FOUNDATIONS OF INVARIANT THEORY FOR THE DOWN OPERATOR

GENE FREUDENBURG

ABSTRACT. This paper lays out the basic theory of the down operator D of the infinite polynomial
ring R = k[zo, 1,2, ...], defined by Dz; = z;_1 (: > 1) and Dzo = 0. Here, k is any field of
characteristic zero. The only linear invariant is zg, and the quadratic invariants are well known
and easily described. One of the paper’s main results, Thm. 6.2, gives a complete description of
the cubic invariants, ordered according to bi-degree and the number of variables involved. The
distinction between core and compound invariants is introduced, and quartic and quintic invariants
are studied relative to this property. As an application of the theory, Thm. 8.2 gives a new family
of counterexamples to Hilbert’s Fourteenth Problem; the proof of non-finite generation is much
simpler than for previously known examples.

1. INTRODUCTION

One goal of classical invariant theory was to understand the invariants of the natural action of
the group SLy(C) on the vector space of binary forms of degree n, together with its semi-invariants,
which are the invariants of the subgroup G,. Writing in 1906, Elliott [15] referred to “the old severe
question” of finding minimal generating sets of these invariant and semi-invariant rings. In the
intervening century, our knowledge of these generating sets has improved but little over what was
known at the time. Indeed, the SLs-invariants are currently known only for n < 10. The cases
n < 6 were completed by Gordan in 1868, and the case n = 8 by Shioda in 1967; the case n = 7 was
settled in 1986 by Dixmier and Lazard; and the cases n = 9, 10 were completed in 2010 by Brouwer
and Popoviciu.

Our main interest is in the G,-action, where the situation is even more opaque: These invariants
are known only for n < 8. Gordan gave generators for n < 6; the case n = 8 was done by Shioda;
and the case n = 7 was completed by Croni in 2002. Unlike the SLo-invariants, the G,-invariants
satisfy A, C A,4+1 for each n. It is important to understand these rings for reasons that go beyond
invariant theory.

One difficulty of the subject is that many generators for A,,, typically found as the result of lengthy
calculations, become superfluous in higher dimensions. Thus, existing algorithms for calculating
these invariants are not progressive, that is, knowing generators for A,,_; may be of little use in
finding generators of A,. From another perspective, this is not surprising: The partial derivative
0/0x, restricts to A, and its kernel is A,,_1. In general, we do not expect the generators of the
kernel of a locally nilpotent derivation of a ring to form a subset of generators for the ambient ring.

Given n > 2, let u(n) denote the minimal number of homogeneous generators of A, as a C-
algebra, and let d(n) be the highest degree occurring within a minimal generating set. As seen in
Table 1, these two functions exhibit seemingly erratic behavior, at least based on the few values we
know.

Motivated by these considerations, this paper investigates invariants of the locally nilpotent
derivation induced by the down operator D of the infinite polynomial ring R = k[xg,x1,z2, ...],

TABLE 1. Known values of u(n) and §(n)

2 3 4 5 6 7 8
pn) [2 4 5 23 26 147 69
2 4 3 18 15 30 12
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defined by:
Dx;=xz;1 (i>1) and Dzy=0

Here, k is any field of characteristic zero. If A denotes the kernel of D, then A, C A for each n > 0.
The overarching goal of this approach is to describe a homogeneous generating set of A which is
minimal in some appropriately defined sense.

Using the infinite polynomial ring R enables us to introduce a single natural mapping which
unifies the whole theory. In Section 3, we define the operator 6 : R — A, which is the main tool
used in constructing invariants. Theorem 3.1 asserts that the sequence of A-modules

RLR, 2R >0

is exact, where R, denotes the ideal of polynomials which vanish at 0. Equivalently, every homo-
geneous polynomial of positive degree lies in the image of D, and every homogeneous invariant of
positive degree lies in the image of 6.

The theory is applied in Sections 5 and 6 to give a complete description of the cubic invariants of
D. One of the main results of this paper is Thm. 6.2, which gives a basis for a space of irreducible
cubic invariants complementary to the space of reducible cubics. This basis is ordered in such a way
that cubics in A,, precede those in A, 11 — A,. With this description, one can immediately identify
all cubic generators in A,, for any given value of n. No algorithm is required.

Section 7 considers compound and core generators in higher degrees. Section 8 uses properties
of the down operator to construct a new family of counterexamples to Hilbert’s Fourteenth Prob-
lem; the theory provides a way to give a much simpler and shorter proof than proofs for previous
counterexamples.

The author gratefully acknowledges the assistance of Leonid Bedratyuk, Andries Brouwer, Igor
Dolgachev, and Frank Grosshans, whose comments and advice led to a number of improvements in
this paper.

1.1. Background. Interest in the invariants and semi-invariants of SLo dates back to at least the
work of Boole, Cayley, Eisenstein, and Hesse. Cayley came to believe that the ring A; was not
finitely generated. Subsequently, Gordan showed that both the invariant and semi-variant rings
must, in fact, be finitely generated, and calculated generators for these rings up to n = 6 [20].
Gordan’s work inspired numerous attempts in the following decades to establish generating sets for
these rings beyond n = 6, but most of these attempts resulted in proposed generating sets which were
either incomplete or overdetermined, due to the size and complexity of the polynomials involved. For
the case n = 8, Sylvester and Franklin (1879) and von Gall (1880) made important contributions,
but the first to determine and prove the minimal number of generators for the invariants and semi-
invariants was Shioda (1967) [17, 38, 34]. The reader is referred to [10, 26, 29, 31] for accounts of
these developments from the Nineteenth Century.

The first accurate calculation of a minimal generating set for A7 is due to Croni in 2002 [11].
In 2009, Bedratyuk, apparently unaware of Croni’s results, produced an equivalent generating set
for A7 [2]. In addition, Cerezo, Croni and Bedratyuk each confirmed the results of Shioda for Ag
[8, 1, 11]. For n = 9,10,12, certain lower bounds are known. Croni showed that 1(9) > 474 and
§(9) > 20. These bounds were improved by Brouwer and Popoviciu, who also gave bounds for n = 10
and n = 12 [4, 5, 6]. Their results are summarized in Table 2.

TABLE 2. Brouwer-Popoviciu Lower Bounds

n 9 10 11 12
u(n) | >476 >510 open > 989
d(n) | 222 >21 open >17
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In 1879, Jordan showed that §(n) < 2nS. This is still the best available upper bound for degrees,
but is too large to be of practical use in calculating generators for A,. Kraft and Weyman give a
modern proof for Jordan’s bound in [27].

Many of the results in Table 1 and Table 2 were originally found using the symbolic method,
which Weyl called “the great war-horse of Nineteenth Century invariant theory” (see [26]). The
reader is referred to [14, 26, 32] for details about the symbolic method and classical techniques for
constructing invariants.

1.2. Cubic Invariants. In Lecture XIX of Hilbert’s 1897 course in invariant theory at Gottingen,
Hilbert set out to explicitly identify all quadratic and cubic covariants of the SLs-actions (equiva-
lently, all quadratic and cubic invariants of the down operator). A basis for the space of quadratic
invariants is given by the images 6(x,,) for even n > 0, and Hilbert lists these. Turning his attention
to cubics, Hilbert states:

Regarding the covariants of degree three, they all have odd weight p = 27 + 1 and
are those which occur in the following expression. ([23], pp 62-63)

He then displays the cubic polynomial 6(z1x,—1) as the leading coefficient of the corresponding
covariant. This is clearly a mistake — for example, the generating set for A4 calculated by Cayley
includes a cubic of weight 6. Lecture XIX concludes:

If we now add covariants f - f,, where f, runs through the covariants of degree two
for even p, then we have the complete in- and covariant system of degree three. (p
64)
Corollary 3.2(b) below shows that there are, in fact, many other cubic invariants of the down operator
not accounted for in Hilbert’s description.
Hilbert’s stated goal in considering the quadratic and cubic invariants is the following.

...we want to show that every in- and covariant of a form can be expressed as a
polynomial function of the in- and covariants of degrees two and three — aside from
the base form itself. (p 61)

In Lecture XX, Hilbert succeeds in showing that A, is rationally generated over C(zo) by the
quadratic and cubic invariants which he defined in Lecture XIX, namely,

0(x2),0(x122),0(x4),0(z124), -+ ,0(x125—1) OF O(2y,)

the latter depending on whether n is odd or even, respectively. This fact was first shown by Stroh
[35].

In general, work on cubic G,-invariants is sparsely represented in the literature. A terse symbolic
description of these was given by Grace and Young in 1903 [21] (§260). In §6 of their paper, op. cit.,
Kraft and Weyman offer a more detailed description of cubic invariants in terms of their symbolic
representations, giving spanning sets for cubic invariants of a given weight for a binary form of a
specified degree. An analysis of cubics of the type carried out by Kraft and Weyman is given by
Hagedorn and Wilson in [22]. In it, the authors determine an explicit basis for a space of irreducible
cubics complementary to the subspace of reducible cubics in symbolic notation. Their paper also
recognizes the error in the statement about cubics appearing in Hilbert’s lecture notes.

2. PRELIMINARIES

We assume throughout that k is a field of characteristic zero. Given an integer m > 0, kI

denotes the polynomial ring in m variables over k.

2.1. Vector Algebras. Let V be a vector space over k. Then dim V indicates the dimension of V'
as a vector space over k. The operator A € End(V) is locally nilpotent if, to each v € V, there exists
a positive integer n with A™(v) = 0. The set of locally nilpotent operators on V is denoted LN (V).
Note that, when dim V' is finite, locally nilpotent operators are nilpotent.
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Definition 2.1. By a vector algebra we mean a k-vector space V equipped with a bilinear product
mapm:V xV = V.

The vector algebra consisting of vector space V' and product 7 is denoted (V, 7). If W C Vis a
vector subspace and 7 restricts to W x W, then (W, ) is a vector subalgebra of (V, ).

Definition 2.2. The vector algebra (V, ) is:

1. trivial if m(u,v) =0 for all u,v € V
2. commutative if (u,v) = w(v,u) for all u,v € V
3. associative if w(mw(u,v),w) = w(u,w(v,w)) for all u,v,w €V

Definition 2.3. A derivation of the vector algebra (V, ) is a k-linear map ¢ : V' — V such that,
for all u,v € V:
o (u,v) = w(du,v) + m(u, év)
The set of derivations of (V,7) is denoted Der(V, ).
Definition 2.4. Let (V,7) be a vector algebra. Elements of the set
LND(V, ) := Der(V,7) NLN(V)
are locally nilpotent derivations of (V7).

In the present work, the vector algebras used are those induced by locally nilpotent derivations.
Their products are commutative or anti-commutative, but not associative. For details regarding the
theory of locally nilpotent derivations on commutative k-domains, the reader is referred to [18].

2.2. Degree Closed Subalgebras. Let B be a commutative k-algebra with degree function
deg: B - NU{—o0}
and induced filtration:
B =Ug>0Bg where Bg={f¢c B|degf <d}
If A C B is a subalgebra and d > 0, set Ay = AN By. We make the following definitions.
e A C B is degree closed in B if and only if, for every d > 0:
ANk[By] = k[A4]

e Given A C B, the degree closure of A in B is the intersection of all degree closed subalgebras
of B containing A, denoted deg(A).

e f € By— By_1 is compound if and only if f € k[By_1]. Otherwise, f is a core element of B.

Example 2.1. If B = k[, ...,x,] is a polynomial ring with standard degree function, then every
variable x; is a core element of B, and every coordinate subring k[x1,...,z;] is degree closed in B
(1<i<n).

It is easy to check the following properties.

1. A=Kk[Ay] for some d >0 = AnNk[B.]=k[A.] for every e > d
2. A and A’ are degree closed in B = AN A’ is degree closed in B
3. deg(A) is degree closed in B

Suppose C' is a commutative k-algebra with a degree function, and A, B are subalgebras with
ACBcCC.

4. Ais degree closed in C' = A is degree closed in B
5. A is degree closed in B and B is degree closed in C = A is degree closed in C'
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2.3. Products Induced by Derivations. Let R be a commutative k-algebra. The set of k-
derivations of R is denoted Derg(R), and LND(R) is the set of locally nilpotent derivations. We
show how any D € Derg(R) induces a product on R which generalizes the classical transvectant.
According to Olver and Sanders:

The transvectants are the most important computational tool in the classical invari-

ant theory of binary forms....In the symbolic calculus of classical invariant theory, the

transvectants are based on a fundamental differential operator, known as Cayley’s

omega process. ([30], p 252)
As in the classical era, the generalization presented here is the main tool for constructing invari-
ants (i.e., kernel elements) of D when D is locally nilpotent. The crux of the matter is found in
Prop. 2.2(d).

R is a k-vector space equipped with a product 7, and as such it is a vector algebra (R, 7). Suppose

that D € Derk(R) is non-zero. Then D is a linear operator on the vector space R. For each n > 0,
define the binary operation ¢2 : R x R — R by:

n

¢7?(f7 g) = (vafa X an) : ((_1)nDng’ X _ngg) = Z(_l)iDifDniig

i=0
It is easy to see that ¢Z is bilinear over k, meaning that (R, ¢2) is a vector algebra. Observe that
oF =m.
We will also use the notation ¢2(f,g) = [f,g]?, or more simply ¢,(f,g9) = [f, g, when the
underlying derivation is understood. Note that [f, 1], = D" f.

Proposition 2.1. The following properties hold for ¢,.
(a) @ is bilinear over ker D

(®) [g, fln = (=1)"[f, g]n for all f,g € R and n >0
(c) Given f € R andn > 1, [f, fln =0 if n is odd; if n > 2 is even, then:

1
[f fla=2D"f - f—[Df, Dfln-2 =2 > (-1)'D'fD"7'f | +(~1)%(D% f)?

=0

(d) D € Der(R, ¢y,) for each n >0

Proof. Parts (a)-(c) follow easily from the definition of ¢,,. For part (d): From the product rule for
inner products (see p. 79 of [18]), we have:

D([f.gln) = D((vaf,n-,D”f)‘(( n"D"g,...,—Dg,q))
= D(f,Df,..,D ) ((-1)*D"g,...,—Dg,g)
+(f,Df,...,D"f)-D((-1)"D"g,...,—Dg,g)
= (Df,D?*f,..., D”“f) ((-=1)"D"g,...,—Dg,g)
+(f,Df,....,D"f) - ((-=1)"D" g, ..., —D?g, Dg)
= [Df,gln +[f,Dgln
Therefore D € Der(R, ¢y,). O

Next, assume that D € LND(R). Then D € LN(R), and Prop. 2.1(d) implies D € LND(R, ¢,,)
for each n > 0. The degree function degp on R is defined by:

degp(f) =min{n > 0| D" f =0} (f#0)
A local slice of D is any t € R with degp t = 1. This degree function induces the filtration:
R=UnezR™ | R™ ={r e R| degpr < n}
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Note that R(®) =ker D and R™ = {0} for n < 0.
Proposition 2.2. Let D € LND(R).
(a) Forallr,s €Z:
¢n : R x RE) - RU+s—m)
(b) Ifg € R'™ and m < n, then for all f € R :
[f:9ln = D" f, glin
(c) If f,g € R™ and m < n < 2m, then:
[fsgln = (=1)*" " [D"™ f, D" " glom
(d) ¢, : R™ x R — RO for each n >0
(e) If m > 1 is odd, then:
¢m : R™ x R — REn=m=1)
(f) If n > 2 is even, then:
¢n_1: R™ x R™ — R
(g) (Wronskian) Given n > 1, if fo, fi,..., fn € R™, then:

Wp(fos f1s s fr) = [ [[fo, fil1, fol2, -+, fuln

Proof. (a) This follows by definition of ¢,.
(b) If g € R(™), then:

(.9l = (f,Df,....D"f)-(0,...,0,(=1)™"D™yg, ...,—Dg, g)
= (D"™f,...D"f)-((—1)™D™g, ..., —Dg, g)
= [D"""f,glm

(c) This follows by two applications of part (b).
(d) Let f,g € R™. Then part (b) implies:
[Df.gln = (=1)"[g, Dfln
= (=1)"[Dg,Dfln—
= (=1D)"(=1)""'[Df, Dgln-
= —[Df, Dgln—1

In the same way, since f € R, we obtain [f, Dg], = [Df, Dgl,_1. It follows from the
product rule that:

D([fvg]n) = [vag]n+ [vag]n =0

(e) Let t € R be alocal slice of D, and let K = frac(ker D). Given F' € R, write F' =3, a;tt
for a; € K. Given i > 0, define ¢;(F) = a;t'. Let r,s,k > 0 be given, with F' € R and
G € R®). Then generally we have:

€rts—k ([ Gl) = [e-(F), es(G)]x
Suppose that f = > ., u;t* and g = > 0<j<n v;t7. Since m is odd, we have:
€an—m ([f,9lm) = [en(f), €n(9)lm = [unt" vnt" ] = upvp[t™, "], =0
Therefore, degp[f, glm < 2n —m.
(f) This is a special case of part (e).
(g) This follows by induction on n using properties of the Wronskian found in [18], Cor. 2.20.
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Recall that any local slice ¢t of D induces an algebra map 7; from R to the localization of ker D
at Dt, called the Dizmier map induced by ¢; see [18].

Proposition 2.3. Lett € R be a local slice of D.
(a) Forall fe Randn>0:

f7 tn n! Z Dt)n iy

(b) (Dixmier map) Given n >0, if f € R™, then [f,t"], = n!(Dt)"m(f)
(c) Givenm,n >0, f € R™, and g € R"™ :
(n 4+ m)[f t"]nlg, " Jm = nlmd [fg, 4" o gm
Proof. (a)

n

[f7tn]n = Z(_l)iDifDn_i(tn)

’L

_ Z Dt)n ’Lt’L

=0

(b) This follows from part (a) and the definition of m; .

(c) This follows from part (b) and the fact that m; is an algebra homomorphism.

3. THE DOwWN OPERATOR ON THE INFINITE POLYNOMIAL RING

3.1. Basic Definitions. Let V be a vector space with a countably infinite basis {zg, z1, Z2, ...}, and
define the down operator D € End(V) by:

Dz, = xpy_1 form>1, and Dxg =0

Then D € LN(V).

The symmetric algebra R = S(V) = k[xg, 21, x9, ...] is the polynomial ring in a countably infinite
set of variables. The down operator extends to a derivation D € Derk(R). Note that D € LND(R).
In addition, for all n > 0, we have:

0
asCn+1

(1) [0/0zy, D] =
Let A = ker D, the kernel of D as a derivation. Define ideals R4 C R and A4 C A by:
Ry = (xo,x1,22,...) and Ay =ANR,

The standard Z-grading v of R is that for which x,, is homogeneous and deg. x, = 1 for each n > 0.
Relative to this grading, D is homogeneous and deg, D = 0. Given r > 0, let V;. C R denote the
vector space of r-forms, and set W, = ANV,.
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3.2. The Function 6. Define the map of A-modules 6 : R — A as follows: Given f € R :
0(f) = > _(-1)'D'(f)z

i>0
If d = degp(f), then O(f) = [f,zala- By Prop. 2.2(d), it follows that 6(R) C A, as asserted.
Lemma 3.1. Ifr > 1 and f € W,, then :

af B
e(axo)”f

Proof. Equation (1) implies that, for all ¢ > 0:

) D' (55) = vt

8330 8:132
Thus, by Euler’s Lemma, it follows that:

7] imi [ Of of

i>0 i>0

Consequently, O(R) = A, .

Theorem 3.1. The sequence of A-modules
RLR. 2 R0
15 exact.
In order to prove this, several preliminaries are required.
3.3. Compatible Z-Gradings. Let g denote a Z-grading on R, and let deg; denote the corre-

sponding degree function. Then g is said to be compatible if it satisfies the following two conditions:

1. x, is homogeneous for each n > 0
2. degy zy, is a linear function of n

Note that condition 2 is equivalent to either of the following conditions.

2.” The difference degg Tpgl — degg x,, does not depend on n
2. D is homogeneous relative to g

When these conditions are satisfied, the fact that D"z, = x( gives the linear relation:
ndegy D + degg x, = degg xo
Given a compatible Z-grading g, define E,U € End(V) as follows. For each n > 0 :

Euler operator
Ex, = (degg ZTp) Tn
Up operator

n
(3) Uxp = wpTpy1 where w, = Z deg, =;
i=0

Extend E and U to derivations F,U € Derk(R). Then E and U are homogeneous, where degy E =0
and deg, U = —deg, D. Note that, for each g-homogeneous f € R, we have the Euler identity:

Ef = (degy f)f
The following relations are easily verified:
(4) [Dv U] =F ) [DaE] = _(degg D)D ) [UaE] = (degg D>U
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In addition, for each n >0 :

®) 18/, U} = {g NG Zi(l)

Another key fact is the following integration property.
Lemma 3.2. If f € A is g-homogeneous and n > 1, then
DU (f) = 1 venf
where the sequence ¢; € Z (1 < i < n) is defined by:
c; =udegy [ — i(iz_l) degy D
Proof. We first show that, for n > 1:
(6) DU"f=c,U"'f

We proceed by induction on n.
By Euler’s lemma, we have Ef = (deg, f)f. It follows that:

DU(f) = [D,U(f) = Ef = (degg /) f = erf
Therefore, equation (6) is valid when n = 1.
Assume (6) holds for n > 1. Then:

[D,U|(U"f) = DU{U"™f) —UD(U"f) = DU Y (f) = U(c, U" ' f) = DU f — ¢, U"f
In addition:

[D,UJ(U"f) = E(U"f) = (dega U" /U™ f = (degy f — ndegy D)U" f
Combining these two equalities yields:
DU f = (degy f —ndegy D)U" f + ¢, U"f = (deg, f —ndegy D + cp)U" f = cn1U™ f
Therefore, equation (6) holds for all n > 1.
It follows that, for n > 1 :
D"U"f = D" H(DU"f) = D" e, UM f) = ¢, D" TTUMTf
By applying this equality iteratively, the equality asserted in the lemma is proved. O

Example 3.1. The standard Z-grading v of R is compatible. If U is the up derivation induced by
t, then Uz,, = (n + 1)x,41 for each n > 0. By Lemma 3.2, we have

DU f = n)(deg, )" f
for each homogeneous f € A and n > 0.
3.4. Proof of Thm. 3.1. We need to show:

imD=R; and imf=A,

The second of these equalities was already established in Lemma 3.1. For the first equality, it will
suffice to show that, for each » > 1, the map D : V. — V,. is surjective. Given r > 1, we show by
induction on m > 1 that every element of ker D" N V,. lies in the image of D.

Let U and E denote the up and Euler derivations, respectively, induced by the standard Z-grading
v or R. Given non-zero g € ker D N'V,., we have:

D(Ug) = [D,U](g) = Eg=rg

So g is in the image of D in this case. Therefore, D surjects onto ker D N V..
Given m > 1, assume that D surjects onto ker D" N V,.. Let g € ker D™ NV, be given. By
Lemma 3.2, we have
DTy (D™ g) = (m + 1)y D™
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meaning that:
h:=DU™D™g — (m+1)lr™g € ker D™ NV,
By the inductive hypothesis, there exists p € V. such that Dp = h. Therefore:
(m+ D)lr™*ttg = DU™ T D™g — Dp = D(U™ T D™g — p)

It follows by induction that D surjects onto ker D™+ N V,.. Therefore, D : V,. — V,. is surjective for
each r > 1. O

3.5. Z?-Grading. Define the Z-grading s of R by setting
deg,xp, =n (n>0)

where each z,, is homogeneous. Then s is a compatible Z-grading. If (t,s) denotes the Z2-grading
of R defined by t and s, then D is bi-homogeneous and bideg D = (0, —1).

Given r,s > 0, let V{, 5) denote the vector space of bi-homogeneous elements of R of degree (r, s),
and let W, o) = ANV, ). Accordingly, we have:

Vi = 69520‘/(7‘,5)

For notational convenience, let V{,. 5y = {0} if r <0 or s <0, and V,. = {0} if » < 0.
Given k > 0, let ¢, denote the product map on R induced by D. Since D is bi-homogeneous, ¢j
is bi-homogeneous for each k > 0:

?k 2 Virs) X Viuw) = Viedu,sto—k)
Recall from the preceding section that R is also filtered by degp. Given r,s > 0, we have:
degprs =5 and V(.4 Cklxg, ..., 25 N R®)
From Prop. 2.2(d), it follows that:
(7) bs  Virsy X Vius) = Wirgu,s)

Note that, for s > 2, x4 is not homogeneous relative to the Z-grading of R induced by D.
Let f € V{,. 5 be given, and set d = degp, f. Then d < s and:

H(f) = [fa xd]d = [f7 xs]s € AN ‘/(7‘+1,s) = W(rJrl,s)
Therefore, 0 is bi-homogeneous, with bideg 8 = (1,0) and:
(8) 0 : ‘/(r,s) - W(T+17s)

Theorem 3.1 implies the following.

Corollary 3.1. (a) For each r > 0, the sequence of vector spaces
v, 4 Vig1 2, Vi1 = 0
15 exact.
(b) For each r,s > 0, the sequence of finite-dimensional vector spaces
0 D
Vv(r,s) — Vv(r—}-l,s) — ‘/(r+l,s—l) =0

15 exact.

Proof. This result follows from Thm. 3.1, using the fact that 6 is bi-homogeneous of degree (1,0),
and D is bi-homogeneous of degree (0, —1). O
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3.6. Kernel Decomposition. We next give a structure theorem for the vector spaces W, ).
Define the shift map to be the k-algebra endomorphism o : R — R defined by o(z;) = x;41. Note

that o is an isomorphism of R with o(R) = R, where:
R=R/zoR =X|[r1,29,...] CR

Define the map of k-algebras € : R — R by €(x) = 0, that is:

e(f(zo, 1,y xn)) = f(0,21, ..., p)
Then € is called the evaluation map. If D = €D, then:

D=0Do™' and o(A)=ker (D)
Note that €(A) C o(A), but x; € 0(A) — e(A).
Lemma 3.3. AN R =Xk, and consequently ANo(A) = k.
Proof. Suppose f € W, for r > 1. Then:

of

8.%0 -

0 = rf:9(8f>:0 = f=0
3:50

Theorem 3.2. (a) The sequence of A-modules

-1
0— 2pAd — Ay -5 A, =0
s exact.

(b) For each r,s > 0, the sequence of finite-dimensional vector spaces

o te
0 — CE(]W(,«_LS_,_T) — W(r,s+r) —_— W(7-78) — 0
18 split exact.

(c)
dim W(T,s) = dim W(r—l,s) + dim W(T,S_T)

Proof. Parts (a) and (c) are implied by part (b). In order to prove part (b), it will suffice to construct

a section for o le.

If f € Ay is non-zero, then Do (f) = 0, but by Lemma 3.3, Da(f) # 0. Therefore, Do maps A
injectively into xg R4 .

Assume that {f1, ..., fx} is a basis for W, ), where k = dim W, ;). Since D maps V(,_; ;1) onto
Vir—1,s4r—1) by Cor. 3.1, we may choose, for each ¢, a preimage g; € V(,_1 s4,) such that:

Dg; = %Do—(fi) (1<i<k)
Define the map 7 : W, o) — W, s4p) by:
7(fi) = wogi — o (fi)
1

Then 7 is a section for o~ €. O

Corollary 3.2. Let s > 0 be given, and let t > 0 be such that 0 < s — 6t < 5.

(a)
1
dim W,y = s even
’ 0 s odd

(b)
t s =1 (mod6)

dim W3 o) =
(39) {t +1 otherwise
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Proof. Let k > 0 be such that 0 < s — 2k < 1. Thm. 3.2(c) implies:
k
dim Wa,q) = > dim Wy o)
i=0
Since W1 = W(y o) = k - g, part (a) is clear.
For part (b), let m > 0 be such that 0 < s — 3m < 2. Then Thm. 3.2(c) implies:

(9) dim Wiz o) = > dim Wia o3

=0
By part (a), the sum in (9) is a sum of m + 1 terms in alternating values 0 and 1. There are four
cases to consider.

(i) If m is even and s is even, the sum is:
(1+0)+~~+(1+0)+1:%+1:7
(ii) If m is even and s odd, the sum is:
0+ D)+ +0+1)+0=7

(iii) If m is odd and s even, the sum is:

+1
(L4+0) 4+ (140) = =
(iv) If m odd and s is odd, the sum is:
+1
0+ 1)+ +(0+1) = To—=
We have thus shown the following:
mi2 (s, m even)
dim Wg ) = § 2L (m odd)
7 (s odd, m even)
This is equivalent to the equality asserted in part (b). a

3.7. Quadratic Invariants. Decompose Vi = V;" & V™, where:
Vit = @is0k - 72, and Vi = @0k - 12141

The surjective map 6 : V; — Wy has kernel V], meaning that 6 : Vfr — W5 is an isomorphism. By
Cor. 3.2(a), we have:

Corollary 3.3. W, = @nZOk . 9($2n>

3.8. An Irreducibility Criterion. Recall that A is factorially closed in B. Therefore, given f € A,
if f is irreducible in A, then f is also irreducible in B. This property allows us to formulate the
following simple criterion for irreducibility of elements of A.

Lemma 3.4. Given f € A,, for n > 2, write

where m > 0 and oa; € R,,_1 for each i.
(a) am € Apq

(b) If ayy, is irreducible, then f is irreducible.
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Proof. For part (a), since 0 = Df = Da,,a+ (lower-degree z,,-terms), it follows that Day,,, = 0.
For part (b), it will suffice to show that A has no element of the form:
t—1
(10) g=ah+> Biwp, (k>1,t>1,5 € Rp_1)
i=0
Assume to the contrary that g € A has the form specified in equation (10). Then k > 2, since
A1 = k[l‘o]
Define the ideal I C Rx—1 by I = xgRk—1 + -+ + x—2Rk—1. Then D(Ry_1) C I. Since Dg = 0,
it follows that —txy_1 = DB;_1 € I, a contradiction. Therefore, A contains no such element g. [

Remark 3.1. In the vocabulary of Nineteenth Century invariant theory, the degree of a homogeneous
invariant f € W, ) is its v-degree, the weight is its s-degree, and the extent is the smallest integer
n such that f € k[zq,...,x,]. The order is a degree function on k[zg,...,x,] in which elements of
Wir,s) have order nr — 2s. Thus, in the current context, the order of f € W, ;) is not well-defined,
since f € K[z, ..., z,] for all sufficiently large n.

Remark 3.2. If g is such that deg, D # 0, the relations in (4) show that D,U and E form the Lie
algebra sls over k. The corresponding Lie group SLs is reductive, represented by 2 x 2 matrices
with unit determinant. We may thus view R as an SLs-module, where the G,-action on R defined
by D is a restriction of the SLs-action.

If g is such that degy D = 0, then g = kv for some k € Z. If k # 0, then D, U and E form the Lie
algebra b3 represented by 3 x 3 upper-triangular matrices with zero diagonal. The corresponding
Lie group Hs3 is the Heisenberg group, which is unipotent, represented by 3 x 3 upper-triangular
matrices with unit diagonal. In this case, we may view R as an Hs-module, where the G,-action on
R defined by D is a restriction of the H3z-action.

4. THE STANDARD n-COMPATIBLE Z-GRADING

Given n > 0, let V,, C V denote the vector subspace spanned by zg, ..., z,, noting that D restricts
to each subspace V,,. Define subrings R,, C R by

R, = S(V,) = K[zg, ..., z,) = k"1

as well as subrings A,, ;== AN R,,. Let g be a compatible Z-grading of R. Then each subring R, is
a g-homogeneous subring.

The first property to observe in this regard is that the partial derivative §/9x, commutes with
the restriction of D to R,; see equation (1) above. The following lemma is an easy consequence of
this property.

Lemma 4.1. Fizn > 0.
(a) 9/0x, restricts to Ay,

(b) [0/020,6)(1) = (~1)"D"(f) for all | € R,
() 50 0(f) = (~1)"D"(]) for all f € Ry

(d) Given k >0, let ¢y be the product on R,, determined by the locally nilpotent operator D|g, .
Then for every k >0 :

0

Definition 4.1. For each n > 0, let 9,, € LND(A,,) denote the restriction of 9/dx,, to A,.
Suppose that g is a compatible Z-grading of R, with induced Euler operator E and up operator

U. Then FE restricts to V,, for each n > 0. On the other hand, given n > 0, U restricts to V), if and
only if Uz,, = 0. In this case, U € LN(V,,), and the induced SLy-action on R restricts to R,.
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Definition 4.2. Given an integer n > 0, a compatible Z-grading g of R is n-compatible if and only

if: .
Z deggx; =0
i=0

Definition 4.3. Given an integer n > 0, the standard n-compatible Z-grading of R is p,,, defined
by:

deg, =;=n—2i (i>0)
The n-th standard up operator on R is the induced up operator for p,,, denoted U,,.

Lemma 4.2. Givenn > 0, p,, is n-compatible, and every n-compatible Z-grading of R is proportional
to py,.

Proof. Let g be an n-compatible Z-grading of R. Since g is compatible,
degy z; = (—degy D)i + degy 7o

for each ¢ > 0. Summing each side over all ¢ = 0, ..., n yields:

0= (—deg, D)M +(n+1)deggzo = ndeg, D =2deg, g
Therefore:
ndegy x; = (—ndeg, D)i + ndeg, zo = (n — 2i) deg, xo = (deg, xo)(deg,, ;)
0

The following properties for p,, and U, are easily checked.

Lemma 4.3. (a) deg, = ndeg, —2deg,
In particular, if f € Vi,.s), then f is p,-homogeneous, and deg, [ =mnr —2s.

(b) Upzi = (i+1)(n—i)zisr (i 20)

(c) deg, D= —deg, U, =2

(d) deg, U, =0 and deg, U, =1

Restricting U, to R,,, we also have:
Lemma 4.4. deg, f =degy, f for every p,-homogeneous f € A,. Consequently:

(a) degy, f=nr—2s>0 for every non-zero f € A, N W, o

(b) A, NW( g ={0} if nr —2s <0

(c) ApnkerU, ={0}U{f € A, | deg, f=0}
Proof. If N = degy; f, then UN+Lf =0 and UYN f # 0. From equation (6), we have

0=DUNT f =cn UNF
where:
cnt1 = (N +1)deg, f— w deg, D
Therefore:
0=cny1 = 2deg, f=Ndeg, D=2N
O

Lemma 4.5. Let n,k be integers with 1 < k < n. Assume f € Ay is pp-homogeneous, and set
d =deg,, f. Then OU'f € A,, and:

0 0<d<n-1

(_1)n(;_!(i!)gf d>n

@mwf:{
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Proof. Note first that U’ f € Ry, NR(™ | which implies OU f € A,. From Lemma 4.1 it follows that:

00Ul f = (-1)"D U f
From this, Lemma 3.2 implies

OOULf=(=1)"c1--enf
where the sequence ¢; € Z is defined by:

c; =id — @degpk D
Since deg,, D =2 by Lemma 4.3, it follows that:
c=ild—i+1),1<i<n
Therefore, the product ¢ - - - ¢, equals 0 if d < n, and equals nld!/(d — n)! if d > n. |
Proposition 4.1. ([7], Cor. 2.3) Let r,s > 0 be given. Given n > 1, the mapping
D: Ry N Vipst1) = R N Vi)
is surjective if 2s < rn, and injective if 2s > rn.
Proof. Consider first the case that 2s < rn. Given k with 0 < k < s, set:
(Rn N Vir))™ = ker D 1 (R, NV, o))
This gives a nested sequence of subspaces of R, N V(; ), with:
(Rn Vi) = Ra N Wiy and (R 01 V(p,0)® = Ru N Vi)

We show by induction on k that D surjects onto (R, N V(T,S))(k) for each k =0, ..., s.
Let non-zero f € R, N W, be given. Then U,f € R, N V(. 441), since deg, U, = 1. By
Lemma 3.2, we have:
DU, f = (deg,, f)f = (nr—2s)f #0
This establishes the basis for induction.
Given k with 1 < k < s, assume that D surjects onto (R, N V{,.5)* 1. Let g € (R, NV, )"
be given, and assume that D*g # 0. By Lemma 3.2, we have

DkHU,’fH(Dkg) N L
where the constants ¢; (1 <14 < k) are given by:
¢ = idegpn(Dkg) - @degpn D=inr—2(s—k)—i+1)=i(nr—2s+2k—i+1)>0

Define:

h=DUNM'DFg—ci - crg € (Ry N Vi )Y
By the inductive hypothesis, there exists n € R,, NV, ;41) such that Dn = h. It follows that:

¢1---cpg = DU D*g — Dy = D(U ' D*g — 1)
By induction, we conclude that D surjects onto (R, N V(m))(k). Therefore, D : R, N V(. s41) —
R, NV, ) is surjective if 2s < nr.
Consider next the case 2s > rn. By Lemma 4.4(b):
nr—2(s+1)<0 = A, NWy )= {0}

Therefore, the restriction of D to R, NV(, ;1) is injective in this case. O

Remark 4.1. Homogeneous elements f € A, N ker U, have deg, f = 0, and these are precisely
the homogeneous S Ly-invariants for R,. For example, when n is even, these include the quadratic
form 0(x,,), which is composed of monomials z;z,_;, 0 < i < n.
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5. CUBIC INVARIANTS

In this section, we determine a basis for W(3 ;) for each s > 0, as described in Thm. 5.1.
Given [,n > 0 with n > 2[, note that:

degy O(x2) = 2(n — 21)
We therefore want to consider the integrals U¥0(z9;) with [ > 0 and 1 < k < 2(n — 21).
Recall from Lemma 3.2 that
DFURO(x9) = c1 - cx 0(297)

where:

¢; = ideg, O(ry)— 7 deg, D=i(2n—4l—i+1) (1<i<k)
Suppose that ¢;, < 0 for some ip < k. Then

M4l —ig+1<0 = m—4l<ig—1<k—-1<2n—4l—1
which is a contradiction. We have thus established the following fact.
Lemma 5.1. Let n,l,k € Z satisfy 1 >0 and 1 < k < 2(n — 21).

(a) DEU*O(zo) = c1---c1, 0(za1), where c; =i(2n —4l —i+1) >0 for 1 <i <k

(b) degp Urf(aa) =k

Proposition 5.1. Let n,l,k € Z satisfy 1 >0, n > 2, and 0 < k < n.

(@) If k<n—20 ork > 2(n—2l), then:
d

(b) If0<n—-21<k<2(n-—2l), then

0 GUﬁo(Igl) _ akﬁ(xng,n) k<n

Oy, (an + (=1)"b)0(z21)) k=n
where: h1( 20! 2 1)
nlkl(n — 20)! n!(2n — 41)!
- p— ERT

e tenen -4k " (n— 40)]

(¢) If n—k is odd, or if n =k =4l + 1, then:
0

Proof. Note first that k < n implies 0U%0(x2;) € R,,. In addition, Lemma 4.1(b) implies:

(1) o 0US8a) = 0 (G- UE8(aan) ) + (1) D U0
Since
degy, O(xai) = 2(n — 21)
we see that:
UFO(xy) =0 if k> 2(n—20)
Assume that k£ < n — 2[. In this case:

0
UZSQ(IQ{) S V(2,21+k) C R21+k and 2l+k<n = % U,]fe(l'gl) =0
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In addition, k < n — 2] < n means that D"UFf(x9;) = 0. From equation (11), we conclude that

0
—— QU9 =0
8l‘n n (ZQZ)
when k < n — 2l or k > 2(n — 2l). This proves part (a).
For part (b), assume that 0 < n — 2] < k < 2(n —2l). If n = 2, then k£ = 0, and it is easy to
check that the stated equalities hold in this case. So assume that n > 21.
Since UF6(x2) € Vi2,2141), there exists ai € Z such that:

0
oz UFO(x21) = aparik—n

If k < n, then D"U¥0(z9;) = 0. If k = n, then Lemma 5.1 implies:
.Dn[]:L7L 9(.’)321) =C1""" Cne(l‘gl)
where ¢; = i(2n — 4l — i+ 1) > 0. Equation (11) thus becomes:

o ar(214k—n) k<n
—9U%0 =
Oxp, " (e {(an +(=1)"(c1--cn))O(z2r) k=n

It remains to determine the constants aj.
Recall that
[0/0xy, D] = [0/0x¢,U,] =0
when these derivations are restricted to R,,. Consider first the case n — 2l = k:
0
. Ur=20(z0) = an—auwg =  UFO(z21) = an-azomn + f
for some f € k[x1,...,z,—1]. Therefore,
0 0
n-2n = 5 Ur=20(zg) = Uﬁ_”af%H(xzz) = Ur 2 (229)) = 2wy - - W12y,
where w; = (i + 1)(n — i). It follows that:

2n!(n — 21)!
(p—o] = 2w+ Wp_1 = ((QZ)')

Next, assume k > n — 2. From equation (6), it follows that:

pZory(k—1)—n = D(arT2ik—n)
1o}

= DaUﬁH(xQZ)
0

0
= T%CkUﬁ_l 9(x2l)

= CgQk—-1T214(k—1)—n
Therefore, a, = cpag—1. By induction, for all k with n — 2] < k < 2(n — 21):
k! 2n!(n — 21)!
2n — 41 — k)! (20)!

A = CkCr—1 " Cn—-2]+10n-2] = (

Moreover, if k = n, then n > 4 and:
n!(2n — 41)!
(n —4l)!

Cl " Cp =

This proves part (b).
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For part (c), note first that 0(z91x—rn) = 0 when n — k is odd. In addition, it is easy to check
that a, + (—=1)"b =0 when n = k = 41 + 1. Therefore, part (c) follows from parts (a) and (b). O

Theorem 5.1. Let s > 0 be given, and let t be such that 0 < s — 6t < 5.
(a) If s is even, a basis of W3 q) is given by:
UL ,.0(xs 4i), 0<i<t
(b) If s =6t+3 or s =6t +5, a basis of W(3 4 is given by:
UL 5 0(xs_ai1) » 0<i<t
(c) If s=6t+1, a basis of W3 is given by:
OUS 5 0(s—(aipr)) , 0<i<t—1

Proof. By Cor. 3.2(b), it suffices to show that each set of elements is linearly independent. Set
n=s—2ifor0<i<t(s#6t+1)or0<i<t—1(s=6t+1). Likewise, set k = 47 if s is even,
or k = 4i + 1 if s is odd. Then Lemma 5.1 implies degp, U*0(x9;) = k. Therefore:

Ukf(zs—1) € Vo) NRY) = 0UFO(zs_1) € Wiz N A,
In each case, Prop. 5.1(b) implies that:
deg, OUFO(zs_i) =1

Therefore, GUT’fH(xs,k) € A, — A,_1 when s # 0. In each case, this suffices to conclude that the
given set is linearly independent. O

Corollary 5.1. Givenn >0, let m > 0 be such that 0 <n —4m < 3.

(a) dim(WZim(An*An—l)) = {m+1 nEO’Q’S(mOd4)

m n =1 (mod4)

2m? +2m + 1 n =0 (mod 4)

2m? + 3 1 =1 d4

(b) dim(Ws N A,) = m2+ m + n (mod 4)
2m? + 4m + 2 n = 2 (mod 4)

2m? + 5m + 3 n = 3 (mod 4)

Proof. Tt suffices to prove part (a), since part (b) follows easily from part (a).
Consider the array T of integer triples (¢, u,4) such that:

t>0,0<u<5,0<i<t—1lifu=1,0<i<tifu#l
Order T lexicographically, and set
Aty =6t +u—2i for (t,u,i) €T .

Elements of 7" are in bijective correspondence to the basis of W3 described in Thm. 5.1, where
(t,u,4) corresponds to QU ,.0(zs_4;) if s = 6t + u for even u, or to HUffggﬁ(xs_(MH)) if s =6t+u
for odd u. Since

OURO(x, ) € A, — Ay

for n = A(4,u,s) = s — 24 and corresponding k, we have:
d(n) :=dim W3 N (A, — Ap_1) = #{(t,u, i) € T|n = Ny}
The first triple in 7 which gives n has the form (¢,u,0), i.e.,
n= A0 =6t +u.
The last triple in 7 giving n has the form (¢ + a,v,t + a) for some a > 0 and v € {0,2,3,5}, i.e.,
(12) N = At+avita) = 6(t+a) +v—2(t+a) =4t +a)+v
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where d(n) =t + a + 1. Note that v # 4, since:
n= >‘(t+a,4,t+a) = n= >\(t+a+1,0,t+a+1)
From equation (12), we conclude that:

_Jt+a v € {0,2,3}
C)t+a+1 v=>5

Since v = n (mod 4), it follows that:

d(n) = m+1 n=0,2,3(mod4)
m n =1 (mod4)

This completes the proof of part (a). a

Example 5.1. For the case n = 10, Cor. 5.1 implies that dim(W3 N A1g) = 18. This confirms
the calculation of Cerezo ([7], Chap.l, p.10), in which the author gives an explicit list of 18 basis
elements.

6. THE CORE CUBIC INVARIANTS

In this section, we determine, for each n > 3, a homogeneous basis for a space which is comple-
mentary to the space of reducible cubic elements of A,,, as described in Thm. 6.2.

6.1. Compound and Core Invariants. Note that A3 admits a homogeneous generator h of stan-
dard degree 4, whereas A, is generated in degree 3. Therefore, h can be expressed as a polynomial
in elements of strictly smaller degree, although doing so requires more variables. Specifically:

h =z (4dxoxy — 31‘%) — 30(x2)0(xy)

In classical terminology, h is a groundform of As, but is not a groundform of Ay. We want to identify
groundforms f € A,, which remain groundforms in Ay for every N > n.

Recall that f € A is a compound invariant (relative to standard degrees) if there exist g1, ..., gm €
A of strictly smaller degree (m > 1) and P € k[ such that f = P(g,...,gm). Otherwise, f is a
core invariant. Given r > 0, define the vector space of compound r-forms:

H,=W,nN k[Wl, . Wr—l] = Z WiW,._;
1<i<r/2

Note that any element f € W, which is not in H, is necessarily a core invariant.
Given s > 0, set

H(r,s) =H,. N W(r,s)
and let K, ) be a complementary subspace of H, s):
Wirs) = Hirs) ® Krs)
Given subspaces K|, ), define:
K, = @SZOK(T,S) and K = @TZOKT

Then A = k[K]. Note that 4,, = k[KNA,] for n =1,2,4, whereas 4,, # k[KNA,] forn=3,5,6,7.
From this, it is easy to verify that A;, Ay, and A4 are degree closed subalgebras of A.
Clearly, H; = {0} and Wy = K; =k - zg. Similarly, Hy = W = k- 22, and by Cor. 3.3, we may
take:
Ky := ®p>1k - 0(zox)
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Remark 6.1. In the language of classical invariant theory, the core invariants of the down operator
were termed perpetuants. They were introduced by Sylvester in 1882 [36], and were viewed as
invariants of infinite order. The generating function for the dimension of K, ,) given by

J62“171

(1—22)(1 —a3)--- (1 —2r) (r=3)

was formulated by MacMahon [28] and proved by Stroh [35]. In particular, dim K, ) equals the
coefficient of z° in the corresponding power series. In more recent times, Kung and Rota [26]
lamented that the theory of perpetuants remains in a “particularly sorry state” (p.82).

6.2. A System of Core Cubic Invariants. As for cubics, we have:
H3 = W1W2 = (EoWQ
Therefore, given f € W3, f is a core invariant if and only if f is irreducible. When s is odd, this
means H(3 4 = {0}.
In general, there are many choices for a complementary subspace of Hs. Theorem 5.1 above gives
a basis of W3 ,) for each s > 0, thus giving a homogeneous basis B for W3. The reducible elements

of B form a basis of Hs, namely, {zo0(xs)|s > 0}. Let B’ denote the the set of irreducible elements
of B.

Definition 6.1. K3 is the complementary subspace of Hs having basis B’.

Theorem 6.1 below gives the basis for K3, = K3 N W(3 ) obtained by reducing the basis
for Wiz s). If K36 N (An — Ap_1) # {0} for some n, s, then there is a unique element C, 5) € B’
belonging to K3 )N (A, —Ap_1). This allows us to place a total order on B’ by using lexicographical
order on the pairs (n, s). Details of this construction are spelled out in Thm. 6.2 below.

Let s > 0 be given, and let ¢ > 0 be such that 0 < s — 6t < 5. Then Cor. 3.2 implies:

1 =
dim K(g.y) = t+ s =3,5(mod6)
' t $=0,1,2,4 (mod6)
The reader can check that these values agree with those found via the generating function of MacMa-
hon and Stroh for » = 3, which is given by:

3

(1—22)(1 —a?)

Theorem 6.1. Let s > 0 be given, and let t be such that 0 < s — 6t < 5.

(a) If s is even, a basis of K3 is given by:

U . 0(xs_yi), 1<i<t
(b) If s=6t+3 or s =6t +5, a basis of K3, is given by:
QUL 0(xs_ i) » 0<i<t
(c) If s=6t+1, a basis of K3 is given by:
OU510(s—(aip1)) , 0<i<t—1

Since dim H3 N (A,, — A,—1) equals 0 if n is odd, or 1 if n is even, Cor. 5.1 implies the following.
Corollary 6.1. Givenn >0, let m > 0 be such that 0 <n —4m < 3.
m n=0,1,2(mod4)

(a) dim (KN (Ap — Ap—1)) = {m—l- 1 n=3(mod4)
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2

2m n =0 (mod 4)
2m? =1 d4
(b) dim(kznA,) =4 " n=1(modd)
2m? + 2m n =2 (mod4)
2m? +3m + 1 n = 3 (mod 4)
In particular, the values dim(K3 N A,,) for n = 2,...,12 are given respectively by:

0,1,2,3,4,6,8,10,12, 15,18

These values confirm those found in the tables of Brouwer [4], apart from n = 11 for which no table
is given.

Theorem 6.2. Given n >3, let m > 0 be such that 0 < n — 4m < 3. Define I,, C Z? by:

{(n,m+2i)|1 <i<m} n =0,2(mod4)
Li={ {(n,n+2i)[0<i<m—1} n=1(mod4)
{(n,m+2i)|0<i<m} n = 3 (mod4)
Given (n, s) € I, define the polynomial:
c B GU,%(S*")H(:E%,S) n even
(me) = OUTQL(S_"HlG(xQn,S,l) n odd

(a) A basis of KsN (A, — An—1) is given by:

{O(n,s) | (Tl, 5) € In }
(b) Given (n,s) € I, there exists non-zero a € Z such that:

0
aIn C(n,s) = ae(CL’S,n)
Proof. Define the array L of integer triples (¢,u,7) as follows:
1<i<t uw=0,2
(tyu,i) e L <& t>0,0<u<b,and 0<i<t u=3,5

0<1<t—1 u=1
The Z-linear map v : Z3 — Z? defined by
y(t,u, i) = (6t + u — 24, 6t + u)

is injective on L. Define a total order on £ as the pullback of lexicographical order on v(L£). Given
n > 0, define the planar subarray:

L, ={(tu,i) € L]|n=06t+u—2i}

Then:
[(to, ug, 1), (m,n — 4m,m)] n=0,2(mod4)
Ly =1 [(to,u0,0),(m—1,5,m —1)] n =1 (mod4)
[(to, up,0), (m, 3, m)] n = 3 (mod 4)

where tg, ug are determined by n = 6tg 4+ ug — 2 for n even, or n = 6ty + ug for n odd.
Given (t,u,i) € L, set s = 6t 4+ u, and define the polynomial:

UL 0(w—us) u even
(t’u’Z) 0Ufﬁgi€(xg_(41+1)) u Odd
From Thm. 6.1 and Cor. 6.1, we see that the set

{P(t,uﬂ') | (ta u7i) € [’ﬂ}
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is an ordered basis of K3 N (4, — A,—1). Part (a) now follows from the fact that:
7(£n) =1, and C’y(t,u,i) = P(t,u,i)
Part (b) is implied by Prop. 5.1(b). O
Corollary 6.2. Let the integers n,s > 0 be given.
(a) Ifn and s differ in parity, then:
K(B,s) N (An - Anfl) = {O}
(b) If n is even and s is odd, then:
W(g_’s) N (An — Anfl) = {0}

Proof. Part (a) follows from Thm. 6.2(a), since the components of any element of I,, have the same
parity. Part (b) follows from part (a) and the fact that W ) = K3 ,) when s is odd. O

Example 6.1. The entries of Table 3 comprise a basis of K3MN Ags, which is of dimension 128. The
classical order of Cf, s in A3z equals 96 — 25, so these orders range in value from 0 to 90.

TABLE 3. Pairs (n,s) for the ordered basis of core cubics C(;, 5) in A3z

I3 1y I5 Is I7 Ig Iy I I, 1o
330 @6 (G5 (63 (7)) (810) (99 (10,12) (1L,11) (12,14)
(7.9)  (812)  (9,11) (10.14) (11.13) (12.16)

(11,15) (12,18)

I3 I Is Is Ii7 Ig Ig I I Ipy;
(13,13) (14,16) (15,15) (16,18) (17,17) (18,20) (19,19) (20,22) (21.21) (22.24)
(13,15) (14,18) (15,17) (16,20) (17,19) (18,22) (19.21) (20,24) (21,23) (22.26)
(13,17) (14,20) (15,19) (16,22) (17,21) (18,24) (19,23) (20,26) (21,25) (22,28)
(15,21) (16.24) (17,23) (18,26) (19,25 (20,28) (21,27) (22,30)

(19,27) (20,30) (21,29) (22,32)

Io3 1oy I>5 I Loy Iog Iag I39 I3 JEY
(23.23) (24.26) (25.25) (26,.28) (27.27) (28.30) (29.20) (3032) (31,31) (32.34)
(23,25) (24,28) (25.27) (26,30) (27,29) (28.32) (29,31) (30,34) (31,33) (32,36)
(23,27) (24,30) (25.29) (26,32) (27,31) (28,34) (29,33) (30,36) (31,35) (32,38)
(23,29) (24,32) (25.31) (26,34) (27,33) (28,36) (29,35) (30,38) (31,37) (32,40)
(23,31) (24,34) (25.33) (26,36) (27,35) (28,38) (29.37) (30,40) (31,39) (32,42)
(23,33) (24,36) (25.35) (26,38) (27.37) (28.40) (29.39) (3042) (31,41) (32.44)
(27,39) (28,42) (2041) (30,44) (31,43) (32.,46)

(31,45) (32.48)
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The cubics listed in Table 3 can be calculated explicitly using a computer algebra system, although
the resulting integer coefficients tend to have a very large common divisor. As an illustration, we
used Maple to find C(so45) = 0U330(x16). Note that C(324s) is the unique cubic invariant of the
S La-action on R3z. We find that the greatest common divisor of the coefficients of C(33 48) equals:

d=20".3%%.51%. 7% 111 . 13" . 17% . 197 . 23% . 29 - 31
Dividing C(32 48) by d produces the following reasonable output.

Cl(32,48) =

—39916 337113171’24—941732 1771718-'1’23"‘1275204 T7T19T22 —5H87860 T7T20T21 +5394O Tox16L32—
458490 xox17231+1996650 xoxr18230—5901210 0 T19X290+13226850 x0x20T28 —23808330 TpX21 X27+
35565530 xor22T26 —44945450 xor23125+53940 x2214232—350610 2215231 +1133610 T2216230—
2366400 xox17229+3421080 z2x18T28 —3255840 Tox19427+ 1175720 220126 +2377280 221 X205 —
5784284 T2X22T24 +53940 412732 — 242730 413,31 +486330 41430 —449790 X4X15T29 —
178110 x4x16228+1219920 4217227 —1914880 4118226 +1472880 x4x19225+145996 T 4L 20T 24 —
2000016 x4x21223—53940 x3213232+296670 3214231 — 783000 3715230 +1232790 X3L16T29 —
1054680 ZL'3{E172328—165240 ZE3ZE18$27+2080120 x3x19m26—3553000 $3$20$25+3407004 r3T21T24—
1406988 1‘31‘221723—53940 £C1$E15$32+404550 T1T16T31 —1538160 $1$171'30+3904560 T1T18L29—
7325640 x1w19m28+10581480 $1x20x27—11757200 $1$21$26+9379920 1'11'221225—3595636 X1X23T24—
53940 L5X11T32 + 188790 T5X12,31 — 243600 51330 — 36540 T5X14T29 + 627900 T5X15T28 —
1041810 $5$16$27+694960 $5$17l’26+442000 1}51}18.’]'}2571618876 :L’5.’L’19-T24+1854020 T5T20X23—
813960 IT5X21T22 — 53940 T7T9x32 + 80910 TrT10X31 + 80040 71130 — 334950 T7T12T29 +
311220 z7x13%28 + 177450 27214727 — 60760 T7 215226 + 790110 T7216T25 +24270543 ToT24> +
3595636 T2223° 41406988 z4w22° +813960 zew21°+26970 25° w32-+587860 T8w20”+444312 w12w18° +
350658 212”724 +488376 210210°+186300 710”225 +93960 o> 230 +278300 211 ° 226 +427856 T14717°+
418418 214%220+396396 213° w22 +424710 15 w18+ 141570 216> +53940 6w 1032 — 134850 26211 731+
54810 TeT12X30 + 280140 TeI13T29 — 591360 TeT14T28 +413910 TeX15T27 + 346850 TeT16T26 —
1136960 xsx17225+1176876 6118724 —235144 xex19223— 1040060 x6T20222—26970 T3T9L 31—
160950 xgx10x30 +254910 8211229 +23730 283212728 — 488670 81 13L27 +583310 28T 14T26 —

29350 L1525 — 750194 T8X16T24 —|—981648 T8X17XL23 — 333472 T8X18T22 — 687344 T8L19T21 +
464940 1‘121191127—370300 l‘12$101’26—278300 $12$11$25—350658 x12x13:1:23—442134 XT12X14T22+
838530 212215221 —398090 x12216L20—460768 £12217219—93960 T10x9229— 186300 x10T11T27+
648600 1013225 —225584 10214224 —548090 z10215223+879630 x10x16T22 —372640 210217221 —
532440 101820 — 278640 91128 —94640 X9X13T26 — 553960 T9XL14X25 +779544 X9X15T24 —
231454 $9$15I23—648176 x9x17x22+1020816 T9XL18T21 —488376 1’91’191220—423016 CIZ'11$13.T24+
773674 1‘11:3141’23—331540 13111’1533‘22—506990 T11T16T21 +905080 I‘11.13171’20—444312 111819 —
396396 214713721 —418418 5814:2315.’2197431002 x14x16x187440440 $13$15$20+858858 131619 —
427856 131718 — 424710 X16T15T17

7. THE DEGREE CLOSED PROPERTY

Proposition 7.1. If n > 3 is odd or if n > 10, then relative to standard degrees, A, is not degree
closed in Api1-

Proof. Given P,Q € A, 41 and k > 0, let [P, Q]gn“ denote the vector product on A, induced by
On+1 (as defined in Section 2.3). If P and @ are of degree k in 2,41, then Prop. 2.2(d) implies:

[P, QI € A,
We consider three cases.
Case 1: n > 3 is odd. Since n + 1 is even, Thm. 6.2(a) implies that:
minl,11 = (n+1,n+3)
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By Thm. 6.2(c), there exists non-zero a € k such that:

Ont1C(ny1,n43) = ab(z2)
Define f € H4,n43) N Ay by:

f= [e(xn+1)7C(n+1,n+3)]?n+l = 220C(ny1,n+3) — a0(22)0(Tp 1)

Note that f # 0, since zp does not divide the product 8(22)0(xy,41).
Suppose that f can be expressed as a polynomial in elements of A,, of degree less than 4. Given
s > 0, we have:

[s/4]
(13) Hy o) = 2oWis ) + Z W22 W (2,5—2j)

j=1
Therefore, there exists g € W3 n,43) N Ay, and a; € k such that:
f =09+ a10(x4)0(xn—1) + a20(x6)0(zn—3) + - -
Therefore:
anf = anng
Since
Ong € Wia3) = {0}
it follows that:
0= 0nf = 22000 Cnt1,n+3) + 20210(22)
But this is impossible, since xg does not divide x16(x3). Therefore, f cannot be expressed as a
polynomial in elements of A,, of degree less than 4.

Case 2: n = 4m+2 for m > 2. According to Thm. 6.2(a), (n+1,6m+1),(n+1,6m+3) € I,41.

Define f S H(5,2n73) N An by
On
= [Ctnt1,6m+1): Congr.6m+3))1" " = a10(@2m—2)Clng1,6m+3) — 020(T2m)Clni1,6m+1)

where a1, as are non-zero constants.

Suppose that f can be expressed as a polynomial in elements of A, of degree less than 5. Since
Hy = xogW4 + WoWs, it follows that

n/2

f=20G+Y_ 0(xan)Fe o

k=1
where s = 2n — 3, G € Wy9,-3) N Ay, and Fy_ox € W3 s_or) N Ap. For each such k, Cor. 6.2(b)
implies:
Wis,s—2k) N (An — Ap_1) = {0}
It follows that:
OnFs o, =0 VEk = 0Onf=x00,G+2x0Fs_, € T0A,
Modulo xg, it follows that:
010(22m—2)0nC (n41,6m+3) — 020(22m)OnC (41,6m+1) = 0
Since 0(z2,,) is prime in the ring S = k[z1, ..., 2,,], and 0(z2,,_2) € 0(x2,,) - S, we conclude that
anCY(nntl,6m+3) = g(me) -h
for some h € S. By degree considerations, h € V(g,1) = {0}. Therefore:
OnClnt1,6m+3) € ToRn N Vg 2mi1) = k- 2oTam11
In the same way we obtain:

OnCni1,6m+1) € ToRn NVi2om—1) = k- ToZam-1
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Therefore, there exist constants ¢y, co such that:
3nf = 0101$0I2m+19(1‘2m—2) - a282x0x2m—10(x2m) €A,

But this is clearly not possible, since degp Tam+1 # degp Toam—1.
We conclude that f cannot be expressed as a polynomial in elements of A,, of degree less than 5.

Case 3: n = 4m for m > 3. According to Thm. 6.2(a), (n +1,6m —3),(n +1,6m — 1) € I,4;.
Deﬁne f S H(5’2n,5) n An by
871, 1
f = [Ctnt1,6m=3) Cnt1,6m=1)]1" " = a10(@2—4)Crnt1,6m—1) — @20(2m—2)Cnt1,6m—3)

where ai1,as are non-zero constants. The proof that f cannot be expressed as a polynomial in
elements of A, of degree less than 5 proceeds exactly as in Case 2. O

We next consider Hy 4 N A, for even values of n.
Lemma 7.1. Let N > 3 be an odd integer. Then the cubic polynomials
x10(xn—1) , z30(xN_3), -+, xN_20(x2)
are linearly independent modulo x.
Proof. Consider D = ¢D € LND(R) as in Section 3.6, where R = k[z1, 72, ...]. Since
degp Tanr1€0(xN_(2p41)) =2k, 0 <k < 822

these degrees are distinct, which implies that these polynomials are linearly independent modulo zg.
O

Proposition 7.2. Ifn > 0 is even, then every element of HyN A,, can be expressed as a polynomial
in elements of A, of degree less than 4.

Proof. Let s > 0 be given. From equation (13), we see that H, sy = 2oW(3,) if 5 is odd. So assume
that s is even. If s < n, then W, sy C As C A, for each r > 0. So we may further assume that
n < s.

Given F' € H4 4 N Ap, equation (13) implies that there exist a; € k and G € W3, such that:

[s/4]
F=xG+ Z ajH(scgj)Q(xs,gj)

=0
Since degy; F'=4n — 25 > 0, it follows that n < s < 2n. Note that:

—2T(5_2:V—(n n+1<s—-2j5
9n+19(35572j) _ { (s—2j)—(n+1) J

0 n+1>s—2j
Therefore:
(s—n)/2—-1
0 =041 F =200h4+1G — Z 20,0(225)T (s—2j)— (n+1)
j=0

Note that s < 2n insures (s —n)/2 — 1 < [s/4]. By Lemma 7.1, it follows that a; = 0 when
1< j<(s—n)/2— 1. Therefore:
(s/4]
20G=F— Y ajf(x2)0(zs2;) €A, = GEeEA,
j=(s—n)/2
We conclude that, when n is even, every element of H4 .y N A, can be expressed as a polynomial in
elements of A,, of degree less than 4. |
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Remark 7.1. The results of these two propositions can be summarized as follows: (1) If n > 2
is even, then every quartic generator of A, is a core invariant; (2) if n > 3 is odd, then A, has a
compound quartic generator; and (3) if n > 10 is even, then A,, has a compound quintic generator.
This leaves open the question whether Ag is degree closed in A.

Remark 7.2. If A = k[M] for any set M, then M is not bounded in degree. This was shown
already by MacMahon in the Nineteenth Century; see [15]. The polynomials

Lo =25'0@}) (n>2)
give an easy way to see this: Each is linear and irreducible over k[zg, z1], and:
L, € W(n,n) N (An - Anfl)

It follows that each L, is a core invariant. In addition, since the z,,-coefficient of L,, is 336“1, a unit
of C(xg), it follows that Lo, ..., L, forms a set of rational generators of A, over C(zg). This was
known already to Weitzenbock [39], and used later in [16, 32, 37].

8. APPLICATION: HILBERT’S FOURTEENTH PROBLEM

Proposition 4.1 affords a surprisingly easy way to construct counterexamples to Hilbert’s Four-
teenth Problem. Given n > 2, define the sequence of integers k. (r > 0) by:

b — nr/2 nr even
" (e +1)/2 nr odd

Define the index set J = {(0,0)} U{(r,s)|r > 1, ko1 +1 < s < k;}.

Theorem 8.1. There erists a sequence w(, ) € Ry N V(, o for (r,s) € J such that w(o,0) = 1, and
forr>1:

Dw _ W(r,s—1) k1 +2<s<k,
(r:s) ToW(r—1,k,._,) S= krfl +1

Proof. Given (r,s) € J, set f/(r,s) = R,NV{; . Using lexicographical ordering on J, assume that the

sequence wy; ;) € V(; j) has been constructed up to (i,5) = (r — 1, k._1), where » > 1. By Prop. 4.1,
each mapping in the following sequence of maps is surjective:

- - D - D D - D -
ToVir—1k, 1) C Virke 1) < Vi a41) < - Vieko—1) < Vi)
We may thus extend the sequence w, ;) to (i,7) = (r, k). O

Definition 8.1. For k > 0, the basic G,-module By, is defined by exponentiation of the restriction
of the down operator D to Ry.

Note that By, = A1, The following result generalizes Thm. 7.13 of [18].

Theorem 8.2. Let n, N, \, u be positive integers such that 3 < n < N and 2\ = nu. Let xq,yo, 20
denote the unique linear invariants for By, By, By, respectively, and consider the G,-module:

Bn @® By @ By

If X is the G,-variety defined by o — 20 = yo — 2 = 0, then X = A"2 and k[X]% is not finitely
generated.

Proof. The representation B, is defined by the restriction of D to R,, = k[zo, ..., z,]. Let w5 € R,
be the sequence defined in Thm. 8.1 . Given m > 1, the theorem implies that:

(14) 23 | D" P womnmy (0<i<m—1,0<j<n-1)
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The G,-module B, ® By ® By is a submodule of By & By & By, and is defined by the extension of

D to Ry[yo, y1, 20] given by:
_ zn:x 9 9
= — i—1 o, + Yo — e

For each m > 1, Prop. 2.8(a) implies that the kernel of D contains the element:

Fm(l‘Ov - Tny Yo, Y1, ZO) = [w(Qm,nm) yl }nm
nm ( l)k
(nm)' Z A Dkw(2m nm) (Dyl)nm kyllc
k=0
m—1 n—l ZnJr]

+4), in+ 2
= (nm) Z Z m—i-J D™ w(am nmyo R I e VT
i=0 j=0

Substitute zg = 23 and yo = z} in the term Di"“'w(gm)nm)ygm_(mﬂ)yi"ﬂ. Equation (14) implies
that the resulting term is divisible by:

ZgM+u(nm—(in+j)) _ Zg(nm—j)
In addition, substituting zo = 2z in the last term z2™yP™ yields z2*™
7 <n—1, we have:

punm

nm __ nm
Yy = % .

Y7 Since
p(nm — j) > p(nm —n + 1)
Therefore, there exists G, € K[21, ..., Zpn, Y1, 20] such that:

(_1)nmz,u(nm—n+l)Gm

A 1 —
F’m(ZO»xla“' ‘rn7ZO7y1aZO)_ 0

The coefficient of y7™ in G,, equals 2" (n—1) , which does not depend on m.
Define the triangular derivation d on k[ml, ceey Ly ooy TN, 20] Dy

0 0
d= —— troig—+ -+ Tpag—+ -+ TN
1 ox, oz N

The conditions 2\ = ny and n > 3 insure that A > 2 which implies that z}) is not in the image of
d. Extend d to d on k[z1,...,2N, 20, y1] by setting dy1 = z}. Then each polynomial G,, (m > 1) is
in the kernel of d. By the Non-Finiteness Criterion (Lemma 7.4 of [18]), it follows that the kernel
of d is not finitely generated. |

Remark 8.1. In general, the counterexamples to Hilbert’s Fourteenth Problem given in Thm. 8.2
are new, though some cases were known. The case n = 3, A = 3, p = 2 yields the counterexample
in dimension 5 which first appeared in [12]. The case n = 4, A = 2, u = 1 yields the counterexample
in dimension 6 first given in [19]. This example was used to construct a linear representation of the
unipotent group G2 x G, on A! with non-finitely generated ring of invariants.

9. CONCLUDING REMARKS

Remark 9.1. Any algorithm to construct a finite generating set for A,, must have two ingredients:
It must incorporate a technique for constructing new invariants from a given set of invariants, and
it must recognize whether, at any given step, the invariants so constructed generate all of A,,. The
latter step uses the fact that A, is algebraically closed in R,,.

There are two basic methods for constructing G,-invariants stemming from the classical tech-
niques. The first uses the vector product (generalized transvectants) presented in Section 2.3. By
considering the down operator D on the infinite polynomial ring R, this leads naturally to the defi-
nition of the mapping 6. By combining 6 with integration of invariants, we obtain a procedure which
builds invariant rings by successive degrees. In particular, choose a compatible Z-grading g of R,
and let U be the associated up operator. Given f € W, ) and k > 0, the element U (f) belongs
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to Wi, 41,s+k)- We call this the vertical procedure. It is a version of Cayley’s omega process. Note
that the vertical procedure restricts to A,, if the grading g is n-compatible.

The second standard method exploits the fact that A is factorially closed in R. In particular,
if f1,...,fx € A and P(fy,..., fx) = xoh for some polynomial relation P and h € R, then h € A.
Thus, one gets new invariants from a given set of invariants by considering their ideal of relations
modulo xy. In order to capture all such relations, one typically needs Buchberger’s algorithm, but
this procedure was understood and used in the Nineteenth Century; see [33], §192, and [32], §15.2.

In the modern era, algorithms to compute invariant rings were given by Cerezo in 1988 for
any linear G,-action in characteristic zero [9]; by Tan in 1989 for the basic linear G,-actions in
any characteristic [37]; and by Bedratyuk in 2010 for the basic G,-actions in characteristic zero
[3]. Despite their merits, these algorithms, in their current forms, lack the efficiency needed to be
computationally feasible and effective in higher dimensions.

Remark 9.2. In order to create an efficient algorithm using the vertical procedure, it is necessary
to gain a more refined understanding of the kernel of . Given 7, s > 0, define:

T(r,s) = V(T75) Nkerf and T, =1V,.Nkerd
Then the sequence

0—>Tr<—>VTi>WT+1—>O
is split exact. Note that, by Lemma 3.1, —— -2 is a section for §. We observe two distinct types of

> r+1 Oz
kernel elements for 6:
1. The A-module Zkzo Topr1A

2. Elements of the form f0(g) — g6(f) (f,g9 € R)

In particular, for r > 1 define the linear map ¢ : V.. — T,41 by ¢¥(f) = xof — 6(f). Then the
sequence

O—>Wr<—>Vri>TT+1

is exact.
Remark 9.3. A third method for constructing invariants is based on Thm. 3.2, which asserts:
W(r,s) = xOW(r—l,s) S TW(r,s—r)

Here, 7 is a section of the surjective map o~ e : Wir,sy = Wi(r.s—r). The construction of 7 described
in the proof of the theorem requires choosing a basis { f1, ..., fx} for W, _,, and elements g; such
that:

Dgi = =Do(f;) (1<i<k)
In this way, W(, ) is built from W,_; 5y and W(, s_,y. This is called the horizontal procedure.

Remark 9.4. Cerezo’s work on the invariants of linear G,-actions is not recognized as widely as it
deserves to be, perhaps because the three papers [7, 8, 9] are unpublished. The first of these is a
lengthy and detailed hand-written treatise on the invariant rings A,, based on the geometric theory,
and containing numerous examples. In it, Cerezo calculates explicitly the 23 generators of As. The
generator of degree 18 involves more than eight hundred monomials with relatively prime integer
coefficients on the order of 10'°, and requires eight pages to write. This is the SLo-invariant which
was famously discovered by Cayley and Faa di Bruno; see [13].

Remark 9.5. The idea to study all invariants of a fixed degree is in keeping with the approach laid
out by Howe in [24, 25], who classified the invariants of degree d < 6 for the action of SL,(C) on
the space of m-forms in n variables.

Remark 9.6. The paper of Olver and Sanders [30] (2000) formulates a duality between between the
invariant theory of binary forms and the theory of modular forms in one variable. In this approach,
the degree n of the binary form corresponds to the negative of the weight w of the modular form,
and transvection corresponds to the Rankin-Cohen bracket operator. The authors write:
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The key result is that the two theories of modular and binary forms have a common
limiting theory as n = —w — oo. The underlying transformation group of the
limiting theory is a three-dimensional Heisenberg group. This limiting procedure is
made precise on the Lie algebra (infinitesimal) level, realizing the solvable Heisenberg
algebra as a contraction of the semisimple unimodular algebra sl(2, C). Complicated
identities in the transvectant and Rankin-Cohen bracket algebras reduce to much
simpler identities in the Heisenberg limit. (p 253)
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