Uncrossing

Michel X. Goemans

MIT

Topics

- Minimally k-edge-connected graphs
- Odd cuts, cut tree
- *r*-arborescence polytope
- Matroid intersection
- Lucchesi-Younger
- Submodular flows
- Matching polytope
- TDI and unimodularity
- Augmenting connectivity (w/ or w/o weights)
- Node connectivity augmentation
- Degree restricted spanning trees

- Dual uncrossing
- Primal uncrossing
- Termination, finiteness, efficiency
- TU and TDI
- TDI and unimodularity
- Iterative rounding
- Iterative relaxation
- Uncrossing set pairs

Intersecting, Crossing Sets

- Subsets A and B of S are
 - intersecting if $A \cap B \neq \emptyset$, $A \setminus B \neq \emptyset$ and $B \setminus A \neq \emptyset$
 - crossing if intersecting and $S \setminus (A \cup B) = \overline{A \cup B} \neq \emptyset$
- ${}_{{igstackinesity}}$ Family ${}_{{igstackinesity}}\subseteq 2^S$ is
 - laminar (or nested) if no two sets A, B ∈ F are intersecting (intersecting-free)
 i.e. for A, B ∈ F: A ⊆ B or B ⊆ A or A ∩ B = Ø
 - **s** cross-free if no two sets of \mathcal{F} are crossing
 - a chain if, for any two sets $A, B \in B$, either $A \subseteq B$ or $B \subseteq A$
- Uncrossing: Make a family of sets cross-free, laminar or a chain

Laminar vs. Cross-free

If add complements to cross-free family, family remains still cross-free

If \mathcal{F} is cross-free then

$$\{S\in \mathcal{F}:v\in S\}\cup \{ar{S}\in \mathcal{F}:v
otin S\}$$

is laminar

Submodularity

$$f(A) + f(B) \ge f(A \cap B) + f(A \cup B)$$

Basic example: cut function of a nonnegatively weighted undirected graph G = (V, E)

$${old s} \ d(S) = w(\delta(S))$$
 for $S \subseteq V$

• $d(A) + d(B) = d(A \cap B) + d(A \cup B) + 2w(A \setminus B : B \setminus A)$ Count contribution of e on both sides

$d(S) = d(\overline{S}) \implies d(A) + d(B) = d(A \setminus B) + d(B \setminus A) + 2 \operatorname{tr}(A \cap B : \overline{A \cup B})$

- Similarly for indegree function $d^{-}(\cdot) = w(\delta^{-}(\cdot))$ or outdegree function $d^{+}(\cdot) = w(\delta^{+}(\cdot))$ of a directed graph (with ≥ 0 weights).
- Minimizers of a submodular function form a lattice family, i.e. it is closed under ∩ and ∪

Minimally *k*-Edge-Connected Graphs

Theorem: In a minimally k-edge-connected graph G = (V, E), we have $|E| \le k(|V| - 1)$ Witness family $F: \forall e \in E, \exists S \in F: e \in S(S), d(S) = k$ (i) by complementing, can assume $1 \notin S \forall S \in F$ sand to F(ii) if $A, B \in F$ intersecting, remove A, B, add (AUB + I) = 2k $k+k=d(A)+d(B) \ge d(AB)+d(AUB) \ge 2k$ \Rightarrow no edge in (A\B: B\A) $\Rightarrow S(A) US(B)$ $\subseteq \delta(AUB) + \delta(ANB)$

(iii) If
$$\exists s, s, ..., s_{\ell} \in F$$

with $S_i \subset S_{\ell}$
and $s = \bigcup S_i$
 \Rightarrow can remove S from F
 $\Rightarrow \forall S \in F : S \setminus \bigcup S_i \neq \phi$
 $s_i \in F, s_i \subseteq S$
In rooted directed tree representation, every node
nonempty $\Rightarrow |F| \leq |V|-1$
 $\Rightarrow |E| = |\bigcup S(S)| \leq k (|V|-1)$

Gomory-Hu Cut Tree

• Let G = (V, E) be a (nonnegatively weighted) undirected graph.

- Somory-Hu cut tree is any tree (V, T) such that for any edge $e = (s, t) \in T$, we have that $\delta(C_e)$ is a minimum s, t-cut where C_e is any of the connected components of $T \setminus \{e\}$.
- Property of Gomory-Hu tree: For any $u, v \in V$, a min u, v-cut is given by the minimum capacity cut among $\delta(C_e)$ where e is along the path from u to v in T. Pv v = v + v v, v - v + v separates two adjacent a, b
- Gomory-Hu cut tree always exists.
- Same result holds for symmetric submodular functions [GGW]
- No need to contract if perturb

Proof of existence
Proof of existence
Perturb by adding
$$\mathcal{E}_{ij}$$
 (lexicographically) to
edge (i,j) (of complete graph) so that all cut
values are distinct \rightarrow min cuts are unique
 $\forall i \neq j$, let $C_{ij} : i \notin C_{ij}$ and $\delta(C_{ij})$ unique $(,j-minal$
Let $F = \{C_{ij} : i \neq j\}$
Claim: F is laminar

Proof By contradiction. Assume
$$C_{ij} \& C_{kl}$$
 cross
 $C_{ij} \bigvee_{i} \int_{0}^{C_{kl}} C_{kl}$
Assume $d(C_{ij}) > d(C_{kl}) \longrightarrow \delta(C_{kl})$ does not separate
 $Say i \in C_{ij} \cap C_{kl} \& j \in C_{kl} \setminus C_{ij}$
if k on $l \notin C_{ij} \cup C_{kl}$
 $d(C_{ij}) + d(C_{kl}) > d(C_{ij} \cap C_{kl}) + d(C_{ij} \cup C_{kl})$
 $if k \& l$ in $C_{ij} \cup C_{kl}$ then k on l in $C_{ij} \setminus C_{kl}$
 $d(C_{ij}) + d(C_{kl}) > d(C_{ij} \cap C_{kl}) + d(C_{kl}) \longrightarrow d(C_{kl})$
 $if k \& l$ in $C_{ij} \cup C_{kl}$ then k on l in $C_{ij} \setminus C_{kl}$
 $d(C_{ij}) + d(C_{kl}) > d(C_{ij} \cap C_{kl}) + d(C_{kl} \setminus C_{ij})$
 $> d(C_{ij}) + d(C_{kl}) > d(C_{ij} \setminus C_{kl}) + d(C_{ij}) \longrightarrow d(C_{ij})$
 $> d(C_{ij}) + d(C_{kl}) > d(C_{ij} \cap C_{kl}) + d(C_{ij}) \longrightarrow d(C_{ij})$

Claim: No S, S₁, S₂,..., S_e
$$\in$$
 F with
S_i \subset S
and S = US_i
Proof:
(s) (s) (s) (s) (s), ..., d(S_e))
(max unique)
 \rightarrow can remove this set since
every i, j is separated by another set
in family
 \rightarrow Directed tree representation = tree on V
 \equiv Gomory-HJ cut tree

Min *T*-Odd Cut (Padberg and Rao '82)

T-odd cut problem: Given (≥ 0 edge weighted) graph G = (V, E)
 and T ⊆ V, find S with |S ∩ T| odd minimizing cut function d(S)

• Lemma: If $\delta(C)$ is a mincut then there exists a min T-odd cut $\delta(S)$ with either $S \subseteq C$ or $S \subseteq \overline{C}$. if C is T-odd \checkmark if C is T-odd \checkmark if C is T-even, let $\delta(U)$ be a min T-odd cut $\delta(C)$ $d(U)+d(C) \ge d(U)C) + d(UUC)$ one of these $d(U)+d(C) \ge d(U)C) + d(C)UC$ one of these min T-odd

a min T-odd cut $\delta(S)$ with either $S \subseteq C$ or $S \subseteq \overline{C}$.

Padberg-Rao's T-Odd Cut Algorithm

- Find global mincut C separating two vertices of T
- If T-odd, done.
- Else, solve subproblems

$${old S} \ G_1 = G/C$$
 with $T_1 = T \setminus C$

$${old S} \ \ G_2 = G/\overline{C}$$
 with $T_2 = T \setminus \overline{C}$

and output best T-odd cut

Number of subproblems $\leq |\mathsf{T}|$

Rizzi's Min *T***-Odd Cut Algorithm**

ALG(G,T)

- Find min s, t-cut $\delta(S)$
- If S is T-odd, return $\min(d(S), ALG(G/\{s,t\}, T \setminus \{s,t\}))$
- Else return $\min(ALG(G/S, T \setminus S), ALG(G/\bar{S}, T \setminus \bar{S}))$

Min *T*-Cut Algorithm

Follows from Padberg-Rao: There exists $s, t \in T$ such that min T-odd cut is a min s, t-cut

Other Cut Families

- [Barahona-Conforti '87]: T-even cuts (having an even, ≥ 2 vertices of T on both sides)
- [Grötschel et al. '88] (for submodular f.):
 - Lattice family \mathcal{C} of sets
 - Triple subfamily \mathcal{G} of \mathcal{C} : whenever 3 of $A, B, A \cap B$ and $A \cup B$ are in $\mathcal{C} \setminus \mathcal{G}$ then 4th is also in $\mathcal{C} \setminus \mathcal{G}$
 - Example: $\mathcal{G} = \{S \in \mathcal{C} : |S \cap T| \not\equiv q \pmod{p}\}$ (Special case: min *T*-even cut separating *s* and *t*.)

More Cut Families

- Generalization: parity family (G.-Ramakrishnan) (also for submodular f.)
 - Parity subfamily \mathcal{G} of a lattice family \mathcal{C} if

$$A, B \in \mathcal{C} \setminus \mathcal{G} \Rightarrow (A \cap B \in \mathcal{G} \text{ iff } A \cup B \in \mathcal{G})$$

- Example: lattice family minus a lattice family (i.e. can find second minimizer to a submodular function).
- Need more than uncrossing. Theorem: Let S^* be a minimizer over \mathcal{G} . Then either $S^* \in \{\emptyset, V\}$ or there exists $a, b \in V$ such that S^* minimizer over lattice family

 $\mathcal{C}_{st} = \{S \in \mathcal{C} : s \in S, t \notin S\}$

Polyhedral Combinatorics

Dominant of *r***-Arborescence Polytope**

- $X = \{ \text{Digraphs with every vertex reachable from root } r \}$
- Minimal= r-arborescences: rooted tree at r in digraph G = (V, A)
- Theorem: $conv(X) = conv(arborescences) + R^m_+ =$
 - $egin{array}{rll} P&=&\{x: \ x(\delta^-(S))\geq 1 & S\subset V\setminus\{r\}\ & x_a\geq 0 & a\in A\} \end{array}$

 \subseteq : obvious

Proof through primal uncrossing

x: vertex of polyhedron
$$P$$

 $A = \{a : x_a > o\}$
 $F = \{S \subseteq V \setminus \{r\} : x(\delta^{-}(S)) = 1\}$

vertex
$$\Rightarrow$$
 span $(X(J(S)): S \in F) = \mathbb{R}^{|A|}$
Claim: \exists laminan $\mathcal{L} \subseteq F$
with span $(\mathcal{L}) = \operatorname{span}(F)$
Lemma: $S, T \in F$
 S, T intersect \Rightarrow SNT, SUT $\in F$
and $X(J(S)) + X(J(T))$
 $= X(J(S)) + X(J(S))$
Pf by submodularity
 $2 = d^{-}(S) + d^{-}(T) \ge d^{-}(S \cap T) + d^{-}(S \cup T) \ge 2$
 \Rightarrow SNT, SUT $\in F$ and no arc between
 $S \setminus T$ and $T \setminus S$
 \Rightarrow linear dependence \textcircled{A}

L=F uncrossing: while J 2 intersecting sets S,T add SNT, SUT to 2 remove either Son T ⇒ span(X)= span(F) thanks to 🛞 Finite? NOT necessarily

Lemma: For any maximal laminar $\mathcal{L}\subseteq \mathcal{F}$: span $(\mathcal{L}) = span(\mathcal{F})$ Brt -> can construct & greedily If by contradiction if T cannot be added to 2 but $X(S(T)) \notin span(2)$ then must intersect SEZ \Rightarrow SNT, SUT $\in F$ and $\chi \left(\delta^{-}(S) + \chi \left(\delta^{-}(T) \right) = \chi \left(\delta^{-}(S \cap T) \right) + \chi \left(\delta^{-}(S \cup T) \right)$ $\in Span(\mathcal{X}) \quad \notin Span(\mathcal{X})$ Levico Terme – p.19/26

Totally Unimodular

- A is totally unimodular (TU) if all square submatrices of A have determinant in $\{-1, 0, 1\}$
- If A is TU then for any integral b, $\{x : Ax \le b, x \ge 0\}$ is integral.
- Ghouila-Houri: A is TU iff every subset R of rows can be partitioned into R_1 and R_2 such that

$$\sum_{i \in R_1} a_{ij} - \sum_{i \in R_2} a_{ij} | \le 1$$

Claim: A is T.U. For subset of Z, alternate between assigning sets to R_1 and R_2 For any arc, entering sets alternate ->+1,0,-1 => Any extreme point is integral

Directed Cuts

- Digraph D = (V, A)
- A directed cut is $C = \delta^{-}(S)$ where $\delta^{+}(S) = \emptyset$.
- A directed cut cover is $F \subseteq A$ with $F \cap C \neq \emptyset$ for every directed cuts C
- **D** Theorem: Polytope

 $egin{array}{ll} \{x: & x(C) \geq 1 & & C ext{ directed cut} \ & 0 \leq x_a \leq 1 & & a \in A \} \end{array}$

integral, i.e. convex hull of directed cut covers.

Proof: similar to arborescence with 2 differences

Matroid Intersection Polytope

- Let $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ be two matroids with rank functions r_1 and r_2
- Edmonds: The convex hull of incidence vectors of independent sets in $\mathcal{I}_1 \cap \mathcal{I}_2$ is given by:

\boldsymbol{P}	=	$\{x:$	$x(S) \leq r_1(S)$	$S \subseteq E$
			$x(S) \leq r_{2}(S)$	$S\subseteq E$
			$x_i \geq 0$	$i\in S\}$

⊆ obvious

Proof through dual uncrossing and TDIness

TDI (Edmonds-Giles '77)

Rational system $Ax \leq b$ is TDI if, for each $c \in Z^n$, the dual to $\min\{c^Tx : Ax \leq b\}$, i.e.

$$\max\{b^Ty: A^Ty = c, y \ge 0\}$$

has an integer optimum solution whenever it is finite.

Theorem: If $Ax \leq b$ is TDI and b is integral then $Ax \leq b$ is integral (i.e. has only integral extreme points).

Dual

$$\begin{array}{rcl} \max & c^{T}x & = \min & \sum_{S} r_{1}(S)y_{1,S} + \sum_{S} r_{2}(S)y_{2,S} \\ & x(S) \leq r_{1}(S) & \forall S & \sum_{S:i \in S} y_{1,S} + \sum_{S:i \in S} y_{2,S} \geq c_{i} \\ & x(S) \leq r_{2}(S) & \forall S & y_{1,S}, y_{2,S} \geq 0 \end{array}$$

$$\begin{array}{rcl} \text{Take dval optimum } y_{i}, y_{2} \\ \text{let } \mathcal{F}_{i} = \left\{ S: y_{i}, s > 0 \right\} \\ \text{Claim: Can assume that } \mathcal{F}_{i} & \text{is a chain} \\ \text{`Uncross'' each matroid separately:} \\ & \text{for } S, T \in \mathcal{F}_{i} \\ & s \notin T, T \notin s \end{array} \quad \begin{array}{rcl} y_{i,s} = \xi \\ y_{i,s} =$$

New y: (i) still feasible
$$r$$

(ii) objective can only improve by subm.
 $\varepsilon[r_i(S\cap T) + r_i(S\cup T) - r_i(S) - r_i(T)] \le 0$
Progress towards having no $S, T \in F_i : S \notin T, T \notin S$?
Yes. $\phi_i = \sum_{s} y_{i,s} |S| \cdot |\overline{S}|$
 $d_{K_n}(S)$
new $\phi_i - old \phi_i = \varepsilon [d_{K_n}(J\cup T) + d_{K_n}(S\cap T) - d_{K_n}(S) - d_{K_n}(T)]$
 $->$ terminate
 \Rightarrow can assume chain $\phi_i = fS: y_{i,s} > 0$
 $\rightarrow x$ defined by $\begin{cases} x(S) = r_i(S) \\ x(S) = r_2(S) \end{cases}$ $S \in \mathcal{B}_2$

Claim: Underlying matrix is T.U.
Pf. Take any subset
$$G_1', G_2'$$
 of $G_1 \leq G_2$
Can alternatively assign sets in G_1' so that any element
gets contribution in $\{0, +1\}$
 $G_1':$
 $G_1':$
Similarly for G_2' so that every element gets $\{-1, 0\}$ contribution
 G_2'
 G_2

Lucchesi-Younger

- Could have done dual uncrossing and TDI proof for arborescences of directed cut covers
- Lucchesi-Younger theorem: For any digraph, min size of a directed cut cover = max number of disjoint directed cuts
- If planar digraph, can take dual to get:
 Theorem: Min size of a feedback arc set (meeting all directed circuits) = max number of arc disjoint directed circuits

Perfect Matching Polytope via Uncrossing

Convex hull of perfect matchings =

$\{x:$	$x(\delta(v))=1$	$v \in V$
	$x(\delta(S)) \geq 1$	S: S odd
	$0 \leq x_e$	$e\in E\}$

Could have replaced $x(\delta(S)) \geq 1$ by $x(E(S)) \leq rac{|S|-1}{2}$

Primal uncrossing S, Todd = either SNT, SUT odd or SIT, TIS odd Can uncross crossing fight odd sets into SAT, SUT or SIT, TIS SE L laminar -> vertex x defined by x(S(S))=1 Proof adapted from Rav: & Singh . Let $E = \text{support of } x = \{e : x_e > 0\} \longrightarrow |E| = |Z|$ · Can assume for SEL that E(S) connected $\begin{array}{c} \times(S(S))=1\\ \times(S(S))\geq 1\\ \times(S(S))\geq 1\\ \times(S_1:S_2)=0 \end{array} \xrightarrow{\times(S(S))=1} \times (S(S))=S(S_1); \ \text{Can replace S by } S_1$. Can assume E is connected and /V/ even (treat separately connected comp.)

$$\mathcal{L} = \mathcal{L}_{i} \cup \mathcal{L}_{2} \quad \text{If } \mathcal{L}_{2} = \phi \quad \text{then extreme point} \\ \quad \text{singletons} \quad \text{is disjoint union of edges} \\ \quad \text{and odd cycles with } x = \frac{1}{2} \\ \quad \text{connected and literen } \Rightarrow \text{no odd cycles} \\ \quad \text{(and liter)} \\ \text{.} \quad \text{Claim} : \quad \text{For } \mathcal{S} \in \mathcal{L}_{2} \\ \quad \text{conhact all children } S_{i} \in \mathcal{L}_{2} \text{ of } S \\ \quad \text{then } G_{s} \text{ is not a tree} \\ \text{Pf: } S \text{ odd } \Rightarrow \text{ after conhaction, odd # k of vertices in } S \\ \quad \text{if tree then bipartition } U_{i}, U_{2} \\ \quad \text{odd } \Rightarrow |U_{i}| > |U_{2}| \\ \quad \text{ie} U_{1} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{1} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{1} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{1} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{1} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{1} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{2} \\ \quad \text{ie} U_{1} \\ \quad \text{ie} U_{2} \\ \quad$$

⇒ Can remove one edge from E(S) for each SEL2 and maintain connectivity -> remove 1221 edges Fix one maximal set SEL2 . complement S -> can also remove edge from E(VIS) - remove | L2 |+1 edges . at least 2 edges in $\mathcal{J}(S)$ (otherwise $X_{e=1}$ -v component by itself) -v remove $|\mathcal{J}_2|+2$ edges and still connected $\Rightarrow |E| \ge |\mathcal{L}_2| + 2 + |V| - 1 = |\mathcal{L}_2| + |V| + 1 > |\mathcal{L}_2| + |\mathcal{L}_1|$ contradicting $|E| = |\mathcal{L}|$ \Box

Matroid Intersection

$$\begin{array}{ll} \max \quad c^T x & = \min \quad \sum\limits_{S} r_1(S) y_{1,S} + \sum\limits_{S} r_2(S) y_{2,S} \\ \\ \begin{cases} x(S) \leq r_1(S) \quad \forall S \subseteq \mathcal{E} \\ x(S) \leq r_2(S) \quad \forall S \subseteq \mathcal{E} \\ x_i \geq 0 & i \in \mathcal{E} \end{cases} \quad \begin{cases} \sum\limits_{S:i \in S} y_{1,S} + \sum\limits_{S:i \in S} y_{2,S} \geq c_i \\ y_{1,S}, y_{2,S} \geq 0 \\ y_{1,S}, y_{2,S} \geq 0 \end{cases} \end{array}$$

Min-max relation: $\max\{|I|: I \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(S) + r_2(\overline{S})\}$

For $c_i = 1$, can choose y_1, y_2 integral and $C_i = \{S : y_{i,S} > 0\}$ chain for i = 1, 2.

$$\Rightarrow \mathcal{C}_1 = \{S\}, \mathcal{C}_2 = \{\overline{S}\}$$

Connectivity Augmentation

Connectivity Augmentation

- For graph H, \(\lambda_H(s,t) = \local connectivity between s and t)
 = max number of edge-disjoint paths between s and t
- Problem: Given graph G = (V, E) and requirements r(u, v) for $\forall u \neq v \in V$, add set F of (multiple) edges such that in $H = (V, \mathcal{EUF})$ $\lambda_H(u, v) \geq r(u, v)$ for all u, v
- Special case: $r_{u,v} = k$ for all u, v.
 Want augmentation into k-edge-connected graph
- Objective 1. Cardinality: Minimize |F| [Frank]
 - Good characterization
 - Efficient algorithm
- Objective 2. Weighted: Minimize $\sum_{(i,j)\in F} w_{ij}$
 - NP-hard
 - 2-approximation algorithm [Jain]

Formulation

• Want integral $x \in P$:

$$P = \left\{egin{array}{cc} x(\delta(S)) \geq R(S) - d(S) & orall S \ x_{ij} \geq 0 & orall i,j \end{array}
ight.$$

If relax integrality, not integral

ţ

د •

Uncrossing

Definition Lemma: For crossing S and T, either $R(S) + R(T) \leq R(S \cup T) + R(S \cap T)$ or $R(S) + R(T) \leq R(S \setminus T) + R(T \setminus S)$

J Uncrossing lemma: For $x \in P$, let $\mathcal{F} = \{S : x(\delta(S)) = R(S) - d(S)\}$. If $S, T \in \mathcal{F}$ and S, Tcrossing then

> either $S \cap T, S \cup T \in \mathcal{F}$ and $x(S \setminus T : T \setminus S) = 0$ or $S \setminus T, T \setminus S \in \mathcal{F}$ and $x(S \cap T : \overline{S \cup T}) = 0$

 $R(S) - d(S) + R(T) - d(T) = x \left(\delta(S) + x \left(\delta(T) \right) \right)$ $\sum \alpha(s(sut)) + \alpha(s(snt))$ $\geq R(SUT) - d(SUT) + R(SNT) - d(SNT)$ $\geq R(S) - d(S) + R(T) - d(T)$

Lower bound

- \checkmark $\gamma =$ smallest # of edges to add
- **(Frank]**: For any subpartition V_1, V_2, \cdots, V_k of V:

$$\gamma \geq \left\lceil rac{1}{2} \max_{V_1, \cdots, V_k} \left[R(V_i) - d(V_i)
ight]
ight
ceil$$

Add a new vertex s

Frank's Algorithm

(Modulo · · ·)

- 1. Add as few edges as possible between s and V (and none within V) such that $\lambda(u, v) \ge r(u, v)$ for all u, v
- 2. Add one more edge if degree of s is odd
- 3. Use Mader's local connectivity splitting-off result to get augmenting set F (within V)

Step 1

Theorem [Frank]: Any minimal augmentation from s has

$$m=\max_{V_1,\cdots,V_k}\sum_{i=1}^k \left[R(V_i)-d(V_i)
ight]$$

edges incident to s

Minimal solution x. Clearly has
$$\ge m$$
 edges incident to s
 $x_0 > 0 \Longrightarrow \exists S: x(S) = R(S) - d(S)$

Get a disjoint family of tight sets Vz $\bigcup V_i \supseteq \{ \bigcup V : X_0 > 0 \}$ $\Rightarrow \sum_{i} x_{i} = \sum_{i} x(S(V_{i})) = \sum_{i} R(V_{i}) - d(V_{i}) \leq m$ -> OPTIMAL

Splitting off

Mader: can perform splitting off and maintain local connectivity

 $edges \Longrightarrow optimal$

Weighted case

$$egin{aligned} LP(E) &=& \min & \sum\limits_{e} w_e x_e \ && s.t. && iggl\{ egin{aligned} x(\delta(S)) \geq R(S) - d(S) &orall \, orall \, S \ x_{ij} \geq 0 & orall \, i,j \end{aligned}$$

- Extreme point x could be fractional
- Theorem [Jain]: For any extreme point x, there exists f with $x_f \geq \frac{1}{2}$
- Iterative Rounding: While connectivity reqs not met

Solve LP(E) Take $f: x_f \geq rac{1}{2}$ add f to $E \rightarrow F$

• 2-approximation algorithm: $w(F) \leq 2LP(E)$

Show $w(F) \leq 2 LP(E)$ By induction, can assume w(FI(f)) < 2 LP(EU(f)) $W(F) = W_f + \left\{ \sum_{e \in F \setminus \{f\}} \leq W_f + 2LP(E\cup\{f\}) \right\}$ $\leq w_f(2\cdot x_f) + 2LP(Ev)f)$ $\leq 2 LP(E)$ x with edge f removed is feasible for $LP(EU\{F\})$

There exists f with $x_f \geq rac{1}{2}$

Proof of Ravi, Singh, Nagarajan [2007]

Let x: extreme point with $x_e < \frac{1}{2}$ for $e \in C = \{e : x_e > 0\}$

x is defined by
$$x(s(s)) = R(s) - d(s)$$
 SEL
laminar
linear independence $\Rightarrow |C| = |L|$

×e 1-2×e ×e

Assign one unit to every edge:

 \boldsymbol{S} gets

$$A_S = \sum_{e \in C_1} x_e + \sum_{e \in C_2} (x_e + (1 - 2x_e)) + \sum_{e \in C_3} (1 - 2x_e)$$
$$= \underbrace{x(C_1) + |E_2| - x(C_2) + |E_3| - 2x(C_3)}_{\bigcup}$$

(i)
$$A_s > 0$$
 (indeed, if $C_1 = C_2 = C_3 = \phi$
then $X(\delta(s)) = \sum_i X(\delta(s_i))$)
(ii) A_s integer:

$$\mathbb{Z} \ni \chi(\mathcal{S}(S)) - \sum_{i} \chi(\mathcal{S}(S_i)) = \chi(\mathcal{C}_i) - \chi(\mathcal{C}_2) - 2\chi(\mathcal{C}_3)$$

Together all sets get $\geq |\mathcal{L}|$

 $\rightarrow |C| > |\mathcal{L}|$ Contradiction.

Degree Restricted Spanning Trees

Spanning Trees with Max Degree Bound

When does a graph have a spanning tree of maximum degree $\leq k$?

- NP-hard (k = 2 is Hamiltonian path...)
- S. Win [1989]: Relation to toughness $t(G) = \max_{S} \frac{|S|}{\# \text{ conn. comp. of } G-S}$
 - If $t(G) \ge \frac{1}{k-2}$ then \exists tree of max degree $\le k$
 - If \exists tree of max degree $\leq k$ then $t(G) \geq \frac{1}{k}$
- Algorithmically: Fürer and Raghavachari [1994], G. [unpublished, 1991]. Efficiently either show that G has no tree of maximum degree $\leq k$ or output a tree of max degree $\leq k + 1$
- Min cost version?

Bounded-Degree MST

Minimum Bounded-Degree Spanning Tree (MST) problem:

- Given G = (V, E) with costs $c : E \longrightarrow R$, integer *k*
- find Spanning Tree T of maximum degree ≤ k and of minimum total
 cost $\sum_{e \in T} c(e)$

Even feasibility is hard.

Today

Let OPT(k) be the cost of the optimum tree of maximum degree $\leq k$.

9 [G. 2006]:

Find a tree of cost $\leq OPT(k)$ and of maximum degree $\leq k + 2$ (or prove that no tree of max degree $\leq k$ exists)

[Singh and Lau 2007]:
 Find a tree of cost $\leq OPT(k)$ and of maximum degree $\leq k + 1$ (or prove that no tree of max degree $\leq k$ exists)

Fractional Decomposition

Any convex combination of trees such that the average degree of every vertex is at most k can be viewed as a convex combination of trees each of maximum degree k + 1

(E.g., for a 2k-regular 2k-edge-connected graph, there exists a convex combination of spanning trees of max degree 3 such that each edge is chosen with frequency 1/k)

Integral decompositions?

Matroid Polytope

[Edmonds '70] Given matroid $M = (E, \mathcal{I})$, convex hull of incidence vectors of independent sets is :

$$P(M) = egin{cases} x & x(F) \leq r_M(F) & F \subseteq E \ x_e \geq 0 & e \in E \end{pmatrix}$$

Convex hull B(M) of bases: same with $x(E) = r_M(E)$

For graphic matroid

$$egin{aligned} B(M) &= & \{x: \ x(E(S)) \leq |S|-1 & S \subset V \ & x(E(V)) = |V|-1 \ & x_e \geq 0 & orall e\} \end{aligned}$$

Linear Programming Relaxation

Relaxation: $LP = \min\{c^T x : x \in Q(k)\} \leq OPT(k)$ where

$$egin{aligned} Q(k) &= & \{x: \ x(E(S)) \leq |S|-1 & S \subset V \ & x(E(V)) = |V|-1 & \ & x(\delta(v)) \leq k & v \in V \ & x_e \geq 0 & e \in E \} \end{aligned}$$

Notation:

$$x(A) = \sum_{e \in A} x_e$$
 $E(S) = \{e = (u, v) \in E : u, v \in S\}$
 $\delta(S) = \{(u, v) \in E : |\{u, v\} \cap S| = 1\}$

If $Q(k) = \emptyset$, no spanning tree of maximum degree $\leq k$.

Solve LP and get an extreme point x* of Q(k) of cost LP E*: support of x*

- Solve LP and get an extreme point x* of Q(k) of cost LP E*: support of x*
- Study properties of any extreme point Q(k) Show that support graph E^* is Laman, i.e. for any $C \subseteq V$:
 $|E^*(C)| \leq 2|C| 3$

- Solve LP and get an extreme point x* of Q(k) of cost LP E*: support of x*
- Study properties of any extreme point Q(k) Show that support graph E^* is Laman, i.e. for any $C \subseteq V$:
 $|E^*(C)| \leq 2|C| 3$
- Define matroid $M_2(x^*)$ on ground set E^* such that any independent set has degree at most k + 2 (but not conversely)

- Solve LP and get an extreme point x* of Q(k) of cost LP E*: support of x*
- Study properties of any extreme point Q(k) Show that support graph E^* is Laman, i.e. for any $C \subseteq V$:
 $|E^*(C)| \leq 2|C| 3$
- Define matroid $M_2(x^*)$ on ground set E^* such that any independent set has degree at most k + 2 (but not conversely)
- Find a minimum cost spanning tree of E^* which is also independent in $M_2(x^*)$ (by matroid intersection)

- Solve LP and get an extreme point x* of Q(k) of cost LP E*: support of x*
- Study properties of any extreme point Q(k) Show that support graph E^* is Laman, i.e. for any $C \subseteq V$:
 $|E^*(C)| \leq 2|C| 3$
- Define matroid $M_2(x^*)$ on ground set E^* such that any independent set has degree at most k + 2 (but not conversely)
- Find a minimum cost spanning tree of E^* which is also independent in $M_2(x^*)$ (by matroid intersection)
- Argue (polyhedrally) that cost of solution obtained $\leq LP$

Extreme points of Q(k)

Recall

$$egin{aligned} Q(k) &= & \{x: \ x(E(S)) \leq |S|-1 & S \subset V \ & x(E(V)) = |V|-1 \ & x(\delta(v)) \leq k & v \in V \ & x_e \geq 0 & e \in E \} \end{aligned}$$

- Take an extreme point x^* of Q(k)Remove from E edges with $x_e^* = 0 \longrightarrow E^* = \{e : x_e^* > 0\}$
- \checkmark x^* uniquely defined by tight inequalities:

$$egin{array}{ll} x^*(E(S)) = |S| - 1 & S \in \mathcal{T} \ x^*(\delta(v)) = k & v \in T \end{array}$$

or $Ax^* = b$ with $rank(A) = |E^*|$.

Example of Extreme Point

k=2

Another Example of Extreme Point

Another Example of Extreme Point

Extreme point

Extreme point x^* uniquely defined by tight inequalities:

$$egin{array}{ll} x^*(E(S)) &= |S|-1 & S \in \mathcal{T} \ x^*(\delta(v)) &= k & v \in \mathcal{T} \end{array}$$

or $Ax^* = b$ with $rank(A) = |E^*|$.

Which full rank $|E^*| \times |E^*|$ -submatrix of A to use?

Uncrossing

If A, B tight $(A, B \in \mathcal{T})$ with $A \cap B \neq \emptyset$ then

$$egin{aligned} |A| - 1 + |B| - 1 &= x^*(E(A)) + x^*(E(B)) \ &\leq & x^*(E(A \cup B)) + x^*(E(A \cap B)) \ &\leq & |A \cup B| - 1 + |A \cap B| - 1. \end{aligned}$$

Thus,

- X(E(A))+X(E(B))= $\sum X(E(A \cup B))+X(E(A \cap B))$
- No edges between $A \setminus B$ and $B \setminus A$
- Uncrossing argument implies: There exists laminar subfamily \mathcal{L} of \mathcal{F} satisfying $span(\mathcal{L}) = span(\mathcal{F})$ (Any maximal laminar subfamily works)

Size of Laminar Families

Any laminar family on n elements contains at most 2n - 1 sets

If no singletons then $\leq n-1$ sets

Small Support

 $\checkmark x^*$ defined by

$$egin{aligned} x^*(E(S)) &= |S| - 1 & S \in \mathcal{L} \ x^*(\delta(v)) &= k & v \in T \end{aligned}$$

with \mathcal{L} a laminar family of sets without singletons

System
$$Ax^* = b$$
 with $A = |E^*| \times |E^*|$ of full rank

 $|\mathcal{L}| \leq n-1$ implies $|E^*| = |\mathcal{L}| + |T| \leq (n-1) + n = 2n-1$

Similar results known in many settings. E.g. Boyd and Pulleyblank
 '91 for subtour polytope.

$$A = egin{array}{cccc} & \ldots & \chi(E^*(S)) \ldots & \ldots & \leftarrow x^*(E(S)) = |S| - 1 \ & \leftarrow x^*(E(T)) = |T| - 1 \ & \leftarrow x^*(E(T)) = |T| - 1 \ & \leftarrow x^*(\delta(v)) = k \ & \ldots & \leftarrow x^*(\delta(v)) = k \end{array}$$

Take any $C \subseteq V$. A has full rank

 \implies columns of A corresponding to $E^*(C)$ are linearly independent

Take any $C \subseteq V$. A has full rank

 \implies columns of A corresponding to $E^*(C)$ are linearly independent

Take any $C \subseteq V$. A has full rank \implies columns of A corresponding to $E^*(C)$ are linearly independent

Take any $C \subseteq V$. A has full rank

 \implies columns of A corresponding to $E^*(C)$ are linearly independent

 $\Longrightarrow |E^*(C)| = rank(B) \le |C| + |C| - 1 = 2|C| - 1$ for all $C \subseteq V$

Slight Improvement

Slightly more careful rank counting argument shows $|E^*(C)| \leq 2|C| - 3$ for every $C \subseteq V$

Orientation of E^*

Graph Orientation: [Hakimi '65] An undirected graph G has an orientation with indegree $d^-(v) \le u_v$ if and only if for all $C \subseteq V$:

$$|E(C)| \leq \sum_{v \in C} u_v$$

[Easy, e.g. from max flow/min cut]

- $\blacksquare \implies E^*$ can be oriented into A^* such that $d^-(v) \le 2$ for all $v \in V$
- Another way
 - INash-Williams' 1964] A graph can be partitioned into k forests if and only if for all $C \subseteq V$: $|E(C)| \leq k(|C| - 1)$ (Special case of Edmonds' 1965 matroid base covering theorem)
 - $\implies E^*$ can be partitioned into 2 forests
 - Orient each forest as a branching (indegree at most 1)

Matroid M_2

Given orientation A^* of E^* with indegree $d^-(v) \leq 2$ for $v \in V$, define partition matroid $M_2(x^*) = (E^*, \mathcal{I})$ where

 $\mathcal{I} = \{F : |F \cap \delta^+_{A^*}(v)| \leq k ext{ for all } v \in V\}$

- Since all but at most 2 edges incident to v are outgoing in A^* , any independent set F of $M_2(x^*)$ has maximum degree $\leq k+2$
- Slack of 3 units for every $C \implies$ can assume one specific vertex of degree $\leq k$ and another of degree $\leq k + 1$

Matroid Intersection Approach

- Find a minimum cost spanning tree in E^* which is also independent in $M_2(x^*)$
- M_1 : graphic matroid for E^*

 \implies want a base of M_1 independent in $M_2(x^*)$

 \implies matroid intersection

- Polynomial time using matroid intersection algorithm
 - Edmonds '79 and Lawler '75
 - Brezovec, Cornuéjols and Glover '88: $O(n^3)$ algorithm for \bigcap of graphic matroid and partition matroid
 - Gabow and Xu scaling algorithm for linear matroid intersection: $O(n^{2.77} \log nW)$
 - Harvey '06: $O(n^{2.38}W)$ (polynomial if weights are small)
- Bound on cost?

Matroid Polytope

[Edmonds '70] Given matroid $M = (E, \mathcal{I})$, convex hull of incidence vectors of independent sets is :

$$P(M) = egin{cases} x & x(F) \leq r_M(F) & F \subseteq E \ x_e \geq 0 & e \in E \end{pmatrix}$$

Convex hull B(M) of bases: same with $x(E) = r_M(E)$

For graphic matroid M_1 on E^*

$$egin{array}{rcl} B(M_1) &=& \{x: \;\; x(E(S)) \leq |S|-1 & S \subset V \ & x(E(V)) = |V|-1 & \ & x_e \geq 0 & e \in E^* \} \end{array}$$

Matroid Polytope

[Edmonds '70] Given matroid $M = (E, \mathcal{I})$, convex hull of incidence vectors of independent sets is :

$$P(M) = egin{cases} x & x(F) \leq r_M(F) & F \subseteq E \ x_e \geq 0 & e \in E \end{pmatrix}$$

Convex hull B(M) of bases: same with $x(E) = r_M(E)$

9 For matroid $M_2(x^*)$

$$egin{array}{rcl} P(M_2(x^*)) &=& \{x: \ x(\delta^+_{A^*}(v)) \leq k & v \in V \ &1 \geq x_e \geq 0 & e \in E^* \} \end{array}$$

Matroid Intersection Polytope

Edmonds '70] Given two matroids $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2), \text{ convex hull of independent sets common to both matroids is}$

 $P(M_1) \cap P(M_2)$

(Similarly, if take bases for one of them)

Cost Analysis

- Observe that $x^* \in B(M_1)$ and $x^* \in P(M_2(x^*))$
- Cost of solution returned:

 $\min\{c(x): x \in B(M_1) \cap P(M_2(x^*))\} \le c(x^*) = LP$

- Thus, we get a spanning tree of maximum degree k + 2 and of cost $\leq LP$
- Remark: We could have decomposed $x^* \in B(M_1) \cap P(M_2(x^*))$ as a convex combination of spanning trees independent for M_2 (using Cunningham '84) and take the best cost among them (enough to get at most LP)
- $x^* \in B(M_1) \cap P(M_2(x^*))$ implies that

 $Q(k)=conv(\{x^*\})\subseteq conv(Q(k+2)\cap \mathbb{Z}^E)$

Cost Analysis

- Observe that $x^* \in B(M_1)$ and $x^* \in P(M_2(x^*))$
- Cost of solution returned:

 $\min\{c(x): x \in B(M_1) \cap P(M_2(x^*))\} \le c(x^*) = LP$

- Thus, we get a spanning tree of maximum degree k + 2 and of cost $\leq LP$
- Remark: We could have decomposed $x^* \in B(M_1) \cap P(M_2(x^*))$ as a convex combination of spanning trees independent for M_2 (using Cunningham '84) and take the best cost among them (enough to get at most LP)
- $x^* \in B(M_1) \cap P(M_2(x^*))$ implies that Any convex combination of trees such that the average degree of every vertex is at most k can be viewed as a convex combination of trees each of maximum degree $\leq k + 2$

Without Hakimi, Nash-Williams, Edmonds, etc.

Laplace expansion of det along column j:

$$\det(A) = \sum_{i} (-1)^{i+j} a_{ij} \det(M_{ij})$$

Generalized Laplace expansion (Laplace 1772): For any I,

$$\det(A) = \sum_{J:|J|=|I|} sgn(I,J) \det(A[I,J]) \det(A[ar{I},ar{J}])$$

 \implies If A invertible, there exists J with A[I, J] and $A[\overline{I}, \overline{J}]$ invertible (follows also from matroid union min-max relation)

- Algorithmically: For every j = 1 to n do
 - either set all entries in column j from rows in I or from rows in \overline{I} to 0 so as to keep the matrix invertible

Orientation Purely Algebraically

• Take
$$Ax^* = b$$

Solution Can partition E into E_1 , E_2

with B_1 , B_2 invertible

- \blacksquare B_1 invertible + \mathcal{L} laminar: E_1 must be a forest
- B_2 invertible: every connected component of E_2 is a tree or a tree + one edge
- \blacksquare \Longrightarrow can trivially orient both E_1 and E_2 with indegree at most 1

Former Conjecture... Now Theorem

Conjecture:

$Q(k) \subseteq conv(Q(k+1) \cap \mathbb{Z}^E)$

- Any convex combination of trees such that the average degree of every vertex is at most k can be viewed as a convex combination of trees each of maximum degree k + 1
- Proved by Singh and Lau '07:
 - Efficient algorithm to get tree of $cost \leq OPT(k)$ and of degree $\leq k+1$
 - Uses iterative relaxation, generalizing Jain's iterative rounding

Open Questions

- Can one find E^* (combinatorially) without computing x^* (by linear programming)?
- In the second secon

$$\sum_{e \in \delta^-_{A^*}(v)} (1 - x^*_e) \le 1$$

(For general (non-extreme) x^* , deciding if such orientation exists is NP-hard.)

General Lower and Upper bounds

General Degree-Bounded Spanning Trees:

- Given $l, u: V \to Z_+$, find a spanning tree T such that $l(v) \leq d_T(v) \leq u(v)$ for all $v \in V$ and of minimum cost
- Same approach gives a spanning tree of cost at most LP and of degree $l(v) 2 \leq d_v(T) \leq u(v) + 2$ for all $v \in V$
- One step is to argue that for

$$egin{array}{rcl} P_2 &=& \{x: \ \ l(v)-2 \leq x(\delta^+_{A^*}(v)) \leq u(v) & v \in V \ & 1 \geq x_e \geq 0 & e \in E^* \} \end{array}$$

 $B(M_1) \cap P_2$ is integral

Singh and Lau '07: +1 also for general upper and lower bounds

Singh and Lau's Iterative Relaxation

- Given a forest F (initially empty) and $W \subseteq V$, consider LP relaxation for problem of augmenting F into a tree with general degree bounds u(v) for $v \in W$
- Solve relaxation; remove edges of value 0 and and add edges of value 1 to F
- Theorem: If non-integral, there exists $v \in W$ with u(v) + 1 incident edges.
- **Proof** Remove v from W and repeat

Formulation

Let E: all edges,

- E_0 : excluded edges,
- E_1 : included edges in solution,
- $E'=E\setminus (E_0\cup E_1)$

 $W \subseteq V$: vertices v with degree upper bound u(v)

Singh and Lau's Algorithm

$$E_0 = E_1 = \emptyset, W = V$$

Repeat

Find optimum extreme point x to $LP(E_0, E_1, W)$

 $E_0 = \{e: x_e = 0\}, E_1 = \{e: x_e = 1\}, E' = E \setminus (E_0 \cup E_1)$

Remove from W vertices v with $d_{E_1}(v) + d_{E'}(v) \le u(v) + 1$ Until E_1 is a spanning tree

- Theorem [Singh and Lau '07]: Algorithm terminates $\rightarrow E_1 \text{ satisfies the degree bounds } u(v) + 1$
- New simple proof of Bansal, Khandekar and Nagarajan '07

Tight Inequalities Can Be Uncrossed $\mathcal{F}_{=} \left\{ S: \quad \chi(\mathcal{E}'(S)) = |S| - 1 - |\mathcal{E}_{+}(S)| \right\}$ • $S, T \in \mathcal{F}, S \cap T \neq \phi$ $\implies S \cap T, S \cup T \in \mathcal{F}$ $\chi(\mathcal{E}'(S) + \chi(\mathcal{E}'(T)) = \chi(\mathcal{E}'(S \cap T)) + \chi(\mathcal{E}'(S \cup T))$

 $x|_{E'}$ uniquely defined by:

$$\left\{egin{array}{ll} x(E'(S)) = |S| - 1 - |E_1(S)| & S \in \mathcal{L} \ x(\delta_{E'}(v)) = u(v) - |\delta_{E_1}(v)| & v \in T \end{array}
ight.$$

with $\mathcal L$ laminar and $|E'| = |\mathcal L| + |T|$

W decreases

(2) $\sum_{v \in T} def(v) = \sum_{v \in T} \left(\sum_{v \in S_{E'}(v)} (1 - x_e) \right)$ $if = ihen \qquad (=) < (u) \\ E' \subseteq E(T) = 2(|\mathcal{L}| + |T| - x(E')) \\ = 2(|\mathcal{L}| + |T|) \\ = 2(|\mathcal{L}| + |T|) \\ = 2(|\mathcal{L}|$ T (|Z|+|T|-|Z)) = 2|T)if = then $E' \subseteq \bigcup \in (S)$ SEZ $\sum_{v \in \mathcal{X}} \chi(S_{\varepsilon'}(v)) = 2 \chi(\varepsilon') = 2 \sum_{\substack{\text{maximal}\\\text{sets S in } \mathcal{X}}} \chi(\varepsilon(S))$ VET $\Rightarrow \sum_{v \in T} def(v) < 2|T| \Rightarrow \exists v \in T: def(v) = 1$

Iterative Relaxation

Many more applications, see Singh and Lau '07, Lau et al. '07, Bansal et al. '07.

Bansal et al. '07: Given a directed graph D = (V, A) with root r ∈ V, and outdegree upper bounds b(v) for every v ∈ V, (efficiently) either decide that D has no r-arborescence with d⁺(v) ≤ b(v) or output an r-arborescence with d⁺(v) ≤ b(v) + 2.