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Abstract. We study birational transformations of certain fibtations of degree 4 del Pezzo
surfaces over P1, into other Mori fibre spaces, using Cox rings. We show that these Mori
fibre spaces have a (relatively) big pliability although they are not rational. Our methods
can be applied to study birational geometry of Mori dream spaces with low rank Cox ring.
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1. Introduction

Mori fibre spaces are outcomes of the minimal model programme for varieties with neg-
ative Kodaira dimension. Formally, a normal variety X with at worst Q-factorial terminal
singularities is called a Mori fibre space if there exists a morphism ϕ : X → Z to a normal
variety Z, of strictly smaller dimension than X, such that −KX is ϕ-ample and the rela-
tive Picard number is equal to one, that is ρ(X/Z) = 1. It is crucial to investigate how
many different Mori fibre spaces fall in the same birational class, and study their properties.
Naturally, this problem is considered modulo square birational.

Definition 1.1. Let X → Z and X ′ → Z ′ be Mori fibre spaces. A birational map f : X 99K
X ′ is square if it fits into a commutative diagram

X
f //____

��

X ′

��
S

g //____ S ′
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where g is a birational map and, in addition, the induced birational map of generic fibres
fL : XL 99K X ′L is biregular. In this case we say that X/Z and X ′/Z ′ are square birational.

Definition 1.2. The pliability of a Mori fibre space X → S is the set

P(X/S) = {Mfs Y → T | X is birational to Y }/square equivalence.

We sometimes abuse the term pliability to mean the cardinality of this set, when it is finite.

For many Mori fibre spaces this number is known to be very small or the variety is known to
be rational, and hence have a very big pliability. For instance smooth fibrations of del Pezzo
surfaces over P1 with degree of the general fibre five or above are known to be rational. On
the opposite side general Fano hypersurfaces in a weighted projective space are birationally
rigid [10], hence have pliability one. Many other similar results have been obtained for 3-fold
Mori fibre spaces, in both directions. An interesting model with pliability exactly two is
constructed as a quartic in P4 with a cA2 singular point [9].

In this article we consider a model of del Pezzo fibration of degree 4 over P1 and show that
its pliability is at least 3. Then using some known results we prove it is not rational. We
recall that the degree of a del Pezzo surface is the self-intersection number of its canonical
class. Birational geometry of del Pezzo fibrations, considered as Mori fibre spaces, plays an
important role in the theory of classification of algebraic varieties in dimension 3. While
degree 5 or above imply rationality, we expect more rigidity as the degree becomes lower.
There are many results of this type on birational rigidity and nonrigidity for degree 1, 2
and 3 fibrations, see for example [1, 3, 5, 15, 19]. However, for degree 4 fibrations the only
results concern the rationality problem [2,21]. It is also shown in [2] that these varieties are
birational to conic bundles over the base, which is not interesting in terms of minimal model
theory. Our result also sheds light on the study of birational behaviour of the nonrational
models.

The construction of the links between various models, by means of Sarkisov programme,
are obtained via Cox embeddings. In [4] it was shown how to run type III or IV Sarkisov
programmes on a rank 2 Cox rings. This method has been applied to many classes of Mori
fibre spaces with Picard number 2, see [1,3]. Some of the models we construct are obtained
in this fashion and for others we introduce, more general, methods of working with higher
rank Cox rings and also explain how the maps between these Cox rings look like. In other
words, these constructions provide explicit Sarkisov links of type I or II in the language of
Cox data. The following is our main theorem.

Theorem 1.3. Let F be the 5-fold F = ProjP1 E, where E = OP1 ⊕ OP1(1) ⊕ OP1(2) ⊕
OP1(3) ⊕ OP1(3). Let M be the class of the tautological bundle on F and L the class of a
fibre (over P1). Then there are Q1 and Q2, two hypersurfaces in F , with Q1 ∈ |− 3L+ 2M |
and Q2 ∈ | − 2L + 2M | such that for X = Q1 ∩ Q2, the complete intersection of these two
hypersurfaces, we have

(1) X is smooth with Pic(X) ∼= Z2 and X → P1 is a Mori fibre space with generic fibre del
Pezzo surface of degree 4,

(2) X is birational, but not square birational, to at least two other Mori fibre spaces,
(3) X is not rational.

Conditions on the generality of Q1 and Q2 are specified in Section 4.
The structure of the article is as follows. In Sections 2 we study well-fomedness of the

homogeneous coordinate ring of toric varieties. In Section 3 we introduce explicit methods of
working with blow ups of low rank Cox rings. Sectoions 2 and 3 can be read independently
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of this article and the results are quite general and do not restrict only to the cases studied in
this article. Among applications of these methods are the description of the starting point
of type I and II Sarkisov links, that we apply. Section 2 explains how some of the blow
up varieties can be modified to simpler ones, isomorphically. This generalizes the notion of
well-formedness of weighted projective spaces [17] to that of Cox rings. Equivalently, it is an
explicit method of finding Cox ring of coarse moduli of toric Deligne-Mumford stacks [13].
In Section 4 we conclude our results and explicitly describe the links between varieties under
study. Tools provided in earlier sections will be used frequently in the proofs.

2. Well-formedness and stacky models

Weighted projective spaces have been studied extensively, and the well-formedness prop-
erty, as in citedol and [17] plays an important role in the basic theory.

A weighted projective space, denoted by P(a0, . . . , an), for positive integers a0, . . . , an, is
defined by the geometric quotient of Cn+1 − {0} when acted on by C∗ via

λ.(x0, . . . , xn) 7→ (λa0x0, . . . , λ
anxn), for λ ∈ C∗.

In other words, P(a0, . . . , an) = ProjC[x0, . . . , xn], where C[x0, . . . , xn] is Z-graded with
deg(xi) = ai.

The weighted projective space P(a0, . . . , an) is well formed if gcd(a0, . . . , âi, . . . , an) = 1
for all 0 ≤ i ≤ n. Constructing the well-formed model of a given quotient P(a0, . . . , an) is
done in two steps (see [17]):

(1) Removing generic stabilisers: Find a = gcd(a0, . . . , an), then replace P(a0, . . . , an) by
P(b0, . . . , bn), where bi = ai

a
.

(2) Removing quasi-reflections: For each bi find bi = gcd(b0, . . . , b̂i, . . . , bn) and replace
P(b0, . . . , bn) by

P(
b0
bi

, . . . ,
bi−1
bi

, bi,
bi+1

bi

, . . . ,
bn
bi

).

Remark 1. In the setting of [13], the variety obtained at Step 1 above is the toric orbifold
associated to the toric Deligne-Mumford stack P(a0, . . . , an) and the variety produced at the
end (the well-formed model) is the corresponding coarse moduli, see [13] Example 7.27.

Note that for a given set of positive integers defining the weights, and positive integers α
and β the following holds ( [17] §5):

P(a0, . . . , an) ∼= P(αa0, . . . , αan) ∼= P(a0, βa1, . . . , βan)

and this is exactly why one is permitted to do the process above and obtain isomorphic
quotients. Our aim in this section is to obtain similar construction for projective toric
Deligne-Mumford stacks. These (non-well formed) Cox rings arise naturally in our descrip-
tion of blow ups of Cox rings in the following sections.

Let T be a toric stack of dimension d determined by the fan ∆ in N ∼= Zd and denote the
set of 1-dimensional cones in ∆ by ∆(1). Assume M = Hom(N,Z) is the dual lattice and
|∆(1)| = n. The following exact sequence ( [14], §3.4.) reads off the nature of divisors on T

(1) 0 // M // Zn A // Cl(T ) // 0 .

The stack T can be realized as the quotient (Cn−V (I))//G, where I, the irrelevant ideal,
is the ideal of the polynomial ring C[x1, . . . , xn] obtained from the combinatorial structure
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of the fan ∆, and G = HomZ(Cl(T ),C∗). In particular, G is reductive and we have

G = (C∗)r ⊕
k⊕
i=1

Zai , for some r, k, ai ∈ N and r = n− d .

Without loss of generality we can assume the torsion part, i.e.
⊕k

i=1 Zai , induces no
generic stabilisers nor quasi-reflections. Otherwise removing the corresponding part should
be easy and produces isomorphic quotients as desired.

The aim is to identify inappropriate components of the non-torsion part that cause such
behaviour and remove them. Let us assume, for now, for simplicity in writing, that Cl(T ) is
torsion free; in other words k = 0. Hence Cl(T ) ∼= Zr and it follows that A ∈Mr×n(Z). By
applying the functor Hom(−,C∗) to the short exact sequence (1) one obtains

(2) 1 // G
A∗ // (C∗)n // T // 1 ,

where T is the torus acting on T . The action of G on Cn is the extension of the action on
(C∗)n above and is identified by the matrix A = (aij) above in the following way

(λ1, . . . , λr) · xj 7→
r∏
i=1

λ
aij
i xj .

Notation 2.1. We use T = T (I, A) to denote the quotient of (Cn − Z)//G, where I is
the irrelevant ideal, Z = V (I) ⊂ Cn, G = (C∗)r and the action is identified by the matrix
A ∈Mr×n(Z) as before.

Definition 2.2. Let T = T (I, A) be a toric stack. We define the rank of T to be r = rankA.

Lemma 2.3. Let T = T (I, A) and B = gA for some g ∈ GL(r,Q) with integer entries and
define T ′ to be the toric stack T ′ = T (I, B). Then T is isomorphic to T ′ as toric varieties.

Proof. We give an explicit and set theoretic proof. T and T ′ are defined by

T = (Cn − V (I))/GA , T ′ = (Cn − V (I))/GB ,

where GA
∼= GB

∼= (C∗)r. If we denote A = (aij) and B = (bij), then for (λ1, . . . , λr) ∈ GA

and (γ1, . . . , γr) ∈ GB, the actions are the following:

GA : (λ1, . . . , λr).(x1, . . . , xn) 7→ (
r∏
i=1

λai1i x1, . . . ,

r∏
i=1

λaini xn)

GB : (γ1, . . . , γr).(x1, . . . , xn) 7→ (
r∏
i=1

γai1i x1, . . . ,

r∏
i=1

γaini xn)

Let (x) and (y) be two vectors in Cn. Let us denote by (x) ∼A (y) if (x) and (y) are in the
same orbit of the action by GA, and similarly for (x) ∼B (y). The aim is to show

(x) ∼A (y) if and only if (x) ∼B (y) .

If (x) ∼B (y), then there exists (γ1, . . . , γr) ∈ (C∗)r such that

(y1, . . . , yn) = (
r∏
i=1

γbi1i x1, . . . ,

r∏
i=1

γbini xn) .
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To prove (x) ∼A (y), we must find (λ1, . . . , λr) ∈ (C∗)r such that

(y1, . . . , yn) = (
r∏
i=1

λai1i x1, . . . ,

r∏
i=1

λaini xn) .

This follows from bij =
∑

k gikakj, if we put λi = γgi11 . . . γgirr .
Proof for the only if part is very similar and it is done by replacing g by g−1. �

The result of Lemma 2.3 shows that the expression T (I, A) is not uniquely determined
from A, when considered as varieties, and it varies up to the action of a subset of GL(r,Q).
In fact failure of this set to be a subgroup is the problem of well-formedness. In the rest of
this section, we complete our task of finding a well formed model for T (I, A). Furthermore,
it will be noted that such a model is unique up to SL*(r,Z), the group of integer matrices
with determinant ±1.

Definition 2.4. Let M ∈Mr×n(Z) be a rank r matrix (r < n). Suppose m1, . . . ,ms are all
the non-zero r × r minors of M and let dM = gcd(|m1|, . . . , |mk|). The matrix M is called
standard if dM = 1.

Lemma 2.5. For any rank r matrix M ∈ Mr×n(Z), there exist matrices g ∈ GL(r,Q) ∩
Mr×r(Z) and N ∈Mr×n(Z) such that M = gN and N is a standard matrix of rank r.

We try to remove every factor of dM by multiplying M with a matrix whose inverse is
in GL(r,Q) ∩Mr×r(Z). Taking the resulting matrix at the end and applying the reverse
process completes the proof.

Proof. If dM = 1, then there is nothing to prove. Assume p is a prime factor of dM and m is
the biggest integer for which pm | dM . If pk (for some positive k) divides every entry of the
first row of M then multiply M with an r × r diagonal matrix H = (hij) with hii = 1 for
i > 1 and h11 = 1

pk
. It is obvious that M (1) = HM ∈Mr×n(Z) and dM = pkdM(1) .

If k = m we have managed to remove pm as it was promised. Now assume k < m and
let M (1) = (aij). There is at least one non-zero entry in the first row of M (1) which is not
divisible by p. Without loss of generality we can assume this entry is a11. By assumption,
there is another non-zero entry in the first row. Assume, without loss of generality, that
a21 is non-zero and suppose gcd(a11, a21) = a, then there exist integers b and c such that
ba11 + ca21 = a. Let H1 be the following matrix:

b c 0 · · · 0
−a21

a
a11
a

· · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


The matrix M (2) = H1M (1) has the following shape

a ∗ · · ·
0 ∗ · · ·
∗ ∗
...

. . .

 .

Obviously det(H1) = 1 and a is not divisible by p.
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By repeating this process for all entries of the first column, except a11, we can replace

them by 0. Now let M
(2)
1 be the (r − 1)× (n− 1) sub-matrix of M (2) obtained by removing

the first row and column. Obviously det(M (2)) = a. det(M
(2)
1 ). This forces pm−k to divide

det(M
(2)
1 ).

We can repeat the algorithm above and remove all powers of p from the first row of M
(2)
1 .

If there is any factor of p left, we apply the process above to the second column of the new
matrix to make its entries equal to zero.

By repeating this algorithm we find a matrix M ′ for which dM = pm × dM ′ . All these can
be done again for a prime factor of dM ′ . After finitely many steps we will have a matrix N
with dN = 1. �

Corollary 2.6. For any T (I, A), there exists a standard matrix B such that T (I, A) ∼=
T (I, B).

Proof. This follows from Lemma 2.3 and Lemma 2.5. �

Proposition 2.7. Let A ∈Mr×n be a matrix of rank r and T (I, A) the corresponding variety
as before. The following are equivalent.

(i) A : Zn → Zr is surjective.
(ii) ∧rA : ∧r Zn → ∧rZr ∼= Z is surjective.

(iii) A is standard.

Definition 2.8. Let A be a standard r × n matrix with integer entries. Suppose Ak is an
r× (n− 1) matrix obtained by removing the k-th column of A. The matrix A is called well
formed if every Ak (1 ≤ k ≤ n) is standard.

Lemma 2.9. Let T (I, A) be a toric stack defined by an irrelevant ideal I and an r×n matrix
A = (aij). Assume q 6= 1 is a positive integer such that q | a1j for j > 1 but q - a11. Define
the matrix B = (bij) by bi1 = q.ai1 and bij = aij for j > 1. Then T (I, A) ∼= T (I, B) as
varieties.

Proof. Pick an ample divisor D such that

T = ProjRD ,

where R is the Cox ring of T generated by x1, . . . , xn with degrees correspond to Ci, columns
of the matrix A, and D has degree D =

∑
αiCi, where αi are non-negative integers. Note

that we associate D with its degree D and use the same notation for both.
The ring RqD consists of invariant sections of multiples of qD, i.e.

RqD =

(
∞⊕
j=0

H0(Cd,LjqD)

)G

and ProjRD
∼= ProjRqD .

Let xa11 . . . xann be a monomial in RqD. There is a positive integer m such that

a1C1 + · · ·+ anCn = mqD .

In particular, a1a11 = qα for some non-zero integer α, so q divides a1. Therefore x1 appears
in RqD only to the qth power as xq1. Hence

RqD
∼=

∞⊕
j=0

H0(Spec(C[xq1, x2, . . . , xn]),LjD)G ,

but this is the coordinate ring of T (I, B). �
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Definition 2.10. A variety defined by T (I, A) is called well formed if its defining matrix A
is well formed.

Corollary 2.11. For any variety T (I, A) there exists a well formed model T (I, B) such that
T (I, A) ∼= T (I, B).

Remark 2. T (I, B) is the coarse moduli space for a toric Deligne-Mumford stack T (I, A),
where B is the standard matrix for which T (I, A) ∼= T (I, B). This has been theoretically
studied in [13] and our method treats well-formedness in an explicit way.

Example 2.12. Consider the following matrix:

A =

(
1 1 1 0 −2
1 1 1 2 0

)
This matrix is not standard as dA = 2. The standard (well formed) model can be obtained
by multiplying the following 2× 2 matrix(

1 0
−1 1

)
∈ SL*(2,Z)

and then removing the factor of 2 from the second row, which results in(
1 1 1 0 −2
0 0 0 1 1

)
The geometry of this example: Consider the weighted projective space P = P(1, 1, 1, 2).
This is an orbifold with a terminal cyclic quotient singularity of type 1

2
(1, 1, 1). Consider

eigencoordinates x, y, z, t on P. The projective space P is covered by 4 open affine patches,
three of them are Ux ∼= Uy ∼= Uz ∼= C3, where Ux, for example, is the Zariski open subset
x 6= 0, and the fourth patch is Ut = C3//Z2. The action of Z2 on C3 is given by (x̄, ȳ, z̄) 7→
(εx̄, εȳ, εz̄), for ε a second root of unity, and is traditionally denoted by 1

2
(1, 1, 1).

Let us explain the toric structure of P. The fan consists of 4 rays:

r1 = (1, 0, 0), r2 = (0, 1, 0)

r3 = (0, 0, 1), r4 = (−1,−1,−2)

and they generate 4 maximal cones:

C1 = 〈r1, r2, r3〉 , C2 = 〈r1, r3, r4〉 , C3 = 〈r1, r2, r4〉 and C4 = 〈r1, r2, r3〉
one can associate y, z, t, x with r1, r2, r3 and r4, in that order, and check the structure of
the cones, in particular the fact that C1, C2 and C4 are smooth and C3 is the singular cone.
In order to resolve this singularity it is enough to introduce a new ray r5 = (0, 0,−1) and
do the corresponding subdivision. One can compute the Cox ring of this new toric variety
(using techniques in [12] and [11]) to see that this variety is the quotient of C5 − Z(I) by
(C∗)2, where I, the irrelevant ideal, is I = (x1, x2, x3) ∩ (x4, x5) when x1, . . . , x5 are the
eigencoordinates on C5, and the action is induced by the matrix(

1 1 1 0 −2
0 0 0 1 1

)
In other words, this rank 2 toric variety is the weighted blow up of P(1, 1, 1, 2) at the singular
point. For a reader interested in minimal model theory of toric varieties: if one requires to
carry out the 2-ray game (as in the Sarkisov programme [7]), starting from this blow up,
will see (using techniques in [4]) that the other end results in a P1-bundle over P2.
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3. Blow ups of low rank Cox rings and Sarkisov links

We begin this section by considering a special class of rank 2 toric varieties. The goal
is to understand their singularities and constructing tools to explicitly write down the Cox
rings of their (toric, weighted) blow ups. In [4] it was shown how the Cox data of a rank 2
Cox ring changes as one runs the type III or IV Sarkisov link. The aim in this section is to
understand what happens, in terms of Cox data, as one runs type I or II Sarkisov links.

Definition 3.1. A weighted bundle over Pn is a rank 2 toric variety (or stack) F = T (A, I)
defined by

(i) Cox(F) = C[x0, . . . , xn, y0, . . . , ym].
(ii) The irrelevant ideal of F is I = (x0, . . . , xn) ∩ (y0, . . . , ym).

(iii) and the (C∗)2 action on Cn+m+2 is given by

A =

(
1 . . . 1 −ω0 −ω1 . . . −ωm
0 . . . 0 1 a1 . . . am

)
,

where ωi are non-negative integers and P(1, a1, . . . , am) is a weighted projective space.

We denote this quotient by FP(ω + 0, . . . , ωm) or sometimes simply by F , when there is
no ambiguity.

The following lemma is an easy consequence of our assumptions.

Lemma 3.2. The weighted bundle F defined in Definition 3.1 is well formed if and only if
the weighted projective space P(1, a1, . . . , am) is well formed.

Remark 3. Without loss of generality we assume that any weighted bundle F that appears
in this section is well formed unless otherwise stated.

The following lemma constructs the fan associated to the weighted bundle in Definition 3.1.

Theorem 3.3. Let β1, . . . , βm, α1, . . . , αn be the standard basis of Zn+m. Suppose α0 and β0
are the following vectors in Zn+m.

β0 = −
m∑
i=1

aiβi , α0 = −
n∑
j=1

αj +
m∑
i=0

ωiβi ,

where ωi are non-negative integers. Let σrs =
〈
β0, . . . , β̂r, . . . , βm, α0, . . . , α̂s, . . . , αn

〉
be the

cone in Zn+m generated by β0, . . . , β̂r, . . . , βm and α0, . . . , α̂s, . . . , αn, where αs and βr are
omitted. If we denote Σ for the fan in Zn+m generated by maximal cones σrs for all 0 ≤ r ≤ n
and 0 ≤ s ≤ m, then F ∼= T (Σ).

Proof. We compute the GIT construction of this fan following the recipe of Cox given in
[11] §10. By assumption, rays α0, . . . , αn, β0, . . . , βm in N = Zm+n form ∆(1), the set of
1-dimensional cones in Σ. Let us associate the variables x0, . . . , xn, y0, . . . , ym to these rays.
For a given maximal cone σ, define xσ to be the product of all variables not coming from
edges of σ. But maximal cones in Σ are exactly σrs, which immediately implies xσrs = xsyr.
The irrelevant ideal is given by

I = (xσ | σ ∈ Σ is a maximal cone) = (xsyr | 0 ≤ s ≤ n and 0 ≤ r ≤ r) .

It is clear that the primary decomposition of this ideal is I = (x0, . . . , xn) ∩ (y0, . . . , ym).
In order to describe the GIT construction of T (Σ) we must find the group G such that

T (Σ ∼= (Spec[x0, . . . , xn, y0, . . . , ym]− V (I))/G .
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The group G ⊂ (C∗)m+n+2 is defined by

G = {(µ0, . . . , µn, λ0, . . . , λm) ∈ (C∗)m+n+2 |
n∏
i=0

µ
〈ek,αi〉
i .

m∏
j=0

λ
〈ek,βj〉
j = 1, for all k} ,

where e1, . . . , em+n form the standard basis of Zm+n. But the standard basis of Zm+n, by
assumption, is {α1, . . . , αn, β1, . . . , βm}.

Computing this set implies that (µ0, . . . , µn, λ0, . . . , λm) ∈ G if and only if

µi.µ
〈α0,αi〉
0 .λ

〈β0,αi〉
0 = 1 and λj.µ

〈α0,βj〉
0 .λ

〈β0,βj〉
0 = 1 .

In other words, λ0 and µ0 determine all other λj and µi. Therefore the group G is isomorphic
to (C∗)2 and the action on coordinate variables is defined by

((µ, λ).x0) = µx0 ((µ, λ).xi) = µ−〈α0,αi〉λ−〈β0,αi〉xi ,

((µ, λ).y0) = λy0 ((µ, λ).yj) = µ−〈α0,βj〉λ−〈β0,βj〉yj .

In other words, (C∗)2 acts on C[x0, . . . , xn, y0, . . . , ym] by the matrix

A =

(
1 . . . 1 0 ω0a1 − ω1 . . . ω0am − ωm
0 . . . 0 1 a1 . . . am

)
.

We have shown so far that T (Σ) ∼= T (A, I). Multiplying A on the left by the matrix(
1 −ω0

0 1

)
∈ SL*(2,Z) ,

together with Lemma 2.3 proves that F ∼= T (Σ). �

Remark 4. In [20] Chapter 2, Reid gives a detailed analysis of rational scrolls, which, in our
setting, are the weighted bundles over P1, with weights 1 only. In fact these are the smooth
weighted bundles.

Proposition 3.4. A well formed weighted bundle F , defined in Definition 3.1, is covered by
(n+ 1)(m+ 1) patches, each of them isomorphic to a quotient of Cn+m by a cyclic group Zr,
for some positive integer r.

Proof. We construct the patches Uij for 0 ≤ i ≤ n and 0 ≤ j ≤ m. Note that in the toric
level, Uij = (xiyj 6= 0) corresponds to the maximal cone σij as in Proposition 3.3.

Uij = SpecC[x0, . . . , xn, y0, . . . , ym, x
−1
i , y−1j ]C

∗×C∗

Computing the invariants gives

Uij = SpecC[
x0
xi
, . . . ,

xn
xi
,
y
aj
0

yj
.x
ω0aj−ωj

i , . . . ] .

Again powers of xi appear to make each term invariant under the action of the first
coordinate of (C∗)2 and each yk comes with a power that is the first number which is 0 modulo
aj. In other words, these invariants are exactly the same as those of 1

aj
(0, . . . , 0, 1, a1, . . . , an).

�
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3.1. Blow ups of weighted projective space. Example 2.12 already explained the blow
up of the weighted projective space P(1, 1, 2) at its singular point. In general the rank two
toric variety T (or stack, if not already well-formed) defined by the homogeneous coordinate
ring C[y, x0, . . . , xn] and the irrelevant ideal I = (y, x0, . . . , xk) ∩ (xk+1, . . . , xn) and the
weight system (indicating the action of (C∗)2)(

α 0 . . . 0 −bk+1 . . . −bn
0 a0 . . . ak ak+1 . . . an

)
,

for 1 ≤ k ≤ n − 2 is the (weighted) blow up of the centre X : (xk+1 = · · · = xn = 0) ∼=
P(a0, . . . , ak) ⊂ P(a0, . . . , an). Details of this constructions are left to the reader to check. A
more complicated situation is explained in the next part and the idea and techniques of the
proofs there can be applied to this case.

The birational geometry of this space follows the variation of GIT as explained in [4]. As an
illustration, the following example shows how this can be used to study birational geometry
of hypersurfaces of weighted projective spaces. Consider the Fano 3-fold X defined by an
equation of degree 24 in P = P(1, 1, 6, 8, 9), in other words, in a suitable coordinate system,
X is the vanishing of f = x25x3 +x34 +x43 + · · ·+x241 in P. Suppose p5 = (0 : 0 : 0 : 0 : 1). It is
easy to check that the germ near p5 ∈ P is of type 1/9(1, 1, 6, 8) and the germ near p5 ∈ X
is a terminal quotient singularity of type 1/9(1, 1, 8). Consider T the blow up of this point,
with respect to above description, given by a rank two variety with weight system(

3 0 −2 −6 −1 −1
0 9 8 6 1 1

)
with the coordinate system C[u, x5, x4, x3, x2, x1] and the irrelevant ideal I = (u, x5) ∩
(x4, x3, x2, x1). In other words the blow up is given by (x5, x4u

2
3 , x3u

2, x2u
1
3 , x1u

1
3 ), in coor-

dinates. The restriction of this toric construction to X indicates the blow up X̂ → X that
corresponds to the 1/3(1, 1, 2) blow up of p5 ∈ X. One can check that T is not well-formed
and its well-formed model has the weight system(

1 3 2 0 0 0
0 9 8 6 1 1

)
with respect to which, the equation of X̂ has bi-degree (6, 24), with equation x3x

2
5 + x34 +

x43u
6 + · · · + u6x31. Following the 2-ray game of the ambient space (using techniques of [4]),

it is easy to verify that X̂ forms a fibration over P(1, 1, 6) with elliptic fibres E6 ⊂ P(1, 2, 3).
In [6], Cheltsov and Park study elliptic, and K3, fibrations of Fano 3-folds by considering a
projection and looking at the local equation of the fibres. As shown in the example above
their results can be recovered using our methods by means of global calculations.

3.2. Blow ups of rank 2 toric varieties. Now we construct Cox rings of rank 3, obtained
by blowing up some centres in a rank 2 toric variety. Then we try to understand the nature of
the maps from these varieties to the rank 2 ones. We do this on weighted bundles over P1, i.e.
when the coordinate ring is C[x0, x1, y0, . . . , yn] with irrelevant ideal I = (x0, x1)∩(y0, . . . , yn)
and weight system (

1 1 −ω0 −ω1 . . . −ωm
0 0 1 a1 . . . am

)
,

for positive integers a1, . . . , an and non-negative integers ω0, . . . , ωn.
It was shown in Proposition 3.4 that each germ prs ∈ Urs defined by xi = yj = 0, for all

i 6= r and j 6= s, has a cyclic quotient singularity of type 1
aj

(0, 1, . . . , am). Of course this
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singularity is not isolated. However, instead of blowing up the orbifold locus, we blow up a
closed point. The reason for doing this blow up is that we often want to consider the blow
up of some subvarieties of F only at this particular point, see next section for an illustration.
We do this by considering the blow up of the ambient space at this point and restrict our
attention to the subvariety under this blow up.

Fix k ∈ {0, . . . ,m} and let T be a rank 3 toric variety defined by

(i) Cox(T ) = C[X0, X1, Y0, . . . , Ym, ξ],
(ii) the irrelevant ideal

J = (X0, X1) ∩ (Y0, . . . , Ym) ∩ (ξ,X1) ∩ (ξ, Yk) ∩ (X0, Y0, . . . , Ŷk, . . . , Ym) and

(iii) the action of (C∗)3 given by the matrix 1 1 −ω0 −ω1 . . . −ωk−i −ωk −ωk+1 . . . −ωm 0
0 0 1 a1 . . . ak−1 ak ak+1 . . . am 0
bk 0 b0 b1 . . . bk−1 0 bk+1 . . . bm −ak

 ,

where b0, . . . , bm are strictly positive integers such that

bi ≡ ai mod ak for i 6= k and bk = rak for some positive integer r .

Proposition 3.5. The rank 3 toric variety T constructed above is the blow up of the weighted
bundle F over P1 in Definition 3.1 at the point (0 : 1; 0 : · · · : 0 : 1).

Proof. By Proposition 3.3, the fan associated to F consists of 1-dimensional cones β0, β1 and
α0 . . . , αm in N = Zm+1 with 2m+ 2 maximal cones

σ0i = 〈β1, α0 . . . , α̂i, . . . , αm〉 and σ1j = 〈β0, α0 . . . , α̂j, . . . , αm〉 for 0 ≤ i, j ≤ m .

The last row of the defining matrix of T is clearly adding a new ray in the cone σ0k. The
fact that the generator of this ray is an integral vector in N is guaranteed by the conditions
imposed on bi. This implies that T is the blow up of F at a point if it has the correct
irrelevant ideal. We complete the proof by showing the irrelevant ideal of the Cox ring of
this toric blow up is precisely the ideal of T . This is done by taking the subdivision of σ0k
and computing the irrelevant ideal of the new fan using the method of [11], as in the proof
of Proposition 3.3. The fan of this blow up of Σ consists of rays β0, β1, α0, . . . , αm, γ and
maximal cones

σ′ki = 〈β0, α0 . . . , α̂i, . . . , α̂k, . . . , αm, γ〉 for i 6= k and σ′k = 〈α0 . . . , α̂k, . . . , αm, γ〉
coming from the subdivision of σ0k together with the remaining cones σij. If we associate
the new variable ξ to the ray γ and X0, X1 to β0, β1 and Yi to αi, then the irrelevant ideal
of this toric variety is the ideal generated by

X1 · Yi · Yk for all i 6= k, X0 ·X1 · Yk, X1 · Yi · ξ for all i 6= k, X0 · Yi · ξ for all i .

The primary decomposition of this ideal is the irrelevant ideal of T . �

4. Proof of the main results

Our initial model X is defined as a complete intersection of two hypersurfaces in F , where
F is a P4-bundle over P1. If we denote by y0, y1, x0, · · · , x4, the global coordinates on F ,
then the Cox ring of F is Cox(F) = C[y0, y1, x0, · · · , x4] with weights(

1 1 0 −1 −2 −3 −3
0 0 1 1 1 1 1

)
.
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and irrelevant ideal I = (y0, y1) ∩ (x0, · · · , x4).

4.1. Cox ring and description of the initial model. Define Q1 to be the vanishing of
the polynomial f of bi-degree (−3, 2), and similarly Q2 = (g = 0), where deg(g) = (−2, 2).
Assume furthermore that f has no monomial term x0x4 and similarly g has no y0x0x3 or
y1x0x3, and otherwise f and g are general.

Lemma 4.1. X = Q1 ∩Q2 ⊂ F is smooth.

Proof. A simple calculation on the Jacobian matrix of X shows that Sing(X) ⊂ P1
0, where

P1
0 = (x1 = x2 = x3 = x4 = 0). Having monomials of type x0 × l, where l is a linear term,

in the equation of X imply smoothness along this line. �

Proposition 4.2. Cox(X) =
Cox(F)

(f, g)
.

Proof. It is easy to check, using methods in [1] Section 4.2 that Pic(X) ∼= Pic(F). Factoriality
of F and Lemma 4.1 imply that X ⊂ F is a neat embedding, see [16] Definition 2.5. The
result follows from [16] Corollary 2.7. �

4.2. Different Mori structures. Now we show how the other Mori fibre space models,
birational to X, are obtained.

By rules of Sarkisov programme, see [8] §2.2, there are two possibilities for the start of
the programme: having a Mori fibre space X → S, either run one step of the MMP on S,
obtain S 99K T , and consider Pic(X/T ) or do a blow up on X, obtain Z → X, and consider
Pic(Z/S). In both cases the relative Picard group has rank 2. One generator of this group
corresponds to Z → X or S 99K T and the other generator indicates the beginning of the
so-called 2-ray game, and in correct setting the Sarkisov link. See [8] for details. Running
the first type is most commonly used for varieties constructed in similar ways to our objects,
see for example [1,3]. The general setting for this kind of links is described in [4]. Following
these techniques one can see that X is birational to Y , a del Pezzo fibration of degree 2 over
P1. The link between X and Y consists of an anti-flip, of local type (1, 1,−1,−3) followed
by an Atiyah flop.

Proposition 4.3. X is birational to a del Pezzo fibration of degree 2 over P1.

The Cox ring of Y is Cox(Y ) = C[u, v, x, y, z, t, s]/(f, g), with weights(
1 1 0 −1 −2 −1 −1
0 0 1 2 3 1 1

)
,

and irrelevant ideal IY = (u, v) ∩ (x, y, z, t, s).
Note that, for simplicity, we have renamed the variables, i.e., the variables u, x, y, z, t, s

are exactly x4, x3, x2, x1, x0, y0, y1, in that order. The weight matrix is that of F in opposite
order, in rays and columns, multiplied by a matrix A, where(

−2 −1
3 1

)
∈ SL*(2,Z).

The equations of f and g must be easily read after the substitution, in particular, f =
0.vz + uz + x2t + · · · and g = 0.vzt + 0.vzs + y2 + xz + · · · , with bi-degrees (−1, 3) and
(−2, 4), with respect to the new weights. By Proposition 3.4, F1, the ambient toric variety
in which Y is embedded, has two lines of singularities of types A1 × 1/2(1, 1, 1, 1) and
A1 × 1/3(1, 1, 1, 2). It is easy to check that Y does not meat the first line and it intersects
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the second line at the point pvz = (u = x = y = t = s = 0). In particular, pvz is a terminal
singularity of type 1/3(1, 1, 2), as one can eliminate the variables u and x in an analytical
neighbourhood of this point using f and g.

We want to show that a blow up of the point pvz is the start of a Sarkisov link on Y . By
a result of Kawamata [18] this blow up is a unique weighted blow up of type (1, 1, 2) with
discrepancy 1

3
. In other words, if we denote the blow up of Y by Y , and the exceptional

divisor of the blow up by E, then

KY = KY +
1

3
E

Define a rank 3 toric Cox ring by R = C[u, v, x, y, z, t, s, w], the irrelevant ideal I =
(u, v) ∩ (x, y, z, t, s) ∩ (u, x, y, t, s) ∩ (w, v) ∩ (w, z) and weights given by the matrix

A =

 1 1 0 −1 −2 −1 −1 0
0 0 1 2 3 1 1 0
3 0 a 2 0 1 1 −3

 .

By Proposition 3.5, T = T (I,A) is a blow up of F1, for a positive integer a = 3k + 1. The
aim is to show that for a particular k, Y is neatly embedded in T .

Note that the blow up map is given by

ϕ((u, v, x, y, z, t, s, w)) 7→ (uw, v, w
a
3x,w

2
3y, z, w

1
3 t, w

1
3 s)

It is easy to check that A is not well formed. In order to use the adjunction formula for
subvarieties of T we need to consider the well formed model. By techniques of Section 2 one
can verify that the well formed model is

A =

 1 1 0 −1 −2 −1 −1 0
0 0 1 2 3 1 1 0
1 0 k 0 −1 0 0 −1

 .

Lemma 4.4. For a = 4, Y −→ Y is the Kawamata blow up of the point pvz ∈ Y , where
Y ⊂ T is the birational transform of Y by ϕ.

Proof. Using adjunction formula −KY ∼ OY ((0, 1)). If we denote by f̃ and g̃ the defining

equations of Y ∈ T , then deg f̃ = (−1, 3, 0) and deg g̃ = (−2, 4, 0), hence, using adjunction
formula again, we have −KY ∼ OY((0, 1, k − 1)). In other words, KY ∼ −Dx − E, where
Dx = (x = 0) is a principal divisor on Y and E = (w = 0) is the exceptional divisor. On
the other hand, ϕ∗(KY ) ∼ −Dx − a

3
E. Using Kawamata’s condition that the discrepancy is

equal to 1
3
, we conclude that a = 4. �

Lemma 4.5. Y is square birational to a degree 2 del Pezzo model neatly embedded in a toric
variety as a hypersurface.

Proof. Using toric MMP we can see that the 2-ray game on T , associate to the rank 2 relative
Picard group of T /P1

u:v, consists of a flop to T ′ followed by a divisorial contraction to a rank
2 toric variety F2. The flop is the contraction of the fibring lines in a P1-bundle of P(1, 1, 2)
on one side and extracting another P1-bundle on the other side of the flop. In terms of Cox
rings, this is the replacement of I by another ideal I ′ = (u, v)∩(w, v)∩(u, x)∩(w, y, z, t, s)∩
(x, y, z, t, s). If we rewrite A, after a SL*(3,Z) modification, as

A =

 1 1 0 −1 −2 −1 −1 0
0 0 1 2 3 1 1 0
1 0 0 −2 −4 −1 −1 −1

 .
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By Proposition 3.5, T ′ −→ F2 is a divisorial contraction with exceptional divisor E ′ =
(u = 0) to a point, where Cox(F ′) = C[w, v, z, y, x, t, s], with irrelevant ideal I2 = (w, v) ∩
(z, y, x, t, s) and the weights

A =

(
1 1 −1 −1 −1 −1 −1
0 0 3 2 1 1 1

)
.

We can write down the equation of this contraction by

ψ((u, v, x, y, z, t, s, w)) 7→ (uw, v, u4z, u2y, x, ut, us),

in particular, the image of the contraction is the point pvx ∈ F2.
Restricting all these to Y , we see that the flop (of the ambient space) corresponds to a flop

of 6 lines, associate to the intersection of a quartic (coming from the birational transform
of g) and a cubic (coming from f) in P(1, 1, 2), that is 6 points by Lemma 9.5 in [17]. The
exceptional divisor is a cubic in P(1, 1, 2). The birational transforms of f and g in F2 are,

respectively f̂ = z +wxy + vyt+ · · · and ĝ = y2 + xz + · · · . In particular, we can eliminate
z globally, and consider Z, the birational transform of Y , embedded as a hypersurface in a
rank 2 toric variety with Cox ring equal to that of F2, with z eliminated. Z is the vanishing
of the polynomial y2 = vyxt+ w2t4 + · · · . It is easy to check that Z is a fibration of degree
2 del Pezzo surfaces over P1

v:w, and is square birational to Y/P1. �

Lemma 4.6. Z is birational to a conic bundle.

Proof. This appears as Family 6 in Theorem 3.3 of [1]. �

The following diagram shows the geometry of X and its birational models.

Y

blow up

����
��

��
��

��
��

��
�

6×(1,1,−1,−1)
//_____ Y ′

blow up

��@
@@

@@
@@

@@
@@

@@
@@

X
(1,1,−1,−3)

//_____

dP4

��

X1

(1,1,−1,−1)
//_____ Y

dP2

��

Z

dP2

��

∼= // Z

conic bundle

��
P1 P1 P1 P2

In order to complete the proof of Theorem 1.3 we need to show that X is not rational.
We use the result of Alexeev [2] to obtain this.

Theorem 4.7 ( [2], Theorem 2). If the Euler characteristic of a (standard) del Pezzo fibra-
tion of degree 4 over P1 does not belong to {0,−4,−8}, then it is not rational.

Lemma 4.8. X is not rational.

Proof. By the same calculation as [14] Example 3.2.11 we can compute χ(X) = −28, the
Euler characteristic of X. The result follows from Theorem 4.7. �
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