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Polarized variety

Let X be a projective variety with mild singularities (i.e. terminal) of
dimension n.
Let L be a Cartier divisor (a line bundle) which is nef and big.

The pair (X, L) is called a quasi polarized pair.

For instance let X C PV be a projective variety and L := O(1),x,
or better its (partial) desingularizaton and the pull back of L.
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Polarized variety

Problem Given a general element D € |L|
(assume that X is not a cone over D).

Which properties of D lift to X;
do these properties determine X ?

Enriques—Castelnuovo studied the case in which X is a surface and D is
a curve of low genus, or of minimal degree, ...
Fano studied the case in which X is a 3-fold and D is a K3 surface.

Sommese proved that abelian and bi-elliptic surfaces cannot be ample
sections.
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Polarized variety

Adjunction Theory wants to classify quasi polarized pairs via the study
of the nefness of the adjont bundles

KX —|— I‘L,
with r natural (or rational) positive number.

Assume that there exist r sections of |L| which intersectinan — r
variety D, with terminal singularities.

To get nefness of Ky + rL implies, by adjunction (Kx + rL)p = Kp,
to get a minimal model for D.
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Let (X, L) be a quasi-polarized variety and r € Q.

Lemma. There exists an effective Q-divisor A" on X such that

rL ~g A" and (X,A") is Kawamata log terminal.

Def. A log pair (X, A), i.e a normal variety X and an effective R divisor A, is Kawamata log terminal (klt) if
® Ky -+ A is R-Cartier
= fora (any) log resolution g : ¥ — X we have g* (Kxy + A) = Ky + Sb;T; withb; < 1, forall i.

Proof: For a Cartier divisor L, nef and big is equivalent to the existence
of E > 0 and A, Q-ample divisor, such that L ~ Ay + (1/k)E for
k>>0.
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By BCHM on a klt log pair (X, A) we can run a
Kx + A- Minimal Model Program with scaling:
(X())AO) = (Xa A) - (XlaAl) - - - —— (XY)AS)
such that:

1) (X;, A;) is a klt log pair, fori =0, ..., s;

2) ;i : X; — X,y is a birational map which is either a divisorial

contraction or a flip associated with an extremal ray R;;

3) either Ky, + Ay is nef (X, A,) is a log Minimal Model),

or X; — Z is a Mori fiber space relatively to Ky, + A

(depending on the pseudeffectivity of Ky + A).
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Let (X, L) be a quasi-polarized variety. Take r € Q% and let (X, A") be
the kit log pair such that rL ~g A"

Run a Kx + A’-MMP and get a birational klt pair (X;, A}) which is
either a log Minimal Model (i.e. Kx, + A, is nef), or X, — Z is a Mori
fiber space relatively to Ky, + Al

Remarks/Problems
m (X, Al) is not necessarily an (r) q.p. pair, i.e. we do not have a
priori a nef and big Cartier divisor L, such that rL, ~g AL
m Beyond the existence of the MMP, it would be nice to have a
“description” of each steps and eventually of the Mori fiber spaces.
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For the above program we study the rays
R=R*[C] € NE(X)(KX+rL)<0 C NE(X)KX<0'

and their associated contractions: ¢ : X — Y

(which can be divisorial, small or a Mori fiber space).

Extremal rays

Let F be a non trivial fiber of ¢; we possibly restrict to an affine
neighborhood of the image of F.

Assume that L'C > 0.
Definition. the nef value: 7(X,L) = inf{t € R : Kx + L is @-nef }.

Note that 7 > r.
Note also that the contraction ¢ is supported by the divisor Ky + 7L
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Theorem
[..., Fano, Fujita, Kawamata, Kollar, A-Wisniewski, Mella, A-Tasin, ...]

Extremal rays

Let X, R =RT[C], o : X — Y, F and L as above; assume that L-C > 0.
mdimF >7—1>r—1;if pisbirational dim F > 7 > r.
B IfdimF <74 1,ordimF < 7+ 1 if ¢ is birational, then L is very
ample (relatively to ).
m If dim F < 7 + 3 then there exists X’ € |L| with "good”
singularities (i.e. as in X).
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Consider a Ky + A"-MMP withr = (n — 1) (or > (n — 1)) and let
R; = RT[C;] be a birational ray in the sequence.

A=1) mmp
Inductively construct a nef and big Cartier divisor L; on X; such that

I’L,‘ ~Q A’(nil):

1) L;C; = 0, otherwise, by the above Theorem, we have the
contradiction (n — 1) > dimF > r > (n—1).

2) Let v; : X; — Y be the contraction associated with R;. We have a
Cartier divisor L, such that ¢* (L, ) = L;.

If ¢ is birational (Xiy1, Liy1) := (Y, L{,,), if ¢ is small

(Xit1, Liv1) == (X", T (Ll,,)), where o7 : X;* — Y is the flip.
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Proposition. Given a q.p. pair (X, L) it is possible to run a MMP which
_ contracts all extremal rays on which L is zero and obtain a q.p. pair
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m either Ky + (n — 1)L’ is nef

m or (X', L') is a Mori space relative to Kx» + (n — 1)L’ and L' is a
(relatively) very ample Cartier divisor.
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Proposition. Given a q.p. pair (X, L) it is possible to run a MMP which
_ contracts all extremal rays on which L is zero and obtain a q.p. pair
SR (X', L) which is birational equivalent to (X, L) and such that:

m either Ky + (n — 1)L’ is nef
m or (X', L') is a Mori space relative to Kx» + (n — 1)L’ and L' is a
(relatively) very ample Cartier divisor.

Definition. (X', L") is called a zero reduction of (X, L).

By very classical results in the second case the q.p. pair (X’,L’) isina
obvious finite list of examples: (P*, O(1)), (Q, O(1)), scrolls, del Pezzo.
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Applications
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Let (X, L) be a quasi-polarized variety and g(X, L) be its sectional
genus: 2g(X,L) —2 = (Kx+ (n—1)L)'L"...'L).

A@=1) yvvp (if L is spanned it is the genus of a curve intersection of n — 1 general elements in |L|.

- Then g(X, L) > 0 with equality if Kx + (n — 1)L is not nef (therefore
not pseudoeffective).

In particular we have that if g(X, L) = 0 then the zero reduction of

(X, L) is among the above pairs

- Classification of pairs with g(X,L) = 1.

- Classification of pairs of minimal degree
(e L"=h"(X,L) —n).
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Let ¢ : X — Y be a birational contraction associated with an extremal
ray R = R*[C] on a q.p. pair, such that L-C > 0 and 7(X, L) > (n — 2).
AG=2) avp (These are the birational maps in a Kx + A""2-MMP)

Theorem. ¢ : X — Y is the weighted blow-up of a smooth point in Y of
weights (1,1,b, ....,b), where b is a natural positive number.

L' = p.(L) is a Cartier divisor on Y such that ¢*L’ = L + bE, where E
is the exceptional (Weil) divisor.

In particular 7(X,L) = (n — 2+ 1/b) > (n — 2).

Definition. ¢ is called a Castelnuovo-Kawakita contraction.
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Wehave (n — 1) > dimF > (n —2),ie.dmF=(n—1) <7+ 1.
Therefore ¢ is a contraction of a divisor to a point and we can assume L
is very ample.
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A(=2) mmp

Wehave (n — 1) > dimF > (n —2),ie.dmF=(n—1) <7+ 1.
Therefore ¢ is a contraction of a divisor to a point and we can assume L
is very ample.

By Bertini we get the existence of sections in |L| with terminal
singularities.

Horizontal slicing: Let X’ € |L| be a generic divisor: we have:

@ix = ¢' : X' — §'is a contraction with connected fibre, around

F N X', supported by Kx/ + (7 — 1)Lx:.

By horizontal slicing with (n — 2) general sections of |L| we can reduce
to the surface case and 7 > 0. Surfaces with terminal singularities are
smooth. Apply now Castelnuovo’s Theorem to have that the (surface)
image is smooth .




MMP on q. p.v.

Marco Andreatta

A(=2) mmp

Wehave (n — 1) > dimF > (n —2),ie.dmF=(n—1) <7+ 1.
Therefore ¢ is a contraction of a divisor to a point and we can assume L
is very ample.

By Bertini we get the existence of sections in |L| with terminal
singularities.

Horizontal slicing: Let X’ € |L| be a generic divisor: we have:

@ix = ¢' : X' — §'is a contraction with connected fibre, around

F N X', supported by Kx/ + (7 — 1)Lx:.

By horizontal slicing with (n — 2) general sections of |L| we can reduce
to the surface case and 7 > 0. Surfaces with terminal singularities are
smooth. Apply now Castelnuovo’s Theorem to have that the (surface)
image is smooth .

Since Y has terminal singularities this implies that Y is smooth at the
exceptional point.
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Marco Andreatta we need to prove that
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MMP on g. p.. Since X = Proj, (©a>0 f+(Ox(—dbE)),
Marco Andreatta we need to prove that

fo(Ox(—dbE) = (x}' ---x; | 51 + 52+ stj >db) = I
j=3

NORBUTS  Induction:

a) consider a general element X’ € |L| such that f,.(X") = {x, = 0}

(since Y is smooth, f, (X’) is Cartier).The restricted morphism

f":=fix : X’ — Z'is a divisorial contraction supported by

le + (T — 1)L|X’
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A(=2) mmp

Since X = Proj, (Da>0 f« (Ox(—dbE)),
we need to prove that

fo(Ox(—dbE) = (x}' ---x; | 51 + 52+ stj >db) = I
j=3
Induction:
a) consider a general element X’ € |L| such that f,.(X") = {x, = 0}
(since Y is smooth, f, (X’) is Cartier).The restricted morphism
f":=fix : X’ — Z'is a divisorial contraction supported by
le + (T — 1)L|X’
b) The exact sequence
0 — Ox(—L — dbE) — Ox(—dbE) — Oy (—dbE) — 0
and the Relative Kawamata-Viehweg Vanishing gives

0 — f,Ox(—(d — 1)bE) = f,Ox(—dbE) — f.Ox/(—dbE) — 0.

By induction on n and d the proposition follows
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Proposition-Part 1. Let (X, L) be a q.p. pair. There exists a q.p. pair
(X", L") which is a (Ky 4+ A"~2)-MM and which can be obtained with
the following procedure:

A(=2) mmp .
m Take a zero reduction (X', L’).

m Contract, step by step, all Castelnuovo-Kawakita type extremal
rays, such that LiE = —bEp ¢ : X' — X"

mLetl’ :=¢.L.

Definition The pair (X", L") is called a First Reduction of the pair
(X, L).
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Proposition-Part 2. Let (X, L) be a q.p. pair and let (X", L") be its First

Reduction. Then

m either Kx» + (n — 2)L" is nef

m or X" — Z is a Mori fiber space relatively to Kx» + (n — 2)L"” and
L" is (relatively) very ample with one exception (del Pezzo

manifold). In all cases there exists a divisor in |L”| with good
singularities.
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Proposition-Part 2. Let (X, L) be a q.p. pair and let (X", L") be its First

Reduction. Then

m either Kx» + (n — 2)L" is nef

m or X" — Z is a Mori fiber space relatively to Kx» + (n — 2)L"” and
L" is (relatively) very ample with one exception (del Pezzo

manifold). In all cases there exists a divisor in |L”| with good
singularities.
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Remark. The classification of the pairs in the second part, thank to the
existence of a good section, is classical and reduces to the theory of
algebraic surfaces. (Quadric fibration, del Pezzo manifolds, ....)
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Theorem. Let Y C PV be a non degenerate projective variety of
dimension n > 3 of degree d and let L := O(1))y. Assume that
d < 2codimpn (X) + 2.
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Then on a desingularization (X, L) the divisor Kx + (n — 2)L is not
pseudoeffective.
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Theorem. Let Y C PV be a non degenerate projective variety of
dimension n > 3 of degree d and let L := O(1))y. Assume that
d < 2codimpn (X) + 2.

Then on a desingularization (X, L) the divisor Kx + (n — 2)L is not
pseudoeffective.
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Therefore (Y, O(1)) is equivalent, via birational equivalence and
first-reduction, to a q.p. pair (X", L") in the above Remark.



Kawakita

MMP on q. p.v.

Marco Andreatta

Let ¢ : X — Y be a birational contraction associated with an extremal
ray R = R*[C] on a q.p. pair, such that L-C > 0 and 7(X, L) > (n — 3).
(These are the birational maps in a Kx + A" 3-MMP)
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A= Assume moreover that ¢ contracts a divisor to a smooth point.
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Let ¢ : X — Y be a birational contraction associated with an extremal
ray R = R*[C] on a q.p. pair, such that L-C > 0 and 7(X, L) > (n — 3).
(These are the birational maps in a Kx + A" 3-MMP)

A= Assume moreover that ¢ contracts a divisor to a smooth point.

Theorem. Then f is a weighted blow-up of type (1,a,b,c,...,c), where
a, b, ¢ are positive integers, (a,b) = 1 and ab|c.

L' = p.(L) is a Cartier divisor on Y such that ¢*L' = L + cE, where E
is the exceptional (Weil) divisor.

In particular 7(X,L) = (n — 2+ 1/¢) > (n — 2).



MMP on g. p.. Since X = Proj, (®a>0 f+(Ox(—dcE)),
Slasesl et we need to prove that

fu(Ox(—dcE) = (x}' - x| 51 + s2a + s3b + chj >dc):=1°
j=4
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Since X = Proj, (D0 f« (Ox(—dcE)),
we need to prove that

fu(Ox(—dcE) = (x}' - x| 51 + s2a + s3b + chj >dc):=1°
j=4

Induction:

a) consider a general element X’ € |L| such that f,.(X") = {x, = 0}
(since Y is smooth, f, (X") is Cartier).The restricted morphism
f":=fix : X’ — Z' is a divisorial contraction supported by

Ky + (7’ — 1)L|X/.



MMP on g. p.. Since X = Proj, (®a>0 f+(Ox(—dcE)),
Slasesl et we need to prove that

fu(Ox(—dcE) = (x}' - x| 51 + s2a + s3b + Z cs; > de) =1
j=4

A=) Induction:

a) consider a general element X’ € |L| such that f,.(X") = {x, = 0}

(since Y is smooth, f, (X") is Cartier).The restricted morphism

f":=fix : X’ — Z' is a divisorial contraction supported by

Ky + (7’ — 1)L|X/.

b) The exact sequence

0 — Ox(—L — dcE) — Ox(—dcE) — Ox/(—dcE) — 0

and the Relative Kawamata-Viehweg Vanishing gives

0 — f£.Ox(—(d — 1)cE) 3 f.Ox(—dcE) — f.Ox/(—dcE) — 0.

By induction on n and d the proposition follows
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Let ¢ : X — Y be a birational contraction associated with an extremal
ray R = R*[C] on a q.p. pair, such that L:C > 0 and 7(X, L) > (n — 3).
(These are the birational maps in a Kx + A" ~3-MMP)

AE=D) Assume moreover that ¢ contracts a divisor E to a curve C.

Theorem. Then, outside a finite set of points, C is a smooth and
contained in the smooth locus of Y.

¢ is the blow up of an ideal /(") which is the symbolic power of an ideal
I which is supported along C and, outside these finite points, is the ideal
of the weighted blow up of a smooth manifold along a smooth curve
with weight (1, 1,0, ..., b,0), b a positive integer.
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Let ¢ : X — Y be a birational contraction associated with an extremal
ray R = RT[C] on a q.p. pair, such that L:C > 0 and 7(X,L) > (n — 3).
(These are the birational maps in a Kx + A" ~3-MMP)

Assume moreover that ¢ is a small contraction.

Theorem. Then .... 77?
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