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Let k be a field and let p ∈ k[x1, ..., xn] be a polynomial. We say that p is a coordi-
nate polynomial, if it can be included in a generating set of cardinality n of the algebra
k[x1, ..., xn]. Of course, if p is a coordinate polynomial, then it is irreducible and its zero-set
is isomorphic to kn−1.

Let φ : k[x1, ..., xn] → k[x1, ..., xn] be a polynomial automorphism. It is easy to see
that if f is a coordinate polynomial, then so is φ(f). Conversely, Arno van den Essen and
Vladimir Shpilrain in the paper [2] have stated the following:

Problem 1. Let k be a field of characteristic zero. Is it true that every endomorphism of
k[x1, ..., xn] taking any coordinate polynomial to a coordinate one is actually an automor-
phism?

This is an interesting problem which has connection with the famous Jacobian Conjec-
ture. In the paper [5] Problem 1 was solved in the affirmative for the complex field C.
Naturally, one can ask the following refined version of Problem 1:

Problem 2. Let k be a field of characteristic zero. Is it true that every endomorphism of
k[x1, ..., xn] taking any linear polynomial to a coordinate one is actually an automorphism?

For k = C this problem is still unsolved. When k is not algebraically closed, however, a
counterexample to this problem was already constructed by Mikhalev-Yu-Zolotykh ([12]).
This result suggests that the situation may be largely different depending on whether k is
algebraically closed or not. From this point of view a full solution of Problem 1 seems to
be interesting and important.

Here we modify our old approach and using a recent result of Li Y. and Yu J. T. we
obtain a full solution of Problem 1:

Theorem. Let k be a field of characteristic zero. Let φ be an endomorphism of
k[x1, ..., xn]. Assume that φ takes any coordinate polynomial to a coordinate one. Then φ
is an automorphism.
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