
Uncrossing

Michel X. Goemans

MIT

Levico Terme – p.1/26

Topics

Minimally k-edge-connected
graphs

Odd cuts, cut tree

r-arborescence polytope

Matroid intersection

Lucchesi-Younger

Submodular flows

Matching polytope

TDI and unimodularity

Augmenting connectivity (w/ or
w/o weights)

Node connectivity augmentation

Degree restricted spanning trees

Dual uncrossing

Primal uncrossing

Termination, finiteness,
efficiency

TU and TDI

TDI and unimodularity

Iterative rounding

Iterative relaxation

Uncrossing set pairs

Levico Terme – p.2/26

Intersecting, Crossing Sets

Subsets A and B of S are

intersecting if A ∩ B 6= ∅, A \ B 6= ∅ and B \ A 6= ∅

crossing if intersecting and S \ (A ∪ B) = A ∪ B 6= ∅

Family F ⊆ 2S is

laminar (or nested) if no two sets A, B ∈ F are intersecting
(intersecting-free)
i.e. for A, B ∈ F : A ⊆ B or B ⊆ A or A ∩ B = ∅

cross-free if no two sets of F are crossing

a chain if, for any two sets A, B ∈ B, either A ⊆ B or B ⊆ A

Uncrossing: Make a family of sets cross-free, laminar or a chain

Levico Terme – p.3/26

Laminar vs. Cross-free

If add complements to cross-free family, family remains still cross-free

If F is cross-free then

{S ∈ F : v ∈ S} ∪ {S̄ ∈ F : v /∈ S}

is laminar

Levico Terme – p.4/26

Tree Representation for Laminar and Cross-Free

Levico Terme – p.5/26

Submodularity

f : 2S → R is submodular if for all A, B ⊆ S:

f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B)

Basic example: cut function of a nonnegatively weighted undirected
graph G = (V, E)

d(S) = w(δ(S)) for S ⊆ V

d(A) + d(B) = d(A ∩ B) + d(A ∪ B) + 2w(A \ B : B \ A)

Similarly for indegree function d−(·) = w(δ−(·)) or outdegree
function d+(·) = w(δ+(·)) of a directed graph (with ≥ 0 weights).

Minimizers of a submodular function form a lattice family, i.e. it is
closed under ∩ and ∪

Levico Terme – p.6/26

Minimally k-Edge-Connected Graphs

Theorem: In a minimally k-edge-connected graph G = (V, E), we have
|E| ≤ k(|V | − 1)

Levico Terme – p.7/26

Gomory-Hu Cut Tree

Let G = (V, E) be a (nonnegatively weighted) undirected graph.

Gomory-Hu cut tree is any tree (V, T) such that for any edge
e = (s, t) ∈ T , we have that δ(Ce) is a minimum s, t-cut where Ce

is any of the connected components of T \ {e}.

Property of Gomory-Hu tree: For any u, v ∈ V , a min u, v-cut is
given by the minimum capacity cut among δ(Ce) where e is along
the path from u to v in T .

Gomory-Hu cut tree always exists.

Same result holds for symmetric submodular functions [GGW]

No need to contract if perturb

Levico Terme – p.8/26

Gomory-Hu Cut Tree

Levico Terme – p.9/26

Min T -Odd Cut (Padberg and Rao ’82)

T -odd cut problem: Given (≥ 0 edge weighted) graph G = (V, E)

and T ⊆ V , find S with |S ∩ T | odd minimizing cut function d(S)

Lemma: If δ(C) is a mincut then there exists a min T -odd cut δ(S)

with either S ⊆ C or S ⊆ C.

Lemma: If δ(C) is a mincut separating vertices of T then there exists
a min T -odd cut δ(S) with either S ⊆ C or S ⊆ C.

Levico Terme – p.10/26

Padberg-Rao’s T -Odd Cut Algorithm

Find global mincut C separating two vertices of T

If T -odd, done.

Else, solve subproblems

G1 = G/C with T1 = T \ C

G2 = G/C with T2 = T \ C

and output best T -odd cut

Number of subproblems

Levico Terme – p.11/26

Rizzi’s Min T -Odd Cut Algorithm

ALG(G, T)

Take s, t ∈ T

Find min s, t-cut δ(S)

If S is T -odd, return min(d(S), ALG(G/{s, t}, T \ {s, t}))

Else return min(ALG(G/S, T \ S), ALG(G/S̄, T \ S̄))

Levico Terme – p.12/26

Min T -Cut Algorithm

Follows from Padberg-Rao: There exists s, t ∈ T such that min T -odd cut
is a min s, t-cut

Levico Terme – p.13/26

Other Cut Families

[Barahona-Conforti ’87]: T -even cuts (having an even, ≥ 2 vertices
of T on both sides)

[Grötschel et al. ’88] (for submodular f.):

Lattice family C of sets

Triple subfamily G of C: whenever 3 of A, B, A ∩ B and A ∪ B

are in C \ G then 4th is also in C \ G

Example: G = {S ∈ C : |S ∩ T | 6≡ q (mod p)}

(Special case: min T -even cut separating s and t.)

Levico Terme – p.14/26

More Cut Families

Generalization: parity family (G.-Ramakrishnan) (also for submodular
f.)

Parity subfamily G of a lattice family C if

A, B ∈ C \ G ⇒ (A ∩ B ∈ G iff A ∪ B ∈ G)

Example: lattice family minus a lattice family (i.e. can find second
minimizer to a submodular function).

Need more than uncrossing. Theorem: Let S∗ be a minimizer
over G. Then either S∗ ∈ {∅, V } or there exists a, b ∈ V such
that S∗ minimizer over lattice family
Cst = {S ∈ C : s ∈ S, t /∈ S}

Levico Terme – p.15/26

Polyhedral Combinatorics

Levico Terme – p.16/26

Dominant of r-Arborescence Polytope

X = {Digraphs with every vertex reachable from root r}

Minimal= r-arborescences: rooted tree at r in digraph G = (V, A)

Theorem: conv(X) = conv(arborescences) +Rm
+

=

P = {x : x(δ−(S)) ≥ 1 S ⊂ V \ {r}

xa ≥ 0 a ∈ A}

Proof through primal uncrossing

Levico Terme – p.17/26

Levico Terme – p.18/26

Levico Terme – p.19/26

Totally Unimodular

A is totally unimodular (TU) if all square submatrices of A have
determinant in {−1, 0, 1}

If A is TU then for any integral b, {x : Ax ≤ b, x ≥ 0} is integral.

Ghouila-Houri: A is TU iff every subset R of rows can be partitioned
into R1 and R2 such that

|
∑

i∈R1

aij −
∑

i∈R2

aij| ≤ 1

Levico Terme – p.20/26

Directed Cuts

Digraph D = (V, A)

A directed cut is C = δ−(S) where δ+(S) = ∅.

A directed cut cover is F ⊆ A with F ∩ C 6= ∅ for every directed
cuts C

Theorem: Polytope

{x : x(C) ≥ 1 C directed cut

0 ≤ xa ≤ 1 a ∈ A}

integral, i.e. convex hull of directed cut covers.

Proof: similar to arborescence with 2 differences

Levico Terme – p.21/27

Matroid Intersection Polytope

Let M1 = (E, I1) and M2 = (E, I2) be two matroids with rank
functions r1 and r2

Edmonds: The convex hull of incidence vectors of independent sets
in I1 ∩ I2 is given by:

P = {x : x(S) ≤ r1(S) S ⊆ E

x(S) ≤ r2(S) S ⊆ E

xi ≥ 0 i ∈ S}

Proof through dual uncrossing and TDIness

Levico Terme – p.22/26

TDI (Edmonds-Giles ’77)

Rational system Ax ≤ b is TDI if, for each c ∈ Zn, the dual to
min{cT x : Ax ≤ b}, i.e.

max{bT y : AT y = c, y ≥ 0}

has an integer optimum solution whenever it is finite.

Theorem: If Ax ≤ b is TDI and b is integral then Ax ≤ b is integral
(i.e. has only integral extreme points).

Levico Terme – p.23/26

Dual

max cT x = min
∑

S

r1(S)y1,S +
∑

S

r2(S)y2,S

x(S) ≤ r1(S) ∀S
∑

S:i∈S

y1,S +
∑

S:i∈S

y2,S ≥ ci

x(S) ≤ r2(S) ∀S y1,S, y2,S ≥ 0

Levico Terme – p.24/26

Lucchesi-Younger

Could have done dual uncrossing and TDI proof for arborescences of
directed cut covers

Lucchesi-Younger theorem: For any digraph, min size of a directed
cut cover = max number of disjoint directed cuts

If planar digraph, can take dual to get:
Theorem: Min size of a feedback arc set (meeting all directed
circuits) = max number of arc disjoint directed circuits

Levico Terme – p.26/27

Perfect Matching Polytope via Uncrossing

Convex hull of perfect matchings =

{x : x(δ(v)) = 1 v ∈ V

x(δ(S)) ≥ 1 S : |S|odd

0 ≤ xe e ∈ E}

Could have replaced x(δ(S)) ≥ 1 by x(E(S)) ≤ |S|−1

2

Levico Terme – p.26/26

Matroid Intersection

max cT x = min
∑

S

r1(S)y1,S +
∑

S

r2(S)y2,S

x(S) ≤ r1(S) ∀S
∑

S:i∈S

y1,S +
∑

S:i∈S

y2,S ≥ ci

x(S) ≤ r2(S) ∀S y1,S, y2,S ≥ 0

xi ≥ 0

Min-max relation: max{|I| : I ∈ I1 ∩ I2} = min{r1(S) + r2(S)}

For ci = 1, can choose y1, y2 integral and Ci = {S : yi,S > 0} chain for
i = 1, 2.

⇒ C1 = {S}, C2 = {S}

. – p.1/15

Connectivity Augmentation

. – p.2/15

Connectivity Augmentation

For graph H, λH(s, t) = local connectivity between s and t

= max number of edge-disjoint paths between s and t

Problem: Given graph G = (V, E) and requirements r(u, v) for
∀u 6= v ∈ V , add set F of (multiple) edges such that
λH(u, v) ≥ r(u, v) for all u, v

Special case: ru,v = k for all u, v.
Want augmentation into k-edge-connected graph

Objective 1. Cardinality: Minimize |F | [Frank]

Good characterization

Efficient algorithm

Objective 2. Weighted: Minimize
∑

(i,j)∈F wij

NP-hard

2-approximation algorithm [Jain]

. – p.3/15

Formulation

Let R(S) = maxs∈S,t/∈S r(s, t)

Let d(S) = dE(S) = |δE(S)|

Want integral x ∈ P :

P =





x(δ(S) ≥ R(S) − d(S) ∀S

xij ≥ 0 ∀i, j

If relax integrality, not integral

. – p.4/15

Uncrossing

Lemma: For crossing S and T ,
either R(S) + R(T) ≤ R(S ∪ T) + R(S ∩ T)

or R(S) + R(T) ≤ R(S \ T) + R(T \ S)

Uncrossing lemma: For x ∈ P , let
F = {S : x(δ(S)) = R(S) − d(S)}. If S, T ∈ F and S, T

crossing then
either S ∩ T, S ∪ T ∈ F and x(S \ T : T \ S) = 0

or S \ T, T \ S ∈ F and x(S ∩ T : S ∪ T) = 0

. – p.5/15

Lower bound

γ = smallest # of edges to add

[Frank]: For any subpartition V1, V2, · · · , Vk of V :

2γ ≥
k∑

i=1

[R(Vi) − d(Vi)]

Hence

γ ≥

⌈
1

2
max

V1,··· ,Vk

[R(Vi) − d(Vi)]

⌉

. – p.6/15

Add a new vertex s

. – p.7/15

Frank’s Algorithm

(Modulo · · ·)

1. Add as few edges as possible between s and V (and none within V)
such that λ(u, v) ≥ r(u, v) for all u, v

2. Add one more edge if degree of s is odd

3. Use Mader’s local connectivity splitting-off result to get augmenting
set F (within V)

. – p.8/15

Step 1

Theorem [Frank]: Any minimal augmentation from s has

m = max
V1,··· ,Vk

k∑

i=1

[R(Vi) − d(Vi)]

edges incident to s

. – p.9/15

Splitting off

Mader: can perform splitting off and maintain local connectivity

(Modulo · · ·)

Add ⌈
1

2
max

V1,··· ,Vk

[R(Vi) − d(Vi)]

⌉

edges =⇒ optimal

. – p.10/15

Weighted case

LP (E) = min
∑

e

wexe

s.t. x(δ(S)) ≥ R(S) − d(S) ∀S

xij ≥ 0 ∀i, j

Extreme point x could be fractional

Theorem [Jain]: For any extreme point x, there exists f with xf ≥ 1

2

Iterative Rounding: While connectivity reqs not met
Solve LP(E)
Take f : xf ≥ 1

2

add f to E → F

2-approximation algorithm: w(F) ≤ 2LP (E)

. – p.11/15

There exists f with xf ≥ 1

2

Proof of Ravi, Singh, Nagarajan [2007]

Let x: extreme point with xe < 1

2
for e ∈ C = {e : xe > 0}

. – p.12/15

Assign one unit to every edge:

Reassign to sets S ∈ L

. – p.13/15

S gets

AS =
∑

e∈C1

xe +
∑

e∈C2

(xe + (1 − 2xe)) +
∑

e∈C3

(1 − 2xe)

= x(C1) + |E2| − x(C2) + |E3| − 2x(C3)

. – p.14/15

Together all sets get ≥ |L|

no set gets

→ |C| > L. Contradiction.

. – p.15/15

Degree Restricted Spanning Trees

. – p.1/36

Spanning Trees with Max Degree Bound

When does a graph have a spanning tree of maximum degree≤ k?

NP-hard (k = 2 is Hamiltonian path...)

S. Win [1989]: Relation to toughness

t(G) = maxS
|S|

conn. comp. of G−S

If t(G) ≥ 1

k−2
then ∃ tree of max degree ≤ k

If ∃ tree of max degree ≤ k then t(G) ≥ 1

k

Algorithmically: Fürer and Raghavachari [1994], G. [unpublished,
1991]. Efficiently either show that G has no tree of maximum degree
≤ k or output a tree of max degree≤ k + 1

Min cost version?

. – p.2/36

Bounded-Degree MST

Minimum Bounded-Degree Spanning Tree (MST) problem:

Given G = (V, E) with costs c : E −→ R, integer k

find Spanning Tree T of maximum degree ≤ k and of minimum total
cost

∑
e∈T c(e)

Even feasibility is hard.

. – p.3/36

Today

Let OPT (k) be the cost of the optimum tree of maximum degree≤ k.

[G. 2006]:
Find a tree of cost ≤ OPT (k) and of maximum degree ≤ k + 2

(or prove that no tree of max degree≤ k exists)

[Singh and Lau 2007]:
Find a tree of cost ≤ OPT (k) and of maximum degree ≤ k + 1

(or prove that no tree of max degree≤ k exists)

. – p.4/36

Fractional Decomposition

Any convex combination of trees such that the average degree of every
vertex is at most k can be viewed as a convex combination of trees each
of maximum degree k + 1

(E.g., for a 2k-regular 2k-edge-connected graph, there exists a convex
combination of spanning trees of max degree 3 such that each edge is
chosen with frequency 1/k)

Integral decompositions?

. – p.5/36

Matroid Polytope

[Edmonds ’70] Given matroid M = (E, I), convex hull of incidence
vectors of independent sets is :

P (M) =




x

∣∣∣∣∣∣
x(F) ≤ rM(F) F ⊆ E

xe ≥ 0 e ∈ E






Convex hull B(M) of bases: same with x(E) = rM(E)

For graphic matroid

B(M) = {x : x(E(S)) ≤ |S| − 1 S ⊂ V

x(E(V)) = |V | − 1

xe ≥ 0 ∀e}

. – p.6/36

Linear Programming Relaxation

Relaxation: LP = min{cT x : x ∈ Q(k)} ≤ OPT (k) where

Q(k) = {x : x(E(S)) ≤ |S| − 1 S ⊂ V

x(E(V)) = |V | − 1

x(δ(v)) ≤ k v ∈ V

xe ≥ 0 e ∈ E}

Notation:

x(A) =
∑

e∈A xe

E(S) = {e = (u, v) ∈ E : u, v ∈ S}

δ(S) = {(u, v) ∈ E : |{u, v} ∩ S| = 1}

If Q(k) = ∅, no spanning tree of maximum degree≤ k.

. – p.7/36

Our Approach/Algorithm

Solve LP and get an extreme point x∗ of Q(k) of cost LP

E∗: support of x∗

. – p.8/36

Our Approach/Algorithm

Solve LP and get an extreme point x∗ of Q(k) of cost LP

E∗: support of x∗

Study properties of any extreme point Q(k)

Show that support graph E∗ is Laman, i.e. for any C ⊆ V :
|E∗(C)| ≤ 2|C| − 3

. – p.8/36

Our Approach/Algorithm

Solve LP and get an extreme point x∗ of Q(k) of cost LP

E∗: support of x∗

Study properties of any extreme point Q(k)

Show that support graph E∗ is Laman, i.e. for any C ⊆ V :
|E∗(C)| ≤ 2|C| − 3

Define matroid M2(x
∗) on ground set E∗ such that any independent

set has degree at most k + 2 (but not conversely)

. – p.8/36

Our Approach/Algorithm

Solve LP and get an extreme point x∗ of Q(k) of cost LP

E∗: support of x∗

Study properties of any extreme point Q(k)

Show that support graph E∗ is Laman, i.e. for any C ⊆ V :
|E∗(C)| ≤ 2|C| − 3

Define matroid M2(x
∗) on ground set E∗ such that any independent

set has degree at most k + 2 (but not conversely)

Find a minimum cost spanning tree of E∗ which is also independent
in M2(x

∗) (by matroid intersection)

. – p.8/36

Our Approach/Algorithm

Solve LP and get an extreme point x∗ of Q(k) of cost LP

E∗: support of x∗

Study properties of any extreme point Q(k)

Show that support graph E∗ is Laman, i.e. for any C ⊆ V :
|E∗(C)| ≤ 2|C| − 3

Define matroid M2(x
∗) on ground set E∗ such that any independent

set has degree at most k + 2 (but not conversely)

Find a minimum cost spanning tree of E∗ which is also independent
in M2(x

∗) (by matroid intersection)

Argue (polyhedrally) that cost of solution obtained≤ LP

. – p.8/36

Extreme points of Q(k)

Recall

Q(k) = {x : x(E(S)) ≤ |S| − 1 S ⊂ V

x(E(V)) = |V | − 1

x(δ(v)) ≤ k v ∈ V

xe ≥ 0 e ∈ E}

Take an extreme point x∗ of Q(k)

Remove from E edges with x∗
e = 0 −→ E∗ = {e : x∗

e > 0}

x∗ uniquely defined by tight inequalities:

x∗(E(S)) = |S| − 1 S ∈ T

x∗(δ(v)) = k v ∈ T

or Ax∗ = b with rank(A) = |E∗|.
. – p.9/36

Example of Extreme Point

k = 2

0.5

0.50.5

1

1

0.5 0.5

0.5

0.5

1

1

0.5 0.5

0.50.5
0.5

. – p.10/36

Another Example of Extreme Point

k = 2

[K. Cheung ’03]

1

0.8

0.2

. – p.11/36

Another Example of Extreme Point

k = 2

[K. Cheung ’03]

1

0.8

0.2

. – p.11/36

Extreme point

Extreme point x∗ uniquely defined by tight inequalities:

x∗(E(S)) = |S| − 1 S ∈ T

x∗(δ(v)) = k v ∈ T

or Ax∗ = b with rank(A) = |E∗|.

Which full rank |E∗| × |E∗|-submatrix of A to use?

. – p.12/36

Uncrossing

If A, B tight (A, B ∈ T) with A ∩B 6= ∅ then

|A| − 1 + |B| − 1 = x∗(E(A)) + x∗(E(B))

≤ x∗(E(A ∪B)) + x∗(E(A ∩B))

≤ |A ∪B| − 1 + |A ∩B| − 1.

Thus,

A ∪B, A ∩B ∈ T

No edges between A \B and B \A

Uncrossing argument implies: There exists laminar subfamily L of F
satisfying span(L) = span(F)

(Any maximal laminar subfamily works)

. – p.13/36

Size of Laminar Families

Any laminar family on n elements contains at most 2n− 1 sets

If no singletons then ≤ n− 1 sets

. – p.14/36

Small Support

x∗ defined by

x∗(E(S)) = |S| − 1 S ∈ L

x∗(δ(v)) = k v ∈ T

with L a laminar family of sets without singletons

System Ax∗ = b with A = |E∗| × |E∗| of full rank

|L| ≤ n− 1 implies |E∗| = |L|+ |T | ≤ (n− 1) + n = 2n− 1

Similar results known in many settings. E.g. Boyd and Pulleyblank
’91 for subtour polytope.

. – p.15/36

Everywhere Sparse: |E∗(C)| ≤ 2|C| − 1 for all C

A =

1 1 0 1 1 0 0 1 · · · ← x∗(E(S)) = |S| − 1

0 1 0 0 1 0 1 0 · · · ← x∗(E(T)) = |T | − 1

. .

. .

1 1 1 0 0 0 1 0 · · · ← x∗(δ(v)) = k

. .

. .

. – p.16/36

Everywhere Sparse: |E∗(C)| ≤ 2|C| − 1 for all C

A =

. χ(E∗(S)) ← x∗(E(S)) = |S| − 1

. χ(E∗(T)) ← x∗(E(T)) = |T | − 1

. .

. .

. χ(δ(v)) ← x∗(δ(v)) = k

. .

. .

. – p.16/36

Everywhere Sparse: |E∗(C)| ≤ 2|C| − 1 for all C

Take any C ⊆ V . A has full rank
=⇒ columns of A corresponding to E∗(C) are linearly independent

A =

← E∗(C) →

1 1 0 1 1 0 ← x∗(E(S)) = |S| − 1

0 1 0 0 1 0 ← x∗(E(T)) = |T | − 1

.

.

1 1 1 0 0 0 ← x∗(δ(v)) = k

.

.

. – p.16/36

Everywhere Sparse: |E∗(C)| ≤ 2|C| − 1 for all C

Take any C ⊆ V . A has full rank
=⇒ columns of A corresponding to E∗(C) are linearly independent

A =

← E∗(C) →

χ(E∗(S) ∩ E∗(C)) ← x∗(E(S)) = |S| − 1

χ(E∗(T) ∩ E∗(C)) ← x∗(E(T)) = |T | − 1

.

.

.χ(δ(v) ∩ E∗(C)) . ← x∗(δ(v)) = k

.

.

. – p.16/36

Everywhere Sparse: |E∗(C)| ≤ 2|C| − 1 for all C

Take any C ⊆ V . A has full rank
=⇒ columns of A corresponding to E∗(C) are linearly independent

A =

← E∗(C) →

. χ(E∗(S ∩ C)) . ← x∗(E(S)) = |S| − 1

.

0 0 0 0 0 0 ← if |S ∩ C| ≤ 1

.

χ(δ(v) ∩ E∗(C)) ← x∗(δ(v)) = k

.

0 0 0 0 0 0 ← if v ∈ (T \ C)

. – p.16/36

Everywhere Sparse: |E∗(C)| ≤ 2|C| − 1 for all C

Take any C ⊆ V . A has full rank
=⇒ columns of A corresponding to E∗(C) are linearly independent

A =

← E∗(C) →

. χ(E∗(S ∩ C)) . distinct, non-zero rows

. for laminar family

. LC = {S ∩ C :

. S ∈ L and |S ∩ C| ≥ 2}

χ(δ(v) ∩ E∗(C)) distinct, non-zero rows

. for v ∈ T ∩ C

.

=⇒ |E∗(C)| = rank(B) ≤ |C|+ |C| − 1 = 2|C| − 1 for all C ⊆ V
. – p.16/36

Slight Improvement

Slightly more careful rank counting argument shows |E∗(C)| ≤ 2|C| − 3

for every C ⊆ V

. – p.17/36

Orientation of E∗

Graph Orientation: [Hakimi ’65] An undirected graph G has an
orientation with indegree d−(v) ≤ uv if and only if for all C ⊆ V :

|E(C)| ≤
∑

v∈C

uv

[Easy, e.g. from max flow/min cut]

=⇒ E∗ can be oriented into A∗ such that d−(v) ≤ 2 for all v ∈ V

Another way

[Nash-Williams’ 1964] A graph can be partitioned into k forests if
and only if for all C ⊆ V : |E(C)| ≤ k(|C| − 1)

(Special case of Edmonds’ 1965 matroid base covering theorem)

=⇒ E∗ can be partitioned into 2 forests

Orient each forest as a branching (indegree at most 1)

. – p.18/36

Example

. – p.19/36

Example

. – p.19/36

Example

. – p.19/36

Example

. – p.19/36

Example

. – p.19/36

Matroid M2

Given orientation A∗ of E∗ with indegree d−(v) ≤ 2 for v ∈ V ,
define partition matroid M2(x

∗) = (E∗,I) where

I = {F : |F ∩ δ+

A∗(v)| ≤ k for all v ∈ V }

Since all but at most 2 edges incident to v are outgoing in A∗, any
independent set F of M2(x

∗) has maximum degree ≤ k + 2

Slack of 3 units for every C =⇒ can assume one specific vertex of
degree ≤ k and another of degree≤ k + 1

. – p.20/36

Matroid Intersection Approach

Find a minimum cost spanning tree in E∗ which is also independent
in M2(x

∗)

M1: graphic matroid for E∗

=⇒ want a base of M1 independent in M2(x
∗)

=⇒ matroid intersection

Polynomial time using matroid intersection algorithm

Edmonds ’79 and Lawler ’75

Brezovec, Cornuéjols and Glover ’88: O(n3) algorithm for
⋂

of
graphic matroid and partition matroid

Gabow and Xu scaling algorithm for linear matroid intersection:
O(n2.77 log nW)

Harvey ’06: O(n2.38W) (polynomial if weights are small)

Bound on cost?

. – p.21/36

Matroid Polytope

[Edmonds ’70] Given matroid M = (E, I), convex hull of incidence
vectors of independent sets is :

P (M) =




x

∣∣∣∣∣∣
x(F) ≤ rM(F) F ⊆ E

xe ≥ 0 e ∈ E






Convex hull B(M) of bases: same with x(E) = rM(E)

For graphic matroid M1 on E∗

B(M1) = {x : x(E(S)) ≤ |S| − 1 S ⊂ V

x(E(V)) = |V | − 1

xe ≥ 0 e ∈ E∗}

. – p.22/36

Matroid Polytope

[Edmonds ’70] Given matroid M = (E, I), convex hull of incidence
vectors of independent sets is :

P (M) =




x

∣∣∣∣∣∣
x(F) ≤ rM(F) F ⊆ E

xe ≥ 0 e ∈ E






Convex hull B(M) of bases: same with x(E) = rM(E)

For matroid M2(x
∗)

P (M2(x
∗)) = {x : x(δ+

A∗(v)) ≤ k v ∈ V

1 ≥ xe ≥ 0 e ∈ E∗}

. – p.22/36

Matroid Intersection Polytope

[Edmonds ’70] Given two matroids M1 = (E, I1) and
M2 = (E,I2), convex hull of independent sets common to both
matroids is

P (M1) ∩ P (M2)

(Similarly, if take bases for one of them)

. – p.23/36

Cost Analysis

Observe that x∗ ∈ B(M1) and x∗ ∈ P (M2(x
∗))

Cost of solution returned:

min{c(x) : x ∈ B(M1) ∩ P (M2(x
∗))} ≤ c(x∗) = LP

Thus, we get a spanning tree of maximum degree k + 2 and of cost
≤ LP

Remark: We could have decomposed x∗ ∈ B(M1) ∩ P (M2(x
∗))

as a convex combination of spanning trees independent for M2

(using Cunningham ’84) and take the best cost among them (enough
to get at most LP)

x∗ ∈ B(M1) ∩ P (M2(x
∗)) implies that

Q(k) = conv({x∗}) ⊆ conv(Q(k + 2) ∩ Z
E)

. – p.24/36

Cost Analysis

Observe that x∗ ∈ B(M1) and x∗ ∈ P (M2(x
∗))

Cost of solution returned:

min{c(x) : x ∈ B(M1) ∩ P (M2(x
∗))} ≤ c(x∗) = LP

Thus, we get a spanning tree of maximum degree k + 2 and of cost
≤ LP

Remark: We could have decomposed x∗ ∈ B(M1) ∩ P (M2(x
∗))

as a convex combination of spanning trees independent for M2

(using Cunningham ’84) and take the best cost among them (enough
to get at most LP)

x∗ ∈ B(M1) ∩ P (M2(x
∗)) implies that

Any convex combination of trees such that the average degree of
every vertex is at most k can be viewed as a convex combination of
trees each of maximum degree ≤ k + 2

. – p.24/36

Without Hakimi, Nash-Williams, Edmonds, etc.

Laplace expansion of det along column j:

det(A) =
∑

i

(−1)i+jaij det(Mij)

Generalized Laplace expansion (Laplace 1772): For any I,

det(A) =
∑

J:|J|=|I|

sgn(I, J) det(A[I, J]) det(A[Ī, J̄])

=⇒ If A invertible, there exists J with A[I, J] and A[Ī, J̄] invertible
(follows also from matroid union min-max relation)

Algorithmically: For every j = 1 to n do

either set all entries in column j from rows in I or from rows in Ī

to 0 so as to keep the matrix invertible

. – p.25/36

Orientation Purely Algebraically

Take Ax∗ = b

Can partition E into E1, E2

A =

E1 E2

I B1 ←− rows x∗(E(S)) = |S| − 1

Ī B2 ←− rows x∗(δ(v)) = k

with B1, B2 invertible

B1 invertible + L laminar: E1 must be a forest

B2 invertible: every connected component of E2 is a tree or a tree +
one edge

=⇒ can trivially orient both E1 and E2 with indegree at most 1
. – p.26/36

Former Conjecture... Now Theorem

Conjecture:

Q(k) ⊆ conv(Q(k + 1) ∩ Z
E)

Any convex combination of trees such that the average degree of
every vertex is at most k can be viewed as a convex combination of
trees each of maximum degree k + 1

Proved by Singh and Lau ’07:

Efficient algorithm to get tree of cost ≤ OPT (k) and of degree
≤ k + 1

Uses iterative relaxation, generalizing Jain’s iterative rounding

. – p.27/36

Open Questions

Can one find E∗ (combinatorially) without computing x∗ (by linear
programming)?

+1 algorithm possible via matroid approach if, for all extreme points
x∗ with support E∗, there exists an orientation A∗ such that for all
v ∈ V : ∑

e∈δ
−

A∗(v)

(1− x∗
e) ≤ 1

(For general (non-extreme) x∗, deciding if such orientation exists is
NP-hard.)

. – p.28/36

General Lower and Upper bounds

General Degree-Bounded Spanning Trees:

Given l, u : V → Z+, find a spanning tree T such that
l(v) ≤ dT (v) ≤ u(v) for all v ∈ V and of minimum cost

Same approach gives a spanning tree of cost at most LP and of
degree l(v)− 2 ≤ dv(T) ≤ u(v) + 2 for all v ∈ V

One step is to argue that for

P2 = {x : l(v)− 2 ≤ x(δ+

A∗(v)) ≤ u(v) v ∈ V

1 ≥ xe ≥ 0 e ∈ E∗}

B(M1) ∩ P2 is integral

Singh and Lau ’07: +1 also for general upper and lower bounds

. – p.29/36

Singh and Lau’s Iterative Relaxation

Given a forest F (initially empty) and W ⊆ V , consider LP relaxation
for problem of augmenting F into a tree with general degree bounds
u(v) for v ∈W

Solve relaxation; remove edges of value 0 and and add edges of
value 1 to F

Theorem: If non-integral, there exists v ∈W with u(v) + 1 incident
edges.

Remove v from W and repeat

. – p.30/36

Formulation

Let E: all edges,
E0: excluded edges,
E1: included edges in solution,
E′ = E \ (E0 ∪ E1)

W ⊆ V : vertices v with degree upper bound u(v)

LP relaxation: min
∑

e∈E

cexe

x(E(S)) ≤ |S| − 1 S ⊂ V

x(E(V)) = |V | − 1

P (E0, E1, W) x(δ(v)) ≤ u(v) v ∈W

xe = 1 e ∈ E1

xe = 0 e ∈ E0

xe ≥ 0 e ∈ E′}
. – p.31/36

Singh and Lau’s Algorithm

E0 = E1 = ∅, W = V

Repeat
Find optimum extreme point x to LP (E0, E1, W)

E0 = {e : xe = 0}, E1 = {e : xe = 1}, E′ = E \ (E0 ∪ E1)

Remove from W vertices v with dE1
(v) + dE′(v) ≤ u(v) + 1

Until E1 is a spanning tree

Theorem [Singh and Lau ’07]: Algorithm terminates
→ E1 satisfies the degree bounds u(v) + 1

New simple proof of Bansal, Khandekar and Nagarajan ’07

. – p.32/36

Tight Inequalities Can Be Uncrossed

x|E′ uniquely defined by:

x(E′(S)) = |S| − 1− |E1(S)| S ∈ L

x(δE′(v)) = u(v)− |δE1
(v)| v ∈ T

with L laminar and |E′| = |L|+ |T |
. – p.33/36

W decreases

Let

def(v) =
∑

e∈δE′(v)

(1− xe) =
∑

e∈δE′∪E1
(v)

(1− xe)

For v ∈ T , def(v) = dE1
(v) + dE′(v)− u(v) ∈ Z

Claim: There exists v ∈ T such that def(v) = 1

→ v can be removed from W

. – p.34/36

. – p.35/36

Iterative Relaxation

Many more applications, see Singh and Lau ’07, Lau et al. ’07,
Bansal et al. ’07.

Bansal et al. ’07: Given a directed graph D = (V, A) with root
r ∈ V , and outdegree upper bounds b(v) for every v ∈ V ,
(efficiently) either decide that D has no r-arborescence with
d+(v) ≤ b(v) or output an r-arborescence with d+(v) ≤ b(v) + 2.

. – p.36/36

	Uncrossing (Lecture 1)
	Topics
	Intersecting, Crossing Sets
	Laminar vs. Cross-free
	Tree Representation for Laminar and Cross-Free
	Submodularity
	Minimally k-Edge-Connected Graphs
	Proof

	Gomory-Hu Cut Tree
	Proof. Perturbation
	Proof. Laminar family
	Proof. Cut tree from tree representation

	Min T-Odd Cut (Padberg and Rao '82)
	Padberg-Rao's T-Odd Cut Algorithm
	Rizzi's Min T-Odd Cut Algorithm
	Min T-Cut Algorithm

	Other Cut Families
	More Cut Families
	Polyhedral Combinatorics (Lecture 2)
	Dominant of r-Arborescence Polytope
	Proof. Uncrossing
	Uncrossing can cycle
	Maximal laminar families are spanning
	Proof (cont'd)
	Totally Unimodular
	Matrix is TU

	Directed Cuts
	Proof

	Matroid Intersection Polytope
	TDI (Edmonds-Giles '77)
	Dual
	Getting chains
	Matrix is TU

	Lucchesi-Younger
	Perfect Matching Polytope via Uncrossing
	Primal uncrossing
	More than trees
	Too many edges

	Back to Matroid Intersection
	Connectivity Augmentation (Lecture 3)
	Connectivity Augmentation
	Formulation
	Uncrossing
	Lower bound
	Add a new vertex s
	Frank's Algorithm
	Step 1
	Proof

	Splitting off

	Weighted case
	Why 2-approximation
	There exists edge with value >= 0.5
	Proof. Assign fractional weights
	Proof. Accounting
	Proof. Contradiction

	Degree Restricted Spanning Trees
	Spanning Trees with Max Degree Bound
	Bounded-Degree MST
	Today
	Fractional Decomposition
	Matroid Polytope
	Linear Programming Relaxation
	Our Approach/Algorithm
	Extreme points of $Q(k)$
	Example of Extreme Point
	Another Example of Extreme Point
	Extreme point
	Uncrossing
	Size of Laminar Families
	Small Support
	Everywhere Sparse
	Slight Improvement
	Orientation of E^*
	Example
	Matroid M_2
	Matroid Intersection Approach
	Matroid Polytope
	Matroid Intersection Polytope
	Cost Analysis
	Without Hakimi, Nash-Williams, Edmonds, etc.
	Orientation Purely Algebraically
	Former Conjecture... Now Theorem
	Open Questions

	General Lower and Upper bounds
	Singh and Lau's Iterative Relaxation
	Formulation
	Singh and Lau's Algorithm
	Tight Inequalities Can Be Uncrossed
	W decreases
	Proof. deficiencies

	Iterative Relaxation

