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Quasi polarized pairs

Let X be a projective variety with mild singularities (i.e. terminal) of
dimension n.

Let L be a Cartier divisor (a line bundle) which is nef and big.

The pair (X,L) is called a quasi polarized pair.

For instance let X ⊂ PN be a projective variety and L := O(1)|X ,
or better its (partial) desingularizaton and the pull back of L.



MMP on q. p.v.

Marco Andreatta

Polarized variety

MMP

Extremal rays

∆(n−1)-MMP

∆(n−2)-MMP

∆(n−3)-MMP

Quasi polarized pairs

Let X be a projective variety with mild singularities (i.e. terminal) of
dimension n.
Let L be a Cartier divisor (a line bundle) which is nef and big.

The pair (X,L) is called a quasi polarized pair.

For instance let X ⊂ PN be a projective variety and L := O(1)|X ,
or better its (partial) desingularizaton and the pull back of L.



MMP on q. p.v.

Marco Andreatta

Polarized variety

MMP

Extremal rays

∆(n−1)-MMP

∆(n−2)-MMP

∆(n−3)-MMP

Quasi polarized pairs

Let X be a projective variety with mild singularities (i.e. terminal) of
dimension n.
Let L be a Cartier divisor (a line bundle) which is nef and big.

The pair (X,L) is called a quasi polarized pair.

For instance let X ⊂ PN be a projective variety and L := O(1)|X ,
or better its (partial) desingularizaton and the pull back of L.



MMP on q. p.v.

Marco Andreatta

Polarized variety

MMP

Extremal rays

∆(n−1)-MMP

∆(n−2)-MMP

∆(n−3)-MMP

Quasi polarized pairs

Let X be a projective variety with mild singularities (i.e. terminal) of
dimension n.
Let L be a Cartier divisor (a line bundle) which is nef and big.

The pair (X,L) is called a quasi polarized pair.

For instance let X ⊂ PN be a projective variety and L := O(1)|X ,
or better its (partial) desingularizaton and the pull back of L.



MMP on q. p.v.

Marco Andreatta

Polarized variety

MMP

Extremal rays

∆(n−1)-MMP

∆(n−2)-MMP

∆(n−3)-MMP

Classical problems

Problem Given a general element D ∈ |L|
(assume that X is not a cone over D).

Which properties of D lift to X;
do these properties determine X ?

Enriques–Castelnuovo studied the case in which X is a surface and D is
a curve of low genus, or of minimal degree, ...
Fano studied the case in which X is a 3-fold and D is a K3 surface.
Sommese proved that abelian and bi-elliptic surfaces cannot be ample
sections.
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Adjunction Theory

Adjunction Theory wants to classify quasi polarized pairs via the study
of the nefness of the adjont bundles

KX + rL,

with r natural (or rational) positive number.

Assume that there exist r sections of |L| which intersect in a n− r
variety D, with terminal singularities.
To get nefness of KX + rL implies, by adjunction (KX + rL)|D = KD,
to get a minimal model for D.
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zip L into a boundary

Let (X,L) be a quasi-polarized variety and r ∈ Q+.
Lemma. There exists an effective Q-divisor ∆r on X such that

rL ∼Q ∆r and (X,∆r) is Kawamata log terminal.

Def. A log pair (X, ∆), i.e a normal variety X and an effective R divisor ∆, is Kawamata log terminal (klt) if

KX + ∆ is R-Cartier

for a (any) log resolution g : Y → X we have g∗(KX + ∆) = KY + ΣbiΓi with bi < 1, for all i.

Proof: For a Cartier divisor L, nef and big is equivalent to the existence
of E > 0 and Ak, Q-ample divisor, such that L ∼ Ak + (1/k)E for
k >> 0.
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Minimal Model Program- BCHM

By BCHM on a klt log pair (X,∆) we can run a
KX + ∆- Minimal Model Program with scaling:

(X0,∆0) = (X,∆)→ (X1,∆1)→ −−−− → (Xs,∆s)
such that:

1) (Xi,∆i) is a klt log pair, for i = 0, ..., s;

2) ϕi : Xi → Xi+1 is a birational map which is either a divisorial
contraction or a flip associated with an extremal ray Ri;

3) either KXs + ∆s is nef ((Xs,∆s) is a log Minimal Model),
or Xs → Z is a Mori fiber space relatively to KXs + ∆s

(depending on the pseudeffectivity of KX + ∆).



MMP on q. p.v.

Marco Andreatta

Polarized variety

MMP

Extremal rays

∆(n−1)-MMP

∆(n−2)-MMP

∆(n−3)-MMP

Minimal Model Program- BCHM

By BCHM on a klt log pair (X,∆) we can run a
KX + ∆- Minimal Model Program with scaling:

(X0,∆0) = (X,∆)→ (X1,∆1)→ −−−− → (Xs,∆s)
such that:

1) (Xi,∆i) is a klt log pair, for i = 0, ..., s;

2) ϕi : Xi → Xi+1 is a birational map which is either a divisorial
contraction or a flip associated with an extremal ray Ri;

3) either KXs + ∆s is nef ((Xs,∆s) is a log Minimal Model),
or Xs → Z is a Mori fiber space relatively to KXs + ∆s

(depending on the pseudeffectivity of KX + ∆).



MMP on q. p.v.

Marco Andreatta

Polarized variety

MMP

Extremal rays

∆(n−1)-MMP

∆(n−2)-MMP

∆(n−3)-MMP

Minimal Model Program- BCHM

By BCHM on a klt log pair (X,∆) we can run a
KX + ∆- Minimal Model Program with scaling:

(X0,∆0) = (X,∆)→ (X1,∆1)→ −−−− → (Xs,∆s)
such that:

1) (Xi,∆i) is a klt log pair, for i = 0, ..., s;

2) ϕi : Xi → Xi+1 is a birational map which is either a divisorial
contraction or a flip associated with an extremal ray Ri;

3) either KXs + ∆s is nef ((Xs,∆s) is a log Minimal Model),
or Xs → Z is a Mori fiber space relatively to KXs + ∆s

(depending on the pseudeffectivity of KX + ∆).



MMP on q. p.v.

Marco Andreatta

Polarized variety

MMP

Extremal rays

∆(n−1)-MMP

∆(n−2)-MMP

∆(n−3)-MMP

Minimal Model Program- BCHM

By BCHM on a klt log pair (X,∆) we can run a
KX + ∆- Minimal Model Program with scaling:

(X0,∆0) = (X,∆)→ (X1,∆1)→ −−−− → (Xs,∆s)
such that:

1) (Xi,∆i) is a klt log pair, for i = 0, ..., s;

2) ϕi : Xi → Xi+1 is a birational map which is either a divisorial
contraction or a flip associated with an extremal ray Ri;

3) either KXs + ∆s is nef ((Xs,∆s) is a log Minimal Model),
or Xs → Z is a Mori fiber space relatively to KXs + ∆s

(depending on the pseudeffectivity of KX + ∆).



MMP on q. p.v.

Marco Andreatta

Polarized variety

MMP

Extremal rays

∆(n−1)-MMP

∆(n−2)-MMP

∆(n−3)-MMP

MMP for a q.p. pair

Let (X,L) be a quasi-polarized variety. Take r ∈ Q+ and let (X,∆r) be
the klt log pair such that rL ∼Q ∆r.

Run a KX + ∆r-MMP and get a birational klt pair (Xs,∆r
s) which is

either a log Minimal Model (i.e. KXs + ∆s is nef), or Xs → Z is a Mori
fiber space relatively to KXs + ∆r

s.

Remarks/Problems
(Xs,∆r

s) is not necessarily an (r) q.p. pair, i.e. we do not have a
priori a nef and big Cartier divisor Ls such that rLs ∼Q ∆r

s.
Beyond the existence of the MMP, it would be nice to have a
”description” of each steps and eventually of the Mori fiber spaces.
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Extremal rays

For the above program we study the rays
R = R+[C] ∈ NE(X)(KX+rL)<0 ⊂ NE(X)KX<0.

and their associated contractions: ϕ : X → Y
(which can be divisorial, small or a Mori fiber space).
Let F be a non trivial fiber of ϕ; we possibly restrict to an affine
neighborhood of the image of F.

Assume that L.C > 0.
Definition. the nef value: τ(X,L) = inf{t ∈ R : KX + tL is ϕ-nef }.
Note that τ > r.
Note also that the contraction ϕ is supported by the divisor KX + τL
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Base point free technique

Theorem
[..., Fano, Fujita, Kawamata, Kollar, A-Wisniewski, Mella, A-Tasin, ...]

Let X, R = R+[C], ϕ : X → Y , F and L as above; assume that L.C > 0.

dim F ≥ τ − 1 > r − 1; if ϕ is birational dim F ≥ τ > r.
If dim F < τ + 1, or dim F ≤ τ + 1 if ϕ is birational, then L is very
ample (relatively to ϕ).
If dim F < τ + 3 then there exists X′ ∈ |L| with ”good”
singularities (i.e. as in X).
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r = (n− 1)

Consider a KX + ∆r-MMP with r = (n− 1) (or ≥ (n− 1)) and let
Ri = R+[Ci] be a birational ray in the sequence.

Inductively construct a nef and big Cartier divisor Li on Xi such that
rLi ∼Q ∆(n−1)

i :
1) L.

iCi = 0, otherwise, by the above Theorem, we have the
contradiction (n− 1) ≥ dim F > r ≥ (n− 1).
2) Let ϕi : Xi → Y be the contraction associated with Ri. We have a
Cartier divisor L′i+1 such that ϕ∗(L′i+1) = Li.
If ϕ is birational (Xi+1,Li+1) := (Y,L′i+1), if ϕ is small
(Xi+1,Li+1) := (X+

i , ϕ
+(L′i+1)), where ϕ+ : X+

i → Y is the flip.
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the zero reduction

Proposition. Given a q.p. pair (X,L) it is possible to run a MMP which
contracts all extremal rays on which L is zero and obtain a q.p. pair
(X′,L′) which is birational equivalent to (X,L) and such that:

either KX′ + (n− 1)L′ is nef
or (X′,L′) is a Mori space relative to KX′ + (n− 1)L′ and L′ is a
(relatively) very ample Cartier divisor.

Definition. (X′,L′) is called a zero reduction of (X,L).
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Applications

Let (X,L) be a quasi-polarized variety and g(X,L) be its sectional
genus: 2g(X,L)− 2 = (KX + (n− 1)L).L.....L).
(if L is spanned it is the genus of a curve intersection of n − 1 general elements in |L|.

- Then g(X,L) ≥ 0 with equality if KX + (n− 1)L is not nef (therefore
not pseudoeffective).
In particular we have that if g(X,L) = 0 then the zero reduction of
(X,L) is among the above pairs

- Classification of pairs with g(X,L) = 1.

- Classification of pairs of minimal degree
(i.e. Ln = h0(X,L)− n).
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Castelnuovo-Kawakita

Let ϕ : X → Y be a birational contraction associated with an extremal
ray R = R+[C] on a q.p. pair, such that L.C > 0 and τ(X,L) > (n− 2).
(These are the birational maps in a KX + ∆n−2-MMP)

Theorem. ϕ : X → Y is the weighted blow-up of a smooth point in Y of
weights (1, 1, b, ...., b), where b is a natural positive number.
L′ = ϕ∗(L) is a Cartier divisor on Y such that ϕ∗L′ = L + bE, where E
is the exceptional (Weil) divisor.
In particular τ(X,L) = (n− 2 + 1/b) > (n− 2).
Definition. ϕ is called a Castelnuovo-Kawakita contraction.
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Proof

We have (n− 1) ≥ dim F > (n− 2), i.e. dim F = (n− 1) ≤ τ + 1.
Therefore ϕ is a contraction of a divisor to a point and we can assume L
is very ample.

By Bertini we get the existence of sections in |L| with terminal
singularities.
Horizontal slicing: Let X′ ∈ |L| be a generic divisor: we have:
ϕ|X′ := ϕ′ : X′ → S′ is a contraction with connected fibre, around
F ∩ X′, supported by KX′ + (τ − 1)L|X′ .
By horizontal slicing with (n− 2) general sections of |L| we can reduce
to the surface case and τ > 0. Surfaces with terminal singularities are
smooth. Apply now Castelnuovo’s Theorem to have that the (surface)
image is smooth .

Since Y has terminal singularities this implies that Y is smooth at the
exceptional point.
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Proof

Since X = ProjOZ
(⊕d≥0 f∗(OX(−dbE)),

we need to prove that

f∗(OX(−dbE) = (xs1
1 · · · x

sn
n | s1 + s2 +

n∑
j=3

bsj ≥ db) := Id

Induction:
a) consider a general element X′ ∈ |L| such that f∗(X′) = {xn = 0}
(since Y is smooth, f∗(X′) is Cartier).The restricted morphism
f ′ := f|X′ : X′ → Z′ is a divisorial contraction supported by
KX′ + (τ − 1)L|X′ .
b) The exact sequence
0→ OX(−L− dbE)→ OX(−dbE)→ OX′(−dbE)→ 0
and the Relative Kawamata-Viehweg Vanishing gives

0→ f∗OX(−(d − 1)bE) ·xn→ f∗OX(−dbE)→ f∗OX′(−dbE)→ 0.

By induction on n and d the proposition follows
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First Reduction

Proposition-Part 1. Let (X,L) be a q.p. pair. There exists a q.p. pair
(X′′,L′′) which is a (KX + ∆n−2)-MM and which can be obtained with
the following procedure:

Take a zero reduction (X′,L′).

Contract, step by step, all Castelnuovo-Kawakita type extremal
rays, such that L′|E = −bE|E; ϕ′ : X′ → X′′.

Let L′′ := ϕ′∗L
′.

Definition The pair (X′′,L′′) is called a First Reduction of the pair
(X,L).
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First Reduction

Proposition-Part 2. Let (X,L) be a q.p. pair and let (X′′,L′′) be its First
Reduction. Then

either KX′′ + (n− 2)L′′ is nef
or X′′ → Z is a Mori fiber space relatively to KX′′ + (n− 2)L′′ and
L′′ is (relatively) very ample with one exception (del Pezzo
manifold). In all cases there exists a divisor in |L′′| with good
singularities.

Remark. The classification of the pairs in the second part, thank to the
existence of a good section, is classical and reduces to the theory of
algebraic surfaces. (Quadric fibration, del Pezzo manifolds, ....)
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Applications

Theorem. Let Y ⊂ PN be a non degenerate projective variety of
dimension n ≥ 3 of degree d and let L̃ := O(1)|Y . Assume that
d < 2codimPN (X) + 2.

Then on a desingularization (X,L) the divisor KX + (n− 2)L is not
pseudoeffective.

Therefore (Y,O(1)) is equivalent, via birational equivalence and
first-reduction, to a q.p. pair (X′′,L′′) in the above Remark.
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Kawakita

Let ϕ : X → Y be a birational contraction associated with an extremal
ray R = R+[C] on a q.p. pair, such that L.C > 0 and τ(X,L) > (n− 3).
(These are the birational maps in a KX + ∆n−3-MMP)

Assume moreover that ϕ contracts a divisor to a smooth point.
Theorem. Then f is a weighted blow-up of type (1, a, b, c, . . . , c), where
a, b, c are positive integers, (a, b) = 1 and ab|c.
L′ = ϕ∗(L) is a Cartier divisor on Y such that ϕ∗L′ = L + cE, where E
is the exceptional (Weil) divisor.
In particular τ(X,L) = (n− 2 + 1/c) > (n− 2).
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(These are the birational maps in a KX + ∆n−3-MMP)
Assume moreover that ϕ contracts a divisor to a smooth point.
Theorem. Then f is a weighted blow-up of type (1, a, b, c, . . . , c), where
a, b, c are positive integers, (a, b) = 1 and ab|c.
L′ = ϕ∗(L) is a Cartier divisor on Y such that ϕ∗L′ = L + cE, where E
is the exceptional (Weil) divisor.
In particular τ(X,L) = (n− 2 + 1/c) > (n− 2).
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Proof

Since X = ProjOZ
(⊕d≥0 f∗(OX(−dcE)),

we need to prove that

f∗(OX(−dcE) = (xs1
1 · · · x

sn
n | s1 + s2a + s3b +

n∑
j=4

csj ≥ dc) := Id

Induction:
a) consider a general element X′ ∈ |L| such that f∗(X′) = {xn = 0}
(since Y is smooth, f∗(X′) is Cartier).The restricted morphism
f ′ := f|X′ : X′ → Z′ is a divisorial contraction supported by
KX′ + (τ − 1)L|X′ .
b) The exact sequence
0→ OX(−L− dcE)→ OX(−dcE)→ OX′(−dcE)→ 0
and the Relative Kawamata-Viehweg Vanishing gives

0→ f∗OX(−(d − 1)cE) ·xn→ f∗OX(−dcE)→ f∗OX′(−dcE)→ 0.

By induction on n and d the proposition follows
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Kollar-Mori

Let ϕ : X → Y be a birational contraction associated with an extremal
ray R = R+[C] on a q.p. pair, such that L.C > 0 and τ(X,L) > (n− 3).
(These are the birational maps in a KX + ∆n−3-MMP)

Assume moreover that ϕ contracts a divisor E to a curve C.
Theorem. Then, outside a finite set of points, C is a smooth and
contained in the smooth locus of Y .
ϕ is the blow up of an ideal I(n) which is the symbolic power of an ideal
I which is supported along C and, outside these finite points, is the ideal
of the weighted blow up of a smooth manifold along a smooth curve
with weight (1, 1, b, ..., b, 0), b a positive integer.
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Assume moreover that ϕ is a small contraction.
Theorem. Then .... ???
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