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| nter secting, Crossing Sets

® Subsets A and B of S are @
o intersectingif AN B #0,A\B#0and B\ A#0 x
» crossing if intersectingand S\ (AUB) = AUB # 0 %
® Family F C 2% is
o laminar (or nested) if no two sets A, B € F are intersecting

(intersecting-free)
e.forA, BeF. ACBorBCAorANB=190

# cross-free if no two sets of F are crossing
o achainif, forany twosets A, B € B,eitherAC BorBC A

® Uncrossing: Make a family of sets cross-free, laminar or a chain
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Laminar vs. Cross-free

® |f add complements to cross-free family, family remains still cross-free

® |[f F is cross-free then
{SeF:veStu{SeF:v¢gS}

IS laminar
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Tree Representation for Laminar and Cross-Free
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Submodularity

® f:25 — Rissubmodularifforall A,B C S:

f(A) + f(B) > (AN B) + f(AU B)

® Basic example: cut function of a nonnegatively weighted undirected
graph G = (V, E)
e d(S)=w((S))forSCV
® d(A)+d(B)=d(ANB)+d(AUB) +2w(A\B: B\ A)
Count COn}riLVhOﬂ of ¢ on bohh sioles

J)=d(3) = d(A)+d(B)= d(A\D) +d(BrA)s 200 (ANS: AUR)

® Similarly for indegree function d—(-) = w(d~(-)) or outdegree
function dT () = w(dT(+)) of a directed graph (with > 0 weights).

® Minimizers of a submodular function form a lattice family, i.e. it is
closed under N and U



Minimally k-Edge-Connected Graphs

Theorem: In a minimally k-edge-connected graph G = (V, E), we have
[E| < E(V]—1)

ui}ne.ss fa,m;’z, 9/: VeeE)ESGF: eE 3(5), d(s):ﬂ
(L) La c:om‘)'eme/ﬂ}irj,ca,n Allume l¢5 VSG? {Ans tO;

1) | Be¥F in}wcokn , remove A,B , add (AUB
(hif £Be ki k= J(A\-n- d(B)_;_ d(ANB) +d(AuB)_fzk

Qﬁ) . o edae n (A\B: BVA)

= S(A) U (B)
= 5! )gé(zguﬁhé(mf)

uncrossina f)rocc.u vi” "P/thnaj& (see L"'i"\

—e miNnan f;
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Gomory-Hu Cut Tree

Let G = (V, E) be a (nonnegatively weighted) undirected graph.

Gomory-Hu cut tree is any tree (V, T') such that for any edge
e = (s,t) € T, we have that 6(C.) is a minimum s, t-cut where C.
Is any of the connected components of T" \ {e}.

Property of Gomory-Hu tree: For any u,v € V, a min u, v-cut is
given by the minimum capacity cut among 6(C.) where e is along
the path'/l‘rom utovinT. every U, 1U-cuk

P Separateo two
v o ae(%a\cen}' a,l:
/ onNn ra.H‘\ ’:N S

Gomory-Hu cut tree always exists.
Same result holds for symmetric submodular functions [GGW]

No need to contract if perturb
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Gomory-Hu Cut Tree
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Min 1'-Odd Cut (Padberg and Rao '82)

® T'-odd cut problem: Given (> 0 edge weighted) graph G = (V, F)

9

and T C V, find S with |S N T'| odd minimizing cut function d(.5)

Lemma: If §(C') is a mincut then there exists a min T-odd cut §(.5)

o = C __

with either § C Cor§ €O ¢ o lodol even
f C it T-odd Mﬂodﬂ e V,
¢ CoiTewn kb0

be a mn T-odd ch §©
(U) (U)av-l- d(C) Z d(UnC)-I-d UUC)& one of Hhese
d(U\+ol(C\ d(W\O) & fl(C\u € pin T-odd

Lemma: If §(C) is a mincut separating ve tices of T' then there exists
a min T-odd cut §(.S) with either S C Cor S C C.
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Padberg-Rao’'s’1’-Odd Cut Algorithm

°

Find global mincut C separating two vertices of T

If T-odd, done.

L I

Else, solve subproblems

» G, =G/CwithT, =T\ C
® Go=G/CwithT, =T\ C
and output best T'-odd cut

Number of subproblems < 'T'
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Rizzi’'sMin 1'-Odd Cut Algorithm

ALG(G,T)
® Takes,teT
Find min s, t-cut 6(.S)
If S'is T-odd, return min(d(S), ALG(G/{s,t}, T \ {s,t}))
Else return min(ALG(G/S,T \ S), ALG(G/S,T \ S))

o o @
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Min I'-Cut Algorithm

Follows from Padberg-Rao: There exists s,t € T such that min T-odd cut
IS a min s, t-cut
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Othe Cut Families

® [Barahona-Conforti '87]. T-even cuts (having an even, > 2 vertices
of T on both sides)
® [Grotschel et al. '88] (for submodular f.):

o Lattice family C of sets
o Triple subfamily G of C: whenever3of A, B, AnBand AUB
areinC \ Ggthen4thisalsoinC\ G

o Example: G ={Se€C:|SNT|#q (mod p)}
(Special case: min T'-even cut separating s and t.)
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More Cut Families

® Generalization: parity family (G.-Ramakrishnan) (also for submodular

f.)
o Parity subfamily G of a lattice family C if

A, BeC\G=(ANBeGiff AuUB € G)

o Example: lattice family minus a lattice family (i.e. can find second
minimizer to a submodular function).

# Need more than uncrossing. Theorem: Let S* be a minimizer
over G. Then either S* € {0, V'} or there exists a, b € V such
that S* minimizer over lattice family

Ca={Se€C:s5€85t¢&S}
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Polyhedral Combinatorics
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Dominant of r-Arborescence Polytope

® X = {Digraphs with every vertex reachable from root r}
® Minimal= r-arborescences: rooted tree at » in digraph G = (V, A)

® Theorem: conv(X) = conv(arborescences) +R7* =

P = {x: (6 (5)) >1 SCV\{r}
Ty > 0 a € A}
g : Obvio\)s

Proof through primal uncrossing

X' Vertexy of polyhedron i
h=da: x50}
F-{Scv\id. (5 (=1
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Totally Unimodular

® A s totally unimodular (TU) if all square submatrices of A have
determinantin {—1,0,1}

°

If Ais TU then for any integral b, {x : Ax < b,x > 0} is integral.

°

Ghouila-Houri: A is TU iff every subset R of rows can be partitioned
Into Ry and R»> such that

7/) [ D ai— ) ay| <1
1€ERy 1€ R2

b\CO'Ol

R ”Rz
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Directed Cuts

Digraph D = (V, A)
A directed cutis C = §—(S) where §7(S) = 0.

A directed cut coveris F C A with F N C # 0 for every directed
cuts C

Theorem: Polytope

{x: x=(C)>1 C directed cut
0<z,<1 a € A}

Integral, i.e. convex hull of directed cut covers.

Proof: similar to arborescence with 2 differences
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Matroid | nter section Polytope

Let M, = (E,Z;) and M, = (FE,Z5) be two matroids with rank
functions r; and 7o

Edmonds: The convex hull of incidence vectors of independent sets
In Z7; N Z5 Is given by:

P = {x: x=(S) <r(S) SCE
z(S) < r2(S) S CE
- obviovs

Proof through dual uncrossing and TDIness
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TDI (Edmonds-Giles’77)

® Rational system Ax < bis TDI if, for each ¢ € Z™, the dual to
min{clz : Az < b}, i.e.

max{bly : ATy = ¢,y > 0}

has an integer optimum solution whenever it is finite.

® Theorem: If Az < bis TDI and b is integral then Az < b is integral
(i.e. has only integral extreme points).
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Dual

max clx = min Z r1(S)y1,s + Z’Pz(s)y2
z(S) < ri1(S) VS Z yi,s + Y y25>Cz
S:2€S S:2€S
z(S) < r2(S) VS Y1,5,Y2,s = 0

Tw'e o’ aj oloh\munm :) 2
L&" ’5: { : ﬂ o%
C)a.nlm CM adfume H\w} g: 1§ A Ojvann

Uncrou e,o.J }rao' Serafw'}elg
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S q}‘ T, ‘T_L ¢s | T < duse 3i,w1§"' FsurtE



\\Jeu a C () st feagible
(ii\ @L'edivc can onb 'Nmrrove, La Subm.

Elr (Sn‘r)-r r (_cu'b -, ($)- r; (T)] <o
hoving ro S, TeF - 5¢T,TES

(P«Dwu Joards 3

E.:‘.- d):Z ji S ,5,’3'
Lt S T ~—~—
7 (5)

e - ol 4 = £] dy (WD+d (s - dy Ok, (]

<-£<0

- ,'?.rhﬂ‘.ch,

_v:> Can oaffume Cj\a,;n Ci:{St gi,s>o]

x(8) = r (S Se €,
o x defned by {xgs)ﬂl((% e



C\QAM UncJerJ a Ima}()( IS T U.

(PF Take a,na ubset Q? 8 of 8 4 8

Ca.n a”&m:»’ a’“j’” JJI N e So ”\q)' an e/,um&“’_
G\e}l COV')LMLV 9N N O 4,, J

‘ (@DD

Similan l:] foo 6, so Hhot e/vua elam* J - OSCo»

“””‘

_ oven both 82 8 e,vua e lement Je/ﬁ conlehion in

bribobion

—_— T, U => e,x,fe/h'\e- Foini N e.jm.i



L ucchesi-Younger

® Could have done dual uncrossing and TDI proof for arborescences of
directed cut covers

® Lucchesi-Younger theorem: For any digraph, min size of a directed
cut cover = max number of disjoint directed cuts

® |If planar digraph, can take dual to get:
Theorem: Min size of a feedback arc set (meeting all directed
circuits) = max number of arc disjoint directed circuits
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Perfect M atching Polytope via Uncrossing

Convex hull of perfect matchings =

{x: x=(0(v)) =1 vevV
x(0(S5)) > 1 S :|S|odd
0 < x. e € E}

Could have replaced z(6(S)) > 1 by z(E(S)) < 12=1

Scl\ri'vef& Se movr ' auaj uncrolling — /a)‘hina(‘
J 'h) ' . } Y
+ holf obo.p 2 J“’HJ > TD)=SmM (ﬂm‘j
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M atroid I ntersection

max clx = min Z r1(S)y1,s + Z"“z(s)yz
[ 2(S) <ri(S) VSSE Z e y25>Cz
{ « S:2€S S:2ES
z(S) < r2(S) VScE | Y1,5,Y2,s = 0
| z; > 0 Lek

Min-max relation: max{|I| : I € Z; N Z>} = min{r;(S) + r2(S)}

For ¢; = 1, can choose y;, y2 integral and C; = {S : y;,s > 0} chain for

=1, 2.

= C1 = {8}, C2 = {S} @




Connectivity Augmentation



Connectivity Augmentation

For graph H, Ag(s,t) = local connectivity between s and ¢
= max number of edge-disjoint paths between s and ¢

Problem: Given graph G = (V, E) and requirements r(u, v) for
Yu # v € V, add set F of (multiple) edges such that (n H::(\/, €UF)
A (u,v) > r(u,v) forall u, v

Special case: r,, ., = k for all u, v.
Want augmentation into k-edge-connected graph

Objective 1. Cardinality: Minimize |F'| [Frank]
# Good characterization

o Efficient algorithm

Objective 2. Weighted: Minimize ) _; c p wi;
o NP-hard

# 2-approximation algorithm [Jain]

.—p.3/15
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Formulation

Let R(S) = maxscg+¢s T(s,t)
Let d(S) = dg(S) = |6(5)]
Want integral « € P:

. { £(5(S) > R(S) — d(S) VS

zi; > 0 Vi, j

If relax integrality, not integral

.—p.4/15



Uncrossing S T

® [emma: For crossing S and T,
either R(S)+ R(T) < R(SUT)+ R(SNT)
or R(S)+ R(T) < R(S\T)+ R(T\ S)
® Uncrossing lemma: For x € P, let
F={S:x2(6(S)) =R(S)—d(S)}.IftS,T € Fand S,T
crossing then
either SNT,SUT € Fandx(S\T:T\S)=0
or S\T,T\Se€Fandz(SNT:SUT) =0

R(S)-d(S)4R(T)-dll7) = 2 (3(8)+ 2 (J(T)
) (S(sunhx(§(sNT)
> R(suT)-d(SuT)+R($NT)-d(s0r)
> R() = d(3) +R('r)_d(ﬂ_p

5/15



L ower bound

® ~ = smallest # of edges to add
® [Frank]: For any subpartition V;, Vo, .-,V of V'

k
2y > ) [R(V;) — d(V3)]

@%?V
w2 O

®» Hence

v 2 |5 max [ROV) - d(W)|

.~ p.6/15



Add anew vertex s

odd § new eo‘aes

P'.nc}\ new ecjja }t‘oje,#\ef —» A
Gm,,L on VU{A]: Q(u)\/) ;r(ujv) Vujv



Frank’s Algorithm

(Modulo - - -)

1. Add as few edges as possible between s and V' (and none within V')
such that A(uw,v) > r(u,v) for all u, v

2. Add one more edge if degree of s is odd

3. Use Mader’s local connectivity splitting-off result to get augmenting
set F' (within V)

.—p.8/15



Step 1

Theorem [Frank]: Any minimal augmentation from s has

k ~ v
m = max, 3 [R(V) — d(Vi)] C)D

edges incident to s ‘

nMaJ .So'./ won X, Ckar\dj /\a.s 2m edjm mco’ml fo/.)
x>0 = 35 x(S)= R(S)-d(5)

C 53@ A

le ma
Sé’iacaa YD




Gel a disjont fm;)\,} of fght set

> oPTINAL

Vi



Splitting off

® Mader: can perform splitting off and maintain local connectivity

V

9 (Modulo S ] ) _\
(

ea. works af oriqina) mpL /S
& Add J J Jconnec*ed

5 ymax, [R(V) — (V)]

edges — optimal

.—p.10/15
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Weighted case

LP(E) = min ) wez.
s.t. z(5(S)) > R(S) — d(S) VS
Lij >0 Vi,

Extreme point x could be fractional
Theorem [Jain]: For any extreme point x, there exists f with z > %

Iterative Rounding: While connectivity reqs not met
Solve LP(E)
Take f:xy > 3
add fto E — F

2-approximation algorithm: w(F') < 2LP(FE)

.—p.11/15



Show ar(F)< 2 LP(ED

383 ino’uc*ionj can adfume M(F\(F])Sz LP(EU{(D

W(F):: ’L({C-I-S W+ ZLP(EU{{a

< o2y 2 LP(EV]F)

/s 2 LP(E)
2 wi“m @djc f removea/ /S

fesbb for LP(EUJF)



Thereexists f withx; > 2

Proof of Ravi, Singh, Nagarajan [2007]

Let z: extreme point with z. < 3 fore € C = {e : z. > 0}

< is oefined by (§(5)= R(5)-ol(5) se;*f

)a,m nar

)’mear ma’e/oena’ence = JC}Z'%‘



0 o 0
7 7 7

Assign one unit to every edge: Xi I-2 Xeaxe

Reassigntosets S € L

» :'(Qé ECS\\

S

v f ve S\L;/S;
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As = > @+ Y (me+(1—2z))+ Y (1—2z)
ecCy ecCy ecCsg

= z(C1) + |E2| — 2(C2) + |E3| — 2x(C3)
~_

~—

| indeed, if C=G=C3=¢ _
0 As7o then X(5(5) = 2 (3(5) )

(,ﬁ AS 'myegef:
Z 5 x(8)-2 2(8(65) = 2 (€)-2(@)2x(G)

= A52\



Together all sets get > |L|

no set gets |-ZXe edj"' Va) S(S) {or 5 max{mJ

O O
-,

— |C| >|L£] Contradiction.
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Degree Restricted Spanning Trees



Spanning Trees with Max Degree Bound

When does a graph have a spanning tree of maximum degree < k?
® NP-hard (k = 2 is Hamiltonian path...)

® S. Win [1989]: Relation to toughness

_ S|
HG) = maxs oo comp. of G—s

s Ift(G) > ;=5 then I tree of max degree < k

o If 3 tree of max degree < k then t(G) > %

Algorithmically: Furer and Raghavachari [1994], G. [unpublished,

1991]. Efficiently either show that G has no tree of maximum degree
< k or output a tree of max degree < k + 1

» Min cost version?
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Bounded-Degree M ST

Minimum Bounded-Degree Spanning Tree (MST) problem:

® Given G = (V, E) with costs ¢ : E — R, integer k

® find Spanning Tree T of maximum degree < k and of minimum total
cost ) . c(e)

Even feasibility is hard.
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Today

Let OPT (k) be the cost of the optimum tree of maximum degree < k.

® [G. 2006]:
Find a tree of cost < OPT (k) and of maximum degree < k + 2
(or prove that no tree of max degree < k exists)

® [Singh and Lau 2007]:
Find a tree of cost < OPT (k) and of maximum degree < k + 1
(or prove that no tree of max degree < k exists)
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Fractional Decomposition

Any convex combination of trees such that the average degree of every
vertex is at most k can be viewed as a convex combination of trees each
of maximum degree k + 1

(E.g., for a 2k-regular 2k-edge-connected graph, there exists a convex
combination of spanning trees of max degree 3 such that each edge is
chosen with frequency 1/k)

Integral decompositions?
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Matroid Polytope

® [Edmonds '70] Given matroid M = (FE,Z), convex hull of incidence
vectors of independent sets is :

P(M)=(x
re > 0 ec k

z(F) < ry(F) FCE }

Convex hull B(M) of bases: same with x(E) = rp(E)
® For graphic matroid

B(M) = {x: z=(E(S)) <]|S|—-1 SCV
r(E(V)) =|V|-1
e > 0 Ve}
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Linear Programming Relaxation

Relaxation: LP = min{cTz : z € Q(k)} < OPT (k) where

Q) = {z: x(E(S)<I|S|-1 Scv
¢(E(V))=|V]|-1
x(0(v)) <k veV
Te > 0 e € E}
Notation:

® z(A) =) .cate
® ES) ={e=(u,v) € E:u,v e S}
® 4(5) ={(u,v) € E: {u,v} N S| =1}

If Q(k) = 0, no spanning tree of maximum degree < k.
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Our Approach/Algorithm

® Solve LP and get an extreme point x* of Q(k) of cost LP
E*: support of x*
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Our Approach/Algorithm

® Solve LP and get an extreme point * of Q(k) of cost LP
E*: support of x*

® Study properties of any extreme point Q (k)
Show that support graph E* is Laman, i.e. forany C C V.
|[E*(C)| < 2|C| -3
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Our Approach/Algorithm

® Solve LP and get an extreme point * of Q(k) of cost LP
E*: support of x*

® Study properties of any extreme point Q (k)
Show that support graph E* is Laman, i.e. forany C C V.
|[E*(C)| < 2|C| -3

® Define matroid Ms(x*) on ground set E* such that any independent
set has degree at most k£ 4+ 2 (but not conversely)
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Our Approach/Algorithm

Solve LP and get an extreme point * of Q(k) of cost LP
E*: support of x*

Study properties of any extreme point Q (k)
Show that support graph E* is Laman, i.e. forany C C V.
|[E*(C)| < 2|C| —3

Define matroid M>(x*) on ground set E* such that any independent
set has degree at most k£ 4+ 2 (but not conversely)

Find a minimum cost spanning tree of E* which is also independent
In Mo (x*) (by matroid intersection)
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Our Approach/Algorithm

Solve LP and get an extreme point * of Q(k) of cost LP
E*: support of x*

Study properties of any extreme point Q (k)
Show that support graph E* is Laman, i.e. forany C C V.
|[E*(C)| < 2|C| —3

Define matroid M>(x*) on ground set E* such that any independent
set has degree at most k£ 4+ 2 (but not conversely)

Find a minimum cost spanning tree of E* which is also independent
In Mo (x*) (by matroid intersection)

Argue (polyhedrally) that cost of solution obtained < LP

.~ p.8/36



Extreme points of Q (k)

Recall
Q(k) = {z: z(E(S)) <|S|—-1 SCV
r(E(V))=|V]|-1
x(0(v)) <k veV
e > 0 e € E}

Take an extreme point =* of Q (k)
Remove from E edges with ¥ = 0 — E* = {e : > > 0}

x* uniquely defined by tight inequalities:

x*(E(S))=|S|—1 Se7T
x*(0(v)) =k veT

or Ax* = b with rank(A) = |E*|.
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Example of Extreme Point
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Another Example of Extreme Point

[K. Cheung '03]
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Another Example of Extreme Point

[K. Cheung 03]
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Extreme point

Extreme point =* uniquely defined by tight inequalities:

2*(E(S) =|S|—1 SeT
z*(0(v)) =k veT

or Ax* = b with rank(A) = |E*|.

Which full rank | E*| x | E*|-submatrix of A to use?
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Uncrossing

® If A, Btight (A, B € T) with AN B # 0 then

Al =1+ [B| -1 =a"(E(A)) + z"(E(B))
< z*(E(AU B)) + z*(E(AN B))
< |AUB|-1+|ANB|—1.

Thus, XCG (M X(eC 6)):
s AUB,ANBET  _» X (€ (AUB))+ X(e@ne

» No edges between A\ B and B\ A

® Uncrossing argument implies: There exists laminar subfamily £ of F
satisfying span(L) = span(F)
(Any maximal laminar subfamily works)
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Size of Laminar Families

® Any laminar family on n elements contains at most 2n — 1 sets

CoCo D¢

® |[f no singletons then < n — 1 sets

.~ p.14/36



Small Support

® o* defined by

x*(E(S)) =1|S| -1 SeLl
x*(0(v)) =k vel
with £ a laminar family of sets without singletons
® System Ax* = bwith A = |E*| x |E*| of full rank
® |L|<n—1limplies|E*|=|L|+|T|<(n—1)+n=2n-—1

® Similar results known in many settings. E.g. Boyd and Pulleyblank
'91 for subtour polytope.
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Everywhere Sparse: |E*(C)| < 2|C| — 1foral C

1 1011001 --- |«—zx*ES)=]|8 -1
01 001010 .- |«—aET)=|T-1

111 00010 - |«—x*((v)=k




Everywhere Sparse: |E*(C)| < 2|C| — 1foral C

........... X(E*(S))..ovvvin | = x*(E(S)) = |S| — 1
........... X(E*(T)) ..., | — x*(E(T)) = |T| — 1
A=| o
............ X(B(V)) eeenenei. | = 2*(8(0)) = k




Everywhere Sparse: |E*(C)| < 2|C| — 1foral C

Take any C' C V. A has full rank

—> columns of A corresponding to E*(C') are linearly independent

1 1 01 1 O
O 1 0 0 1 O

— a*(E($)) =S| -1
— x*(E(T)) =|T| -1

—x*(0(v)) =k
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Everywhere Sparse: |E*(C)| < 2|C| — 1foral C

Take any C' C V. A has full rank

—> columns of A corresponding to E*(C') are linearly independent

x(E*(S) N E*(C))
x(E*(T) N E*(C))

— a*(E($)) =S| -1
— x*(E(T)) =|T| -1

—x*(0(v)) =k



Everywhere Sparse: |E*(C)| < 2|C| — 1foral C

Take any C' C V. A has full rank
—> columns of A corresponding to E*(C') are linearly independent

X(E*(SNC)). — z*(E(S)) = |S| — 1

O 0O 0 0 0 O —iflsNnC| <1
A=| ...

x(0(v) N E*(C)) —x*(d(v)) =k

O 0O 0 0 0 O —ifve (T\O)

g 35)



Everywhere Sparse: |E*(C)| < 2|C| — 1foral C

Take any C' C V. A has full rank

—> columns of A corresponding to E*(C') are linearly independent

X(E*(SNC)).

distinct, non-zero rows
for laminar family
Lo={5SNC:
SeLlLand|SNC| > 2}

distinct, non-zero rows

fororeT NC

— |E*(C)| = rank(B) < |C| +|C| —1=2|C| —1foralC C V
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Slight Improvement

Slightly more careful rank counting argument shows |E*(C)| < 2|C| — 3
foreveryC C V
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Orientation of E*

® Graph Orientation: [Hakimi '65] An undirected graph G has an
orientation with indegree d— (v) < wu, ifand only if forall C C V:

BO) <Y u,

vel

[Easy, e.g. from max flow/min cut]
® — E* can be oriented into A* suchthatd= (v) < 2forallv € V

® Another way

o [Nash-Williams’ 1964] A graph can be partitioned into k forests if
andonlyifforallC C V: |E(C)| < k(|C| — 1)
(Special case of Edmonds’ 1965 matroid base covering theorem)
o — E* can be partitioned into 2 forests

o Orient each forest as a branching (indegree at most 1)
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Example




Example




OO QD
O —O
—_—0 —_—0
O —O

O
[ ) Q
O @,
@, @,
O O
(e
0 ®
A olie
® O
® O
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Example

O O=—O
O O
O O
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Example
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Matroid M,

® Given orientation A* of E* with indegree d= (v) < 2forv € V,
define partition matroid My (x*) = (E*,Z) where

IT={F:|FNnéi.(v)|<kforallveV}
O\
/

® Since all but at most 2 edges incident to v are outgoing in A*, any
iIndependent set F' of My (x*) has maximum degree < k + 2

® Slack of 3 units for every C = can assume one specific vertex of
degree < k and another of degree < k + 1

.~ p.20/36



Matroid | ntersection Approach

® Find a minimum cost spanning tree in E* which is also independent
In Mz(m*)
® M, : graphic matroid for E*
— want a base of M, independent in My (x*)
— matroid intersection
® Polynomial time using matroid intersection algorithm
o Edmonds 79 and Lawler '75

» Brezovec, Cornuéjols and Glover '88: O(n?) algorithm for ) of
graphic matroid and partition matroid

o Gabow and Xu scaling algorithm for linear matroid intersection:
O(n?"" lognW)
» Harvey '06: O(n?3%W) (polynomial if weights are small)

» Bound on cost?
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Matroid Polytope

® [Edmonds '70] Given matroid M = (FE,Z), convex hull of incidence
vectors of independent sets is :

P(M) = {a:

c(F) <rm(F) FCE
re > 0 ec k

Convex hull B(M) of bases: same with x(E) = rp(E)
® For graphic matroid M; on E*

B(M,) = {x: x(E(S)) <|S|—-1 SCV
z(E(V)) =[V]-1
e > 0 e e E*}
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Matroid Polytope

® [Edmonds '70] Given matroid M = (FE,Z), convex hull of incidence
vectors of independent sets is :

P(M) = {a:

c(F) <rm(F) FCE
re > 0 ec k

Convex hull B(M) of bases: same with x(E) = rp(E)
® For matroid My (x*)

P(Ms(z*)) {: z(dl.(v)) <k veEV

1>z, >0 e € E*}
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Matroid | nter section Polytope

® [Edmonds '70] Given two matroids M, = (E,Z;) and
M, = (E,Z3), convex hull of independent sets common to both
matroids is

P(M,) N P(M->)

(Similarly, if take bases for one of them)
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L I

Cost Analysis

Observe that z* € B(M;) and z* € P(My(x*))

Cost of solution returned:
min{c(x) : x € B(M;) N P(M2(x*))} < c(xz*) = LP
Thus, we get a spanning tree of maximum degree k + 2 and of cost

< LP

Remark: We could have decomposed z* € B(M;) N P(Mz(x*))
as a convex combination of spanning trees independent for M,
(using Cunningham ’84) and take the best cost among them (enough
to get at most L P)

x* € B(M;y) N P(Msy(x*)) implies that

Q(k) = conv({z*}) C conv(Q(k + 2) N Z*)
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L I

Cost Analysis

Observe that z* € B(M;) and z* € P(My(x*))

Cost of solution returned:
min{c(x) : x € B(M;) N P(M2(x*))} < c(xz*) = LP

Thus, we get a spanning tree of maximum degree k + 2 and of cost
< LP

Remark: We could have decomposed z* € B(M;) N P(Mz(x*))
as a convex combination of spanning trees independent for M,
(using Cunningham ’84) and take the best cost among them (enough
to get at most L P)

x* € B(M;y) N P(Msy(x*)) implies that
Any convex combination of trees such that the average degree of

every vertex is at most k£ can be viewed as a convex combination of
trees each of maximum degree < k + 2
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Without Hakimi, Nash-Williams, Edmonds, etc.

® [aplace expansion of det along column j:

det(A) = Z(—l)i_l_jaij det(M;;)

1

® Generalized Laplace expansion (Laplace 1772). For any I,

det(A) = ) sgn(I,J)det(A[I,J])det(A[I, J])
J:|J|=|I|

— If A invertible, there exists J with A[I, J] and A[I, J] invertible

(follows also from matroid union min-max relation)

® Algorithmically: For every 3 = 1ton do

» either set all entries in column 5 from rows in I or from rows in T
to O so as to keep the matrix invertible
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Orientation Purely Algebraically

® Take Ax* =0
® Can partition E into E,, Eo
E4 E-
A = I B1
I B,

with By, B> invertible

L

one edge

— rows z*(E(S)) =S| —1

— rows z*(6(v)) =k

B invertible + £ laminar: E; must be a forest

B invertible: every connected component of E5 Is a tree or a tree +

® — cantrivially orient both E; and E5 with indegree at most 1
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Former Conjecture... Now Theorem

® Conjecture:
Q(k) C conv(Q(k + 1) NZ*¥)

® Any convex combination of trees such that the average degree of
every vertex is at most k can be viewed as a convex combination of
trees each of maximum degree k + 1

® Proved by Singh and Lau '07:

o Efficient algorithm to get tree of cost < OPT (k) and of degree
<k+1
» Uses iterative relaxation, generalizing Jain’s iterative rounding
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o

9

Open Questions

Can one find E* (combinatorially) without computing * (by linear
programming)?

+1 algorithm possible via matroid approach if, for all extreme points
x* with support E*, there exists an orientation A* such that for all
vEeV:

(For general (non-extreme) x*, deciding if such orientation exists is
NP-hard.)
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General Lower and Upper bounds

General Degree-Bounded Spanning Trees:

o

Givenl,u : V — Z, find a spanning tree T" such that
l[(v) < dr(v) < u(v)forallv € V and of minimum cost

Same approach gives a spanning tree of cost at most LP and of
degree l(v) — 2 < d,(T) < u(v)+2forallv eV

One step is to argue that for

P, = {z: l(v)—2<z(0l.(v)) <u(v) wveV
1>x2.>0 e e E*}

B(M,) N Py is integral

Singh and Lau '07: 41 also for general upper and lower bounds
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Singh and Lau’s Iterative Relaxation

Given a forest F (initially empty) and W C V, consider LP relaxation
for problem of augmenting F' into a tree with general degree bounds
u(v) forv e W

Solve relaxation; remove edges of value 0 and and add edges of
value 1 to F

Theorem: If non-integral, there exists v € W with u(v) + 1 incident
edges.

Remove v from W and repeat
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Formulation

Let E: all edges,
Ey: excluded edges,
F: included edges in solution,
E'=FE\ (EqU E,)
W C V: vertices v with degree upper bound u(v)

LP relaxation: min Z CeZTe
eCE
x(E(S)) <|S|—-1 SCV
r(E(V))=|V]-1

P(Ey, E1,W) z(0(v)) < u(v) veW
r. = 1 e € 4
re = 0 e € Ey

xe > 0 e € E'}
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Singh and Lau’s Algorithm

Eo=E,=0,W=V

Repeat
Find optimum extreme point « to LP(Eqy, E1, W)
Eoy={e:xz. =0}, E; ={e:x. =1}, E' = FE\ (Eg U E;)
Remove from W vertices v with dg, (v) + dg/(v) < u(v) + 1

Until £, Is a spanning tree

® Theorem [Singh and Lau '07]: Algorithm terminates
— F, satisfies the degree bounds u(v) 4+ 1

® New simple proof of Bansal, Khandekar and Nagarajan '07
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Tight Inequalities Can Be Uncrossed
7 - {s o (E(S) = Iski-le, ()}
. ST eF SNT+¢

= SNT, SuT € F
X (£'(8)+X(€ (T X (€ (srm) +X(€ (5vT)

x| g uniquely defined by:

\ x(E'(S)) = |S| —1— |Ei(S)| Sec
z(0p (v)) = u(v) — |0g,(v)| vET

with £ laminar and |E’| = |L| 4+ |T|



W decreases

® let

def(v) = Z (1—m) = Z (1 — x)

e€dps (v) e€dpryp, (V)
® ForveT,def(v) =dg, (v)+dg(v) —u(v) €Z

® Claim: There exists v € T such thatdef(v) =1
— v can be removed from W <

O IQK @QC(ED A 05 JO

| d
eo-xes) ez (2
' ifro = X(E(S)==2 x(g(S,'))

)
,inear dG/FU)O/e Nncg

£ - Hhen E'C g 6#,1—:[5]



(2) > def(v) = ( (1 xe\)

VET ”U—éT ec$
f = lhen < @Z (Z:I - X(E)
€' ) = Z(I;fIHTI «(€)

= Phen )
Ce el ~ @z(1ZI+17] - I¥Z) = 217

sed
> x(S, . (w)=2 X(e=2 2_ X (E )
ST -‘Z‘jazlmn o S linear O’CF

= S5 D <zl = JveT: def(v)=

vEN

- con}rad.'c la'on



|ter ative Relaxation

® Many more applications, see Singh and Lau '07, Lau et al. '07,
Bansal et al. '07.

® Bansal et al. '07: Given a directed graph D = (V, A) with root
r € V, and outdegree upper bounds b(v) for every v € V,
(efficiently) either decide that D has no r-arborescence with
d* (v) < b(v) or output an r-arborescence with d*(v) < b(v) + 2.
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