we restrict to the case q = 1 and so P = vvt where v
is a vector of norm 1 (vtv = 1). Thanks to the spectral decomposition theorem (S is
symmetric and positive semidefinite), we obtain S = CtΛC, where C is an orthogonal
matrix (CtC = I), while Λ is a diagonal matrix with elements λ1, λ2, . . . , λp cassumed to
be ordered:

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

Then

tr(PS) = tr(vvtCtΛC) =

p∑
i=1

λi(Cv)2i . (5)

Since v has norm 1 and C is orthogonal, also Cv has norm 1, i.e.
∑p

i=1(Cv)2i = 1. It is
then clear that, if λ1 > λ2

1, the choice of the vector Cv that maximizes (5) is

Cv =


1
0
. . .
0

 so that v = Ct


1
0
. . .
0

 .

Moreover the value of the maximum is tr(PS) = λ1.
Let us observe that v is eigenvector of S relative to λ1. In fact

Sv = CtΛCCt


1
0
. . .
0

 = CtΛ


1
0
. . .
0

 = λ1C
t


1
0
. . .
0

 = λ1v.

It has then been proved

Teorema 1 Let Y be given by (1) with dim(Im(P )) = 1. Then

E(‖X − Y ‖2) ≥ E(‖X − Ȳ ‖2) = tr(S)− λ1 with Ȳ = µ+ vvt(X − µ) (6)

where v is a (normalized) eigenvector relative to the eigenvalue λ1.

Observe that, during the proof of the theorem, it has also been proved that, if Z = vtX (a
one-dimensional random variable), the vector v with ‖v‖ = 1 such that V (Z) is maximal
is the eigenvector of S relative to λ1.

More generally, one has

Teorema 2 Let Y given by (1) with dim(Im(P )) = q. Then the projection P̄ that mini-
mizes E(‖Y −X‖2) under the rule (1) is the orthogonal projection with Im(P̄ ) the subspace
generated by the eigenvalues of S relative to λ1, . . . , λq. Then

E(‖X − Ȳ ‖2) = tr(S)− (λ1 + · · ·+ λq) = λq+1 + · · ·+ λp.

We can then consider projections on subspaces of increasing dimension, every time adding
a new eigenvector (orthogonal to the previous ones).

1if λ1 = λ2, the minimum problem has not a unique solution.
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2 Practical aspects

In reality, we will not have the covariance matrix S but only a finite number of points
(in dimension p) x1, . . . , xn. The computations will then be performed with sample mean
and covariance.

Another problem is that the technique is very sensitive to the measure units of the
variables. Unless there are scientific reasons to know that a certain scale is appropriate
to the problem studied, it is often recommended to standardize the components Xi, i =
1 . . . p so that they have equal variance. This is equivalent to using the correlation matrix
C among the variables X1, . . . , Xp) instead of the covariance matrix S.

Generally, one wants to be sure that few components are sufficient to approximate
the variable X; there are several rules of thumb: one may choose a q such that (λ1 +
· · ·+ λq)/(λ1 + · · ·+ λp) is at least 80-90%; otherwise it may be checked that λq+1 � λq;
Kaiser’s rule (used especially in factor analysis) suggests to stop when λq > 1 > λq+1.

After having selected the components, one may wish to plot the original observations
in these new variables to check for some patterns. Another use (prominent especially in
sociological and psychological research) is to interpret the first principal components (the
eigenvectors of S) as being the main factors determining the observations; one then looks
at how the principal components are written in the original variables, and tries to intepret
the resulting “factors”.

Some examples of its use in R can be seen in the scripts on the web.
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