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OVERVIEW
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GL(n + 1,C) = {invertible (n + 1)× (n + 1) C-matrices}
acts on V = Cn+1

PGL(n + 1,C)
= {invertible (n + 1)× (n + 1) matrices up to scalar}
acts on PV .
Make it act on P Symd V ∨ = space of degree-d hypersurfaces.

Definition
The linear orbit of X is its orbit under PGL(n + 1).

Examples, n = 2:
d = 1:

2
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d = 2:

52 4

d = 3:

(with moduli)
82 4 5

6

6

7

7

8
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d ≥ 4: ??
Probably description of set of orbits known for d = 4;
and probably out of reach for d ≥ 5.

Natural question:
Given hypersurface X ⊆ Pn, ‘describe’ its PGL(n + 1)-orbit.

‘describe’:
dimension
degree of closure
singularities of closure
behavior in families
· · ·

We will focus on the degree of the orbit closure.
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Motivation: Enumerative geometry

‘classical’

Extrinsic

‘unstructured’ ‘structured’

Intrinsic

* ‘modern’

‘Intrinsic’: Gromov-Witten invariants
Example: How many plane curves of degree d and geometric genus
g pass through suitably many (= 3d + g − 1) general points?

Severi degrees
(Schubert. . . Ran. . . Caporaso-Harris. . . Kontsevich. . . )
Structure: Quantum cohomology; also Fock space approach,
Cooper-Pandharipande ’12

Main character: moduli space.
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‘Extrinsic’ example: How many smooth plane curves of degree d
are tangent to suitably many general lines?

Characteristic numbers
(Schubert. . . Fulton-MacPherson. . . Kleiman-Speiser . . . Vakil. . . )

For d = 1, 2, 3, 4 . . . : 1, 1, 33616, 23011191144 (Vakil, ’98),
wide open for r ≥ 5!

Are these numbers ‘structured’ by something like quantum
cohomology? (I don’t know.)

Main character: humble projective space.
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Question: What’s both extrinsic and intrinsic?

One possible answer

(*) how many smooth plane curves with given degree d and moduli
class contain suitably many general points?

I.e.: Given an abstract curve C , in how many ways can it be
realized as a plane curve of given degree so as to contain N general
points? (N = dimension of parameter space.)

(Structure?? ‘Isotrivial GW invariants’?)

Example

P14 = space of plane quartics (genus= 3). Have rational map

P14 ⊇ general P6 99KM3

What is the degree of this map? This is just one question (*).

9 / 170 Paolo Aluffi Linear orbits of plane curves



Fair question: Can’t quantum cohomology methods do this?

Answer: Yes, for small genus. Zinger, early 2000’s. (g ≤ 3?)

Arbitrary genus/degree?

Fact:
For d ≥ 4, C ⊆ P2 smooth curve, the answer to (*) equals the
degree of the PGL(3)-orbit closure of C .

So (*) is a special case of the general invariant theory question
stated at the beginning.

10 / 170 Paolo Aluffi Linear orbits of plane curves



Theorem (—, C. Faber)

Explicit formula for the degree of the PGL(3)-orbit closure of a
smooth plane curve of degree d:

(polynomial in d) − (contribution from special flexes)
# of automorphisms

Example
# of realizations of given C genus g , deg. d smooth 3 N points:

d g N #
1 0 2 1
2 0 5 1

12 (j 6= 0, 1728)
3 1 8 4 (j = 0)

6 (j = 1728)
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Example

d g N #

4 3 8
14280− contribution from hyperflexes

|Aut |

So there are 14280 ways to realize a general genus-3 curve as a
plane quartic containing 8 given general points.

Example

For a general sextic curve C (genus = 10), the numerator is
1119960 = 23 · 33 · 5 · 17 · 61. Consequence: |Aut(C )| cannot be a
multiple of 7 or 11.

But note that there exist genus 10 curves with 14, 22, 33
automorphisms.
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Main point here:

Question (*) was formulated for smooth plane curves.
However, its invariant-theoretic formulation makes sense for
arbitrary plane curves, and in fact arbitrary projective hypersurfaces.

C : plane curve, equation F (x0 : x1 : x2) = 0, deg F = d .

ϕ ∈ PGL(3) C ◦ ϕ, equation F (ϕ(x0 : x1 : x2)) = 0,
translate of C .

OC := PGL(3)-orbit = {translates of C} ⊆ P
d(d+3)

2

Main question

degOC =?
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Main question

degOC =?

This question makes sense irrespective of singularities of C .
Notice the difference w.r.t. moduli of map viewpoint:

dim{nodal quartics} = 13; (QC, genus 2)
dim{realizations of fixed genus-2 C as nodal quartic} = 10;
dimOC = dimPGL(3) = 8 for a quartic C .
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But also:

From a moduli-of-map perspective, need to record the special
points, plus local data specifying the singularities.

I don’t know how to do this.
(It can be done for special singularities, e.g., cusps.
Spectacular enumerative results by Nguyen.)

No such complication from the projective geometry point of view.
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Theorem (—, C. Faber)

A procedure computing degOC for arbitrary C.
The answer depends on

degree and multiplicities of components of C ;
degree of closure of stabilizer of C (as a subvariety of P8);
information about ‘special points’ of C :

inflection points of support;
tangent cone at singularities;
Puiseux pairs of branches at singular points.

Remark
Popov has posed the problem of computing the degree of orbit
closures of arbitrary actions of linear groups.
The theorem solves this problem for PGL(3) acting on P(Symd C3).
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Example
Enumerative applications to characteristic numbers:

Degree for C = general sextic: 1119960.
Contribution of a cusp: 23544.

Hence degOC = (1119960− 9 · 23544)/(# Stab(C ))
for a sextic with 9 cusps.

Fact: # Stab(C ) = 18; so degOC = 908064
18 = 50448.

Dually: The number of smooth cubics with fixed j-invariant
( 6= 0, 1728) tangent to 8 lines in general position is 50448.

Similar:
# nodal cubics tangent to 8 lines in gen. pos. = degOC for dual C ,
i.e., quartic with three cusps: 14280−3·3960

6 = 400 (Schubert).
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The approach

Fix C , degree d ; N = d(d+3)
2 .

Compactify PGL(3) to P8, and resolve the indeterminacies of the
extended action map: π proper birational,

V
π

��
α̃

��
PGL(3) �

� // P8 α // PN ϕ ∈ P8 7→ α(ϕ) := C ◦ ϕ

Note: α is not defined at ϕ ∈ P8 such that imϕ ⊆ C .
For example, if C has no linear components, then the base locus of
α is P2 × C (=rk-1 matrices whose image is a point of C ).
OC = imα. Want: class of OC in PN , i.e., c1(O(1))dim OC ∩ imα.

Right question:

π∗(ch(α̃∗O(1)) ∩ [V ]) = 1 + a1H + · · ·+ a8
H8

8!
=?
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V
π

��
α̃

��
PGL(3) �

� // P8 α // PN

Definition (Adjusted predegree polynomial (‘a.p.p.’))

π∗(ch(α̃∗O(1)) ∩ [V ]) = 1 + a1H + · · ·+ a8
H8

8!

Lemma
dimOC (= 8− dimStab(C )) = degree r of the a.p.p.;

degOC =
ar

deg StabC
.

Proof: Just chase definitions.
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V
π

��
α̃

��
PGL(3) �

� // P8 α // PN

How to construct V , compute a.p.p.?
Balancing act:

1 V = closure of graph of α fits the diagram; but very singular,
hard to control intersection theory.

2 If π = sequence of blow-ups at smooth centers, then
intersection theory is doable; but how to find centers?

Strategy:
Perform (2) when possible, in ‘enough’ cases;
Then study (1) by degeneration arguments. This means. . .
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Consider
V = Γ

π

��
α̃

��
P8 α // PN

where Γ ⊆ P8 × PN , graph of α.
I.e., Γ = blow-up of P8 along the base scheme S of α.

Definition (PNC)

The projective normal cone for C is the inverse image of S in Γ.

(ϕ,X ) ∈ PNC ⇐⇒ there exists a germ of a curve ϕ(t) ⊂ P8 such
that ϕ(0) = ϕ, and X = limt→0 C ◦ ϕ(t).

So studying the PNC amounts to understanding all ‘limits of
translates’ of the given curve.
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Harris-Morrison, Moduli of curves, p.138:
Flat completion problem: describe all curves in Pn that can arise as
flat limits of families of curves over the punctured disc together
with a line bundle giving embeddings of the curves in the family as
curves in Pn.

Understanding the PNC amounts to solving the ‘isotrivial’ version
of this problem, for n = 2: all curves in the family are just
translations of a fixed curve.

Theorem (—, C. Faber)

Procedure to describe the PNC for a given arbitrary curve C:
irreducible decomposition, class and multiplicity of the components.

This is what is needed for the second part of the ‘strategy’ sketched
earlier.
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V
π

��
α̃

��
PGL(3) �

� // P8 α // PN

First part of the strategy: construct π : V → P8 explicitly as a
sequence of blow-ups at smooth centers.
This can be carried out for special curves: C smooth;
C s.t. dimOC < 8; some other cases.

• C smooth curve:
Base locus of α: P2 × C ⊆ P8; blow-up along P2 × C ;
blow-up along a P1-subbundle of the exceptional divisor;
blow-up along P2’s over flexes, a number of times depending
on the order of the flex.

This constructs V explicitly. Intersection theory  a.p.p.
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• C has ‘small orbit’: dimOC < 8, i.e., dim StabC > 1.

Theorem (—, C. Faber)

A classification of these curves.

Representive pictures of the most interesting cases:

corresponding to

xaybzc ∏
i (z

n+λixmyn−m) (n ≥ 3) , xa∏
i (z

2+xy+µix2) .

Theorem (—, C. Faber)

Explicit construction of π : V → P8 for all such curves.

Typically, the blow-ups mirror embedded resolution of the curve.
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• C = a line arrangement (with multiplicities)

ϕ ∈ P8 s.t. imϕ = an intersection point: a union of P2’s;
ϕ ∈ P8 s.t. imϕ ⊆ a line in the arrangement: a union of P5’s;
π : V → P8 may be obtained by blowing up the P2’s and then
the proper transforms of the P5.
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V
π

��
α̃

��
PGL(3) �

� // P8 α // PN

General case:
No good blow-up sequence is known in general.

Γ := graph of α;
Γ ∼= blow-up of P8 along base scheme S of α;
E := PNC = exceptional divisor in this blow-up.

Intersection theory:
The a.p.p. is determined by the class [E ] in P8 × PN . We need:

1 description of the components of E ;
2 multiplicity of each component;
3 class of each component.
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(3) is the ‘easy’ part:

components are 7-dimensional, and union of PGL(3)-orbits;
so these components can be classified a priori, and classes can be
related to enumerative geometry of curves with small orbits.

(1)+(2): subjectively hard.

For a given C , need to determine all possible limits of translates,
and associated multiplicities.

Example

C : x3z4 − 2x2y3z2 + xy6 − 4xy5z − y7 = 0
irreducible, singular at (1 : 0 : 0).

ϕ(t) :=

(
1 0 0
t8 t9 0
t12 3

2 t13 t14

)
(Note that imϕ(0) = (1 : 0 : 0).)

limt→0 C ◦ ϕ(t): x3(8x2 + 3y2 − 8xz)(8x2 − 3y2 + 8xz) = 0
reducible, union of two quadritangent conics and triple line.
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Summary of description of PNC:

Five different origins of components of PNC of a given C :
1 linear components of C ;
2 nonlinear components of C ;
3 points at which the tangent cone has ≥ 3 components;
4 points with special features of the Newton polygon;
5 points with special features of Puiseux pairs.

Limits due to (4): unions of cuspidal curves;

limits due to (5): unions of quadritangent conics (cf. example).
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‘Structure’ ??

No organizational principle such as QC. (As far as I know.)

Hints here and there of interesting structure. For example:

Proposition
C : reduced curve, degC > 1; L : line transversal to C at non-flex
points; then a.p.p.(C ∪ L) equals the truncation to H8 of

a.p.p.(C ) ·
(
1 + H +

H2

2

)
·
(
1− H6

24
+

7H7

60
− 13H8

80

)#(C∩L)

The a.p.p. of a line is 1 + H + H2

2 , so this result expresses a weak
multiplicativity property of a.p.p.’s
If C is a configuration of lines, then the extra ‘correction’ term is
not there(!), so the a.p.p. is multiplicative on the nose in this case.
Consequence: the a.p.p. for d general lines is the truncation to H8

of
(
1 + H + H2

2

)d
.
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Example
The a.p.p. for a triangle C is(
1 + H + H2

2

)3
= 1 + 3H + 9

2H
2 + 4H3 + 9

4H
4 + 3

4H
5 + 1

8H
6.

Therefore dimOC = 6 (clear), and degOC = (6!/8)/ deg Stab(C ).
deg Stab(C ) = 6 (clear), so degOC = 15.
Also clear combinatorially: count # of triangles through 6 points.

4 lines:
(
1 + H + H2

2

)4
= 1 + 4H + · · ·+ 1

16H
8

 degOC = 8!
16·4! = 105.

Exercise: do this combinatorially.

But combinatorics does not give degOC for ≥ 5 lines:(
1 + H + H2

2

)5
= 1 + 5H + · · ·+ 25

16H
8  degOC = 63000

This has actually been worked out in all dimensions.
(Tzigantchev: Explicit formulas for plane arrangements in space.)
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Explicit formulas are messy in general.

One case when they are reasonably neat: contribution of
unibranched singularities.
For example, consider a curve C of degree d , ordinary flexes, and
singularities of type (tm, tn), with no further Puiseux pairs. Also
assume StabC is trivial.

Theorem (—, C. Faber)

The degree of the orbit closure of C is

d8 −
{

(1 + dk)8
[

4d2

(1 + k)3(1 + 2k)3

+
∑

p∈C of type (tm,tn)

mn
(

m2n2

(1 + mk)3(1 + nk)3 −
4

(1 + k)3(1 + 2k)3

)]}
2

(Here {·}2 extracts the coefficient of k2 in the given expression.)
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Example

If C is smooth, with ordinary flexes, then it has 3d(d − 2) points
‘of type (t, t3)’.
According to the theorem, if StabC is trivial, then degOC equals

d8 −
{

(1 + dk)8
[

4d2

(1 + k)3(1 + 2k)3

+ 3d(d − 2) · 3
(

9
(1 + 3k)3(1 + nk)3 −

4
(1 + k)3(1 + 2k)3

)]}
2

= d8 − d(1372d3 − 7992d2 + 15879d − 10638)

= d(d − 2)(d6 + 2d5 + 4d4 + 8d3 − 1356d2 + 5280d − 5319)
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C : general plane curve of degree d

d degOC

4 14280
5 188340
6 1119960
7 4508280
8 14318256
9 38680740
10 92790480
11 203104440
12 413183160
13 791558196
14 1442049000
15 2516992920
16 4233892320
· · · · · ·
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DTUPLES
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Warm-up: d -tuples in P1

Recall: We are interested in the orbits of the action of PGL(n + 1)
on the space of hypersurfaces in Pn of a fixed degree d .

Main interest: n = 2. What about n = 1?

A d -tuple of points C in P1 is the zero-set of a degree d
homogeneous polynomial F (x0, x1) ∈ C[x0, x1].

So C consists of points p1, . . . , pr with multiplicities m1, . . . ,mr
such that

∑
mi = d .

{d−tuples} = Pd : ‘coordinates’ of a d -tuple are the (d + 1)
coefficients of F .

PGL(2) acts on C : ϕ =

(
a00 a01
a10 a11

)
7→ the d -tuple defined by

F (a00x0 + a01x1, a10x0 + a11x1) .
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This amounts to translating the points pi , preserving multiplicities.
OC ⊆ Pd : PGL(2)-orbit, i.e., set of translates. Clearly dimOC ≤ 3.

Question

degOC =?

First approach: Combinatorics.
Remark: The condition of ‘containing a point’ is linear in the
coefficients of F : each p ∈ P1 determines a hyperplane Hp in Pd .

Thus, if dimOC = 3, then degOC = #(Hp1 ∩ Hp2 ∩ Hp3 ∩ OC )
for general points p1, p2, p3 and (possibly) counting intersection
multiplicities.

Now C ′ ∈ (Hp1 ∩ Hp2 ∩ Hp3 ∩ OC ) ⇐⇒ C ′ is a PGL(2)-translate
of C , and p1, p2, p3 ∈ C ′.
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Therefore:

Evident Lemma
If dimOC = 3:
degOC = number of translates of C containing p1, p2, p3

degOC =
number of translations of C containing p1, p2, p3

Stab(C )

=
# of translations of 0, 1,∞ to points of C

Stab(C )

Understood: counting multiplicities. Local computation:
multiplicities = 1 if C consists of d distinct points.
in general, multiplicity for a translation = product of the
multiplicities of images of p1, p2, p3.
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Now:
a PGL(3)-translation is determined by the images of 0, 1,∞.
So the lemma reduces the computation of degOC to elementary
combinatorics.

Corollary
C = d-tuple of distinct points, trivial stabilizer. Then

degOC = d(d − 1)(d − 2)

(This argument may already be found in Enriques-Fano.)

Example
If C is a general d -tuple:

The orbit is ‘small’ (dim < 3) iff d = 1, 2. (OC = P1,P2.)
If d = 3, degOC = 3·2·1

3! = 1. (And indeed OC = P3.)
A general 4-tuple has stabilizer C2 × C2: degOC = 4·3·2

4 = 6.
For d ≥ 5, a general d -tuple has trivial stabilizer:
degOC = d(d − 1)(d − 2).
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Combinatorics & multiplicity considerations give OC for arbitrary
d -tuples.

Example

Double point, d − 2 distinct points (otherwise general):

Then H0 ∩ H1 ∩ H∞ ∩ OC consists of
(d − 2)(d − 3)(d − 4) points, mult. 1; and
3(d − 2)(d − 3) points, mult. 2.

If Stab=trivial, degOC = (d + 2)(d − 2)(d − 3).

Legitimate question:

Since combinatorics works so well, why try anything else?

Simplest answer: combinatorics doesn’t scale to higher dimension.

39 / 170 Paolo Aluffi Linear orbits of plane curves



So let’s try to do combinatorics without combinatorics.
Basic diagram:

V
π

��
α̃

��
PGL(2) �

� // P3 α // Pd ϕ ∈ P3 7→ α(ϕ) := C ◦ ϕ

P3 =

{
ϕ =

(
a00 a01
a10 a11

)}
, C : F (x0, x1) ∈ Pd :

α(ϕ) = C ◦ ϕ : F (a00x0 + a01x1, a10x0 + a11x1).

Base scheme?

Lemma
The base locus of α consists of a disjoint union of linearly
embedded P1’s.
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Lemma
The base locus of α consists of a disjoint union of linearly
embedded P1’s.
In fact, the base scheme of α is isomorphic to P1 × C.

Proof: The base locus of α must be contained in the complement
of PGL(2), i.e., it must consist of rk = 1 matrices:

α :=

(
k0i0 k1i0
k0i1 k1i1

)
∈ P1 × P1 ↪→ P3

F (a00x0 + a01x1, a10x0 + a11x1) ≡ 0 ⇐⇒
F (k0i0x0 + k1i0x1, k0i1x0 + k1i1x1) ≡ 0 ⇐⇒
(k0x0 + k1x1)dF (i0, i1) ≡ 0 ⇐⇒ F (i0, i1) = 0
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Base scheme: supported on S = P1 × C ↪→ P1 × P1 ↪→ P3:

S

rk = 1 matrices with free kernel, image in C .

Theorem

α is resolved by blowing up P3 along the support of P1 × C.

Proof: Focus on one component of P1 × C , say P1 × {p},
p of multiplicity r in C .

WLOG, F (x0, x1) = x r
1G (x0, x1) with x1 - G .

V := blow-up of P3 along the support of S .
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F (x0, x1) = x r
1G (x0, x1). Work near

(
1 0
0 0

)
:{

ϕ =

(
1 a
b c

)}
, blow-up locus with local equations b = c = 0.

Chart in blow-up V :
{(

1 a
b̃e e

)}
, e = 0 exceptional divisor.

Lift of α : P3 99K Pd to blow-up:

α̃

((
1 a
b̃e e

))
= (b̃ex0 + ex1)rG (x0 + ax1, b̃ex0 + ex1)

= er (b̃x0 + x1)rG (x0 + ax1, b̃ex0 + ex1)
≡ (b̃x0 + x1)rG (x0 + ax1, b̃ex0 + ex1)
6≡ 0

So α̃ : V → P2 is defined everywhere.
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Computing degOC

E �
� //

��

V
π

��
α̃

��
S �
� // P3 α // Pd

E = exceptional divisor = E1 ∪ · · · ∪ Em, one connected component
for each point of C .
h = hyperplane class in Pd .

Evident Lemma

If dimOC = 3, then degOC =

∫
α̃∗(h)3

degα
.

Definition

The predegree of C is the intersection number
∫
α̃∗(h)3.
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Definition

The predegree of C is the intersection number
∫
α̃∗(h)3.

Why stop there? Consider all powers α̃∗(h)i .
With H := hyperplane class in P3, π∗(α̃∗(h)i ) = aiH i for some
ai ∈ Z.

Definition

The predegree polynomial of C is
∑

i π∗(α̃
∗(h)i ) =

∑
i aiH i .

Evident Lemma
The degree of the predegree polynomial equals dimOC ;

For all C , degOC =
adim OC

deg Stab(C )
.
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Another point of view:
α : P3 99K Pd ;
Γ ⊆ P3 × Pd : graph.
Γ ∼= the blow-up of P3 along the base scheme S of α.

Note that A∗(P3 × Pd ) is generated by H := π∗(H), h := α̃∗(h).

Lemma

[Γ] =
∑

i aiH ihd−i .

Proof:
If V is any variety resolving α, then have proper bir. V → Γ.
Projection formula:∑

i π∗(α̃
∗(h)i ) =

∑
i aiH i ⇐⇒ ai = H3−ihi · [Γ].

So predegree polynomial  ‘set h to 1 in [Γ]’.

Plan: to extract information from Γ = B`SP3.
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Definition

Let p = (p0 : p1) ∈ P1. The point condition determined by p is the
hypersurface Xp of P3 defined by F (a00p0 + a01p1, a10p0 + a11p1).

Remarks:
The base scheme of α is the (scheme-theoretic) intersection of
all point-conditions: S = ∩p∈P1Xp.
What earlier proof showed is that for all p

π∗(Xp) = r1[E1] + · · ·+ rm[Em] + [X̃p] ,

where ri is the multiplicity of the i-th point of C , and
X̃p = the proper transform of Xp, [X̃p] = α̃∗(h).

. . . and further ∩pX̃p = ∅, so that α̃ is defined everywhere,
π−1(S) = ∩p∈P1π

−1(Xp) = r1E1 + · · ·+ rmEm.
(Remember this!)
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Interlude: Segre classes

S ⊆ T schemes  s(S ,T ) ∈ A∗S , the Segre class of S in T .
Characterized by:

If S is regularly embedded in T , s(S ,T ) = c(NST )−1 ∩ [S ].
If f : T ′ → T is proper birational: s(S ,T ) = f∗s(f −1(S),T ′):
Birational invariance of Segre classes.

Example

s(P1,P3) = c(NP1P3)−1 ∩ [P1] = [P1]− 2[P0].
D Cartier divisor  s(D,V ) = D − D2 + D3 − · · · .
T ′ = blow-up of T along S , E = exceptional divisor,

s(S ,T ) = f∗s(E ,T ′) = f∗(E − E 2 + E 3 − · · · ) .

Fact:

If S is the base scheme of a rational map Pr 99K Pd , then s(S ,Pr )
carries essentially the same information as the class of Γ in Pr × Pd .
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Segre classes ↔ predegree polynomials

Notation:
L : line bundle on a variety; γ =

∑
j γ

(j) a Chow class, indexed by
codimension.

Definition

γ ⊗L :=
∑

j c(L )−j ∩ γ(j) .

This is an action of Pic! γ ⊗ (L ⊗M ) = (γ ⊗L )⊗M .

Theorem

Let ι : S ↪→ P3 be the base scheme of the rational map α
associated with a d-tuple C . Then the predegree polynomial of C
equals

([P3]− ι∗s(S ,P3))⊗ O(−dH)

1− dH

Proof: Not now.
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Now? You were told to remember
π−1(S) = ∩p∈P1π

−1(Xp) = r1E1 + · · ·+ rmEm.
The Ei are disjoint, so

s(r1E1 + · · ·+ rmEm,V ) =
∑

i

s(riEi ,V )

=
∑

i

(riEi − r2i E
2
i + r3i E

3
i − · · · ) .

Birational invariance:

s(S ,P3) =
∑

i π∗(riEi − r2i E
2
i + r3i E

3
i ) .

How do we evaluate this push-forward?

Ei = π−1(P1), so π∗s(Ei ,V ) = s(P1,P3) = [P1]− 2[P0].
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π∗(Ei − E 2
1 + E 3

i ) = [P1]− 2[P0].

Therefore:
π∗(riEi − r2i E

2
i + r3i E

3
1 ) = r2i [P1]− 2r3i [P0].

We have proven:

Lemma
If C is a d-tuple of points with multiplicities r1, . . . , rm, then

ι∗s(S ,P3) = (
∑

i

r2i )[P1]− 2(
∑

i

r3i )[P0] .

Corollary
Let C be a d-tuple of points with multiplicities r1, . . . , rm. Let
r (j) =

∑
i r

j
i (so r (1) = d). Then the predegree polynomial of C is

1 + dH + (d2 − r (2))H2 + (d3 − 3dr (2) + 2r (3))H3
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Proof:
Relation between Segre classes and predegree polynomials: the
predegree equals

([P3]− ι∗s(S ,P3))⊗ O(−dH)

1− dH

=
([P3]− r (2)[P1] + 2r (3)[P0])⊗ O(−dH)

1− dH

The effect of ⊗O(−dH) is to divide terms of codimension j by
(1− dH)j , therefore this equals(

1
1− dH

− r (2)H2

(1− dH)3 +
2r (3)H3

(1− dH)4

)
∩ [P3]

Taylor  given expression.
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Predegree polynomial

C = r1p1 + r2p2 + · · ·+ rmpm

r (j) :=
∑

i r
j
i

Predegree polynomial

1 + dH + (d2 − r (2))H2 + (d3 − 3dr (2) + 2r (3))H3.

Example
r1 = 2, r2 = · · · = rd−2 = 1

r (2) = 4 + (d − 2) = d + 2; r (3) = 8 + (d − 2) = d + 6;
predegree = d3 − 3d(d + 2) + 2(d + 6) = (d − 2)(d − 3)(d + 2).
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Adjusted predegree polynomial (a.p.p.)

Alternative formulation:

ei := i-th elementary function on the multiplicities ri (so e1 = d).

Predegree polynomial

1 + e1H + 2 e2H2 + 6 e3H3.

Proof: Nothing to prove!

With this in mind, the next definition is unavoidable. Recall that
the predegree polynomial really is∑

i π∗
(
α̃∗(c1(O(1))i ) ∩ [V ]

)
.

Definition
The adjusted predegree polynomial (a.p.p.) of C is

∑
i
π∗(α̃

∗(c1(O(1))i ) ∩ [V ])

i !
= π∗(ch(α̃∗O(1)) ∩ [V ]) .
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Adjusted predegree polynomial (a.p.p.)

Summarizing:

Theorem
Let C be a tuple of points pi , with multiplicities ri . Then

a.p.p.(C ) =
∏

i (1 + riH)

(truncated to H3).

Proof:
Let ei be the elementary symmetric functions in the multiplicities.
Then predegree polynomial = 1 + e1H + 2 e2H2 + 6 e3H3,

therefore a.p.p.(C ) = 1 + e1H + e2H2 + e3H3

= truncation of
∑

ejH j =
∏

i (1 + riH).
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Example
C : d -tuple of distinct points:

a.p.p.(C ) = (1 + H)d = 1 + dH +
(d
2

)
H2 +

(d
3

)
H3

so predegree = 6!
(d
3

)
= d(d − 1)(d − 2).

‘Combinatorics explained’

Remarkable fact:

This result generalizes to arbitrary dimensions:

Theorem
Let X be a simple normal crossing divisor consisting of d
hyperplanes in Pn. Then

a.p.p.(X ) =

(
1 + H +

H2

2
+ · · ·+ Hn

n!

)d

truncated to H(n+1)2−1.
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One can in fact even allow multiplicities: if the i-th hyperplane
appears with multiplicity ri , then

a.p.p.(X ) =
∏
i

(
1 + riH +

r2i H
2

2
+ · · ·+

rni H
n

n!

)

Proof: Blow-up sequence  computation of Segre class of base
locus.
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Local/global contributions to the a.p.p.

One more reformulation:

Theorem
Let C be a tuple of points pi , with multiplicities ri ,

∑
ri = d. Then

a.p.p.(C ) = edH ∏
i

(
1− r2i

2 H
2 +

r3i
3 H

3
)

(truncated to H3).

Proof:

e−dH a.p.p.(C ) = e−dH
(
1 + dH +

(d2 − r (2))
2

H2 +
(d3 − 3dr (2) + 2r (3))

3!
H3
)

= 1− r (2)

2
H2 +

r (3)

3
H3 + · · ·

splits as a product mod H4.
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Local/global contributions to the a.p.p.

Interpretation:

edH : ‘global’ contribution.

1− r2H2

2
+

r3H3

3
: ‘local’ multiplicative contr. of a mult. r point.

This also has a counterpart in higher dimension.
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Boundary and multiplicities

V
π

��
α̃

��
P3 α // Pd

Now that we have constructed V , what else can we do with it?

Study the boundary ∂OC := OC r OC of an orbit:
If d ≥ 3, ∂OC = α̃(E ), image of exceptional divisor.

Boundary of orbit closure
If C is a d -tuple, ∂OC consists of the orbit closures of 2-uples
x ryd−r , where r is the multiplicity of a point on C .
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The way to think about this:
Consider a ‘germ’ (‘arc’?) γ̃(t) of a smooth curve centered at
a point of the exceptional divisor in V ;
Map down to P3: γ(t) := π(γ̃(t)) ∈ PGL(2) for t 6= 0;
Determine limt→0 C ◦ γ(t).

Example

C : y2(x3 − y3) = 0; γ(t) =

(
1 0
0 t

)
C ◦ γ(t): t2y2(x3 − t3y3)
limt→0 C ◦ γ(t): y2x3

Studying the exceptional divisor ‘is the same as’ classifying flat
limits of families of projectively equivalent d -tuples.
For d -tuples, one can access the exceptional divisor directly. To
scale to higher dimension, one will have to deal directly with limits.

61 / 170 Paolo Aluffi Linear orbits of plane curves



Boundary and multiplicities

V
π

��
α̃

��
P3 α // Pd

What else?
How singular are these orbit closures?

Fact: S ⊆ T subvariety; then multiplicity of T along S
= coefficient of S in Segre class s(S ,T ). Therefore:

Lemma

(d ≥ 3) If C ′ ∈ OC , then

multC ′ OC =

∫
s(α̃−1(C ′),V )

# Stab(C )
.

Numerator: premultiplicity.
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Only interesting for C ′ ∈ ∂OC ; hence again involving exceptional
divisor.

In general, OC is singular along all components of ∂OC .

Example

C : general d -tuple, d ≥ 5. (So Stab is trivial.)
One boundary component, x2yd−2.
Then mult∂OC OC = 2d . (‘Each point contributes 2.’)

Even for these boundary components, the premultiplicity is subtle:

the contribution of p ∈ C depends on the Hessian of the residual
tuple Cp.
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Boundary and multiplicities

‘Most singular’ points of OC : d -fold points, i.e. Oxd .

Fact: Oxd is cut out scheme-theoretically by vanishing of Hessians.
So may evaluate multxd OC by pulling back Hessians to V .

Example

C : general d -tuple, d ≥ 5. (So Stab is trivial.)
Then multxd OC = 6(d − 2).

Can an orbit closure be smooth? Yes!
Need multxd OC = 1, i.e., premultiplicity = order of stabilizer.

The end-result is very pretty. . .
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Smoothness of orbit closures

‘Visualize’ a d -tuple:

P1C = Riemann sphere;
d -tuple ↔ vertices on the sphere ↔ polygons/polyhedra.
A d -tuple is simple if it consists of d distinct points.

Smoothness I
The smooth orbit closures of simple d -tuples, d ≥ 3, correspond to
the regular triangulations of the sphere:

the equilateral triangle
the tetrahedron
the octahedron
the icosahedron
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Smoothness of orbit closures

One can also characterize smoothness in codimension 1, i.e., along
∂OC .

Smoothness II
The orbit closure of a simple d -tuple is smooth in codimension 1
if and only if it corresponds to a quasi-regular polyhedron
(in the sense of Coxeter), i.e., one of

the regular polygons
the cube
the dodecahedron
the cuboctahedron
the icosidodecahedron

Cuboctahedron: Icosidodecahedron:
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Predegree of OC , last word

Complicated expression for the predegree of OC :

d3−
{

(1+dk)3
[

d
(1 + k)2 +

∑
p∈C of type (tm)

m
(

m
(1 + mk)2 −

1
(1 + k)2

)]}
1

C : d -tuple, dimOC = 3. {·}1: coefficient of k1.

Compare with the predegree of OC for a degree d plane curve C with
ordinary flexes and singularities of type (tm, tn), no further Puiseux pairs:

d8 −
{

(1 + dk)8
[

4d2

(1 + k)3(1 + 2k)3

+
∑

p∈C of type (tm,tn)

mn
(

m2n2

(1 + mk)3(1 + nk)3 −
4

(1 + k)3(1 + 2k)3

)]}
2

A pattern extending to arbitrary dimension?
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SMOOTH
CURVES
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The case of curves

C ⊆ P2: curve, degree d :
C = V (F ), F (x0, x1, x2) homogeneous, degree d .

PGL(3) acts on C :
ϕ ∈ PGL(3) C ◦ ϕ := F (ϕ(x0, x1, x2)) ∈ Pd(d+3)/2.
OC := orbit, OC := orbit closure. Main focus: degOC .

For d -tuple of points, had combinatorial option.
Combinatorics won’t help here.
The other approach:

V
π

��

α̃

  
PGL(3) �

� // P8 α // Pd(d+3)/2 ϕ ∈ P8 7→ α(ϕ) := C ◦ ϕ

OC = imα.
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V
π

��

α̃

  
PGL(3) �

� // P8 α // Pd(d+3)/2

Recall—More natural object of study:

π∗(ch(α̃∗O(1)) ∩ [V ]) ∈ A∗P8 = Z[H]/(H9)

(adjusted) predegree polynomial of C .

Same information as class of Γ ⊆ P8 × Pd(d+3)/2, closure of
the graph of α.
Same information as the Segre class in P8 of the base scheme
S of α.
Therefore, more easily accessible if π is a sequence of blow-ups
at smooth centers.
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V
π

��

α̃

  
PGL(3) �

� // P8 α // Pd(d+3)/2

Remark: V resolves the indeterminacies of α
⇐⇒ V dominates the closure Γ of the graph of α.

Keep in mind: Γ = B`SP8. The task is to understand this blow-up,
for example by constructing a smooth variety V dominating it.

Goal: s(S ,P8).

The problem of computing Segre classes in projective space is
difficult and important.
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Definition

Let q = (q0 : q1 : q2) ∈ P2. The point condition determined by q is
the hypersurface Xq of P8 defined by F (ϕ(q0 : q1 : q2)) = 0.

The base scheme of α is S = ∩q∈P2Xq.

Set-theoretically: ϕ ∈ S ⇐⇒ imϕ ⊆ C :

S has one irreducible component for each component of C ;
Linear components of C  5-dimensional components of S ;
Nonlinear components of C  3-dimensional components.
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L ⊆ C line, wlog x0 = 0.

Corresponding component of S : ϕ ∈ P8 s.t. imϕ ⊆ L.a00 a01 a02
a10 a11 a12
a20 a21 a22

x0
x1
x2

 ∈ L for all x0, x1, x2

⇐⇒ a00x0 + a01x1 + a02x2 = 0 for all x0, x1, x2

⇐⇒ a00 = a01 = a02 = 0: a linear P5 ⊆ P8.

C = line arrangement in P2  S = arrangement of P5’s in P8.

L1 6= L2  corresponding P5’s meet along a P2.

This case is in many ways similar to the case of d -tuples of points
in P1.
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The other end of the scale:

C = irreducible curve of degree d > 1.

Base locus: irreducible case

The base scheme of α is supported on P2 × C ⊆ P2 × P2 ⊆ P8.

P2 × P2: rank-1, 3× 3 matrices.

Factors corresponding to kernel line and image point.
Along S , the kernel is free but the image is constrained to be a
point of C .

First: Understand the situation at smooth points of C .
In fact, assume C is smooth.
Ssupp = P2 × C : smooth support. Is S smooth?
No! Interesting nilpotent structure.
That’s what makes this problem so challenging.
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The Optimist’s Strategy

THE OPTIMIST’S STRATEGY:

W : nonsingular variety; S ⊆W : subscheme;
assume B := Ssupp is nonsingular.
Want: Proper birational W̃ →W dominating B`SW .

S = ∩iXi ;
W 1 := blow-up of W along B = Ssupp;
X 1

i :=proper transform of Xi ;
S1 := ∩iX 1

i . If S
1 = ∅, done!

If not, hope that S1
supp is nonsingular; (we are optimists!)

Repeat.
W̃ = W r for r � 0. (Again, we are optimists.)
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Theorem
For smooth C, the optimist’s strategy works, with i = maximum
order of contact of C with a line.

Begin with S ⊆ V 0 := P8; S = ∩q∈P2Xq;
B := Ssupp = P2 × C is nonsingular, dim = 3;
V 1 := B`BV 0; X 1

q := proper transform of Xq; S1 := ∩qX 1
q ;

B1 := S1
supp is nonsingular! In fact, a P1-bundle over B ;

V 2 := B`B1V 1; X 2
q := proper transform of X 1

q ; S
2 := ∩qX 2

q ;
B2 := S2

supp is nonsingular! In fact, S2
supp = a union of smooth

3-folds, one for each flex of C ;
V 3 := B`B2V 2; X 3

q := proper transform of X 2
q ; S

3 := ∩qX 3
q ;

B3 := S3
supp is nonsingular! In fact, B3 = a union of smooth

4-folds, one for each hyperflex of C .

Note B3 = ∅ if C only has ordinary flexes. Thus, 3 blow-ups suffice
in this case.
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Past this stage, the blow-ups admit a uniform description: for i ≥ 4,

V i := B`B i−1V i−1; X i
q := proper transf. of X i−1

q ; S i := ∩qX i
q;

B i := S i
supp is nonsingular! In fact, B i = a union of smooth

4-folds, one for each point of C at which the tangent line
meets C with intersection multiplicity > i at that point.

So if the max order of contact of a line with C is r , then S r = ∅,
construction stops at that stage.

I.e., V r dominates the closure of the graph of α,

i.e., V = V r resolves the indeterminacies of α.
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Basic diagram

V r = V

π

��

4��

α̃

��

r = max order of contact with a line

V r−1

4��

!!

...

3
��

V 2

4
��

((

V 1

3
�� ,,

V 0 = P8 α // Pd(d+3)/2
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Further details? (Nice geometry!)

What is B1?
E 1 := exceptional divisor in V 1. Then E 1 ∼= P(NP2×CP8).
By construction, ∩q∈P2X 1

q ⊆ E 1.
Therefore, analyze situation over ϕ ∈ P2 × C .
rkϕ = 1: ϕ is determined by kernel line k and image point p ∈ C .
C is smooth at p by assumption: ` = tangent line to C at p.

p
ϕk

C

Lemma

The tangent space to P2 × C at ϕ consists of all ψ ∈ P8 such that
imψ ⊆ ` and ψ(k) ⊆ p.

(E.g., imϕ = p ∈ `, ϕ(k) = ∅ ⊆ p.)
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p
ϕk

C

Lemma

The tangent space to P2 × C at ϕ consists of all ψ ∈ P8 such that
imψ ⊆ ` and ψ(k) ⊆ p.

Proof:
Both spaces are linear subspaces of P8 of dimension 3 and contain
spanning subspaces P2 = {(∗, p)} and P1 = {(k , q) | q ∈ `}.

What about Xq?

Lemma

For all q ∈ P2, Xq is nonsingular at ϕ. The tangent space to Xq at
ϕ consists of all ψ ∈ P8 such that ψ(q) ⊆ `.
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Lemma

For all q ∈ P2, Xq is nonsingular at ϕ. The tangent space to Xq at
ϕ consists of all ψ ∈ P8 such that ψ(q) ⊆ `.

Proof:
Equation for Xq: F (ψ(q)) = 0. Restrict to line ϕ+ tψ, expand:

F (ϕ(q)) +
∑

i

(
∂F
∂xi

)
ϕ(p)

ψi (q) t + · · · = 0

(where ψi (q) denotes the i-th coordinate of ψ(q)).

F (ϕ(q)) = 0 since imϕ = q ∈ C .
ψ in tangent space ⇐⇒ linear term vanishes ⇐⇒ ψ(q) ⊆ `.

If ψ(q) 6∈ `, get int. mult. = 1, =⇒ Xq nonsingular at ϕ.
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Lemma

The tangent space to P2 × C at ϕ consists of all ψ ∈ P8 such that
imψ ⊆ ` and ψ(k) ⊆ p.

Lemma

For all q ∈ P2, Xq is nonsingular at ϕ. The tangent space to Xq at
ϕ consists of all ψ ∈ P8 such that ψ(q) ⊆ `.

Therefore:

TϕB = {ψ ∈ P8 | imψ ⊆ `, ψ(k) ⊆ p} ∼= P3 ,

∩qTϕXq = {ψ ∈ P8 | imψ ⊆ `} ∼= P5 .

This shows that dim(∩qTϕXq)/(TϕB) = 2, hence (set-th.):

∩qX 1
q = ∩q(X 1

q ∩ E 1) = P(∩q(TXq/TB))

is a P1 bundle over B = P2 × C . This is B1.
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Contribution of inflection points

Where do inflection points come in?

S1 := ∩qX 1
q ; B

1 := S1
supp = ∩q(X 1

q ∩ E 1)

Note: B1 = S1 ∩ E 1 (scheme-theoretically).

Consequence: In V 2 = B`B1V 1, (∩qX 2
q ) ∩ Ẽ 1 = ∅.

Consequence: In V 2 = B`B1V 1, S2 := (∩qX 2
q )

consists of ≤ 1 point over every point of B1.

Proof: Fibers of E 2 are projective spaces. Fibers of S2 are linear
subspaces, and they miss the hyperplane Ẽ 1 ∩ E 2.

This shows that B2 := S2
supp consists of a section of E 2 over a

subset of B1. Which subset?

Claim

The inverse image of P2 × {p} with p an inflection point of C .
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Lemma

B2 is the union of the sections of B1 over P2 × {p}, p an inflection
point of C .

Proof? Key tool here: In V 2. . .

2

E

tϕ (  )
2

2

1
E

pt of B

Consider a small arc ϕ2(t) centered at a point of B2, and
transversal to E 2. The order of vanishing of S2 along ϕ2(t) is ≥ 1.
Note that we know ϕ2(t) may be chosen to be disjoint from Ẽ 1.
Push ϕ2(t) down to ϕ1(t) in V 1.
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In V 1. . .

E

ϕ (  )
1

B
1

1

t

The push-forward ϕ1(t) is a a germ centered at a point of B1.
Important: ϕ1(t) is nonsingular and transversal to E 1

(because ϕ2(t) missed Ẽ 1).

The order of vanishing of S1 along ϕ1(t) is ≥ 2
(because it is ≥ 1+ order of vanishing of E 2 along ϕ2(t)).

Push ϕ1(t) down to ϕ(t) in V 0 = P8.
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In P8. . .

B

ϕ(  )t

The push-forward ϕ(t) is a a germ centered at a point of B .
ϕ(t) is nonsingular and normal to B
(because ϕ1(t) was transversal to E1).

The order of vanishing of S along ϕ(t) is ≥ 3
(because it is ≥ 1+ order of vanishing of E 1 along ϕ1(t)).

Conclusion

Points of B2 correspond to nonsingular germs of curve ϕ(t)

centered at points of B and normal to it, and
such that S vanishes to order ≥ 3 along ϕ(t).
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Definition
S : subscheme of a nonsingular variety; B : support of S .
The thickness of S at p ∈ B is the maximum order of vanishing of
S along a nonsingular germ of curve centered at p and normal to B .

Recall that the aim was to show:

Lemma

B2 is the union of the sections of B1 over P2 × {p}, p an inflection
point of C .

We have verified that B2 dominates the locus in B = P2 × C where
the thickness of S is ≥ 3, and B2 has no components over points
where the thickness of S is ≤ 2.

So we are reduced to a thickness computation.
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Lemma
Let ϕ ∈ B, with imϕ = p ∈ C. Then

thϕ(S) = order of contact of C with its tangent line at p.

Proof:
By definition, thϕ(S) is the maximum order of contact of a
nonsingular germ ϕ(t) normal to B and s.t. ϕ(0) = ϕ with a
point-condition Xq.
Let m be the order of contact of C with its tang. line at p = imϕ.
To show thϕ(S) ≥ m, enough to produce ϕ(t) s.t. order of contact
with Xq is ≥ m.
ϕ(t) := ϕ+ ψt such that

imψ = TpC
ψ(kerϕ) 6= p.

Then ϕ(t) is normal to B (second condition),
and ϕ(t)(q) parametrizes Tp(C ).
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ϕ(t)(q) parametrizes Tp(C )

Then Xq · ϕ(t) = order of vanishing of F (ϕ(t)(q))
= order of vanishing of F along TpC
= order of contact of C with TpC at p = m.

So thϕ(C ) ≥ m.

thϕ(C ) ≤ m: analogous computation.

This concludes the sketch of the proof of our description of B2:

Lemma

B2 consists of a union of P1-bundles over P2 × {p}, p an inflection
point of C .

The same technique is used to study further blow-ups.
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Summary

The base locus of the lift Vi 99K Pd(d+3)/2 lives over P2 × {p},
where p ∈ C are points such that (C · TpC )p > i .

V r = V

π

��

4��

α̃

��

r = max order of contact with a line

V r−1

4��

##

...
3��

V 2

4��

))

V 1

3�� ,,
V 0 = P8 α // Pd(d+3)/2
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What was this all about?

Here is the basic diagram again:

V
π

��

α̃

  
PGL(3) �

� // P8 α // Pd(d+3)/2 ϕ ∈ P8 7→ α(ϕ) := C ◦ ϕ

OC = imα.
At this point, we have explicitly constructed a V filling this
diagram, with a proper birational map to P8, provided C is smooth.
We have discovered that the construction only depends on the
number and type of inflection points of C .
For example: If C only has ordinary flexes, then V may be realized
by a 3-stage blow-up at smooth centers over P8.
The construction is now ready to be used to study OC .
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The Segre class

Reminder: The enumerative information is captured by the
predegree polynomial of C , and that information is encoded in the
Segre class of the base scheme S of α:

Theorem

Let ι : S ↪→ P8 be the base scheme of the rational map α
associated with a curve C. Then the predegree polynomial of C
equals

([P8]− ι∗s(S ,P8))⊗ O(−dH)

1− dH

(See the d -tuple story.)

s(S ,P8) can be extracted from π : V → P8 in essentially the same
way used in the (much simpler) case of d -tuples.
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The Segre class

The end-result is

Theorem
Let C be a smooth curve of degree d, and let S be the base
scheme of the action map P8 99K Pd(d+3)/2. Then s(S ,P8) equals

12dH5 + d(25d − 162)H6 − 48d(9d − 31)H7 + 3d(1325d − 3546)H8

+
∑
p∈C

(ν − 2)(ν − 3)·

·
(
(ν + 5)H6 − 3(ν2 + 6ν + 24)H7 + 3(2ν3 + 13ν2 + 55ν + 197)H8)

where ν = order of contact of C and TpC.

Note ν = 2 for all but fin. many points of C , so the
∑

p∈C is finite.

(This can be carried out in positive characteristic, but the blow-ups
must be modified if e.g., every point of C is an inflection point.)
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General C

In fact, the
∑

p∈C = 0 if all inflection points of C are ordinary.

Example

Assume C only has ordinary flexes. Then s(S ,P8) equals

12dH5 + d(25d − 162)H6 − 48d(9d − 31)H7 + 3d(1325d − 3546)H8

For d ≥ 3 (dimOC = 8) this corresponds to a predegree of

d8 − 1372d4 + 7992d3 − 15879d2 + 10638d

= d(d − 2)(d6 + 2d5 + 4d4 + 8d3 − 1356d2 + 5280d − 5319)

The fact that this vanishes for d = 2 signals that the orbit closure
of a smooth conic has dimension < 8. For d = 2,

s(S ,P8) = 24H5 − 224H6 + 1248H7 − 5376H8
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s(S ,P8) = 24H5 − 224H6 + 1248H7 − 5376H8

Predegree polynomial:

(1− 24H5 + 224H6 − 1248H7 + 5376H8)⊗ O(−2H)

1− 2H
=

1
1− 2H

− 24
H5

(1− 2H)6 + 224
H6

(1− 2H)7 − 1248
H7

(1− 2H)8 + 5376
H8

(1− 2H)9

= 1 + 2H + 4H2 + 8H3 + 16H4 + 8 H5 .

Of course OC = P5 for a smooth conic!
This is a complicated way to compute the degree (= 8) of the
PGL(3) stabilizer of a smooth conic.
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Remarks
The Segre class (hence the predegree polynomial) for a
smooth curve depends only on the degree of C and the
number and order of flexes, not on their position or on other
features of the curve.
In fact, the predegree is determined by d and f `2, . . . , f `5,
where f `i :=

∑
p∈C (ν − 2)i .

The contribution of a special point to the Segre class is
independent of d . For example, the contribution of a
‘hyperflex’ (ν = 4) is 6H6(3− 64H + 753H2).
The contribution to the predegree depends on d . For example,
a hyperflex contributes (−504d2 + 3072d − 4518).
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Example

Degree of trisecant variety to d -th Veronese of P2?
This is the orbit closure of the Fermat curve xd + yd + zd , a curve
of degree d with 3d flexes with ν = d .
Segre class = 12dH5 + d(3d3 − 32d − 72)H6 − 3d(3d4 + 3d3 −
108d − 64)H7 + 3d2(6d4 + 9d3 + 6d2 − 640)H8

 predegree d2(d − 2)(d5 + 2d4 − 26d3 − 7d2 + 192d − 192).

Order of stabilizer: 6d2. Therefore, the degree of the trisecant
variety to the d -th Veronese (d ≥ 3) is

(d − 2)(d5 + 2d4 − 26d3 − 7d2 + 192d − 192)

6
.
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SMALL
ORBITS
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C ⊆ P2: curve, degree d :
C = V (F ), F (x0, x1, x2) homogeneous, degree d .

PGL(3) acts on C :
ϕ ∈ PGL(3) C ◦ ϕ := F (ϕ(x0, x1, x2)) ∈ Pd(d+3)/2.
OC := orbit, OC := orbit closure. Main focus: degOC .

Basic diagram: OC = imα,

V
π

��

α̃

  
PGL(3) �

� // P8 α // Pd(d+3)/2 ϕ ∈ P8 7→ α(ϕ) := C ◦ ϕ

Recall: For smooth curves C , we were able to construct a suitable
V explicitly by a sequence of blow-ups at smooth centers.
The “Optimist’s Strategy” works in this case.
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Curves with small orbits

Next stop: Curves with small orbit, i.e., C s.t. dimOC < 8.

How special is for a curve to have small orbit? Very.
In fact, the classification of such curves is rather compact:

Theorem
Let C be a curve such that dimOC < 8. Then, up to
PGL(3)-translations

Csupp is a union of components from the collection of lines
x = 0, y = 0, z = 0 and irreducible curves yb + λzaxb−a

(for fixed 0 ≤ 2a ≤ b); or
Csupp is a union of components from the collection of curves
λx2 + αxy + βxz + γy2 (for fixed α, β, γ) and the line x = 0.

A picture is worth a thousand words. . .
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Curves with small orbits

Representative pictures of curves with small orbit, including
dimension of stabilizer:

26 4 3

1 1 1 1

23

1 1

All but the last one correspond to curves from the first item in the
theorem; the last picture correspond to the second item.
In the last picture, the conics are quadritangent: they meet exactly
at one point.
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Who is in the orbit closure of whom? Partial picture:

Multiplicities are allowed (and not represented here).
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Proof of the theorem?

If the stabilizer has positive dimension, then it must contain a
1-dimensional subgroup.
Only two possibilities: Gm or Ga.

Gm: May be diagonalized,

1 0 0
0 ta 0
0 0 tb

, 0 ≤ 2a ≤ b.

Irreducible fixed curves: x = 0, y = 0, z = 0, yb + λzaxb−a.

Ga: May be put in standard form

 1 0 0
at 1 0

bt + 1
2act

2 ct 1

.

Again, can list fixed curves  last item in the
classification.
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Task: To construct a variety V resolving the rational map
extending the action.
Basic diagram: OC = imα,

V
π

��

α̃

  
PGL(3) �

� // P8 α // Pd(d+3)/2 ϕ ∈ P8 7→ α(ϕ) := C ◦ ϕ

Recall: The base locus of α is supported on {ϕ ∈ P8 | imϕ ⊆ C}.
For example, if C has no linear components, then the base locus is
P2×C (and expect the base scheme to have interesting nilpotents).

Can we apply the “Optimist’s Strategy” here?
No: The base locus is singular in most cases.
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OPTIMIST’S STRATEGY, take 2

In the smooth case, V is obtained by 2 ‘global’ blow-ups and
several ‘local’ ones:

Blow up along B = P2 × C ;
Blow up along a P1-bundle B1 over B ;
Blow up many loci lying over P2 × {p}, p flexes on C .

Moral: There are special points (inflection points on a smooth C ),
and the base scheme is extra thick on corresponding loci.

Alternative: Blow-up along these special loci first, then deal with
the global centers.

Claim
For C smooth, this works!

Does it work for singular curves?
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Revised Optimist’s Strategy

Identify special points of C , e.g., inflection points, singularities;
Blow-up along corresponding loci in the base locus B , possibly
several times;
Hope that after suitable blow-ups, special points no longer
look special (we are still fairly optimistic!);
Complete the process by blowing up twice.

The case of C smooth can be dealt with along these lines,
producing a different V (but computing the same Segre class).

For singular curves, e.g., most curves with small orbits, we have no
choice: we have to adopt this Revised Optimist’s Strategy.

Idea: Since we have to ‘fix’ the special points of the curve, try to
mirror an embedded resolution of C (as well as taking care of
flexes).
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Example
If C is a union of lines, this is particularly straightforward.

To obtain an embedded resolution, simply blow-up the vertices
of the configuration.

p

Correspondingly, blow-up P8 along ∪p vertexP2 × {p};
Then blow-up along proper transform of ∪` lineP5

` , where
P5
` := {ϕ | imϕ ⊆ `}.

This resolves α  computation of the Segre class.

So the ‘revised Optimist’s Strategy’ takes care of 5 of the 12
different types of curves with small orbit.
(In fact, it works for all line configurations, small or large.)

107 / 170 Paolo Aluffi Linear orbits of plane curves



Theorem
The revised Optimist’s Strategy resolves the basic rational map for
all curves with small orbit.

Typical singular irreducible component of curve with small orbit
(‘type I’): xn = ymzn−m, 0 ≤ m ≤ n, m, n relatively prime.

C

Singularity at (0 : 0 : 1): xn = ym. Embedded resolution ↔
Euclidean algorithm for (m, n).
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Example (x8 = y3)

8 = 3 · 2 + 2
3 = 2 · 1 + 1
2 = 1 · 2

 need 2 + 1 + 2 = 5 blow-ups to resolve the singularity.

3

14

5

1 2

1

3

2

14

2

1

3

2
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It is useful to give a more compact description of this process.

B ⊆ P ⊆ V nonsingular varieties.
V (1) := B`BV ; E (1) = exceptional divisor.
For j > 1, let V (j) := B`P̃∩E (j−1)V (j−1).

Definition

V (`) is the `-th directed blow-up of V along B in the direction of P .

Each line of the Euclidean algorithm,

mi−2 = mi−1 · `i + mi

corresponds to an `i -directed blow-up.

For example, x8 = y3 is resolved by 3 directed blow-ups (2-, 1-, 2-).
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B

2

1

3

2

14

5

3

P

1 2

1

3

2

14
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Recipe to resolve α : P8 99K Pd(d+3)/2 for C : xn = ym, near
P2 × {p} (p = singular point). Euclidean algorithm:

n = m · `1 + m1

m = m1 · `2 + m2

m1 = m2 · `3 + m3

· · ·
`1-directed blow-up of P8 along B = P2 × {p} [dim = 2] in
the direction of P = P5 = {ϕ | imϕ ⊆ TpC}.
E1 := last exceptional divisor, P̃ := last proper transform of P .
`2-directed blow-up along P̃ ∩ E1 [dim = 4] in the dir. of E1.
`3-directed blow-up along Ẽ1 ∩ E2 [dim = 6] in the dir. of E2.
etc.
At the end of this process, two ‘global’ blow-ups suffice to
resolve α (near P2 × {p}).

So this procedure equates p to ordinary nonsingular points of C in
terms of their contribution to the base scheme of α.
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Further needed work:
Must allow for several components, with multiplicities si .
Take care of possible linear components (on the triangle).
Treat ‘quadritangent conics’. (‘Here a miracle happens. . . ’)
Do the intersection theory!

Very messy induction.
Good news: Massive simplifications, the Segre class depends
directly on the exponents, not on individual steps of the Euclidean
algorithm. So, the following should be seen as ‘simple’:

Expand the expression

n2m2m2
((

S +
r

n
+

q

m
+

q

m

)7
+ 2

(
S +

r

n
+

q

m

)7
+ 2

(
S +

r

n
+

q

m

)7

+

(
S +

r

n

)7
− 42

(
S +

r

n

)5
(

q2

m2
−

q

m

q

m
+

q2

m2

))

and set r i = qi = qi = 0 for i ≥ 3. Get a polynomial.
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Subtract
(
84 (Sn + r + q + q)2

∑
s5i − 252 (Sn + r + q + q)

∑
s6i + 192

∑
s7i
)

and set S =
∑

si .
Get a polynomial expression Q(n,m, si , r , q, q).

Theorem
If 7-dimensional, the orbit closure of a curve consisting of curves of
type xn = ymzm (m + m = n), appearing with multiplicity si , and
lines from the frame triangle, with multiplicities r , q, q, has degree

degOC =
1
A
· Q(n,m, si , r , q, q)

where A is the number of components of Stab(C ).

This comes from the coefficient of H7 in the a.p.p.
If dimOC < 7, then the expression equals 0.
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Example

The orbit closure of xn = ymzn−m has a.p.p.

1 + nH +
n2H2

2!
+

n3H3

3!
+

n4H4

4!
+

n(n4 − 12)H5

5!

+
3n(n3m(n −m)− 16n + 24)H6

6!

+
6n(n2m2(n −m)2 − 14n2 + 42n − 32)H7

7!

E.g., x2 = yz : 1 + 2H +
4H2

2!
+

8H3

3!
+

16H4

4!
+

8H5

5!
, agreeing with

previous computation for smooth conic.

x3 = y2z (i.e., cuspidal cubic):

1 + 3H +
9H2

2!
+

27H3

3!
+

81H4

4!
+

207H5

5!
+

270H6

6!
+

72H7

7!

(so deg = 72/3 = 24, as it should).
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Remark: Standard enumerative information can be extracted from
the a.p.p. E.g., get number of curves with constraints on the lines
of the frame triangle. For cuspidal cubics, these numbers were
known to Schubert. (Modern work of Miret-Xambo, D. Nguyen.)

j
i

k

C
4 2 1

12 4 1
20 6 1

12 6 3
32 12 3

36 14 3
32 18 9

72 32 9
24 18 5

E.g.: (i , j , k) = (0, 0, 0) 24, (i , j , k) = (0, 1, 2) 12.
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ARBITRARY
CURVES
LIMITS
OF PGL
TRANS
LATES
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C ⊆ P2: curve, degree d :
C = V (F ), F (x0, x1, x2) homogeneous, degree d .

PGL(3) acts on C :
ϕ ∈ PGL(3) C ◦ ϕ := F (ϕ(x0, x1, x2)) ∈ Pd(d+3)/2.
OC := orbit, OC := orbit closure. Main focus: degOC .

Basic diagram: OC = imα,

V
π

��

α̃

  
PGL(3) �

� // P8 α // Pd(d+3)/2 ϕ ∈ P8 7→ α(ϕ) := C ◦ ϕ

Recall: For smooth curves C , and for curves with small orbit, we
were able to construct a suitable V explicitly by a sequence of
blow-ups at smooth centers.
Various “Optimist’s Strategies” work in these cases.
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Arbitrary curves

Problem: These strategies are too messy for an arbitrary curve.
(They may work for what I know, but we have not been able to
carry them out in complete generality.)
Alternative?

Idea: Work directly with Γ := the closure of the graph of the
rational map α.

Γ

π

��

α̃

��

Γ ⊆ P8 × Pd(d+3)/2

P8 α // Pd(d+3)/2

Clear: The (adjusted) predegree polynomial may be recovered from
the class of Γ in P8 × Pd(d+3)/2.
Clear modulo intersection theory: It may also be recovered from
π−1(S), where S is the base scheme of α.
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Clear modulo intersection theory: The predegree polynomial may
be recovered from π−1(S), where S is the base scheme of α.
Indeed, recall:

Theorem

Let ι : S ↪→ P8 be the base scheme of the rational map α
associated with a curve C. Then the predegree polynomial of C
equals

([P8]− ι∗s(S ,P8))⊗ O(−dH)

1− dH

and

Lemma (Birational invariance of Segre classes)

s(S ,P8) = π∗s(π−1(S), Γ)

So it is clear the information is captured by π−1(S).

120 / 170 Paolo Aluffi Linear orbits of plane curves



In fact, it is captured by the class [π−1(S)] in P8 × PN . Why?
(N = d(d + 3)/2)

Notation:
h: hyperplane class in PN

H: hyperplane class in W = P8.
L := O(dH); PN = P(E∨), E ⊆ H0(P8,L ). ` := c1(O(L )).

L̃ := α̃∗O(h); (shorthand: h = c1(L̃ ) on Γ)

a.p.p. : π∗(ch(L̃ ) ∩ [Γ]) = 1 + a1H + a2
H2

2! + a3
H3

3! + . . . .

S := base scheme of α = scheme defined by all sections in E .

Γ

π

��
α̃

��
W α // PN

S = ∅ ⇐⇒ α regular.
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Γ

π

��
α̃

��
W α // PN

L : line bundle on W ; PN = P(E∨), E ⊆ H0(W ,L )

L̃ = α̃∗O(1).

` := c1(O(L )) (shorthand: ` = c1(π∗L )); h := c1(O(L̃ )).

a.p.p. : π∗(ch(L̃ ) ∩ [Γ]).
S := base scheme of α.

S = ∅ ⇐⇒ α regular, L = α∗O(1), L̃ = π∗L ,
a.p.p. = π∗(ch(π∗L ) ∩ [Γ]) = ch(L ) ∩ [W ] = exp(`) ∩ [W ].

Plan: If S 6= ∅, ‘correct’ fundamental class [W ] in this formula:

a.p.p. = exp(`) ∩ ([W ]− ? ).
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Γ

π

��
α̃

��
W α // PN

Important remark: Γ ∼= blow-up of W along S .

E := π−1(S) = exceptional divisor.
E ∼= P(CSW ), the Projective Normal Cone of S in W .

Definition (PNC)

The PNC for a curve C is the projective normal cone of S in
W = P8, i.e., E .

[π−1(S)] = class of PNC, in A∗(P8 × Pd(d+3)/2).
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Γ

π

��
α̃

��
W α // PN

L : line bundle on W , giving α; L̃ = α̃∗O(1).

a.p.p. : π∗(ch(L̃ ) ∩ [Γ]).

` := c1(O(L )), h := c1(O(L̃ )).
S := base scheme of α; Γ = B`SW .
E = π−1(S) = exceptional divisor=‘PNC’. e := c1(O(E )).
Remark: h = `− e.
[E ] = m1[E1] + · · ·+ mr [Er ], Ei irr. components, mi ∈ Z≥0.
Do I have all the notation I need? Not quite.
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Γ

π

��
α̃

��
W α // PN

Γ = B`SW ; E = exceptional divisor = PNC.
` := c1(O(L )), h := c1(O(L̃ )), e := c1(O(E )). h = `− e.
[E ] = m1[E1] + · · ·+ mr [Er ], Ei irr. components, mi ∈ Z≥0.

Let

Li :=
∑
k≥0

1
k + 1

k∑
j=0

(−`)k−j

j!(k − j)!
π∗(hj ∩ [Ei ])

Claim: These are the correction terms we were looking for.

Theorem

a.p.p. := π∗(ch(L̃ ) ∩ [Γ])

= exp(`) ∩
(
[W ]− (m1L1 + · · ·+ mrLr )

)
in (A∗W )Q.
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Adjusted predegree polynomial from PNC

[E ] = m1[E1] + · · ·+ mr [Er ], Ei irr. components, mi ∈ Z≥0

Li :=
∑
k≥0

1
k + 1

k∑
j=0

(−`)k−j

j!(k − j)!
π∗(hj ∩ [Ei ])

Theorem

a.p.p. := π∗(ch(L̃ ) ∩ [Γ])

= exp(`) ∩
(
[W ]− (m1L1 + · · ·+ mrLr )

)
in (A∗W )Q.

This is the precise version of the claim that ‘the class of the PNC
determines the a.p.p.’.
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Proof: h = `− e.

π∗(ch(L̃ ) ∩ [Γ]) = π∗(exp(`− e) ∩ [Γ])

= exp(`) ∩ π∗(exp(−e) ∩ [Γ])

= exp(`) ∩ ([W ]− π∗(1− exp(−e)) ∩ [Γ])

giving the correction term to the fundamental class as

π∗(1− exp(−e)) ∩ [Γ] = π∗
∑
i≥0

(−e)i

(i + 1)!
∩ [E ]

= π∗
∑
i≥0

(h − `)i

(i + 1)!
∩ (m1[E1] + · · ·+ mr [Er ]) .

Expand this expression to get the statement.
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Summary: a.p.p. from PNC

Bottom line:

The a.p.p. may be computed by determining the irreducible
components Ei of the PNC (i.e., the scheme π−1(S)), and
their multiplicities mi .
For each component Ei , get a contribution Li in A∗P8, as a
particular combination of push-forwards π∗(hj ∩ [Ei ]).
Then a.p.p. = exp(dH) ∩

(
[P8]−

∑
miLi

)
.

Why this is promising:
The action of PGL(3) on P8 lifts to an action on Γ, and each
Ei is a dim. 7 union of orbits.
Each Ei dominates a union of small orbits.
The class of Ei may therefore be determined from a.p.p.s of
curves with small orbits.

Need tools to determine the Ei ’s and the mi ’s explicitly.
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(Naive) idea:

Have to catch all ϕ̃ ∈ Ei , all i .
Such a ϕ̃ projects down to a ϕ ∈ B = base locus = Ssupp.

B

i
ϕ

E
j

Γ

IP
8

ϕ

E
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(Naive) idea:

Intersect Γ with a 7-dim nonsingular variety transversal to Ei in
P8 × PN .

B

i

ϕ(t)

ϕ

E
j

Γ

IP
8

ϕ

E
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(Naive) idea:

This determines an arc ϕ̃(t) through ϕ̃ in Γ, projecting down to an
arc ϕ(t) in P8 through a point of B .

B

i

ϕ(t)

ϕ(t)

ϕ

E
j

Γ

IP
8

ϕ

E
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(Naive) idea:

Conversely, every ϕ̃ may be realized as ϕ̃(0), where ϕ̃(t) is the lift
of a curve germ ϕ(t) in P8, with ϕ(0) ∈ B.

B

i

ϕ(t)

ϕ(t)

ϕ

E
j

Γ

IP
8

ϕ

E
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(Naive) idea:

Conversely, every ϕ̃ may be realized as ϕ̃(0), where ϕ̃(t) is the lift
of a curve germ ϕ(t) in P8, with ϕ(0) ∈ B.

Set-theoretic description of components Ei  classification of
possible curve germs ϕ(t) centered at points of B , in terms of their
lifts to P8 × Pd(d+3)/2.
I.e., in terms of the corresponding limits:

t 6= 0 : ϕ̃(t) = (ϕ(t),C ◦ ϕ(t)) ∈ P8 × Pd(d+3)/2

ϕ̃ = lim
t→0

C ◦ ϕ(t)

(‘Isotrivial flat completion problem’)
Remarks:

The lim is only interesting if ϕ = ϕ(0) ∈ B , i.e., imϕ ⊆ C .
What about rk 2 matrices? If imϕ = line * C , C ◦ ϕ = ‘star’,
α is defined at ϕ.
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Example

C : 4x4
0 − x3

0 x2 − 5x2
0 x

2
1 + x4

1 = 0

ϕ(t) =

1 0 0
0 1 0
0 0 t

 : C ◦ ϕ(t) : 4x4
0 − x3

0 x2t − 5x2
0 x

2
1 + x4

1 = 0

t → 0 : 4x4
0 −5x2

0 x
2
1 +x4

1 = (x0−x1)(x0 +x1)(2x0−x1)(2x0 +x1)

ϕ

ker ϕ

im

Limits?
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Example

C : 4x4
0 − x3

0 x2 − 5x2
0 x

2
1 + x4

1 = 0

ϕ(t) =

1 0 0
0 1 0
0 0 t

 : C ◦ ϕ(t) : 4x4
0 − x3

0 x2t − 5x2
0 x

2
1 + x4

1 = 0

t → 0 : 4x4
0 −5x2

0 x
2
1 +x4

1 = (x0−x1)(x0 +x1)(2x0−x1)(2x0 +x1)

imϕ

ker ϕ

imϕ

ker ϕ

 rank-2 limits. They do not yield a component of the PNC.
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More interesting: rkϕ = 2, and the line imϕ is a component of C .
In this case, C ◦ ϕ ≡ 0: α is not defined at ϕ.

Example

C : x2
2 (4x4

0 − x3
0 x2 − 5x2

0 x
2
1 + x4

1 ) = 0

ϕ(t) =

1 0 0
0 1 0
0 0 t

 ,C ◦ϕ(t) : x2
2 6 t2(4x4

0 − x3
0 x2t−5x2

0 x
2
1 + x4

1 ) = 0

limt→0 : x2
2 (x0 − x1)(x0 + x1)(2x0 − x1)(2x0 + x1)

imϕ

ker ϕ

imϕ

ker ϕ
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Type I components

Limits of this type (for rkϕ = 2):

imϕ

ker ϕ

(we call them fans) have 7-dimensional orbit.

 {(ϕ,X ) | rkϕ = 2, imϕ = a component of C , X a limit fan}

fills up a component of the PNC, of ‘type I’.

Type I components
There is a type I component of the PNC for every line ⊆ C .

Only contribution to the PNC from elements in B of rank 2.
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rkϕ = 1 : ϕ ∈ B ⇐⇒ imϕ = a point p of C .

Nothing new unless p is on a nonlinear component C ′ of C .
Else, p general: assume C ′ has equation y = x2 + . . . near p.

Example

C : (x2
0 x2 − x0x2

1 − x3
1 )(x0 + x1) = 0

ϕ(t) =

1 0 0
0 t 0
0 0 t2

 ,C ◦ϕ(t) : 6 t2(x2
0 x2−x0x2

1 −x3
1 t)(x0 +x1t) = 0

limt→0 : x2
0 (x0x2 − x2

1 ) = 0

ϕ

ker ϕ

im
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rkϕ = 1 : ϕ ∈ B ⇐⇒ imϕ = a point p of C .

Nothing new unless p is on a nonlinear component C ′ of C .
Else, p general: assume C ′ has equation y = x2 + . . . near p.

Example

C : (x2
0 x2 − x0x2

1 − x3
1 )(x0 + x1) = 0

ϕ(t) =

1 0 0
0 t 0
0 0 t2

 ,C ◦ϕ(t) : 6 t2(x2
0 x2−x0x2

1 −x3
1 t)(x0 +x1t) = 0

limt→0 : x2
0 (x0x2 − x2

1 ) = 0

ϕ

ker ϕ

imϕ

ker ϕ

im
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Type II components

Limit curves of this type:

ϕ

ϕ

im

ker

have 6-dimensional orbit; plus one degree of freedom for imϕ ∈ C ′

 dim{(ϕ,X ) | rkϕ = 1, imϕ ∈ C ′,X a conic+tangent line} = 7

fill up components of the PNC, of ‘type II’.

Type II components
There is a type II component of the PNC for every irreducible
component of C of degree > 1.

140 / 170 Paolo Aluffi Linear orbits of plane curves



Global vs. Local components: III, IV, V

The situation gets more complicated now. . .

Type I+II depend on global features of C , i.e., its irreducible
components.

Other types arise because of local features of C :
they correspond to limits along ϕ(t), for imϕ(0) = p ∈ C , p
singular or inflectional on C .

Type III: Tangent cone to C at p is supported on ≥ 3 lines;
Type IV: Determined by Newton polygon for C at p;
Type V: Det. by Puiseux pairs of formal branches of C at p.

Representative pictures for the limits:

V:

ϕ

ker ϕ

ker ϕ
III: IV:

ker
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III

IV

V
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Type III — example

Type III limits are straightforward.

Example

C : (x0x2
2 − x0x2

1 − x3
1 )(x0x2 − x2

1 ) = 0

ϕ(t) =

1 0 0
0 t 0
0 0 t

 : 6 t3(x0x2
2 − x0x12 − tx3

1 )(x0x2 − tx2
1 ) = 0

t → 0 : (x0x2
2 − x0x12)(x0x2) = x2

0 x2(x2 − x1)(x2 + x1)

ϕker ϕ

imϕ imϕ

ker
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Type IV — example

Type IV components arise already on nonsingular curves, due to
inflection points.

Example

C : x3
0 x2 − x0x3

1 − x4
1 = 0

ϕ(t) =

1 0 0
0 t 0
0 0 t3

 : C ◦ ϕ(t) : 6 t3(x3
0 x2 − x0x3

1 − tx4
1 ) = 0

t → 0 : x3
0 x2 − x0x3

1 = x0(x2
0 x2 − x3

1 )

imϕ

ker ϕker ϕ
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Type V — example

Type V components arise already on irreducible quartics.

Example

C : (x2
1 − x0x2)2 − x3

1 x2 = 0

ϕ(t) =

 1 0 0
t4 t5 0
t8 2t9 t10

 :

6 t20(x2
0 x

2
2 − 2x0x2

1 x2 + x4
1 − x4

0 − 5x3
0 x1t − (9x2

0 x
2
1 + x3

0 x2)t2 + · · · )

t → 0 : x2
0 x

2
2−2x0x2

1 x2+x4
1−x4

0 = (x0x2−x2
1 +x2

0 )(x0x2−x2
1−x2

0 )

ϕ

ker ϕker ϕ

imϕim
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Basic reduction

How to prove this is all?

Definition
Two germs ϕ(t), ψ(t) are equivalent if ψ(tν(t)) ≡ ϕ(t) ◦m(t),
with ν(t) a unit in C[[t]], and m(t) a germ such that m(0) = Id .

Lemma

C: plane curve. If ϕ(t), ψ(t) are equivalent germs, then
limt→0 C ◦ ϕ(t) = limt→0 C ◦ ψ(t).
It follows the lifts have the same center: ϕ̃(0) = ψ̃(0).

Proof: Let F = 0 be the equation of C .
Straightforward: If ϕ(t), ψ(t) are equivalent germs, then the initial
terms in F ◦ ϕ(t), F ◦ ψ(t) coincide up to a nonzero multiplicative
constant.
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Basic reduction

Therefore, in probing E we may deal with germs up to equivalence.

The basic reduction is the following elementary observation:

Theorem
Every germ centered at ϕ, imϕ = p ∈ C, is equivalent to 1 0 0

q(t) tb 0
r(t) s(t)tb tc


up to a parameter and coordinate change.
Here 1 ≤ b ≤ c and q, r , s polynomials such that deg(q) < b,
deg(r) < c, deg(s) < c − b, and q(0) = r(0) = s(0) = 0.

Proof: Linear algebra over C[[t]].
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Strategy

Strategy:

Write equation for C at p = (0, 0) as

F (1, x1, x2) = Fm(x1, x2) + Fm+1(x1, x2) + · · ·+ Fd (x1, x2) = 0

with deg Fi = i , Fm 6= 0, d = degC .
Fm defines the tangent cone to C at p.
Examine limt→0 F ◦ ϕ(t) with 1 0 0

q(t) tb 0
r(t) s(t)tb tc


Eliminate all cases leading to ‘rank-2 limits’ (stars).
See what’s left!
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q = r = s = 0

If q(t) = r(t) = s(t) = 0, the germ is a 1-PS:

ϕ(t) =

1 0 0
0 tb 0
0 0 tc

. May assume b, c are relatively prime.

b = c = 1  Type III.
Else. . .

Lemma
If b < c and x2 6 |Fm, then limt→0 C ◦ ϕ(t) is a rank-2 limit.

Lemma
If b < c and x2|Fm, and −b/c is not a slope of the Newton
polygon for C at p, then limt→0 C ◦ϕ(t) is supported on a triangle.

Neither case contributes components to PNC.
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b < c , x2|Fm, −b/c = slope of the Newton polygon strictly
between −1 and 0.

Claim
These germs lead to components of type IV.

Slopes between −1 and 0: −1/2, −1/3
Slope = −1/2  ϕ(t) with b = 1, c = 2
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1 2

5
x x
1 2

3

23
x x
1

x

2

x

limt→0 C ◦

1 0 0
0 t 0
0 0 t2

 : ax1x3
2 + bx3

1 x
2
2 + cx5

1 x
2
2

I.e.: xd−6
0 x1x2(x2

1 + λx0x2)(x2
1 + µx0x2), Type IV
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q, r , s not all 0

ϕ(t) =

 1 0 0
q(t) tb 0
r(t) s(t)tb tc

, with q, r , s not identically 0.

This is much, much subtler! Key reduction:

Lemma
q, r , s not identically 0. If limt→0 C ◦ ϕ(t) is not a rank-2 limit,
then C has a formal branch x2 = f (x1), tangent to x2 = 0, such
that ϕ is equivalent to a germ 1 0 0

ta tb 0
f (ta) f ′(ta)tb tc

 ,

with a < b < c positive integers.

Underlining means: truncation modulo tc .
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Formal branches

Formal branch?

Local equation for C at p = (1 : 0 : 0): Φ(x , y) = F (1 : x : y) = 0.
Decompose Φ(x , y) in C[[x , y ]]: Φ =

∏
i Φi , Φi irreducible.

Weierstrass preparation: Φi ∈ C[[x ]][y ] (up to a unit).
Then Φi splits as a product of linear factors over C[[x∗]]:

Φi (x , y) =

mi∏
j=1

(y − fij(x))

fij(x) a power series with rational nonnegative exponents:
Puiseux series, exponents.
This gives the ‘formal branches’ y = f (x) for C at p.
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Type V components are detected by germs 1 0 0
ta tb 0

f (ta) f ′(ta)tb tc

, where f is a formal branch for C at p.

Further subtlety: Type V limits (‘quadritangent’ conics) only arise
when there exist two branches that agree modulo xγ , differ at xγ ,
for some γ larger than the order of the branches.

Example

C : x0(x0x2 − x2
1 )2 = x5

1

(x0 : x1 : x2) = (1 : x : y) : (y − x2)2 = x5 I.e.: y − x2 = ±x5/2.

Two formal branches: y = x2 − x5/2, y = x2 + x5/2.

Situation as described above, with γ = 5
2 .

‘Reason’ for γ: need ≥ 2 branches to differ, to get ≥ 2
quadritangent conics, dim orbit = 7, contribution to PNC.
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Example

y = f (x) = x2 ± x5/2

ϕ(t) =

 1 0 0
ta tb 0

f (ta) f ′(ta)tb tc

, f ′(ta) = 2ta ± · · ·

Fine print: a = 4, b = 5, c = 10. (So c/a = 5/2 = γ)

 ϕ(t) =

 1 0 0
t4 t5 0
t2 2t9 t10


limt→0 C ◦ ϕ(t) = x0(x0x2 − x2

1 + x2
0 )(x0x2 − x2

1 − x2
0 )

ker ϕ
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Set-theoretic description—Summary

This concludes the set-theoretic description of the PNC. Summary:

Five ‘types’ of components, 2 global and 3 local:
Type I: From linear components of C .
Type II: From nonlinear components of C .
Type III: From points with ≥ 3 lines in the tangent cone.
Type IV: From sides of Newton polygon.
Type V: From formal branches.

We are not done!

We need the PNC as a cycle, i.e., we need the multiplicity of each
component.
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Multiplicities

The idea in a picture:

B

(t)

IP
8

E
i

ϕ(t)

ϕ

Γ

ϕ ϕ
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Multiplicities

The idea in a picture:

(t)

IP
8

E
i

ϕ(t)

ϕ

Γϕ(t)

E
ij

ϕ

B

ϕ
ν

ν

ϕ

Γ
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Consider the normalization ν : Γ̂→ Γ.

E =
∑

miEi pulls back to Ê =
∑

mij Êij .

Lemma

mi =
∑

j eijmij , where eij = degree of Êij → Ei .

eij : obtained by comparing stabilizer subgroups.
mij : minimum ‘weight’ of a germ ϕ(t).

eij : PGL(3) acts on both Γ and Γ̂.
For ϕ̂, ϕ̃ = ν(ϕ̂), Stab ϕ̂ is a subgroup of Stab ϕ̃.

Lemma

The degree of Êij over Ei is the index of Stab ϕ̂ in Stab ϕ̃.
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Lemma

The degree of Êij over Ei is the index of Stab ϕ̂ in Stab ϕ̃.

Reason (III, IV, V): Both Ei , Êij are closures of PGL(3)-orbits.

Stab ϕ̃: Known from classification of small orbits.
Stab ϕ̂: May be realized as the subgroup of Stab ϕ̃ consisting of
automorphisms induced on ϕ̃(0) by a reparametrization of ϕ̃(t).

Type IV: number of roots of 1 preserving the tuple in the limit.

Type V: more ‘interesting’. (Look at the paper for details!)
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mij :

Lemma
If F = 0 is the equation for C , mij = minimum order of vanishing
of F ◦ ϕ(t) for a germ ϕ(t) s.t. ϕ̃ is a general point of Ei .

Proof: mij = min order of vanishing of ν̂−1(S) · ϕ̂(t)
= min order of vanishing of restriction of equation for S to ϕ(t).

S : cut out by point-conditions F (p) = 0, p ∈ P2.

Restrict to ϕ(t):
F ◦ϕ(t) = tmG (x0 : x1 : x2) + tm+1H(x0 : x1 : x2) + · · · , G 6≡ 0

G (x0 : x1 : x2) = equation of X := limt→0 C ◦ ϕ(t)

p = (x0 : x1 : x2) 6∈ X  m = min order of vanishing.
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Example

C : (x2
0 x2 − x0x2

1 − x3
1 )(x0 + x1) = 0

ϕ(t) =

1 0 0
0 t 0
0 0 t2

 ,C◦ϕ(t) : t2 (x2
0 x2−x0x2

1−x3
1 t)(x0+x1t) = 0

limt→0 : x2
0 (x0x2 − x2

1 ) = 0

ϕ

ker ϕ

imϕ

ker ϕ

im

Order of vanishing=2  mult. of corr. type II component = 2.
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Example: Multiplicity for type IV components

Multiplicities for type IV
Type IV: from sides of Newton polygon.

N

N = one segment of the triangle determined by the side.

Multiplicities for type IV

Mult.= 2 · (area of N) ·#{roots of 1 preserving tuple in the limit}
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Example

C : x3
0 x2 − x0x3

1 − x4
1 = 0

ϕ(t) =

1 0 0
0 t 0
0 0 t3

 : C ◦ ϕ(t) : 6 t3(x3
0 x2 − x0x3

1 − tx4
1 ) = 0

t → 0 : x3
0 x2 − x0x3

1 = x0(x2
0 x2 − x3

1 )

imϕ

ker ϕker ϕ
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Example

C : x3
0 x2 − x0x3

1 − x4
1 = 0

ϕ(t) =

1 0 0
0 t 0
0 0 t3

 : C ◦ ϕ(t) : t3 (x3
0 x2 − x0x3

1 − tx4
1 ) = 0

t → 0 : x3
0 x2 − x0x3

1 = x0(x2
0 x2 − x3

1 )

Area=2 3
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Example: general nonsingular curve

C : nonsingular, degree d , 3d(d − 2) ordinary flexes.

The PNC consists of:

EG = {(ϕ,X ) | imϕ ∈ C ,
X = conic tangent to kerϕ union (d − 2)-fold kernel line}

EF = {(ϕ,X ) | imϕ = a flex of C , X =cuspidal cubic
with cusp tangent on kerϕ union (d − 3)-fold kernel line}

As a cycle: 2[EG ] + 3[EF ]. Correction terms in P8:

[LG ] =
6dH5

5!
− 4d(5d + 18)H6

6!
+

12d(9d + 8)H7

7!
− 6720d2H8

8!

[LF ] =
5H6

6!
− 72H7

7!
+

591H8

8!

 a.p.p. = exp(dH) ∩ ([P8]− 2[LG ]− 3[LF ])
 same result as by blow-ups.
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Adjusted predegree polynomials for arbitrary curves may be
computed in this way.

Raw expressions are difficult to handle.

But they lead to manageable formulas for, e.g., unibranched
singularities: ‘reasonable’ expression in terms of Puiseux pairs.

Multibranched singularities: Probably also possible to simplify
results. Nice open question. . .
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Example
p ∈ C : Puiseux expansion{

z = (antn + · · ·+) ae1t
e1 + · · ·+ aer t

er

y = tm

with m < n ≤ e1 < · · · < er .
 ‘simple’ formula for contribution of p in terms of m, n, and the
exponents ei . For instance, if the ei ’s are not there,

mn
{(

P(m, 2m)− P(m, n)

)
·
(
k2H6

6!
+

kH7

7!
+

H8

8!

)}
2

where {·}2 = coeff. of k2, and

P(a, b) =
a2b2

(1 + ak)3(1 + bk)3 −
4

(1 + k)3(1 + 2k)3
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Back to p. 31! “One case when they are reasonably neat:
contribution of unibranched singularities. . . ”
C of degree d , ordinary flexes, and singularities of type (tm, tn),
with no further Puiseux pairs. Also assume StabC is trivial.

Theorem
The degree of the orbit closure of C is

d8 −
{

(1 + dk)8
[

4d2

(1 + k)3(1 + 2k)3

+
∑

p∈C of type (tm,tn)

mn
(

m2n2

(1 + mk)3(1 + nk)3 −
4

(1 + k)3(1 + 2k)3

)]}
2

(Here {·}2 extracts the coefficient of k2 in the given expression.)

169 / 170 Paolo Aluffi Linear orbits of plane curves



THANK
YOU

for your attention

170 / 170 Paolo Aluffi Linear orbits of plane curves


