

Marco Andreatta

Polarized variet

Extremal rays $\Delta^{(n-1)}$ -MMP

Minimal Model Program on q.polarized varieties

Marco Andreatta

Dipartimento di Matematica

Levico, October 2012

MMP on q. p.v.

Marco Andreatt

Polarized variety

MMP

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP $\Delta^{(n-3)}$ -MMP

Let *X* be a projective variety with mild singularities (i.e. terminal) of dimension *n*.

MMP on q. p.v.

Marco Andreatt

Polarized variety

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

Let *X* be a projective variety with mild singularities (i.e. terminal) of dimension *n*.

Let *L* be a Cartier divisor (a line bundle) which is nef and big.

MMP on q. p.v.

Marco Andreat

Polarized variety

Extremal rays $\Delta^{(n-1)}\text{-MMH}$ $\Delta^{(n-2)}\text{-MMH}$

Let X be a projective variety with mild singularities (i.e. terminal) of dimension n.

Let *L* be a Cartier divisor (a line bundle) which is nef and big.

The pair (X, L) is called a quasi polarized pair.

MMP on q. p.v.

Marco Andreat

Polarized variety

Extremal rays $\Delta^{(n-1)}$ -MMF $\Delta^{(n-2)}$ -MMF $\Delta^{(n-3)}$ -MMF

Let *X* be a projective variety with mild singularities (i.e. terminal) of dimension *n*.

Let *L* be a Cartier divisor (a line bundle) which is nef and big.

The pair (X, L) is called a quasi polarized pair.

For instance let $X \subset \mathcal{P}^N$ be a projective variety and $L := \mathcal{O}(1)_{|X}$, or better its (partial) desingularization and the pull back of L.

MMP on q. p.v.

Marco Andreatt

Polarized variety

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

Problem Given a general element $D \in |L|$ (assume that X is not a cone over D).

Which properties of *D* lift to *X*; do these properties determine *X* ?

MMP on q. p.v.

Marco Andreatt

Polarized variety

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP $\Delta^{(n-3)}$ -MMP

Problem Given a general element $D \in |L|$ (assume that X is not a cone over D).

Which properties of *D* lift to *X*; do these properties determine *X* ?

Enriques—Castelnuovo studied the case in which X is a surface and D is a curve of low genus, or of minimal degree, ...

MMP on q. p.v.

Marco Andreatt

Polarized variety

Extremal rays $\Delta^{(n-1)}\text{-MMP}$ $\Delta^{(n-2)}\text{-MMP}$

Problem Given a general element $D \in |L|$ (assume that X is not a cone over D).

Which properties of *D* lift to *X*; do these properties determine *X* ?

Enriques—Castelnuovo studied the case in which X is a surface and D is a curve of low genus, or of minimal degree, ...

Fano studied the case in which *X* is a 3-fold and *D* is a *K*3 surface.

MMP on q. p.v.

Marco Andreatt

Polarized variety

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP $\Delta^{(n-3)}$ -MMP

Problem Given a general element $D \in |L|$ (assume that X is not a cone over D).

Which properties of *D* lift to *X*; do these properties determine *X* ?

Enriques—Castelnuovo studied the case in which X is a surface and D is a curve of low genus, or of minimal degree, ...

Fano studied the case in which *X* is a 3-fold and *D* is a *K*3 surface. Sommese proved that abelian and bi-elliptic surfaces cannot be ample sections.

Adjunction Theory

MMP on q. p.v.

Polarized variety

Extremal rays $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP

Adjunction Theory wants to classify quasi polarized pairs via the study of the nefness of the adjont bundles

$$K_X + rL$$

with r natural (or rational) positive number.

Adjunction Theory

MMP on q. p.v.

Polarized variety

Extremal rays $\Delta^{(n-1)}$ -MMF $\Delta^{(n-2)}$ -MMF $\Delta^{(n-3)}$ -MMF

Adjunction Theory wants to classify quasi polarized pairs via the study of the nefness of the adjont bundles

$$K_X + rL$$
,

with r natural (or rational) positive number.

Assume that there exist r sections of |L| which intersect in a n-r variety D, with terminal singularities.

To get nefness of $K_X + rL$ implies, by adjunction $(K_X + rL)_{|D} = K_D$, to get a minimal model for D.

zip L into a boundary

MMP on q. p.v.

Polarized variet

MMP

Extremal rays $\Delta^{(n-1)}$ -MMI $\Delta^{(n-2)}$ -MMI $\Delta^{(n-3)}$ -MMI

Let (X, L) be a quasi-polarized variety and $r \in \mathbb{Q}^+$.

Lemma. There exists an effective \mathbb{Q} -divisor Δ^r on X such that

 $rL \sim_{\mathbb{Q}} \Delta^r$ and (X, Δ^r) is Kawamata log terminal.

zip L into a boundary

MMP on q. p.v.

MMP

Extremal rays $\Delta^{(n-1)}$ -MMF $\Delta^{(n-2)}$ -MMF $\Delta^{(n-3)}$ -MMF

Let (X, L) be a quasi-polarized variety and $r \in \mathbb{Q}^+$.

Lemma. There exists an effective \mathbb{Q} -divisor Δ^r on X such that

$$rL \sim_{\mathbb{Q}} \Delta^r$$
 and (X, Δ^r) is Kawamata log terminal.

Def. A log pair (X, Δ) , i.e a normal variety X and an effective \mathbb{R} divisor Δ , is Kawamata log terminal (klt) if

- $K_X + \Delta$ is \mathbb{R} -Cartier
- for a (any) log resolution $g:Y\to X$ we have $g^*(K_X+\Delta)=K_Y+\Sigma b_i\Gamma_i$ with $b_i<1$, for all i.

zip L into a boundary

MMP on q. p.v.

_

MMP

Extremal rays $\Delta^{(n-1)}$ -MMI $\Delta^{(n-2)}$ -MMI $\Delta^{(n-3)}$ -MMI

Let (X, L) be a quasi-polarized variety and $r \in \mathbb{Q}^+$.

Lemma. There exists an effective \mathbb{Q} -divisor Δ^r on X such that

$$rL \sim_{\mathbb{Q}} \Delta^r$$
 and (X, Δ^r) is Kawamata log terminal.

Def. A log pair (X, Δ) , i.e a normal variety X and an effective \mathbb{R} divisor Δ , is Kawamata log terminal (klt) if

- $K_X + \Delta$ is \mathbb{R} -Cartier
- $\qquad \text{for a (any) log resolution } g:Y\to X \text{ we have } g^*(K_X+\Delta)=K_Y+\Sigma b_i\Gamma_i \text{ with } b_i<1, \text{ for all } i.$

Proof: For a Cartier divisor L, nef and big is equivalent to the existence of E > 0 and A_k , \mathbb{Q} -ample divisor, such that $L \sim A_k + (1/k)E$ for k >> 0.

MMP on q. p.v.

MMP

By BCHM on a klt log pair (X, Δ) we can run a

 $K_X + \Delta$ - Minimal Model Program with scaling:

$$(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow ---- \rightarrow (X_s, \Delta_s)$$

such that:

MMP on q. p.v.

Marco Andreatt

ммр

Extremal rays $\Delta^{(n-1)}$ -MMF $\Delta^{(n-2)}$ -MMF $\Delta^{(n-3)}$ -MMF

By BCHM on a klt log pair (X, Δ) we can run a

 $K_X + \Delta$ - Minimal Model Program with scaling:

$$(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow --- \rightarrow (X_s, \Delta_s)$$

such that:

1) (X_i, Δ_i) is a klt log pair, for i = 0, ..., s;

MMP on q. p.v.

Marco Andreatt

ММР

Extremal rays $\Delta^{(n-1)}$ -MMI $\Delta^{(n-2)}$ -MMI $\Delta^{(n-3)}$ -MMI

By BCHM on a klt log pair (X, Δ) we can run a

 $K_X + \Delta$ - Minimal Model Program with scaling:

$$(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow ---- \rightarrow (X_s, \Delta_s)$$

such that:

- 1) (X_i, Δ_i) is a klt log pair, for i = 0, ..., s;
- 2) $\varphi_i: X_i \to X_{i+1}$ is a birational map which is either a divisorial contraction or a flip associated with an extremal ray R_i ;

MMP on q. p.v.

Marco Andreatta

Polarized variety

MMP

Extremal rays $\Delta^{(n-1)}$ -MMF $\Delta^{(n-2)}$ -MMF $\Delta^{(n-3)}$ -MMF

By BCHM on a klt log pair (X, Δ) we can run a

$$K_X + \Delta$$
- Minimal Model Program with scaling:

$$(X_0, \Delta_0) = (X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow ---- \rightarrow (X_s, \Delta_s)$$

such that:

- 1) (X_i, Δ_i) is a klt log pair, for i = 0, ..., s;
- 2) $\varphi_i: X_i \to X_{i+1}$ is a birational map which is either a divisorial contraction or a flip associated with an extremal ray R_i ;
- 3) either $K_{X_s} + \Delta_s$ is nef $((X_s, \Delta_s)$ is a log Minimal Model), or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s$ (depending on the pseudeffectivity of $K_X + \Delta$).

MMP for a q.p. pair

MMP on q. p.v.

ммр

 $\Delta^{(n-1)}$ -MM $\Delta^{(n-2)}$ -MM $\Delta^{(n-3)}$ -MM Let (X, L) be a quasi-polarized variety. Take $r \in \mathbb{Q}^+$ and let (X, Δ^r) be the klt log pair such that $rL \sim_{\mathbb{Q}} \Delta^r$.

MMP for a q.p. pair

MMP on q. p.v.

MMP

Let (X, L) be a quasi-polarized variety. Take $r \in \mathbb{Q}^+$ and let (X, Δ^r) be the klt log pair such that $rL \sim_{\mathbb{Q}} \Delta^r$.

Run a $K_X + \Delta^r$ -MMP and get a birational klt pair (X_s, Δ_s^r) which is either a log Minimal Model (i.e. $K_{X_s} + \Delta_s$ is nef), or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s^r$.

MMP for a q.p. pair

MMP on q. p.v.

Marco Andreatt

MMP Extremal rays

 $\Delta^{(n-1)}$ -MMF $\Delta^{(n-2)}$ -MMF $\Delta^{(n-3)}$ -MMF

Let (X, L) be a quasi-polarized variety. Take $r \in \mathbb{Q}^+$ and let (X, Δ^r) be the klt log pair such that $rL \sim_{\mathbb{Q}} \Delta^r$.

Run a $K_X + \Delta^r$ -MMP and get a birational klt pair (X_s, Δ_s^r) which is either a log Minimal Model (i.e. $K_{X_s} + \Delta_s$ is nef), or $X_s \to Z$ is a Mori fiber space relatively to $K_{X_s} + \Delta_s^r$.

Remarks/Problems

- (X_s, Δ_s^r) is not necessarily an (r) q.p. pair, i.e. we do not have a priori a nef and big Cartier divisor L_s such that $rL_s \sim_{\mathbb{Q}} \Delta_s^r$.
- Beyond the existence of the MMP, it would be nice to have a "description" of each steps and eventually of the Mori fiber spaces.

MMP on q. p.v.

Polarized variety

Extremal rays

 $\Delta^{(n-1)}$ -MMP

 $\Delta^{(n-3)}$ -MM

For the above program we study the rays

$$R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X + rL) < 0} \subset \overline{NE(X)}_{K_X < 0}.$$

MMP on q. p.v.

Marco Andreatta

Polarized variety

Extremal rays

Extremal rays $\triangle^{(n-1)}\text{-MMP}$ $\triangle^{(n-2)}\text{-MMP}$ $\triangle^{(n-3)}\text{-MMP}$

For the above program we study the rays $R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+rL)<0} \subset \overline{NE(X)}_{K_X<0}$. and their associated contractions: $\varphi: X \to Y$ (which can be divisorial, small or a Mori fiber space).

MMP on q. p.v.

Marco Andreatta

Polarized variet

Extremal rays $\Delta^{(n-1)}\text{-MMP}$ $\Delta^{(n-2)}\text{-MMP}$ $\Delta^{(n-3)}\text{-MMP}$

For the above program we study the rays

$$R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X + rL) < 0} \subset \overline{NE(X)}_{K_X < 0}.$$

and their associated contractions: $\varphi: X \to Y$

(which can be divisorial, small or a Mori fiber space).

Let F be a non trivial fiber of φ ; we possibly restrict to an affine neighborhood of the image of F.

MMP on q. p.v.

Marco Andreatta

Extremal rays

 $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP $\Delta^{(n-3)}$ -MMP

For the above program we study the rays

$$R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X + rL) < 0} \subset \overline{NE(X)}_{K_X < 0}.$$

and their associated contractions: $\varphi: X \to Y$

(which can be divisorial, small or a Mori fiber space).

Let F be a non trivial fiber of φ ; we possibly restrict to an affine neighborhood of the image of F.

Assume that $L \cdot C > 0$.

MMP on q. p.v.

Marco Andreatta

Polarized variet

Extremal rays $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP

For the above program we study the rays

$$R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+rL)<0} \subset \overline{NE(X)}_{K_X<0}.$$

and their associated contractions: $\varphi: X \to Y$

(which can be divisorial, small or a Mori fiber space).

Let F be a non trivial fiber of φ ; we possibly restrict to an affine neighborhood of the image of F.

Assume that $L \cdot C > 0$.

Definition. the nef value: $\tau(X, L) = \inf\{t \in \mathbb{R} : K_X + tL \text{ is } \varphi\text{-nef }\}.$

MMP on q. p.v.

Marco Andreatta

Dolowinod moniete

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

For the above program we study the rays

$$R = \mathbb{R}^+[C] \in \overline{NE(X)}_{(K_X+rL)<0} \subset \overline{NE(X)}_{K_X<0}.$$

and their associated contractions: $\varphi: X \to Y$

(which can be divisorial, small or a Mori fiber space).

Let F be a non trivial fiber of φ ; we possibly restrict to an affine neighborhood of the image of F.

Assume that $L \cdot C > 0$.

Definition. the nef value: $\tau(X, L) = \inf\{t \in \mathbb{R} : K_X + tL \text{ is } \varphi\text{-nef }\}.$

Note that $\tau > r$.

Note also that the contraction φ is supported by the divisor $K_X + \tau L$

Base point free technique

MMP on q. p.v.

Marco Andreat

ММР

Extremal rays $\Delta^{(n-1)}\text{-}\mathrm{MMP}$ $\Delta^{(n-2)}\text{-}\mathrm{MMP}$ $\Delta^{(n-3)}\text{-}\mathrm{MMP}$

Theorem

[..., Fano, Fujita, Kawamata, Kollar, A-Wisniewski, Mella, A-Tasin, ...]

Let X, $R = \mathbb{R}^+[C]$, $\varphi : X \to Y$, F and L as above; assume that $L \cdot C > 0$.

- dim $F \ge \tau 1 > r 1$; if φ is birational dim $F \ge \tau > r$.
- If dim $F < \tau + 1$, or dim $F \le \tau + 1$ if φ is birational, then L is very ample (relatively to φ).
- If dim $F < \tau + 3$ then there exists $X' \in |L|$ with "good" singularities (i.e. as in X).

$$r = (n-1)$$

Marco Andreatt

Polarized vario

MMP

 $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

Consider a $K_X + \Delta^r$ -MMP with r = (n-1) (or $\geq (n-1)$) and let $R_i = \mathbb{R}^+[C_i]$ be a birational ray in the sequence.

$$r = (n-1)$$

Marco Andreatta

MMD

Extremal rays $\Delta^{(n-1)}\text{-MMP}$ $\Delta^{(n-2)}\text{-MMP}$ $\Delta^{(n-3)}\text{-MMP}$

Consider a $K_X + \Delta^r$ -MMP with r = (n-1) (or $\geq (n-1)$) and let $R_i = \mathbb{R}^+[C_i]$ be a birational ray in the sequence.

Inductively construct a nef and big Cartier divisor L_i on X_i such that $rL_i \sim_{\mathbb{Q}} \Delta_i^{(n-1)}$:

$$r = (n-1)$$

 $\Lambda^{(n-1)}$ -MMP

Consider a $K_X + \Delta^r$ -MMP with r = (n-1) (or $\geq (n-1)$) and let $R_i = \mathbb{R}^+[C_i]$ be a birational ray in the sequence.

Inductively construct a nef and big Cartier divisor L_i on X_i such that $rL_i \sim_{\mathbb{O}} \Delta_i^{(n-1)}$:

1) $L_i C_i = 0$, otherwise, by the above Theorem, we have the contradiction $(n-1) > \dim F > r > (n-1)$.

$$r = (n-1)$$

 $\Lambda^{(n-1)}$ -MMP

Consider a $K_X + \Delta^r$ -MMP with r = (n-1) (or > (n-1)) and let $R_i = \mathbb{R}^+[C_i]$ be a birational ray in the sequence.

Inductively construct a nef and big Cartier divisor L_i on X_i such that $rL_i \sim_{\mathbb{O}} \Delta_i^{(n-1)}$:

- 1) $L_i C_i = 0$, otherwise, by the above Theorem, we have the contradiction $(n-1) > \dim F > r > (n-1)$.
- 2) Let $\varphi_i: X_i \to Y$ be the contraction associated with R_i . We have a Cartier divisor L'_{i+1} such that $\varphi^*(L'_{i+1}) = L_i$.

If φ is birational $(X_{i+1}, L_{i+1}) := (Y, L'_{i+1})$, if φ is small $(X_{i+1}, L_{i+1}) := (X_i^+, \varphi^+(L'_{i+1})), \text{ where } \varphi^+ : X_i^+ \to Y \text{ is the flip.}$

the zero reduction

MMP on q. p.v.

Marco Andreatt

MMP

Extremal rays $\Delta (n-1)$ -MMP $\Delta (n-2)$ -MMP $\Delta (n-3)$ -MMP

Proposition. Given a q.p. pair (X, L) it is possible to run a MMP which contracts all extremal rays on which L is zero and obtain a q.p. pair (X', L') which is birational equivalent to (X, L) and such that:

- \blacksquare either $K_{X'} + (n-1)L'$ is nef
- or (X', L') is a Mori space relative to $K_{X'} + (n-1)L'$ and L' is a (relatively) very ample Cartier divisor.

the zero reduction

MMP on q. p.v.

Marco Andreatt

MMP

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP $\Delta^{(n-3)}$ -MMP

Proposition. Given a q.p. pair (X, L) it is possible to run a MMP which contracts all extremal rays on which L is zero and obtain a q.p. pair (X', L') which is birational equivalent to (X, L) and such that:

- \blacksquare either $K_{X'} + (n-1)L'$ is nef
- or (X', L') is a Mori space relative to $K_{X'} + (n-1)L'$ and L' is a (relatively) very ample Cartier divisor.

Definition. (X', L') is called a zero reduction of (X, L).

the zero reduction

MMP on q. p.v. Marco Andreatta

 $\Lambda^{(n-1)}$ -MMP

Proposition. Given a q.p. pair (X, L) it is possible to run a MMP which contracts all extremal rays on which L is zero and obtain a q.p. pair (X', L') which is birational equivalent to (X, L) and such that:

- \blacksquare either $K_{X'} + (n-1)L'$ is nef
- or (X', L') is a Mori space relative to $K_{X'} + (n-1)L'$ and L' is a (relatively) very ample Cartier divisor.

Definition. (X', L') is called a zero reduction of (X, L).

By very classical results in the second case the q.p. pair (X', L') is in a obvious finite list of examples: $(\mathbb{P}^n, \mathcal{O}(1)), (Q, \mathcal{O}(1))$, scrolls, del Pezzo.

Applications

MMP on q. p.v.

Polarized variety

MMP

 $\Delta^{(n-1)}$ -MMP

 $\Delta^{(n-3)}$ -MM

Let (X, L) be a quasi-polarized variety and g(X, L) be its sectional genus: $2g(X, L) - 2 = (K_X + (n-1)L) \cdot L \cdot ... \cdot L)$.

(if L is spanned it is the genus of a curve intersection of n-1 general elements in |L|.

MMP on q. p.v.

Marco Andreatt

Polarized varie

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

Let (X, L) be a quasi-polarized variety and g(X, L) be its sectional genus: $2g(X, L) - 2 = (K_X + (n-1)L) \cdot L \cdot ... \cdot L)$.

(if L is spanned it is the genus of a curve intersection of n-1 general elements in $\lfloor L \rfloor$.

- Then $g(X, L) \ge 0$ with equality if $K_X + (n-1)L$ is not nef (therefore not pseudoeffective).

In particular we have that if g(X, L) = 0 then the zero reduction of (X, L) is among the above pairs

MMP on q. p.v.

Marco Andreatta

Polarized v

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

Let (X, L) be a quasi-polarized variety and g(X, L) be its sectional genus: $2g(X, L) - 2 = (K_X + (n-1)L) \cdot L \cdot ... \cdot L)$.

(if L is spanned it is the genus of a curve intersection of n-1 general elements in $\lfloor L \rfloor$.

- Then $g(X, L) \ge 0$ with equality if $K_X + (n-1)L$ is not nef (therefore not pseudoeffective).
- In particular we have that if g(X, L) = 0 then the zero reduction of (X, L) is among the above pairs
- Classification of pairs with g(X, L) = 1.

MMP on q. p.v.

Marco Andreatta

Polarized vari

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP $\Delta^{(n-3)}$ -MMP

Let (X, L) be a quasi-polarized variety and g(X, L) be its sectional genus: $2g(X, L) - 2 = (K_X + (n-1)L) \cdot L \cdot ... \cdot L)$.

(if L is spanned it is the genus of a curve intersection of n-1 general elements in |L|.

- Then $g(X, L) \ge 0$ with equality if $K_X + (n-1)L$ is not nef (therefore not pseudoeffective).
- In particular we have that if g(X, L) = 0 then the zero reduction of (X, L) is among the above pairs
- Classification of pairs with g(X, L) = 1.
- Classification of pairs of minimal degree (i.e. $L^n = h^0(X, L) n$).

Castelnuovo-Kawakita

MMP on q. p.v.

Marco Andreat

Polarized varie

Extremal rays

 $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP $\Delta^{(n-3)}$ -MMP Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-2)$. (These are the birational maps in a $K_X + \Delta^{n-2}$ -MMP)

Castelnuovo-Kawakita

MMP on q. p.v.

Marco Andreatt

MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-2)$. (These are the birational maps in a $K_X + \Delta^{n-2}$ -MMP)

Theorem. $\varphi: X \to Y$ is the weighted blow-up of a smooth point in Y of weights (1, 1, b, ..., b), where b is a natural positive number.

 $L' = \varphi_*(L)$ is a Cartier divisor on Y such that $\varphi^*L' = L + bE$, where E is the exceptional (Weil) divisor.

In particular $\tau(X, L) = (n - 2 + 1/b) > (n - 2)$.

Castelnuovo-Kawakita

MMP on q. p.v.

Marco Andreatt

ММР

Extremal rays $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-2)$. (These are the birational maps in a $K_X + \Delta^{n-2}$ -MMP)

Theorem. $\varphi: X \to Y$ is the weighted blow-up of a smooth point in Y of weights (1, 1, b,, b), where b is a natural positive number.

 $L' = \varphi_*(L)$ is a Cartier divisor on Y such that $\varphi^*L' = L + bE$, where E is the exceptional (Weil) divisor.

In particular $\tau(X, L) = (n - 2 + 1/b) > (n - 2)$.

Definition. φ is called a Castelnuovo-Kawakita contraction.

MMP on q. p.v.

Marco Andreatt

Marco Andreat

MMP

Extremal rays $\Delta^{(n-1)}$ -MMP

 $\Delta^{(n-2)}$ -MMP

We have $(n-1) \ge \dim F > (n-2)$, i.e. $\dim F = (n-1) \le \tau + 1$. Therefore φ is a contraction of a divisor to a point and we can assume L is very ample.

MMP on q. p.v.

Marco Andreatt

 $\Delta^{(n-2)}$ -MMP

We have $(n-1) \ge \dim F > (n-2)$, i.e. $\dim F = (n-1) \le \tau + 1$.

Therefore φ is a contraction of a divisor to a point and we can assume L is very ample.

By Bertini we get the existence of sections in |L| with terminal singularities.

MMP on q. p.v.

We have $(n-1) \ge \dim F > (n-2)$, i.e. $\dim F = (n-1) \le \tau + 1$.

MMP
Extremal rays

 $\Delta^{(n-2)}$ -MMP

Therefore φ is a contraction of a divisor to a point and we can assume L is very ample.

By Bertini we get the existence of sections in |L| with terminal singularities.

Horizontal slicing: Let $X' \in |L|$ be a generic divisor: we have: $\varphi_{|X'} := \varphi' : X' \to S'$ is a contraction with connected fibre, around $F \cap X'$, supported by $K_{X'} + (\tau - 1)L_{|X'}$.

MMP on q. p.v.

Proof

Marco Andreatta Polarized variety MMP Extremal rays $\Delta^{(n-1)} \cdot_{\text{MMP}}$ $\Delta^{(n-2)} \cdot_{\text{MMP}}$

We have $(n-1) \ge \dim F > (n-2)$, i.e. $\dim F = (n-1) \le \tau + 1$.

Therefore φ is a contraction of a divisor to a point and we can assume L is very ample.

By Bertini we get the existence of sections in |L| with terminal singularities.

Horizontal slicing: Let $X' \in |L|$ be a generic divisor: we have: $\varphi_{|X'} := \varphi' : X' \to S'$ is a contraction with connected fibre, around $F \cap X'$, supported by $K_{X'} + (\tau - 1)L_{|X'}$.

By horizontal slicing with (n-2) general sections of |L| we can reduce to the surface case and $\tau>0$. Surfaces with terminal singularities are smooth. Apply now Castelnuovo's Theorem to have that the (surface) image is smooth .

MMP on q. p.v.

Proof

Marco Andreatta
Polarized variety
MMP
Extremal rays $\triangle^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

We have $(n-1) \ge \dim F > (n-2)$, i.e. $\dim F = (n-1) \le \tau + 1$.

Therefore φ is a contraction of a divisor to a point and we can assume L is very ample.

By Bertini we get the existence of sections in |L| with terminal singularities.

Horizontal slicing: Let $X' \in |L|$ be a generic divisor: we have: $\varphi_{|X'} := \varphi' : X' \to S'$ is a contraction with connected fibre, around $F \cap X'$, supported by $K_{X'} + (\tau - 1)L_{|X'}$.

By horizontal slicing with (n-2) general sections of |L| we can reduce to the surface case and $\tau>0$. Surfaces with terminal singularities are smooth. Apply now Castelnuovo's Theorem to have that the (surface) image is smooth .

Since *Y* has terminal singularities this implies that *Y* is smooth at the exceptional point.

MMP on q. p.v.

Marco Andreatt

ммр

Extremal rays $\Delta^{(n-1)}\text{-MMP}$

 $\Delta^{(n-2)}$ -MMP $\Delta^{(n-3)}$ -MMP

Since $X = \operatorname{Proj}_{\mathcal{O}_Z}(\oplus_{d \geq 0} f_*(\mathcal{O}_X(-dbE)),$ we need to prove that

$$f_*(\mathcal{O}_X(-dbE) = (x_1^{s_1} \cdots x_n^{s_n} \mid s_1 + s_2 + \sum_{j=3}^n bs_j \ge db) := I^d$$

MMP on q. p.v. Marco Andreatta

 $\Delta^{(n-2)}$ -MMP

Since $X = \operatorname{Proj}_{\mathcal{O}_Z}(\oplus_{d \geq 0} f_*(\mathcal{O}_X(-dbE)),$ we need to prove that

$$f_*(\mathcal{O}_X(-dbE) = (x_1^{s_1} \cdots x_n^{s_n} \mid s_1 + s_2 + \sum_{j=3}^n bs_j \ge db) := I^d$$

Induction:

a) consider a general element $X' \in |L|$ such that $f_*(X') = \{x_n = 0\}$ (since Y is smooth, $f_*(X')$ is Cartier). The restricted morphism $f' := f_{|X'|} : X' \to Z'$ is a divisorial contraction supported by $K_{X'} + (\tau - 1)L_{|X'|}$.

MMP on q. p.v. Marco Andreatta

MMP
Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

Since $X = \operatorname{Proj}_{\mathcal{O}_Z}(\bigoplus_{d \geq 0} f_*(\mathcal{O}_X(-dbE)))$, we need to prove that

$$f_*(\mathcal{O}_X(-dbE) = (x_1^{s_1} \cdots x_n^{s_n} \mid s_1 + s_2 + \sum_{j=3}^n bs_j \ge db) := I^d$$

Induction:

a) consider a general element $X' \in |L|$ such that $f_*(X') = \{x_n = 0\}$ (since Y is smooth, $f_*(X')$ is Cartier). The restricted morphism $f' := f_{|X'|} : X' \to Z'$ is a divisorial contraction supported by $K_{X'} + (\tau - 1)L_{|X'|}$.

b) The exact sequence

$$0 \to \mathcal{O}_X(-L - dbE) \to \mathcal{O}_X(-dbE) \to \mathcal{O}_{X'}(-dbE) \to 0$$
 and the Relative Kawamata-Viehweg Vanishing gives

$$0 \to f_*\mathcal{O}_X(-(d-1)bE) \xrightarrow{\cdot x_n} f_*\mathcal{O}_X(-dbE) \to f_*\mathcal{O}_{X'}(-dbE) \to 0.$$

By induction on n and d the proposition follows,

MMP on q. p.v.

Marco Andreatt

Extremal ra

 $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP $\Delta^{(n-3)}$ -MMP Proposition-Part 1. Let (X, L) be a q.p. pair. There exists a q.p. pair (X'', L'') which is a $(K_X + \Delta^{n-2})$ -MM and which can be obtained with the following procedure:

MMP on q. p.v.

.....co

Polarized variet

Extremal rays $\triangle^{(n-1)}\text{-MMP}$ $\triangle^{(n-2)}\text{-MMP}$

Proposition-Part 1. Let (X, L) be a q.p. pair. There exists a q.p. pair (X'', L'') which is a $(K_X + \Delta^{n-2})$ -MM and which can be obtained with the following procedure:

■ Take a zero reduction (X', L').

MMP on q. p.v.

Marco Andreatta

ММР

Extremal rays $\Delta^{(n-1)}\text{-MMP}$ $\Delta^{(n-2)}\text{-MMP}$ $\Delta^{(n-3)}\text{-MMP}$

Proposition-Part 1. Let (X, L) be a q.p. pair. There exists a q.p. pair (X'', L'') which is a $(K_X + \Delta^{n-2})$ -MM and which can be obtained with the following procedure:

- Take a zero reduction (X', L').
- Contract, step by step, all Castelnuovo-Kawakita type extremal rays, such that $L'_{|E|} = -bE_{|E|}$; $\varphi': X' \to X''$.

MMP on q. p.v.

Marco Andreatta

MMP Extremal rays

Extremal rays $\triangle^{(n-1)}\text{-MMP}$ $\triangle^{(n-2)}\text{-MMP}$ $\triangle^{(n-3)}\text{-MMP}$

Proposition-Part 1. Let (X, L) be a q.p. pair. There exists a q.p. pair (X'', L'') which is a $(K_X + \Delta^{n-2})$ -MM and which can be obtained with the following procedure:

- Take a zero reduction (X', L').
- Contract, step by step, all Castelnuovo-Kawakita type extremal rays, such that $L'_{|E|} = -bE_{|E|}$; $\varphi': X' \to X''$.
- $\blacksquare \operatorname{Let} L'' := \varphi'_* L'.$

MMP on q. p.v.

Marco Andreatta

MMP

Extremal rays $\Delta^{(n-1)}\text{-MMP}$ $\Delta^{(n-2)}\text{-MMP}$ $\Delta^{(n-3)}\text{-MMP}$

Proposition-Part 1. Let (X, L) be a q.p. pair. There exists a q.p. pair (X'', L'') which is a $(K_X + \Delta^{n-2})$ -MM and which can be obtained with the following procedure:

- Take a zero reduction (X', L').
- Contract, step by step, all Castelnuovo-Kawakita type extremal rays, such that $L'_{|E|} = -bE_{|E|}$; $\varphi': X' \to X''$.
- $\blacksquare \operatorname{Let} L'' := \varphi'_* L'.$

Definition The pair (X'', L'') is called a First Reduction of the pair (X, L).

MMP on q. p.v.

Marco Andreatt

Polarized variet

Proposition-Part 2. Let (X, L) be a q.p. pair and let (X'', L'') be its First Reduction. Then

- either $K_{X''} + (n-2)L''$ is nef
- or $X'' \to Z$ is a Mori fiber space relatively to $K_{X''} + (n-2)L''$ and L'' is (relatively) very ample with one exception (del Pezzo manifold). In all cases there exists a divisor in |L''| with good singularities.

MMP on q. p.v.

 $\Delta^{(n-2)}$ -MMP

Proposition-Part 2. Let (X, L) be a q.p. pair and let (X'', L'') be its First Reduction. Then

- \blacksquare either $K_{X''} + (n-2)L''$ is nef
- or $X'' \to Z$ is a Mori fiber space relatively to $K_{X''} + (n-2)L''$ and L'' is (relatively) very ample with one exception (del Pezzo manifold). In all cases there exists a divisor in |L''| with good singularities.

Remark. The classification of the pairs in the second part, thank to the existence of a good section, is classical and reduces to the theory of algebraic surfaces. (Quadric fibration, del Pezzo manifolds,)

MMP on q. p.v.

Marco Andreatt

Polarized vari

Extremal rays $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP

Theorem. Let $Y \subset \mathbb{P}^N$ be a non degenerate projective variety of dimension $n \geq 3$ of degree d and let $\tilde{L} := \mathcal{O}(1)_{|Y}$. Assume that $d < 2codim_{\mathbb{P}^N}(X) + 2$.

MMP on q. p.v.

Marco Andreatt

Polarized var

Extremal rays $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP

Theorem. Let $Y \subset \mathbb{P}^N$ be a non degenerate projective variety of dimension $n \geq 3$ of degree d and let $\tilde{L} := \mathcal{O}(1)_{|Y}$. Assume that $d < 2codim_{\mathbb{P}^N}(X) + 2$.

Then on a desingularization (X, L) the divisor $K_X + (n-2)L$ is not pseudoeffective.

MMP on q. p.v.

Marco Andreatt

ММР

Extremal rays $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP

Theorem. Let $Y \subset \mathbb{P}^N$ be a non degenerate projective variety of dimension $n \geq 3$ of degree d and let $\tilde{L} := \mathcal{O}(1)_{|Y}$. Assume that $d < 2codim_{\mathbb{P}^N}(X) + 2$.

Then on a desingularization (X, L) the divisor $K_X + (n-2)L$ is not pseudoeffective.

Therefore $(Y, \mathcal{O}(1))$ is equivalent, via birational equivalence and first-reduction, to a q.p. pair (X'', L'') in the above Remark.

Kawakita

MMP on q. p.v.

Marco Andreat

Delevised session

Extremal rays $\Delta^{(n-1)}\text{-MMP}$ $\Delta^{(n-2)}\text{-MMP}$

 $\Lambda^{(n-3)}$ -MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-3)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP)

Kawakita

MMP on q. p.v.

Marco Andreat

Polarized va

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-3)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP)

Assume moreover that φ contracts a divisor to a smooth point.

Kawakita

MMP on q. p.v.

Marco Andreat

MMP

 $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-3)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP)

Assume moreover that φ contracts a divisor to a smooth point.

Theorem. Then f is a weighted blow-up of type $(1, a, b, c, \ldots, c)$, where a, b, c are positive integers, (a, b) = 1 and ab|c.

 $L' = \varphi_*(L)$ is a Cartier divisor on Y such that $\varphi^*L' = L + cE$, where E is the exceptional (Weil) divisor.

In particular $\tau(X, L) = (n - 2 + 1/c) > (n - 2)$.

MMP on q. p.v.

Marco Andreatta

MMP

 $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP Since $X = \operatorname{Proj}_{\mathcal{O}_Z}(\bigoplus_{d \geq 0} f_*(\mathcal{O}_X(-dcE)),$ we need to prove that

$$f_*(\mathcal{O}_X(-dcE) = (x_1^{s_1} \cdots x_n^{s_n} \mid s_1 + s_2a + s_3b + \sum_{j=4}^n cs_j \ge dc) := I^d$$

MMP on q. p.v.

Marco Andreatta

MMP

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

 $\Lambda^{(n-3)}$ -MMP

Since $X = \operatorname{Proj}_{\mathcal{O}_Z}(\bigoplus_{d \geq 0} f_*(\mathcal{O}_X(-dcE)),$ we need to prove that

$$f_*(\mathcal{O}_X(-dcE) = (x_1^{s_1} \cdots x_n^{s_n} \mid s_1 + s_2a + s_3b + \sum_{j=4}^n cs_j \ge dc) := I^d$$

Induction:

a) consider a general element $X' \in |L|$ such that $f_*(X') = \{x_n = 0\}$ (since Y is smooth, $f_*(X')$ is Cartier). The restricted morphism $f' := f_{|X'|} : X' \to Z'$ is a divisorial contraction supported by $K_{X'} + (\tau - 1)L_{|X'|}$.

 $\Lambda^{(n-3)}$ -MMP

Since $X = \operatorname{Proj}_{\mathcal{O}_{\alpha}}(\bigoplus_{d \geq 0} f_*(\mathcal{O}_X(-dcE)),$ we need to prove that

$$f_*(\mathcal{O}_X(-dcE) = (x_1^{s_1} \cdots x_n^{s_n} \mid s_1 + s_2a + s_3b + \sum_{j=4}^n cs_j \ge dc) := I^d$$

Induction:

a) consider a general element $X' \in |L|$ such that $f_*(X') = \{x_n = 0\}$ (since Y is smooth, $f_*(X')$ is Cartier). The restricted morphism $f' := f_{|X'|}: X' \to Z'$ is a divisorial contraction supported by $K_{X'} + (\tau - 1)L_{|X'}$.

b) The exact sequence

 $0 \to \mathcal{O}_X(-L-dcE) \to \mathcal{O}_X(-dcE) \to \mathcal{O}_{X'}(-dcE) \to 0$ and the Relative Kawamata-Viehweg Vanishing gives

$$0 \to f_*\mathcal{O}_X(-(d-1)cE) \xrightarrow{\cdot x_n} f_*\mathcal{O}_X(-dcE) \to f_*\mathcal{O}_{X'}(-dcE) \to 0.$$

By induction on n and d the proposition follows

MMP on q. p.v.

Marco Andreat

.

MMF

Extremal rays $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that L: C > 0 and $\tau(X, L) > (n-3)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP)

MMP on q. p.v.

Polarized vari

Extremal rays $\Delta^{(n-1)}$ -MMP $\Delta^{(n-2)}$ -MMP

 $\Lambda^{(n-3)}$ -MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-3)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP)

Assume moreover that φ contracts a divisor E to a curve C.

MMP on q. p.v.

Extremal rays $\Delta^{(n-1)}\text{-MMI}$ $\Delta^{(n-2)}\text{-MMI}$

 $\Lambda^{(n-3)}$ -MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-3)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP)

Assume moreover that φ contracts a divisor E to a curve C.

Theorem. Then, outside a finite set of points, *C* is a smooth and contained in the smooth locus of *Y*.

 φ is the blow up of an ideal $I^{(n)}$ which is the symbolic power of an ideal I which is supported along C and, outside these finite points, is the ideal of the weighted blow up of a smooth manifold along a smooth curve with weight (1,1,b,...,b,0), b a positive integer.

MMP on q. p.v.

Marco Andreatt

Polarized varie

Extremal rays $\Delta^{(n-1)}\text{-MMI}$

 $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\wedge^{(n-3)}$ -MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-3)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP)

MMP on q. p.v.

Marco Andreatt

Polarized varie

Extremal rays $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-3)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP)

Assume moreover that φ is a small contraction.

MMP on q. p.v.

Marco Andreatt

Polarized v.

Extremal rays $\triangle^{(n-1)}$ -MMP $\triangle^{(n-2)}$ -MMP $\triangle^{(n-3)}$ -MMP

Let $\varphi: X \to Y$ be a birational contraction associated with an extremal ray $R = \mathbb{R}^+[C]$ on a q.p. pair, such that $L \cdot C > 0$ and $\tau(X, L) > (n-3)$. (These are the birational maps in a $K_X + \Delta^{n-3}$ -MMP)

Assume moreover that φ is a small contraction.

Theorem. Then ???