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Abstract. For a group G acting on an affine variety X, the sep-
arating variety is the closed subvariety of X ×X encoding which
points of X are separated by invariants. We concentrate on the in-
decomposable rational linear representations Vn of dimension n+1
of the additive group of a field of characteristic zero, and decom-
pose the separating variety into the union of irreducible compo-
nents. We show that if n is odd, divisible by four, or equal to two,
the closure of the graph of the action, which has dimension n + 2,
is the only component of the separating variety. In the remaining
cases, there is a second irreducible component of dimension n + 1.

1. Introduction

Let k be an algebraically closed field, and let G be an algebraic
group acting rationally on an irreducible affine variety X. This action
induces an action on k[X], the ring of regular functions on X, via
(σ ∗ f)(u) = f(σ−1 ∗ u). The ring of invariants is the subalgebra
k[X]G ⊆ k[X] formed by the elements fixed by G, or equivalently, the
subalgebra formed by the elements which are constant on the orbits.
Thus, for x, y ∈ X and f ∈ k[X]G, having f(x) 6= f(y) implies that
x and y belong to distinct orbits. In this situation, we say that the
invariant f separates x and y. A separating set is a set of invariants
which separate any two points which are separated by some invariant
(see [1, Definition 2.3.8]).

The separating variety

SG := {(x, y) ∈ X ×X | f(x) = f(y) for all f ∈ k[X]G}
provides an alternative characterization of separating sets. Namely, if
δ : k[X] → k[X] × k[X] is the map defined by δ(f) := f ⊗ 1 − 1 ⊗
f , then E ⊆ k[X]G is a separating set if and only if VX×X(δ(E)) =
SG = VX×X(δ(k[X]G)), where V denotes the common zero set of a set
of polynomials. The separating variety encodes which points can be
separated using invariants. In the case of finite groups, the invariants
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separate the orbits, and so the separating variety is in fact equal to the
graph of the G-action:

ΓG := {(x, σ · x)) ∈ X ×X | x ∈ X, σ ∈ G}.
This fact played a central role in the proof that, when X is a repre-
sentation of a finite group G, if there exists a polynomial separating
algebra, then the action of G on X is generated by reflections (see [2,
Theorem 1.1]).

In general, we have ΓG ⊆ SG. Moreover, as SG is Zariski-closed, we
also have ΓG ⊆ SG. Even for reductive groups, this inclusion can be
strict (see [5, Example 2.1]). The invariants may not always separate
orbits (as for the natural action of the multiplicative group on a vector
space), but in the case of reductive groups, they do separate disjoint
orbit closures (see [6, Corollary 3.5.2]). Exploiting this, Kemper gives
an algorithm to compute the separating variety and then a separating
set (see [5, Algorithm 2.9]), which is the first step in his algorithm to
compute the invariants of reductive groups in arbitrary characteristic
(see [5, Algorithm 1.9]).

Our motivation is to better understand the separating variety in the
case of non-reductive groups. We concentrate on what is perhaps the
simplest situation: algebraic actions of the additive group Ga = (k,+)
on an irreducible affine variety X, where k is a field of characteristic
zero.

Actions of the additive group on X are in one to one correspondence
with locally nilpotent derivations (abbreviated LND) on k[X]. Recall
that a locally nilpotent derivation D is a k-linear map k[X]→ k[X] such
that D(ab) = aD(b) + bD(a) for all a, b ∈ k[X] and, for all a ∈ k[X],
there exists an m ≥ 1 such that Dm(a) = 0. A locally nilpotent
derivation D on k[X] induces an action ∗ : Ga × k[X]→ k[X] via

(−t) ∗ f := exp(tD)f =
∞∑
k=0

tk

k!
Dk(f) for t ∈ Ga, f ∈ k[X].

The invariant ring k[X]Ga coincides with the kernel of D and is de-
noted by k[X]D. We write SD = SGa to denote the separating variety
corresponding to the action induced by the locally nilpotent derivation
D, and ΓD to denote the graph of the corresponding Ga-action.

An important contribution of the LND approach is van den Essen’s
algorithm to compute the kernel of a LND, and thus the invariants of
a Ga-action (see [7]). An element s ∈ k[X] such that Ds 6= 0 and
D2s = 0 is a local slice. By the Slice Theorem (which is in fact the
first step of the algorithm, see [7, Section 3]), for a local slice s and any

f ∈ k[X], the element π(f) := exp(tD)f |t:=−s/Ds is in k[X]DDs, and the

algebra homomorphism π maps k[X] onto k[X]DDs. We are particularly
interested in the plinth ideal pl(D), that is, the ideal of k[X]D formed
by the images Ds of all local slices s together with zero.
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In Section 2, we give a rather rough description of the separating
variety for additive group actions.

In Section 3, we focus further on the basic actions of the additive
group, that is, the finite dimensional indecomposable rational linear
representations of Ga. We use the separating set constructed in [4] to
compute the separating variety and write it as the union of irreducible
components (Theorem 3.1).

Remark 1.1. This document in an abridged version of the paper [3] by
the same authors.

2. Separation properties of invariants

We give two general results on separating properties of invariants of
additive group actions.

Proposition 2.1. If S ⊆
√

pl(D)k[X], then the invariants separate
orbits outside VX(S), that is,

SD \ (VX(S)× VX(S)) ⊆ ΓD.

Proposition 2.2. Let I ⊆
√

pl(D)k[X] be an ideal of k[X], and con-
sider the canonical projection τ : k[X]→ k[X]/I, given by f 7→ f + I.
Let A ⊆ k[X]D be a separating algebra. If h1, . . . , hr are elements of
k[X] such that k[τ(h1), . . . , τ(hr)] = τ(A), then the separating variety
decomposes as

SD =
(
VX×X(δ(h1), . . . , δ(hr)) ∩ (VX(I)× VX(I))

)
∪ ΓD.

3. The basic actions

Basic actions are induced by the Weitzenböck derivations Dn =
x0

∂
∂x1

+ . . . + xn−1
∂

∂xn
on the polynomial rings k[x0, . . . , xn] = k[Vn].

We recall some results and notation from [4], where separating sets for
the basic actions were first constructed. Define the invariants

fm :=
m−1∑
k=0

(−1)kxkx2m−k +
1

2
(−1)mx2m ∈ kerDn for m = 1, . . . ,

⌊n
2

⌋
,

and f0 := x0. For m = 0, . . . , bn−1
2
c, [4, Equation (3)] also gives poly-

nomials sm such that Dnsm = fm. It follows that

In := (x0, . . . , xbn−1
2
c) =

√
(f0, . . . , fbn−1

2
c) ⊆

√
pl(Dn)k[Vn].

Consider the projection τ : k[Vn] → k[Vn]/In. We can reformulate
[4, Proposition 3.1] as follows:

τ(k[Vn]Dn) =

 k for 2 - n,
k[τ(x2m)] for n = 2m, 2 - m,

k[τ(x2m), τ(x3m)] for n = 2m, 2 | m.
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Proposition 2.2 then implies that the separating variety SDn is
(1) (

VVn(In)× VVn(In)
)
∪ ΓDn , if 2 - n,(

VVn×Vn(δ(x2m)) ∩ (VVn(In)× VVn(In))
)
∪ ΓDn , if n = 2m, 2 - m,(

VVn×Vn(δ(xm)) ∩ (VVn(In)× VVn(In))
)
∪ ΓDn , if n = 2m, 2 | m.

Theorem 3.1.

(a) If n is odd, divisible by four, or equal to 2, then the separating
variety is equal to the Zariski closure of the graph of the Ga-
action, that is, SDn = ΓDn.

(b) If n = 2m and m ≥ 3 is odd, then the separating variety has
two irreducible components:

– ΓDn, which has dimension n+ 2,
– and a second of dimension n+ 1:

VVn×Vn

(
xm ⊗ 1− 1⊗ xm

)
∩
(
VVn(In)× VVn(In)

)
.
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