Uncrossing

Michel X. Goemans

MIT

Topics

- Minimally k-edge-connected graphs
- Odd cuts, cut tree
- r-arborescence polytope
- Matroid intersection
- Lucchesi-Younger
- Submodular flows
- Matching polytope
- TDI and unimodularity
- Augmenting connectivity (w/ or w/o weights)
- Node connectivity augmentation
- Degree restricted spanning trees
- Dual uncrossing
- Primal uncrossing
- Termination, finiteness, efficiency
- TU and TDI
- TDI and unimodularity
- Iterative rounding
- Iterative relaxation
- Uncrossing set pairs

Intersecting, Crossing Sets

- Subsets A and B of S are

- intersecting if $\boldsymbol{A} \cap \boldsymbol{B} \neq \emptyset, \boldsymbol{A} \backslash \boldsymbol{B} \neq \emptyset$ and $\boldsymbol{B} \backslash \boldsymbol{A} \neq \emptyset$
- crossing if intersecting and $S \backslash(A \cup B)=\overline{A \cup B} \neq \emptyset$
- Family $\mathcal{F} \subseteq 2^{S}$ is
- laminar (or nested) if no two sets $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{F}$ are intersecting (intersecting-free)

$$
\text { i.e. for } A, B \in \mathcal{F}: A \subseteq B \text { or } B \subseteq A \text { or } A \cap B=\emptyset
$$

- cross-free if no two sets of \mathcal{F} are crossing
- a chain if, for any two sets $A, B \in B$, either $A \subseteq B$ or $B \subseteq A$
- Uncrossing: Make a family of sets cross-free, laminar or a chain

Laminar vs. Cross-free

- If add complements to cross-free family, family remains still cross-free
- If \mathcal{F} is cross-free then

$$
\{S \in \mathcal{F}: v \in S\} \cup\{\bar{S} \in \mathcal{F}: v \notin S\}
$$

is laminar

Tree Representation for Laminar and Cross-Free Family $\mathcal{F} \subseteq 2^{\vee}$ Tree (U, T)

$$
V \longrightarrow U
$$

$$
V=\{1,2,3,4,5,6,7\}
$$

Cross-free $\Leftrightarrow \exists$ tree (U, T)

laminar $\Longleftrightarrow \exists$ rooted directed tree

Submodularity

- $f: \mathbf{2}^{S} \rightarrow R$ is submodular if for all $A, B \subseteq S$:

$$
f(A)+f(B) \geq f(A \cap B)+f(A \cup B)
$$

- Basic example: cut function of a nonnegatively weighted undirected graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$
- $d(S)=w(\delta(S))$ for $S \subseteq V$
- $d(A)+d(B)=d(A \cap B)+d(A \cup B)+2 w(A \backslash B: B \backslash A)$ count contribution of e on both sides
$d(S)=d(\bar{S}) \Rightarrow d(A)+d(B)=d(A \backslash B)+d(B \backslash A)+2 w(A \cap B: \overline{A \cup B})$
- Similarly for indegree function $\boldsymbol{d}^{-}(\cdot)=\boldsymbol{w}\left(\boldsymbol{\delta}^{-}(\cdot)\right)$ or outdegree function $\boldsymbol{d}^{+}(\cdot)=\boldsymbol{w}\left(\boldsymbol{\delta}^{+}(\cdot)\right)$ of a directed graph (with $\geq \mathbf{0}$ weights).
- Minimizers of a submodular function form a lattice family, i.e. it is closed under \cap and \cup

Minimally \boldsymbol{k}-Edge-Connected Graphs

Theorem: In a minimally k-edge-connected graph $G=(\boldsymbol{V}, \boldsymbol{E})$, we have

$$
|E| \leq k(|V|-1)
$$

Witness family $\mathcal{F}: \forall e \in E, \exists S \in \mathcal{F}: e \in \delta(S), d(S)=k$
(i) by complementing, can assume $1 \notin S \quad \forall S \in \mathcal{F}$
(ii) if $A, B \in \mathcal{F}$ intersecting, remove A, B, add $\{A \cup B$ to \mathcal{F}

$$
\begin{aligned}
& \text { intersecting, re me } \\
& \cdot k+k=d(A)+d(B) \geqslant d(A \cap B)+d(A \cup B) \geqslant 2 k \\
&=\text { no edge in }(A \backslash B: B \backslash A) \\
& \Rightarrow \delta(A) \cup \delta(B) \\
& \subseteq \delta(A \cup B)+\delta(A \cap B)
\end{aligned}
$$

uncrossing process will terminate (see later)
\rightarrow laminar \mathcal{F}
(iii) If $\exists S_{,} S_{1}, \ldots, S_{l} \in \mathcal{F}$ with $S_{i} \subset S \bigcup_{i=1}^{l} S_{i}$
\Rightarrow can remove S from \mathcal{F}

$$
\Rightarrow \forall S \in \mathcal{F}: S \backslash \bigcup_{S_{i} \in \mathcal{F}, S_{i} \subseteq S} \not S_{i} \neq \phi
$$

In rooted directed tree representation, every node nonempty $\Rightarrow|\mathcal{F}| \leqslant|v|-1$

$$
\Rightarrow|E|=\left|\bigcup_{S \in \mathcal{F}} \delta(S)\right| \leqslant k(|V|-1)
$$

Gomory-Hu Cut Tree

- Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ be a (nonnegatively weighted) undirected graph.
- Gomory-Hu cut tree is any tree $(\boldsymbol{V}, \boldsymbol{T})$ such that for any edge $e=(s, t) \in T$, we have that $\delta\left(C_{e}\right)$ is a minimum s, t-cut where C_{e} is any of the connected components of $T \backslash\{e\}$.
- Property of Gomory-Hu tree: For any $u, v \in V$, a min u, v-cut is given by the minimum capacity cut among $\delta\left(C_{e}\right)$ where e is along the path from u to v in T. Puv
- Gomory-Hu cut tree always exists.
- Same result holds for symmetric submodular functions [GGW]
- No need to contract if perturb

Proof of existence Gomory-Hu Cut Tree

Perturb by adding $\varepsilon_{i j}$ (lexicographically) to edge (i, j) (of complete graph) so that all cut values are distinct \rightarrow mincuts are unique
$\forall i \neq j$, let $C_{i j}: 1 \notin C_{i j}$ and $\delta\left(C_{i j}\right)$ unique i, j-minot Let $\mathcal{F}=\left\{C_{i j}: \quad i \neq j\right\}$
Claim: \mathcal{F} is laminar

Proof By contradiction. Assume $C_{i j} \& C_{k l}$ cross

Assume $d\left(C_{i j}\right)>d\left(C_{k l}\right) \rightarrow \delta\left(C_{k l}\right)$ does not separate

$$
\text { say } i \in C_{i j} \cap C_{k l} \& j \in C_{k l} \backslash C_{i j}
$$

if k or $l \notin C_{i j} \cup C_{k l}$

$$
d\left(C_{i j}\right)+d\left(C_{k l}\right)>d\left(C_{i j} \cap C_{k l}\right)+d\left(C_{i j} \cup C_{k l}\right)
$$

if $k \& l$ in $C_{i j} \cup C_{k l}$ then k or l in $C_{i j} \backslash C_{k l}$

$$
\begin{aligned}
d\left(C_{i j}\right)+d\left(C_{k l}\right) & >d\left(C_{i j} \backslash C_{k l}\right)+d\left(C_{k l} \backslash C_{i j}\right) \\
>d\left(C_{k l}\right) & >d\left(C_{i j}\right)
\end{aligned} \text { contradiction }
$$

$\rightarrow \mathcal{F}$ laminar

Claim: No $S, S_{1}, S_{2}, \ldots, S_{l} \in \mathcal{F}$ with

$$
S_{i} \subset S
$$

and $S=\bigcup_{i} S_{i}$
Proof:
consider set maximizing

$$
\max \left(d(S), d\left(S_{1}\right), \cdots, d\left(S_{l}\right)\right)
$$

(max unique)
\rightarrow can remove this set since every i, j is separated by another set in family
\rightarrow Directed tree representation \equiv tree on V三 Gomory-Hu cut tree

Min T-Odd Cut (Padberg and Roo '82)

- \boldsymbol{T}-odd cut problem: Given ($\geq \mathbf{0}$ edge weighted) graph $G=(\boldsymbol{V}, \boldsymbol{E})$ and $T \subseteq V$, find S with $|S \cap T|$ odd minimizing cut function $d(S)$
- Lemma: If $\delta(C)$ is a mincut then there exists a min T-odd cut $\delta(S)$ with either $S \subseteq C$ or $S \subseteq \bar{C}$.

if C is T-odd
if C is T-even, let
$\delta(U)$ be a min Tod wt $d(c)$

$$
\begin{aligned}
& \text { be a } \\
& d(U)+d(C) \geqslant d(U \cap C)^{\geqslant d}+d(\overline{U U C}) \text { one of these } \\
& d(U)+d(C) \geqslant d(U \backslash C) \geqslant d(C \backslash U)<d \text { min } T \text { odd }
\end{aligned}
$$

- Lemma: If $\delta(C)$ is a mincut separating vertices of T then there exists a min T-odd cut $\delta(S)$ with either $S \subseteq C$ or $S \subseteq \bar{C}$.

Padberg-Rao's T-Odd Cut Algorithm

- Find global mincut C separating two vertices of T
- If T-odd, done.
- Else, solve subproblems
- $G_{1}=G / C$ with $T_{1}=T \backslash C$
- $G_{2}=G / \bar{C}$ with $T_{2}=T \backslash \bar{C}$
and output best T-odd cut

Number of subproblems $\leq|T|$

Rizzi's Min T-Odd Cut Algorithm

$A L G(G, T)$

- Take $s, t \in T$
- Find min s, t-cut $\delta(\boldsymbol{S})$
- If S is T-odd, return $\min (d(S), A L G(G /\{s, t\}, T \backslash\{s, t\}))$
- Else return $\min (A L G(G / S, T \backslash S), A L G(G / \bar{S}, T \backslash \bar{S}))$

Min T-Cut Algorithm

Follows from Padberg-Rao: There exists $s, t \in T$ such that $\min T$-odd cut is a $\min s, t$-cut

Other Cut Families

- [Barahona-Conforti '87]: \boldsymbol{T}-even cuts (having an even, ≥ 2 vertices of T on both sides)
- [Grötschel et al. '88] (for submodular f.):
- Lattice family \mathcal{C} of sets
- Triple subfamily \mathcal{G} of \mathcal{C} : whenever 3 of $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{A} \cap \boldsymbol{B}$ and $\boldsymbol{A} \cup \boldsymbol{B}$ are in $\mathcal{C} \backslash \mathcal{G}$ then 4th is also in $\mathcal{C} \backslash \mathcal{G}$
- Example: $\mathcal{G}=\{S \in \mathcal{C}:|S \cap T| \not \equiv q(\bmod p)\}$ (Special case: min T-even cut separating s and t.)

More Cut Families

- Generalization: parity family (G.-Ramakrishnan) (also for submodular f.)
- Parity subfamily \mathcal{G} of a lattice family \mathcal{C} if

$$
A, B \in \mathcal{C} \backslash \mathcal{G} \Rightarrow(A \cap B \in \mathcal{G} \text { iff } A \cup B \in \mathcal{G})
$$

- Example: lattice family minus a lattice family (i.e. can find second minimizer to a submodular function).
- Need more than uncrossing. Theorem: Let S^{*} be a minimizer over \mathcal{G}. Then either $S^{*} \in\{\emptyset, \boldsymbol{V}\}$ or there exists $a, b \in V$ such that S^{*} minimizer over lattice family $\mathcal{C}_{s t}=\{S \in \mathcal{C}: s \in S, t \notin S\}$

Polyhedral Combinatorics

Dominant of r-Arborescence Polytope

- $\boldsymbol{X}=\{$ Digraphs with every vertex reachable from root $r\}$
- Minimal $=r$-arborescences: rooted tree at r in digraph $G=(V, A)$
- Theorem: $\boldsymbol{\operatorname { c o n v }}(\boldsymbol{X})=\boldsymbol{\operatorname { c o n v }}($ arborescences $)+\boldsymbol{R}_{+}^{m}=$

$$
\begin{aligned}
P=\{x: & x\left(\delta^{-}(S)\right) \geq 1 & & S \subset V \backslash\{r\} \\
& x_{a} \geq 0 & & a \in A\}
\end{aligned}
$$

\subseteq : obvious

Proof through primal uncrossing
x : vertex of polyhedron P
$A=\left\{a: x_{a}>0\right\}$

$$
F=\left\{S \subseteq \vee \backslash\{r\} ; x\left(\delta^{-}(S)\right)=1\right\}
$$

$$
\text { vertex } \Rightarrow \operatorname{span}(x(\delta(s)): s \in \mathcal{F})=\mathbb{R}^{|A|}
$$

Claim: \exists laminar $\mathscr{L} \subseteq \mathcal{F}$
with $\operatorname{span}(\mathscr{L})=\operatorname{span}^{\prime \prime}(\mathcal{F})$
Lemma:

$$
\begin{aligned}
S, T \in \mathcal{F} \\
S, T \text { intersect }
\end{aligned} \Rightarrow \begin{aligned}
& S \cap T, S \cup T \in \mathcal{F} \\
& \text { and } X(\delta(S))+X\left(\delta^{(}(T)\right) \\
& \\
&
\end{aligned}
$$

Pf by submodularity

$$
2=d^{-}(S)+d^{-}(T) \geqslant d^{-}(S \cap T)+d^{-}(S \cup T) \geqslant 2
$$

$\Rightarrow S \cap T, S \cup T \in \mathcal{F}$ and no are between $S \backslash T$ and $T \backslash S$
\Rightarrow linear dependence
uncrossing: $\mathscr{L}=F$
while $\exists 2$ intersecting sets S,T
add $S \cap T$, SUT to \mathscr{L}
remove either S on T
$\Rightarrow \operatorname{span}(\mathcal{L})=\operatorname{span}(\mathcal{F})$ thanks to \because
Finite?
Not necessarily

But
Lemma: For any maximal laminar $\mathscr{L} \subseteq \mathcal{F}$:

$$
\operatorname{span}(\mathscr{L})=\operatorname{span}(\mathcal{F})
$$

\rightarrow can construct \mathcal{L} greedily
Pf by contradiction

if T cannot be added to \mathscr{L} but $X\left(\delta^{-}(T)\right) \notin \operatorname{spon}(\mathcal{L})$ then must intersect $S \in \mathscr{L}$

$$
\begin{aligned}
& \Rightarrow S \cap T \text {, oUT } \in \mathcal{F} \text { and } \\
& x\left(\delta^{-}((S))+x\left(\delta^{-}(T)\right)=x\left(\delta^{(S \cap T)}\right)+x\left(\delta^{-(S U T)}\right)\right. \\
& \in \operatorname{span}(\mathcal{L}) \notin \operatorname{span}(\mathcal{Z})
\end{aligned}
$$

\rightarrow either $S \cap T$ on SUT in $\operatorname{span}(\mathcal{F})$ but both have fewer crossings with \mathscr{L} than T did
\rightarrow repeating get a set to add to \mathscr{L} and increase span
$\left.\Rightarrow x\right|_{A}$ defined by

$$
x\left(\delta^{-}(s)\right)=1 \quad S \in \mathscr{L}
$$

Let A corresponding matrix (rows are $X(\delta-(s)) \quad s \in \mathscr{L})$

Totally Unimodular

- \boldsymbol{A} is totally unimodular (TU) if all square submatrices of \boldsymbol{A} have determinant in $\{-\mathbf{1}, \mathbf{0}, \mathbf{1}\}$
- If \boldsymbol{A} is TU then for any integral $b,\{x: A x \leq b, x \geq 0\}$ is integral.
- Ghouila-Houri: \boldsymbol{A} is TU iff every subset \boldsymbol{R} of rows can be partitioned into $\boldsymbol{R}_{\mathbf{1}}$ and $\boldsymbol{R}_{\mathbf{2}}$ such that

$$
\left|\sum_{i \in R_{1}} a_{i j}-\sum_{i \in R_{2}} a_{i j}\right| \leq 1
$$

$R_{1} R_{2}$

Claim: A is T.U.
For subset of \mathscr{L}, alternate between assigning sets to R_{1} and R_{2}

For any arc, entering sets alternate $\rightarrow+1,0,-1$
\Rightarrow Any extreme point is integral

Directed Cuts

- Digraph $\boldsymbol{D}=(\boldsymbol{V}, \boldsymbol{A})$
- A directed cut is $C=\delta^{-}(S)$ where $\delta^{+}(S)=\emptyset$.
- A directed cut cover is $\boldsymbol{F} \subseteq \boldsymbol{A}$ with $\boldsymbol{F} \cap \boldsymbol{C} \neq \emptyset$ for every directed cuts C
- Theorem: Polytope

$$
\begin{array}{lll}
\{x: & x(C) \geq 1 & C \text { directed cut } \\
& 0 \leq x_{a} \leq 1 & a \in A\}
\end{array}
$$

integral, i.e. convex hull of directed cut covers.

- Proof: similar to arborescence with 2 differences

1. Can only uncross crossing sets
(while for arborescence intersecting \Rightarrow crossing because
\rightarrow cross-free family \mathcal{F} (rather than laminar) of root)
2. Matrix A corresponding to directed cuts $\delta^{-}(S)$
for $S \in \mathcal{F}$ cross-free is T.U.

$$
\left[\begin{array}{c}
\text { not true if not } \begin{array}{c}
\operatorname{DiRECT} \in D \\
\equiv \delta^{+}(S)=\phi
\end{array} \\
\hline
\end{array}\right]
$$

- For subfamily of \mathcal{F}, consider its tree representation T
- directed $w^{4} \Rightarrow a \in A$ corresponds to directed path in T (no backward edge)
\Rightarrow bicolor arcs of $T($ sets of $\mathcal{F})$ such that directed paths alternate colors
Easy: $\forall v$, use one color for incoming arcs, other for outgoing let propagate

Matroid Intersection Polytope

- Let $M_{1}=\left(\boldsymbol{E}, \mathcal{I}_{1}\right)$ and $M_{2}=\left(\boldsymbol{E}, \mathcal{I}_{2}\right)$ be two matroids with rank functions r_{1} and r_{2}
- Edmonds: The convex hull of incidence vectors of independent sets in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ is given by:

$$
\begin{array}{rlr}
P=\{x: & x(S) \leq r_{1}(S) & S \subseteq E \\
& x(S) \leq r_{2}(S) & S \subseteq E \\
& x_{i} \geq 0 & \\
i \in S\}
\end{array}
$$

\subseteq obvious

- Proof through dual uncrossing and TDIness

TDI (Edmonds-Giles '77)

- Rational system $A x \leq b$ is TDI if, for each $c \in Z^{n}$, the dual to $\min \left\{c^{T} x: A x \leq b\right\}$, i.e.

$$
\max \left\{b^{T} y: A^{T} y=c, y \geq 0\right\}
$$

has an integer optimum solution whenever it is finite.

- Theorem: If $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is TDI and \boldsymbol{b} is integral then $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ is integral (i.e. has only integral extreme points).

Dual

$$
\begin{array}{lll}
\max & c^{T} x & =\min \\
& \sum_{S} r_{1}(S) y_{1, S}+\sum_{S} r_{2}(S) y_{2, S} \\
x(S) \leq r_{1}(S) \quad \forall S & \sum_{S: i \in S} y_{1, S}+\sum_{S: i \in S} y_{2, S} \geq c_{i} \\
x(S) \leq r_{2}(S) \quad \forall S & y_{1, S}, y_{2, S} \geq 0
\end{array}
$$

Take dual optimum y_{1}, y_{2}
Let $\mathcal{F}_{i}=\left\{S: y_{i, S}>0\right\}$
Claim: Can assume that \mathcal{F}_{i} is a chain
"Uncross" each matroid separately:

$$
\begin{array}{lll}
\text { For } S, T \in \mathcal{F}_{i} \\
S \nsubseteq T, T \nsubseteq S & & y_{i, S} \leftarrow y_{i, S}-\varepsilon \\
& y_{i, T} \leftarrow y_{i, S}-\varepsilon & y_{i, S \cap T \leftarrow y_{i, S \cap T}+\varepsilon} \\
y_{i, S U T} \leftarrow y_{i, S U T}+\varepsilon
\end{array}
$$

New y : (i) still feasible r
(ii) objective can only improve by subs.

$$
\varepsilon\left[r_{i}(S \cap T)+r_{i}(S \cup T)-r_{i}(S)-r_{i}(T)\right] \leqslant 0
$$

Progress toward's having no $S, T \in \mathcal{F}_{i}: S \nsubseteq T, T \nsubseteq S$?
Yes. $\phi_{i}=\sum_{s} y_{i, s} \underbrace{|s| \cdot|\bar{s}|}_{d_{K_{n}}(s)}$

$$
\text { new } \phi_{i} \text { - old } \phi_{i}=\varepsilon\left[\begin{array}{c}
d_{K_{n}}(J \cup T)+d_{K_{n}}(s \cap T) \\
\left.-d_{K_{n}}(s)-d_{K_{n}}(T)\right] \\
\leqslant-\varepsilon<0
\end{array}\right.
$$

\rightarrow terminate
\Rightarrow can assume chain $b_{i}=\left\{s: y_{i, s}>0\right\}$

$$
\rightarrow x \text { defined by } \begin{cases}x(s)=r_{1}(s) & s \in C_{1} \\ x(s)=r_{2}(s) & s \in \mathscr{C}_{2}\end{cases}
$$

Claim: Underlying matrix is T.U.
Pf. Take any subset $C_{1}^{\prime}, C_{2}^{\prime}$ of $C_{1} \& C_{2}$
Can alternatively assign sets in E_{1}^{\prime} so that any element
gets contribution in $\{0,+1\}$

$$
\begin{aligned}
& \in R_{1} \\
& \in R_{2}
\end{aligned}
$$

Similarly for ${e_{2}}^{\prime}$ so that every element gets $\{-1,0\}$ contribution

$$
G_{2}^{\prime}
$$

\rightarrow over both C_{1} \& G_{2}^{\prime} every element gets contribution in

$$
\{-1,0,+1\}
$$

\rightarrow TU $\quad \Rightarrow$ extreme point integral

Lucchesi-Younger

- Could have done dual uncrossing and TDI proof for arborescences of directed cut covers
- Lucchesi-Younger theorem: For any digraph, min size of a directed cut cover $=$ max number of disjoint directed cuts
- If planar digraph, can take dual to get:

Theorem: Min size of a feedback arc set (meeting all directed circuits) $=$ max number of arc disjoint directed circuits

Perfect Matching Polytope via Uncrossing

Convex hull of perfect matching $=$

$$
\begin{array}{lll}
\{x: & x(\delta(v))=1 & v \in V \\
& x(\delta(S)) \geq 1 & S:|S| \text { odd } \\
& 0 \leq x_{e} & e \in E\}
\end{array}
$$

Could have replaced $x(\delta(S)) \geq 1$ by $x(E(S)) \leq \frac{|S|-1}{2}$
Schrijver \& Seymour: dual uncrossing \rightarrow laminar

+ half dual integrality $\Rightarrow T D i \Rightarrow$ integrality

Primal uncrossing
S, T odd \Rightarrow either SAT, SUT odd or SIT,TIS odd
Can uncross crossing tight odd sets into $S \cap T$, JUT
\rightarrow vertex x defined by $x(\delta(S))=1 \quad$ Se \mathcal{L} laminar
Proof adapted from Ravi \& Singh

- Let $E=$ support of $x=\left\{e: x_{e}>0\right\} \rightarrow|E|=|\mathcal{L}|$
- Can assume for $S \in \mathcal{L}$ that $E(S)$ connected

- Can assume E is connected and $/ V /$ even (treat separately connected comp.)
- $\mathscr{L}=\mathscr{L}_{1} \cup \mathscr{L}_{2}$. If $\mathscr{L}_{2}=\phi$ then extreme point \rightarrow singletons is disjoint union of edges and odd cycles with $x=\frac{1}{2}$ connected and IVeven \Rightarrow no ooddeychs (and $\mid V /=2$)
\rightarrow Assume $\mathscr{L}_{2} \neq \phi$
- Claim: for $S \in \mathcal{L}_{2}$
contact all children $S_{i} \in \mathscr{L}$ of S
then G_{S} is not a tree
PF: S odd \Rightarrow after contraction, odd $\# k$ of vertices in S if tree then bipartition U_{1}, U_{2} odd $\Rightarrow\left|v_{1}\right|>\left|v_{2}\right|$

$$
\begin{aligned}
& \Rightarrow 1 \leq\left|U_{1}\right|-\left|U_{2}\right|=\sum_{i \in U_{1}} x(\delta(i))-\sum_{i \in U_{2}} x(\delta(i)) \leqslant x(\delta(S))=1 \\
& \Rightarrow \text { for } i \in U_{2} \\
& \Rightarrow X(\delta(S))=\sum_{i \in U_{1}} x\left(\delta(\delta(i))-\sum_{i \in U_{2}} x(\delta(i)) \text { in } U_{2}^{\prime}\right. \\
& \text { NOT. ind } \in P_{i}
\end{aligned}
$$

\Rightarrow Can remove one edge from $E(s)$ for each $S \in \mathscr{L}_{2}$ and maintain connectivity \rightarrow remove $\left|\mathscr{L}_{2}\right|$ edges
Fix one maximal set $S \in \mathscr{L}_{2}$

- complement $S \rightarrow$ can also remove edge from $E(V \mid S)$
\rightarrow remove $\left|\mathscr{L}_{2}\right|+1$ edges
- at least 2 edges in $\delta(S) \quad$ (otheurise $x_{e}=1$
\rightarrow component by itself)
\rightarrow remove $\left|L_{2}\right|+2$ edges and still connected

$$
\Rightarrow|E| \geqslant\left|\mathscr{L}_{2}\right|+2+|v|-1=\left|\mathscr{L}_{2}\right|+|V|+1>\left|\mathscr{L}_{2}\right|+\left|\mathscr{L}_{1}\right|
$$

contradicting $|E|=|\mathcal{L}|$

Matroid Intersection

$\max c^{\boldsymbol{T}} \boldsymbol{x}$ $=\min \sum_{S} r_{1}(S) y_{1, S}+\sum_{S} r_{2}(S) y_{2, S}$

$$
\left\{\begin{array} { l l }
{ x (S) \leq r _ { 1 } (S) } & { \forall S \subseteq \in } \\
{ x (S) \leq r _ { 2 } (S) } & { \forall S \subseteq E } \\
{ x _ { i } \geq 0 } & { i \in E }
\end{array} \quad \left\{\begin{array}{l}
\sum_{S: i \in S}^{S} y_{1, S}+\sum_{S: i \in S}^{S} y_{2, S} \geq c_{i} \\
y_{1, S}, y_{2, S} \geq 0
\end{array}\right.\right.
$$

Min-max relation: $\max \left\{|I|: I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right\}=\min \left\{r_{1}(S)+r_{2}(\bar{S})\right\}$

For $c_{i}=1$, can choose y_{1}, y_{2} integral and $\mathcal{C}_{i}=\left\{S: y_{i, S}>0\right\}$ chain for $i=1,2$.
$\Rightarrow \mathcal{C}_{1}=\{S\}, \mathcal{C}_{2}=\{\bar{S}\}$

Connectivity Augmentation

Connectivity Augmentation

- For graph $\boldsymbol{H}, \boldsymbol{\lambda}_{\boldsymbol{H}}(s, t)=$ local connectivity between s and t $=$ max number of edge-disjoint paths between s and t
- Problem: Given graph $G=(\boldsymbol{V}, \boldsymbol{E})$ and requirements $r(\boldsymbol{u}, \boldsymbol{v})$ for $\forall u \neq v \in V$, add set F of (multiple) edges such that in $H=(V, \in \cup F)$ $\lambda_{H}(u, v) \geq r(u, v)$ for all u, v
- Special case: $r_{u, v}=k$ for all u, v. Want augmentation into k-edge-connected graph
- Objective 1. Cardinality: Minimize $|\boldsymbol{F}|$ [Frank]
- Good characterization
- Efficient algorithm
- Objective 2. Weighted: Minimize $\sum_{(i, j) \in F} w_{i j}$
- NP-hard
- 2-approximation algorithm [Jain]

Formulation

- Let $R(S)=\max _{s \in S, t \notin S} r(s, t)$
- Let $d(S)=d_{E}(S)=\left|\delta_{E}(S)\right|$
- Want integral $x \in P$:

$$
P= \begin{cases}x(\delta(S)) \geq R(S)-d(S) & \forall S \\ x_{i j} \geq 0 & \forall i, j\end{cases}
$$

- If relax integrality, not integral

Uncrossing

- Lemma: For crossing S and T,

$$
\begin{aligned}
& \text { either } R(S)+R(T) \leq R(S \cup T)+R(S \cap T) \\
& \text { or } R(S)+R(T) \leq R(S \backslash T)+R(T \backslash S)
\end{aligned}
$$

- Uncrossing lemma: For $x \in P$, let
$\mathcal{F}=\{S: x(\delta(S))=R(S)-d(S)\}$. If $S, T \in \mathcal{F}$ and S, T crossing then
either $S \cap T, S \cup T \in \mathcal{F}$ and $x(S \backslash T: T \backslash S)=\mathbf{0}$ or $S \backslash T, T \backslash S \in \mathcal{F}$ and $x(S \cap T: \overline{S \cup T})=\mathbf{0}$

$$
\begin{aligned}
R(S)-d(S)+R(T)-d(T) & =x(\delta(S)+x(\delta(T)) \\
& \geqslant x(\delta(S \cup T))+x(\delta(S \cap T) \\
& \geqslant R(S \cup T)-d((\cup \cup T)+R(S \cap T)-d(S \cap T) \\
& \geqslant R(S)-d(S)+R(T)-d(T)
\end{aligned}
$$

Lower bound

- $\gamma=$ smallest \# of edges to add
- [Frank]: For any subpartition $V_{1}, V_{2}, \cdots, V_{k}$ of \boldsymbol{V} :

$$
2 \gamma \geq \sum_{i=1}^{k}\left[R\left(V_{i}\right)-d\left(V_{i}\right)\right]
$$

- Hence

$$
\gamma \geq\left\lceil\frac{1}{2} \max _{V_{1}, \ldots, V_{k}}\left[R\left(V_{i}\right)-d\left(V_{i}\right)\right]\right\rceil
$$

Add a new vertex s
 add γ new edges
pinch new edges together $\rightarrow s$
Graph on VU\{s\}: $\lambda(u, v) \geqslant r(u, v) \forall u, v$

Frank's Algorithm

(Modulo)

1. Add as few edges as possible between s and V (and none within V) such that $\lambda(u, v) \geq r(u, v)$ for all u, v
2. Add one more edge if degree of s is odd
3. Use Mader's local connectivity splitting-off result to get augmenting set \boldsymbol{F} (within \boldsymbol{V})

Step 1

Theorem [Frank]: Any minimal augmentation from s has

$$
m=\max _{V_{1}, \cdots, V_{k}} \sum_{i=1}^{k}\left[R\left(V_{i}\right)-d\left(V_{i}\right)\right]
$$

Minimal solution x. Clearly has $\geqslant m$ edges incident to s

$$
x_{v}>0 \Rightarrow \exists S: x(S)=R(S)-d(S)
$$

Get a disjoint family of tight sets

$$
\begin{aligned}
U V_{i} & \supseteq\left\{U \in V: x_{u}>0\right\} \\
\Rightarrow \sum x_{u} & =\sum_{i} x\left(\delta\left(v_{i}\right)\right)=\sum_{i} R\left(V_{i}\right)-d\left(V_{i}\right) \leqslant m \\
& \rightarrow \text { OPTIMAL }
\end{aligned}
$$

Splitting off

- Mader: can perform splitting off and maintain local connectivity

- (Modulo ...)
- Add

$$
\left\lceil\frac{1}{2} \max _{V_{1}, \cdots, V_{k}}\left[R\left(V_{i}\right)-d\left(V_{i}\right)\right]\right\rceil
$$

edges \Longrightarrow optimal

Weighted case

$$
\begin{aligned}
& L P(E) \quad=\min \quad \sum_{e} w_{e} x_{e} \\
& \text { s.t. } \quad \begin{cases}x(\delta(S)) \geq R(S)-d(S) & \forall S \\
x_{i j} \geq 0 & \forall i, j\end{cases}
\end{aligned}
$$

- Extreme point x could be fractional
- Theorem [Jain]: For any extreme point x, there exists f with $x_{f} \geq \frac{1}{2}$
- Iterative Rounding: While connectivity reqs not met Solve LP(E)
Take $f: x_{f} \geq \frac{1}{2}$
add \boldsymbol{f} to $\boldsymbol{E} \rightarrow \boldsymbol{F}$
- 2-approximation algorithm: $\boldsymbol{w}(\boldsymbol{F}) \leq 2 L P(E)$

Show $w(F) \leqslant 2 L P(E)$
By induction, can assume w(F
{F\})} \leqslant 2 L P (E \cup \{ f \})

$$
\begin{aligned}
w(F)=w_{f}+\left(\sum_{e \in F \backslash\{f\}}\right) & \leqslant w_{f}+2 \angle P(E \cup\{f\}) \\
& \leqslant w_{f}\left(2 \cdot x_{f}\right)+2 \angle P(E \cup\{f\}) \\
& \leqslant 2 \angle P(E)
\end{aligned}
$$

x with edge f removed is feasible for $L P(E \cup\{f\})$

There exists \boldsymbol{f} with $\boldsymbol{x}_{f} \geq \frac{1}{2}$

Proof of Ravi, Singh, Nagarajan [2007]
Let x : extreme point with $x_{e}<\frac{1}{2}$ for $e \in C=\left\{e: x_{e}>0\right\}$
x is defined by $\quad x(\delta(s))=R(s)-d(s)$
linear independence $\Rightarrow|C|=|\mathcal{L}|$

Assign one unit to every edge:

$$
x_{e}^{7} 1-2^{7} x_{e}^{0} x_{e}^{7}
$$

* if $r \in S i \cup S_{i}$
S gets

$$
\begin{aligned}
A_{S} & =\sum_{e \in C_{1}} x_{e}+\sum_{e \in C_{2}}\left(x_{e}+\left(1-2 x_{e}\right)\right)+\sum_{e \in C_{3}}\left(1-2 x_{e}\right) \\
& =x\left(C_{1}\right)+\left|E_{2}\right|-x\left(C_{2}\right)+\left|E_{3}\right|-2 x\left(C_{3}\right)
\end{aligned}
$$

(i) $A_{S}>0$ (indeed, if $C_{1}=C_{2}=C_{3}=\phi$
(ii) As integer:
then $\left.x(\delta(s))=\sum_{i} X\left(\delta\left(s_{i}\right)\right)\right)$

$$
\begin{aligned}
& \mathbb{Z} \ni x(\delta(S))-\sum_{i} x\left(\delta\left(S_{i}\right)\right)=x\left(C_{1}\right)-x\left(C_{2}\right)-2 x\left(C_{3}\right) \\
\Rightarrow & A_{s} \geqslant 1
\end{aligned}
$$

Together all sets get $\geq|\mathcal{L}|$
no set gets

$\rightarrow|C|>|\mathcal{L}|$ Contradiction.

Degree Restricted Spanning Trees

Spanning Trees with Max Degree Bound

When does a graph have a spanning tree of maximum degree $\leq k$?

- NP-hard ($k=2$ is Hamiltonian path...)
- S. Win [1989]: Relation to toughness
$t(G)=\max _{S} \frac{|S|}{\# \text { conn. comp. of } G-S}$
- If $t(G) \geq \frac{1}{k-2}$ then \exists tree of max degree $\leq k$
- If \exists tree of max degree $\leq k$ then $t(G) \geq \frac{1}{k}$
- Algorithmically: Fürer and Raghavachari [1994], G. [unpublished, 1991]. Efficiently either show that G has no tree of maximum degree
$\leq k$ or output a tree of max degree $\leq k+1$
- Min cost version?

Bounded-Degree MST

Minimum Bounded-Degree Spanning Tree (MST) problem:

- Given $G=(\boldsymbol{V}, \boldsymbol{E})$ with costs $c: \boldsymbol{E} \longrightarrow \boldsymbol{R}$, integer k
- find Spanning Tree T of maximum degree $\leq k$ and of minimum total cost $\sum_{e \in T} c(e)$

Even feasibility is hard.

Today

Let $\operatorname{OPT}(\boldsymbol{k})$ be the cost of the optimum tree of maximum degree $\leq \boldsymbol{k}$.

- [G. 2006]:

Find a tree of cost $\leq \boldsymbol{O P T}(\boldsymbol{k})$ and of maximum degree $\leq \boldsymbol{k}+\mathbf{2}$ (or prove that no tree of max degree $\leq k$ exists)

- [Singh and Lau 2007]:

Find a tree of cost $\leq \boldsymbol{O P T}(\boldsymbol{k})$ and of maximum degree $\leq k+1$ (or prove that no tree of max degree $\leq k$ exists)

Fractional Decomposition

Any convex combination of trees such that the average degree of every vertex is at most k can be viewed as a convex combination of trees each of maximum degree $k+1$
(E.g., for a $2 \boldsymbol{k}$-regular $2 \boldsymbol{k}$-edge-connected graph, there exists a convex combination of spanning trees of max degree 3 such that each edge is chosen with frequency $1 / k$)

Integral decompositions?

Matroid Polytope

- [Edmonds '70] Given matroid $M=(\boldsymbol{E}, \mathcal{I})$, convex hull of incidence vectors of independent sets is :

$$
P(M)=\left\{\begin{array}{ll}
x(F) \leq r_{M}(F) & F \subseteq E \\
x_{e} \geq \mathbf{0} & e \in E
\end{array}\right\}
$$

Convex hull $B(M)$ of bases: same with $x(E)=r_{M}(E)$

- For graphic matroid

$$
\begin{array}{rlr}
B(M)=\{x: & x(E(S)) \leq|S|-1 & S \subset V \\
& x(E(V))=|V|-1 & \\
& x_{e} \geq 0 & \forall e\}
\end{array}
$$

Linear Programming Relaxation

Relaxation: $L P=\min \left\{c^{T} x: x \in Q(k)\right\} \leq O P T(k)$ where

$$
\begin{array}{rlr}
Q(k)=\{x: & x(E(S)) \leq|S|-1 & S \subset V \\
& x(E(V))=|V|-1 & \\
& x(\delta(v)) \leq k & v \in V \\
& x_{e} \geq 0 & e \in E\}
\end{array}
$$

Notation:

- $x(A)=\sum_{e \in A} x_{e}$
- $E(S)=\{e=(u, v) \in E: u, v \in S\}$
- $\delta(S)=\{(u, v) \in E:|\{u, v\} \cap S|=1\}$

If $Q(\boldsymbol{k})=\emptyset$, no spanning tree of maximum degree $\leq \boldsymbol{k}$.

Our Approach/Algorithm

- Solve $\boldsymbol{L P}$ and get an extreme point \boldsymbol{x}^{*} of $Q(\boldsymbol{k})$ of cost $\boldsymbol{L P}$ E^{*} : support of x^{*}

Our Approach/Algorithm

- Solve $\boldsymbol{L P}$ and get an extreme point \boldsymbol{x}^{*} of $Q(\boldsymbol{k})$ of cost $\boldsymbol{L P}$ \boldsymbol{E}^{*} : support of \boldsymbol{x}^{*}
- Study properties of any extreme point $Q(\boldsymbol{k})$

Show that support graph E^{*} is Laman, i.e. for any $C \subseteq V$:
$\left|E^{*}(C)\right| \leq 2|C|-3$

Our Approach/Algorithm

- Solve $L P$ and get an extreme point x^{*} of $Q(\boldsymbol{k})$ of cost $\boldsymbol{L P}$ E^{*} : support of x^{*}
- Study properties of any extreme point $Q(\boldsymbol{k})$ Show that support graph E^{*} is Laman, i.e. for any $C \subseteq V$: $\left|E^{*}(C)\right| \leq 2|C|-3$
- Define matroid $M_{2}\left(\boldsymbol{x}^{*}\right)$ on ground set \boldsymbol{E}^{*} such that any independent set has degree at most $k+2$ (but not conversely)

Our Approach/Algorithm

- Solve $L P$ and get an extreme point x^{*} of $Q(\boldsymbol{k})$ of cost $\boldsymbol{L P}$ E^{*} : support of x^{*}
- Study properties of any extreme point $Q(\boldsymbol{k})$ Show that support graph E^{*} is Laman, i.e. for any $C \subseteq V$: $\left|E^{*}(C)\right| \leq 2|C|-3$
- Define matroid $M_{2}\left(x^{*}\right)$ on ground set E^{*} such that any independent set has degree at most $k+2$ (but not conversely)
- Find a minimum cost spanning tree of \boldsymbol{E}^{*} which is also independent in $M_{2}\left(x^{*}\right)$ (by matroid intersection)

Our Approach/Algorithm

- Solve $L P$ and get an extreme point x^{*} of $Q(\boldsymbol{k})$ of cost $\boldsymbol{L P}$ E^{*} : support of x^{*}
- Study properties of any extreme point $Q(\boldsymbol{k})$

Show that support graph E^{*} is Laman, i.e. for any $C \subseteq V$: $\left|E^{*}(C)\right| \leq 2|C|-3$

- Define matroid $M_{2}\left(x^{*}\right)$ on ground set \boldsymbol{E}^{*} such that any independent set has degree at most $k+2$ (but not conversely)
- Find a minimum cost spanning tree of \boldsymbol{E}^{*} which is also independent in $M_{2}\left(x^{*}\right)$ (by matroid intersection)
- Argue (polyhedrally) that cost of solution obtained $\leq \boldsymbol{L P}$

Extreme points of $Q(k)$

- Recall

$$
\begin{array}{rlr}
Q(k)=\{x: & x(E(S)) \leq|S|-1 & S \subset V \\
& x(E(V))=|V|-1 & \\
& x(\delta(v)) \leq k & v \in V \\
& x_{e} \geq 0 & e \in E\}
\end{array}
$$

- Take an extreme point x^{*} of $Q(k)$

Remove from E edges with $x_{e}^{*}=0 \longrightarrow E^{*}=\left\{e: x_{e}^{*}>0\right\}$

- x^{*} uniquely defined by tight inequalities:

$$
\begin{array}{ll}
x^{*}(E(S))=|S|-1 & S \in \mathcal{T} \\
x^{*}(\delta(v))=k & v \in T
\end{array}
$$

or $\boldsymbol{A} \boldsymbol{x}^{*}=b$ with $\operatorname{rank}(A)=\left|E^{*}\right|$.

Example of Extreme Point

$k=2$

Another Example of Extreme Point

$k=2$

Another Example of Extreme Point

$k=2$

Extreme point

- Extreme point x^{*} uniquely defined by tight inequalities:

$$
\begin{array}{ll}
x^{*}(E(S))=|S|-1 & S \in \mathcal{T} \\
x^{*}(\delta(v))=k & v \in T
\end{array}
$$

or $\boldsymbol{A} \boldsymbol{x}^{*}=b$ with $\operatorname{rank}(\boldsymbol{A})=\left|\boldsymbol{E}^{*}\right|$.
2 Which full rank $\left|\boldsymbol{E}^{*}\right| \times\left|\boldsymbol{E}^{*}\right|$-submatrix of \boldsymbol{A} to use?

Uncrossing

- If $\boldsymbol{A}, \boldsymbol{B}$ tight $(\boldsymbol{A}, \boldsymbol{B} \in \mathcal{T})$ with $\boldsymbol{A} \cap B \neq \emptyset$ then

$$
\begin{aligned}
& |A|-1+|B|-1=x^{*}(E(A))+x^{*}(E(B)) \\
& \quad \leq x^{*}(E(A \cup B))+x^{*}(E(A \cap B)) \\
& \quad \leq|A \cup B|-1+|A \cap B|-1
\end{aligned}
$$

Thus,

$x(\epsilon(A)+x(\epsilon(B))=$

- $A \cup B, A \cap B \in \mathcal{T}$ $x(E(A \cup B))+X(E A \cap B)$
- No edges between $\boldsymbol{A} \backslash \boldsymbol{B}$ and $\boldsymbol{B} \backslash \boldsymbol{A}$
- Uncrossing argument implies: There exists laminar subfamily \mathcal{L} of \mathcal{F} satisfying $\operatorname{span}(\mathcal{L})=\operatorname{span}(\mathcal{F})$
(Any maximal laminar subfamily works)

Size of Laminar Families

- Any laminar family on n elements contains at most $2 n-1$ sets

- If no singletons then $\leq n-1$ sets

Small Support

- x^{*} defined by

$$
\begin{array}{ll}
x^{*}(E(S))=|S|-1 & S \in \mathcal{L} \\
x^{*}(\delta(v))=k & v \in T
\end{array}
$$

with \mathcal{L} a laminar family of sets without singletons

- System $\boldsymbol{A} \boldsymbol{x}^{*}=\boldsymbol{b}$ with $\boldsymbol{A}=\left|\boldsymbol{E}^{*}\right| \times\left|\boldsymbol{E}^{*}\right|$ of full rank
- $|\mathcal{L}| \leq n-1$ implies $\left|E^{*}\right|=|\mathcal{L}|+|T| \leq(n-1)+n=2 n-1$
- Similar results known in many settings. E.g. Boyd and Pulleyblank '91 for subtour polytope.

Everywhere Sparse: $\left|E^{*}(C)\right| \leq 2|C|-1$ for all C

Everywhere Sparse: $\left|E^{*}(C)\right| \leq 2|C|-1$ for all C

Everywhere Sparse: $\left|E^{*}(C)\right| \leq 2|C|-1$ for all C

Take any $C \subseteq V . A$ has full rank
\Longrightarrow columns of \boldsymbol{A} corresponding to $\boldsymbol{E}^{*}(\boldsymbol{C})$ are linearly independent

Everywhere Sparse: $\left|E^{*}(C)\right| \leq 2|C|-1$ for all C

Take any $\boldsymbol{C} \subseteq \boldsymbol{V} . \boldsymbol{A}$ has full rank
\Longrightarrow columns of \boldsymbol{A} corresponding to $\boldsymbol{E}^{*}(\boldsymbol{C})$ are linearly independent

Everywhere Sparse: $\left|E^{*}(C)\right| \leq 2|C|-1$ for all C

Take any $\boldsymbol{C} \subseteq \boldsymbol{V} . \boldsymbol{A}$ has full rank
\Longrightarrow columns of \boldsymbol{A} corresponding to $\boldsymbol{E}^{*}(\boldsymbol{C})$ are linearly independent

Everywhere Sparse: $\left|E^{*}(C)\right| \leq 2|C|-1$ for all C

Take any $\boldsymbol{C} \subseteq \boldsymbol{V} . \boldsymbol{A}$ has full rank
\Longrightarrow columns of \boldsymbol{A} corresponding to $\boldsymbol{E}^{*}(\boldsymbol{C})$ are linearly independent

A $=$	$\leftarrow E^{*}(C) \rightarrow$		
	. $\chi\left(E^{*}(S \cap C)\right)$.		distinct, non-zero rows for laminar family $\begin{aligned} & \mathcal{L}_{C}=\{S \cap C: \\ & S \in \mathcal{L} \text { and }\|S \cap C\| \geq 2\} \end{aligned}$
	$\chi\left(\delta(v) \cap E^{*}(C)\right)$		distinct, non-zero rows for $\boldsymbol{v} \in \boldsymbol{T} \cap \boldsymbol{C}$

$\Longrightarrow\left|E^{*}(C)\right|=\operatorname{rank}(B) \leq|C|+|C|-1=2|C|-1$ for all $C \subseteq V$

Slight Improvement

Slightly more careful rank counting argument shows $\left|E^{*}(C)\right| \leq 2|C|-3$ for every $C \subseteq V$

Orientation of \boldsymbol{E}^{*}

- Graph Orientation: [Hakimi '65] An undirected graph G has an orientation with indegree $d^{-}(v) \leq u_{v}$ if and only if for all $C \subseteq V$:

$$
|E(C)| \leq \sum_{v \in C} u_{v}
$$

[Easy, e.g. from max flow/min cut]

- $\Longrightarrow E^{*}$ can be oriented into A^{*} such that $d^{-}(v) \leq 2$ for all $v \in V$
- Another way
- [Nash-Williams' 1964] A graph can be partitioned into k forests if and only if for all $C \subseteq V:|E(C)| \leq k(|C|-1)$
(Special case of Edmonds' 1965 matroid base covering theorem)
- $\Longrightarrow \boldsymbol{E}^{*}$ can be partitioned into 2 forests
- Orient each forest as a branching (indegree at most 1)

Example

Example

Example

Example

Example

Matroid M_{2}

- Given orientation A^{*} of E^{*} with indegree $d^{-}(v) \leq 2$ for $v \in V$, define partition matroid $M_{2}\left(x^{*}\right)=\left(E^{*}, \mathcal{I}\right)$ where

$$
\mathcal{I}=\left\{F:\left|F \cap \delta_{A^{*}}^{+}(v)\right| \leq k \text { for all } v \in V\right\}
$$

- Since all but at most 2 edges incident to v are outgoing in A^{*}, any independent set \boldsymbol{F} of $\boldsymbol{M}_{2}\left(\boldsymbol{x}^{*}\right)$ has maximum degree $\leq \boldsymbol{k}+\mathbf{2}$
- Slack of 3 units for every $C \Longrightarrow$ can assume one specific vertex of degree $\leq k$ and another of degree $\leq k+1$

Matroid Intersection Approach

- Find a minimum cost spanning tree in \boldsymbol{E}^{*} which is also independent in $M_{2}\left(x^{*}\right)$
- M_{1} : graphic matroid for E^{*}
\Longrightarrow want a base of M_{1} independent in $M_{2}\left(\boldsymbol{x}^{*}\right)$
\Longrightarrow matroid intersection
- Polynomial time using matroid intersection algorithm
- Edmonds '79 and Lawler '75
- Brezovec, Cornuéjols and Glover '88: $\boldsymbol{O}\left(n^{3}\right)$ algorithm for \cap of graphic matroid and partition matroid
- Gabow and Xu scaling algorithm for linear matroid intersection: $O\left(n^{2.77} \log n W\right)$
- Harvey '06: $\boldsymbol{O}\left(\boldsymbol{n}^{2.38} W\right)$ (polynomial if weights are small)
- Bound on cost?

Matroid Polytope

- [Edmonds '70] Given matroid $M=(\boldsymbol{E}, \mathcal{I})$, convex hull of incidence vectors of independent sets is :

$$
P(M)=\left\{\begin{array}{ll}
x & \left.\begin{array}{ll}
x(F) \leq r_{M}(F) & F \subseteq E \\
x_{e} \geq 0 & e \in E
\end{array}\right\}, ~ \text {. }
\end{array}\right\}
$$

Convex hull $B(M)$ of bases: same with $x(E)=r_{M}(E)$

- For graphic matroid M_{1} on E^{*}

$$
\begin{array}{rlr}
B\left(M_{1}\right)=\{x: & x(E(S)) \leq|S|-1 & S \subset V \\
& x(E(V))=|V|-1 & \\
& x_{e} \geq 0 & \left.e \in E^{*}\right\}
\end{array}
$$

Matroid Polytope

- [Edmonds '70] Given matroid $M=(\boldsymbol{E}, \mathcal{I})$, convex hull of incidence vectors of independent sets is :

$$
P(M)=\left\{\begin{array}{ll}
x & \left.\begin{array}{ll}
x(F) \leq r_{M}(F) & F \subseteq E \\
x_{e} \geq 0 & e \in E
\end{array}\right\}, ~ \text {. }
\end{array}\right\}
$$

Convex hull $B(M)$ of bases: same with $x(E)=r_{M}(E)$

- For matroid $M_{2}\left(x^{*}\right)$

$$
\begin{aligned}
P\left(M_{2}\left(x^{*}\right)\right)=\{x: & x\left(\delta_{A^{*}}^{+}(v)\right) \leq k & & v \in V \\
& 1 \geq x_{e} \geq 0 & & \left.e \in E^{*}\right\}
\end{aligned}
$$

Matroid Intersection Polytope

- [Edmonds '70] Given two matroids $\boldsymbol{M}_{1}=\left(\boldsymbol{E}, \boldsymbol{I}_{1}\right)$ and $\boldsymbol{M}_{2}=\left(\boldsymbol{E}, \mathcal{I}_{2}\right)$, convex hull of independent sets common to both matroids is

$$
P\left(M_{1}\right) \cap P\left(M_{2}\right)
$$

(Similarly, if take bases for one of them)

Cost Analysis

- Observe that $x^{*} \in B\left(M_{1}\right)$ and $x^{*} \in P\left(M_{2}\left(x^{*}\right)\right)$
- Cost of solution returned:

$$
\min \left\{c(x): x \in B\left(M_{1}\right) \cap P\left(M_{2}\left(x^{*}\right)\right)\right\} \leq c\left(x^{*}\right)=L P
$$

- Thus, we get a spanning tree of maximum degree $k+2$ and of cost $\leq \boldsymbol{L P}$
- Remark: We could have decomposed $x^{*} \in B\left(M_{1}\right) \cap P\left(M_{2}\left(x^{*}\right)\right)$ as a convex combination of spanning trees independent for M_{2} (using Cunningham '84) and take the best cost among them (enough to get at most $\boldsymbol{L P}$)
- $x^{*} \in B\left(M_{1}\right) \cap P\left(M_{2}\left(x^{*}\right)\right)$ implies that

$$
Q(k)=\operatorname{conv}\left(\left\{x^{*}\right\}\right) \subseteq \operatorname{conv}\left(Q(k+2) \cap \mathbb{Z}^{E}\right)
$$

Cost Analysis

- Observe that $x^{*} \in B\left(M_{1}\right)$ and $x^{*} \in P\left(M_{2}\left(x^{*}\right)\right)$
- Cost of solution returned:

$$
\min \left\{c(x): x \in B\left(M_{1}\right) \cap P\left(M_{2}\left(x^{*}\right)\right)\right\} \leq c\left(x^{*}\right)=L P
$$

- Thus, we get a spanning tree of maximum degree $k+2$ and of cost $\leq L P$
- Remark: We could have decomposed $x^{*} \in B\left(M_{1}\right) \cap P\left(M_{2}\left(x^{*}\right)\right)$ as a convex combination of spanning trees independent for M_{2} (using Cunningham '84) and take the best cost among them (enough to get at most $L P$)
- $x^{*} \in B\left(M_{1}\right) \cap P\left(M_{2}\left(x^{*}\right)\right)$ implies that

Any convex combination of trees such that the average degree of every vertex is at most k can be viewed as a convex combination of trees each of maximum degree $\leq k+2$

Without Hakimi, Nash-Williams, Edmonds, etc.

- Laplace expansion of det along column j :

$$
\operatorname{det}(A)=\sum_{i}(-1)^{i+j} a_{i j} \operatorname{det}\left(M_{i j}\right)
$$

- Generalized Laplace expansion (Laplace 1772): For any I,

$$
\operatorname{det}(A)=\sum_{J:|J|=|I|} \operatorname{sgn}(I, J) \operatorname{det}(A[I, J]) \operatorname{det}(A[\bar{I}, \bar{J}])
$$

\Longrightarrow If A invertible, there exists J with $A[I, J]$ and $A[\bar{I}, \bar{J}]$ invertible (follows also from matroid union min-max relation)

- Algorithmically: For every $j=1$ to n do
- either set all entries in column j from rows in I or from rows in \bar{I} to 0 so as to keep the matrix invertible

Orientation Purely Algebraically

- Take $A x^{*}=b$
- Can partition \boldsymbol{E} into $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}$

with $\boldsymbol{B}_{1}, \boldsymbol{B}_{2}$ invertible
- \boldsymbol{B}_{1} invertible $+\mathcal{L}$ laminar: $\boldsymbol{E}_{\mathbf{1}}$ must be a forest
- \boldsymbol{B}_{2} invertible: every connected component of \boldsymbol{E}_{2} is a tree or a tree + one edge
- \Longrightarrow can trivially orient both \boldsymbol{E}_{1} and \boldsymbol{E}_{2} with indegree at most 1

Former Conjecture... Now Theorem

- Conjecture:

$$
Q(k) \subseteq \operatorname{conv}\left(Q(k+1) \cap \mathbb{Z}^{E}\right)
$$

- Any convex combination of trees such that the average degree of every vertex is at most k can be viewed as a convex combination of trees each of maximum degree $k+1$
- Proved by Singh and Lau '07:
- Efficient algorithm to get tree of cost $\leq \boldsymbol{O P T}(\boldsymbol{k})$ and of degree $\leq k+1$
- Uses iterative relaxation, generalizing Jain's iterative rounding

Open Questions

- Can one find \boldsymbol{E}^{*} (combinatorially) without computing x^{*} (by linear programming)?
- +1 algorithm possible via matroid approach if, for all extreme points \boldsymbol{x}^{*} with support \boldsymbol{E}^{*}, there exists an orientation \boldsymbol{A}^{*} such that for all $v \in V$:

$$
\sum_{e \in \delta_{A^{*}}^{-}(v)}\left(1-x_{e}^{*}\right) \leq 1
$$

(For general (non-extreme) \boldsymbol{x}^{*}, deciding if such orientation exists is NP-hard.)

General Lower and Upper bounds

General Degree-Bounded Spanning Trees:

- Given $l, u: V \rightarrow Z_{+}$, find a spanning tree T such that $l(v) \leq d_{\boldsymbol{T}}(v) \leq u(v)$ for all $v \in V$ and of minimum cost
- Same approach gives a spanning tree of cost at most LP and of degree $l(v)-2 \leq d_{v}(T) \leq u(v)+2$ for all $v \in V$
- One step is to argue that for

$$
\begin{array}{ccc}
P_{2}=\left\{x: l(v)-2 \leq x\left(\delta_{A^{*}}^{+}(v)\right) \leq u(v)\right. & & v \in V \\
& 1 \geq x_{e} \geq 0 & \\
\left.e \in E^{*}\right\}
\end{array}
$$

$B\left(M_{1}\right) \cap P_{2}$ is integral

- Singh and Lau '07: +1 also for general upper and lower bounds

Singh and Lau's Iterative Relaxation

- Given a forest \boldsymbol{F} (initially empty) and $\boldsymbol{W} \subseteq \boldsymbol{V}$, consider LP relaxation for problem of augmenting \boldsymbol{F} into a tree with general degree bounds $\boldsymbol{u}(\boldsymbol{v})$ for $\boldsymbol{v} \in \boldsymbol{W}$
- Solve relaxation; remove edges of value 0 and and add edges of value 1 to \boldsymbol{F}
- Theorem: If non-integral, there exists $v \in W$ with $u(v)+1$ incident edges.
- Remove v from W and repeat

Formulation

Let \boldsymbol{E} : all edges,
\boldsymbol{E}_{0} : excluded edges,
\boldsymbol{E}_{1} : included edges in solution,
$E^{\prime}=E \backslash\left(E_{0} \cup E_{1}\right)$
$W \subseteq V$: vertices v with degree upper bound $u(v)$

LP relaxation:
$P\left(E_{0}, E_{1}, W\right)$

$$
\begin{array}{lll}
\min & \sum_{e \in E} c_{e} x_{e} & \\
& x(E(S)) \leq|S|-1 & S \subset V \\
x(E(V))=|V|-1 & \\
& x(\delta(v)) \leq u(v) & v \in W \\
& x_{e}=1 & e \in E_{1} \\
& x_{e}=0 & e \in E_{0} \\
& x_{e} \geq 0 & \left.e \in E^{\prime}\right\}
\end{array}
$$

Singh and Lau's Algorithm

$E_{0}=E_{1}=\emptyset, W=V$
Repeat
Find optimum extreme point x to $\boldsymbol{L P}\left(\boldsymbol{E}_{\mathbf{0}}, \boldsymbol{E}_{\mathbf{1}}, \boldsymbol{W}\right)$

$$
\boldsymbol{E}_{0}=\left\{e: x_{e}=0\right\}, \boldsymbol{E}_{1}=\left\{e: x_{e}=1\right\}, \boldsymbol{E}^{\prime}=E \backslash\left(\boldsymbol{E}_{0} \cup \boldsymbol{E}_{1}\right)
$$

Remove from W vertices v with $d_{E_{1}}(v)+d_{E^{\prime}}(v) \leq u(v)+1$
Until \boldsymbol{E}_{1} is a spanning tree

- Theorem [Singh and Lau '07]: Algorithm terminates
$\rightarrow E_{1}$ satisfies the degree bounds $u(v)+1$
- New simple proof of Bansal, Khandekar and Nagarajan '07

Tight Inequalities Can Be Uncrossed

$$
\mathcal{F}=\left\{S: \quad x\left(E^{\prime}(S)\right)=|S|-1-\left|E_{1}(S)\right|\right\}
$$

- $S, T \in \mathcal{F}, S \cap T \neq \phi$
$\Rightarrow S \cap T, S U T \in \mathcal{F}$

$$
X\left(E^{\prime}(S)+X\left(E^{\prime}(T)\right)=X\left(E^{\prime}(S \cap T)+X\left(E^{\prime}(S \cup T)\right)\right.\right.
$$

$\left.x\right|_{E^{\prime}}$ uniquely defined by:

$$
\begin{cases}x\left(E^{\prime}(S)\right)=|S|-1-\left|E_{1}(S)\right| & S \in \mathcal{L} \\ x\left(\delta_{E^{\prime}}(v)\right)=u(v)-\left|\delta_{E_{1}}(v)\right| & v \in T\end{cases}
$$

with \mathcal{L} laminar and $\left|E^{\prime}\right|=|\mathcal{L}|+|T|$
W decreases

Let

$$
\operatorname{def}(v)=\sum_{e \in \delta_{E^{\prime}}(v)}\left(1-x_{e}\right)=\sum_{e \in \delta_{E^{\prime} \cup E_{1}}(v)}\left(1-x_{e}\right)
$$

- For $v \in T, \operatorname{def}(v)=d_{E_{1}}(v)+d_{E^{\prime}}(v)-u(v) \in \mathbb{Z}$
- Claim: There exists $v \in T$ such that $\operatorname{def}(v)=1$ $\rightarrow v$ can be removed from W

$$
\begin{aligned}
& \rightarrow v \text { can be removed from }{ }^{W} \\
& \text { (i) }|\mathscr{L}| \circlearrowleft x\left(E^{\prime}\right) \\
& x\left(E^{\prime}(S)\right)-\sum_{i} \underbrace{x(S))=\sum_{i}^{s} x\left(E^{\prime}\left(S_{i}\right)\right)}_{\text {if }=0 \Rightarrow x\left(E^{\prime}\left(S_{i}\right)\right) \in \mathbb{Z}}
\end{aligned}
$$

$$
\text { if }=\text { then } E^{\prime} \subseteq \bigcup_{S \in \mathscr{L}} E[S]
$$

$$
\begin{aligned}
& \text { (2) } \sum_{v \in T} \operatorname{def}(v)=\sum_{v \in T}\left(\sum_{e \in \delta_{E^{\prime}}}(v)\right. \\
& \text { if }=\text { then } \ll 2\left(|E|^{\prime}-x\left(E^{\prime}\right)\right) \\
& E^{\prime} \subseteq E(T) \quad=2\left(|\mathscr{L}|+|T|-x\left(E^{\prime}\right)\right) \\
& \begin{array}{l}
\text { if }=\text { then }-(\leqslant 2(|\mathscr{L}|+|T|-|\mathscr{L}|)=2|T| \\
E^{\prime} \subseteq U E(S)
\end{array} \\
& E^{\prime} \subseteq \bigcup_{S \in \mathcal{Z}} E(S) \\
& \sum_{v \in T} x\left(\delta_{\epsilon^{\prime}}(v)\right)=2 X\left(E^{\prime}\right)=2 \sum_{\substack{\text { maximal } \\
\text { set } \sin \mathcal{X}}} x(E(S)) \\
& \Rightarrow \sum_{v \in T} \operatorname{def}(v)<2|T| \Longrightarrow \exists v \in T: \operatorname{def}(v)=1
\end{aligned}
$$

Iterative Relaxation

- Many more applications, see Singh and Lau '07, Lau et al. '07, Bansal et al. '07.
- Bansal et al. '07: Given a directed graph $\boldsymbol{D}=(\boldsymbol{V}, \boldsymbol{A})$ with root $r \in V$, and outdegree upper bounds $b(v)$ for every $v \in V$, (efficiently) either decide that D has no r-arborescence with $d^{+}(v) \leq b(v)$ or output an r-arborescence with $d^{+}(v) \leq b(v)+2$.

