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Introduction

The purpose of this lecture is the construction of very singular solutions
(in any space dimension n ) of the incompressible Euler equation.

Let QCCR",0< T < o0 and (x,t) — e(x,t) > 0 a strictly positive
continuous function in 2x]0, T[ , and equal to 0 elsewhere. Then for any
n > 0 there exists a weak solution (u, p) of the Euler equation with the
following properties

o u € C(Rg; L2, (R™M);

° M —3p(x,t) = e(x, 1)

® supeeg [u(s E)|H-1(mey <7

o (u,p) = limy_oo(uk, px) in L?(dx, dt) with (uy, px) € C* compact
support solution of the Euler equation with a convenient forcing fy
converging to 0 in D' .

v
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Comments on the Delellis

@ On one hand the above theorem shows how non physical is the
incompressible Euler Equation. It generates weak solutions starting
from nothing, dying after a finite time and in the mean time having
their own energy thus solving the energy crisis....

@ On the other hand since the Euler equation is the “limit in many
senses " of more classical equations (incompressible and compressible
Navier-Stokes equations, Boltzmann equation and so on... ) this
shows how unstable such more realistic formulation may become
singular when some scaling parameters go to zero.

@ This theorem had several forerunners more precise due to Sheffer and
Shnirelman... However all these constructions share in common the
use of accumulation of terms with small amplitude and large
frequencies.
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Comments on the Delellis Szkelyhidi wild solutions

Both the statement and some steps of the proof share common point with
the problem of isometric imbedding:
@ Nash-Kuiper: For any n € N and r €]0, 1] there exists an isometric
imbedding C! from S"(1) in B™"1(r).
o Cohn-Vossen The above statement is not true if C? regularity is
required!!
@ Therefore in both problem appear an issue of threshold of regularity.
@ For the isometric imbedding the exact threshold is not fully
determined.
@ For regular solutions of the Euler equation C? is a threshold in the
class of Holder and Besov spaces...

1
@ For weak solution B§ o Seems to be a threshold for conservation of

energy (at least any solution with this regularity conserves the
energy)...

@ The contruction provides, with corollary, solutions that will both
violate conservation of energy and uniqueness of Cauchy problem.
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Main steps of the proof

Differential inclusion

Plane wave solutions with Tartar wave cone
A convex hull of the wave cone

“Localised plane waves”

Subsolutions and functionnals

Improvement of the functionnals

Completion of the proof
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h-Principle

The proof consists in decoupling linear evolution and non linear constraint
by the introduction of a linear system and v € £ and a constraint K = {u
such that F(u) = 0} . The sub solutions u € K¢ (the convex hull or as it
will be shown below the A convex hull of K) are the functions u € £ such
that F(u) < 0. Then there will be two methods.
1 Starting from an element ug € £ N K€ contruct a sequence u, € K¢
such that

F(uk) <0, lim F(uk) =0

k—o0

2 Define on K¢ N L a convenient metric topology for which the function F
is lower semi continous. Hence its points of continuity form a residual
Baire set. Then one shows that the points of continuity must satisfy the
relation F(u) =0.

In both case one shows that K C K€ is "big" enough. For that one uses
special oscillatory solutions (plane waves, contact discontinuities) which
are closely related to the constructions of the forerunners.
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Differential inclusion

In, S§ the space of real valued traceless symmetric matrices.

1 The two following systems are equivalent:

(v,p) € L*(R] x R; R” x R7)
ov+V-(veVv)+Vp=0,V-v=0

(viM,q) € L(R] x R; R" x S§§ x R)

2
atv+v-M+vq:o,v.V:o,q:p+%
v?
M =v®v ——I, almost every where
n
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Plane wave solutions with Tartar wave cone

System uncoupled a first order linear pde and a constraint described by

vi?
n

K={(vwM)eR" XS M=vav—
Kr={(v,M)e K;|v|=r}

In}

“Tartar wave cone” A = {(vo, Mo, o) € R" x §§ x R} &
(v, M, q)(x,t) = (vo, Mo, go)h( - x + ct) solution of the linear problem

o AN={(v,M,q) e R" x §§ x R; det [M—i—ql,, v

0]_0}

oV(v, M) € R" x §§ 3q such that(v, M, q) € A;

X .
oVvg € R"3py, € such that (vo,po)h(—g) stationnary plane wave sol.
€
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Comments

o The wave cone is very big contain solutions (even time independent)
with spatial oscillations collinear to any direction.

o Below are considered special plane waves associated to rang 2 matrices.
They are time dependent but with prescribed velocity and pressure:

£12
’V(’;’| — _gp(x7 t) = e(x,t) a priori prescribed

o They will generate the convex hull of K.
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Basic plane waves

a,beR", a#b |al=|b = (a—b,a®a—b®b,0)cA
Proof

oL a®@a—b®b a—->b z |
ze(a—b) ,c=—z-a=—-z-b= 2 b 0 =0

A ={tW(a,b);|a| = |b|=r; a## £b,t >0}
K’ A convex hull of K : The smallest set K’ D K such that:

Va,be K' ., b—ae/N=[a bl CK .
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Proposition 3

(i) For any r > 0 the N\ convex hull of K, coincides with the convex hull of
K, which is equal to

2
Keo = {(v,M)eR"xsg: Vi <rvev-m< T, } 1
n
and K, = K-° n{|v| =r} (2)

(i) There is a constant C = C(n) > 0 such that for any r > 0 and
z = (v, M) in the interior of K° there exists A\ = (v, M) € A, such that

[z =\ z+ )] CintKr®

[v| > %(r2 — |v|?) and dist ([z — X,z + \],0K) > = d/st (z,0K °)

v
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Comments

o K59 is for the Euler equation a set of subsolutions.

e In particular 0 € Kf° is a subsolution. Therefore wild solutions will be
constructed from 0.

o The point (ii) says that as long as a subsolution is not on the boundary
(a solution) it is the center of a segment of size bounded from below and
this will be used to add oscillations to make it converge to the boundary.
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Proof of (i)

Let C, the right hand side of (1) One has K, C C, then one shows (a) C;
is convexe; (b) C; is compact; (c) K, contains all the extremal points of
C, then the Krein-Milmantheorem implies K° = C, .

(v, M) = ®(v,M) = opmax(v®@ v — M) = gegai((l)((f -v)? = (ME,€))

2
®(v, M)convex and C, = ®~1([0, %]) N{|v|] < r} = convexity (a)

2 2
r r

M>v@v——I, > ——I, trace(M) = 0 = Compacity
n n

For (c) write v®@ v — M = diag(A1 > A2 > ... > \,) and show that any
point with |v| < r and A\, < r?/n is not extremal.
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Localised Plane waves, Proposition 4

Let r > 0,\= W(a,b) € A,,|a| = |b| = r > 0, b # +a introduce the 3
order differential operator A(V) = (A,(V), Au(V)) : C(R™H R x SF) :

AL(V) = (a'bF — b'a")ou
k,l

Al (A) = Z(biak — @' bF) O + Z(bjak — &b )0y
p K

(i) For any ¢ € C(R™1) A(V)(¢) is a solution of the linear system:
V-A(V)(¢) = 0,0:A/(V)(¢) + V- Au(V)(¢) = 0
(i) With 6(x, £) = v(1H27==)
A(VY(®) = 225-(a -~ b), (a3 — b b)) (L=,




Corollary

For any r >0, A € A, and any ¢ € C2°(R) there exists
(& ¢) €R" X R, £ # 0 such that

with ¢(x,t) = (€ - x + ct), A(V)p = Mp(§ - x + ct)

Proof: Above take:

b
s=la+ b2, §=(257)3, g—a; L c=—

s
g
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Localised plane waves, Proposition 4

Let O C R" open bounded subset of R”,

I =]to, t1[C R, r > 0,\ = (v, M) C A, V a neighbourhood of

[\ A CR” x Sf . Let

OO, 0el0,(t1 —t)/2], lp=[to+6,t1 —0]. Then for any n >0
there exists (v, M,0) € C°(O x I; V) solution of the linear system with:

[v?
3

Ve V(. Ol < and. inf |@/|/ v(x, £)|2dx >
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Localised plane waves

direction des oscillations

A4
o,

support de
(0, M

Figure from C. Villani Expose Bourbaki.
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Introduce ¢(x, t) with compact support in O x [ equal to 1 in O x .
With A = (v, M) introduce &, ¢ as above.

ze(x, t) = (ve, M, )(x, t) = A(V)[€3¢(X7 t) Cos(g

)]
§-x+ct
€

Leibnitz formula = z(x, t) = Asin( )+ O(e)

On O’ use

1

1 24 — (72 2o x et v
o /O/]v(x, t)|“dx = [v| o /O' sin( - )dx+O(e) > 3 +0(e)

Eventually use for ¢ € H(R")
lim / ze(x, t)¢(x)dx =0
e—0 Rn
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Space of subsolutions.

Xo = {z = (v, M) € CZ°(Qx]0, T[;R" x S§)}
atv_|_v.MZO,V'VZOV(th)Z(X’t) € int Kz;Ze(Tt)
\V/(Qo CcC Q, T 6]07 T/2[)

)2
Jrg, = sup [e(x,t) — 7“/()(’ ) Jdx
T<t<T—7JQ 2
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Space of subsolutions; Proposition 5.

Proposition

(Nz=(v,M) e Xy and p=— |v| = (v, p) solution of the Euler equation
with a forcing term f =V - (v ® v— ¥ — M) e C(Q2x]0, T[; R").

(i zk = (vk, Mi)ke — z = (v, M) a sequence of elements of X
converging in C(]0, T[; L2 .()) such that for :

loc
V(7,0) Jray(vk) — 0.

Then v € C(R; L2(R")) is a weak solution of the Euler equation which

2
satisfies M = e(x, t) = —5p(x, t) and which in particular is 0, outside
Qx[0, T]

v
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The fact that v € C(R; L2(R")) is a consequence of Proposition 3 and the
fact that it is a solution is a consequence of Proposition 5.

The construction of the sequence involves two steps...

First a step of improvement and second a step of iteration
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Improvement Proposition 6

Letz=(v,M)e Xo,/€[L,...1],0<T <...<7<...<T and
Q) cC Q) CC Q; Assume that

VI, J;.0,(v) > a(l) >0 and n > 0given (3)

Then there exists a family of strictly increasing functions 3;(«) and an
element 2/ = (v/, M') such that:

12" = 2l e (o, 71:H-1(0)) < 7 (4)
Vil <I<IL, JT/,Q/(V,) < JT/,Q/(V) — Bi(eu) (5)
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In the spirit of the Nash-Moser theorem one introduces a regularizing
function p(x, t) Start from zg = 0 and ¢y > 0 assume for j < k — 1 the
existence of sequences z; = (vj, M;),0 < ¢; < j~1,n; such that

sup |z/ — zjx pe;| < 2°WI<k-landj<k-1
t

sup (21 — zi-1) | w1y < m < m27VI < k=1
t

sup (21 — z1-1) * peslliae) <27V < T < k-1
t

Jrai(vk-1) < I, (vik—2) — Bi(Jr 0 (vk—2)) Vi < k-1
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Then with the proposition 6 choose zx such that

Jr0i(vk) < I (k1) — Bi(Jr 0 (vk-1)) V) < k
sup I(zx = zk—1) | H-1(Q) < M«

with 7, small enough to imply
- 271 i< k-1
sup I(zk — zk—1) * pe;l2() < j <
and sup |(zx — zk—1)[H-1(@) < 2~
t

Eventually choose ¢, < k=% such that

|z — zj % pe | <275 Vj < k

Lecture 2 The wild solutions of DeLellis and Szekelyhidi



The sequence (zx) is bounded in L°(R"” x R) hence converges weakly to
z=(v,M) € L2(R" x R;) . Moreover

Slip ”Z”H—l(Q) < Z |zk1 — Zk”H—l(Q) < anik =27
0<k .

For fixed j, (7j,€;) and k > j one has in C(]7j, T — 7;]; L3(Q)))

|2k = 2| <llzk = 2k % pe | + |26 % pe, = 2% pe, | + 12 % pe, — 2]

245 py =2 % peg| = i 2k pe, — 2% pe | < D (@1 — 21 % e
1>k

Therefore with the Proposition 6

lzxk — z] <6 x 27K
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Convergence

With the j strong convergence (in C([rj, T — 7;]; L?(Q;)) . ) The relation:

Jr9;(Vir1)) < Jrai(vik) — Bi(Jr.;(vk))
= JTJ',QJ'(V) < JTJ',Q,'(V) - BJ(JU,Qj(V)

implies J;, o.(v) = 0.
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One step improvement

Qox|r, T — 7[CcC Qx]0, T[
z=(v,M) e Xo with J. q,(v) > a>0 «€]0,1]

Then for any 1 > O there exists an element z/ = (v, M') € Xy such that

12" = 2l (o, r:m-1()) < 1 and Jrg (V') < Jray(v) — ()
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Proof of the one step improvement

Fic. 4. Pavage de Qg x [r, T — 7]

Figure from C. Villani Expose Bourbaki.

jeudi 27 mai 2010
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Proof of the one step improvement for fixed value of t

Start with a convenient covering by N cubes such that on each cube the
oscillation of z is bounded by /10 with notational abuse denote by
C'cc CeC,C’"=0.9C cubes their centers, sub cubes and introduce

¢ > 0 such that )

< -
©=30|C'N

With oscillations and Riemann sum type construction one has:

: YOP, . o
>, AICle -5 = ¢

e(C)fL(g)‘2 >ca
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(v, M) = (v,M) + Z(vc, Mc) ,support(ve, M¢c) cc C'
C

JT,QO(V) - JT,QO(V/) =
lv(x, 1) V/(x, )]
/Qo(e(x, ELL S /Qo(e(x, P LAGL) P

v (x, t)[2 v(x, t)[?
:/(\ (x, )7 |v(x 1)l )
Qo

2 2

_ /'V” 0P 4, +/ V(1) - ve(x, t)dx

e(C)— Q>ca

Z / lve(x, t')|2
e(C)— >ca

- Z Iv( Ollve( Ol -1

e(C)—L(g)lzzca

Y
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There exists A = (v, M) such that

(e(C) — M52)

leloo

By continuity there exists a neighborhood V of [—A, A] such that

v| > C

z(x,t)+V C inth/"m V(x,t) e C

)

With the proposition 4 one constructs a localised solution z¢ with support
in C value in V and such that

sup |vc(.t)| -1 small enough (6)
t

v 2 % 2
CI'\ [ velxPax > § 2 Cele(0) - Y

To complete the proof use the relation:

v 2
> Ucieo) - M -

e(C)7MZCOL
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