Automorphism Groups of Affine Varieties and Vector Fields

Hanspeter Kraft (joint work with Mikhail Zaidenberg)

Department of Mathematics University of Basel, Switzerland

"Groups of Automorphisms in Birational and Affine Geometry"

Levico Terme, October 29 - November 3, 2012

Notation

- Our base field is \mathbb{C} , the field of complex numbers;
- ② $\mathcal{O}(X)$ is the algebra of regular functions on the variety X;
- The topology is always the ZARISKI-topology;

Ind-varieties and ind-groups

Definition ("Infinite dimensional variety", SHAFAREVICH 1966)

An *ind-variety* is a set \mathfrak{V} together with a filtration $\mathfrak{V}_1 \subset \mathfrak{V}_2 \subset \cdots \subset \mathfrak{V}$ such that

2 Every \mathfrak{V}_i is a variety, and $\mathfrak{V}_i \subset \mathfrak{V}_{i+1}$ is closed.

Definition (continued)

- Affine ind-varieties;
- Morphisms of ind-varieties, products, ...;
- Topology of an ind-variety:

 $A \subseteq \mathfrak{V}$ closed : $\iff A \cap \mathfrak{V}_k \subseteq \mathfrak{V}_k$ closed for all k;

Ind-groups &.

Examples of ind-varieties and ind-groups

Example (Ind-varieties)

- Vector spaces of countable dimension, e.g. Mor(X, Aⁿ) = O(X)ⁿ, X an affine variety;
- Locally closed subsets of ind-varieties, e.g. Mor(X, Y), X, Y affine varieties;
- Countable set: *discrete* ind-varieties.

Theorem

Let X be an affine variety. Then Aut(X) has the structure of an affine ind-group, with the usual universal properties.

Automorphism group of affine n-space

For $g \in Aut(\mathbb{A}^n)$, $g = (g_1, \dots, g_n)$, define deg $g := \max_i \{ \deg g_i \}$ and put

 $\operatorname{Aut}(\mathbb{A}^n)_k := \{g \in \mathfrak{G}(n) \mid \deg g \leq k\}.$

Lemma

 $\operatorname{Aut}(\mathbb{A}^n)_k \subset \operatorname{End}(\mathbb{A}^n)_k$ is locally closed and affine.

In general, we show that $Aut(X) \subset End(X) \times End(X)$ is locally closed and affine.

We do not know if $Aut(X) \subset End(X)$ is locally closed!

Example (Ind-groups)

- $GL(\mathbb{C}[x_1,\ldots,x_n]);$
- Closed subgroups of ind-groups, e.g. the standard constructions like center, centralizer, normalizer, ...
- Countable groups, e.g. \mathbb{Z}^n , or any character group X(G);
- "Discrete" subgroups of 𝔅, e.g. the braid group *B*₃ appears as a discrete subgroup of Aut(A³).

Remarks and Questions

- For a "general" X the group Aut(X) is trivial.
- Every finite group appears as Aut(X) (cf. JELONEK, 1992).
- Is there an X with Aut(X) discrete, or $\simeq \mathbb{Z}$?

Locally finite subsets

Let V be any \mathbb{C} -vector space. Define

- LEnd(*V*), the algebra of linear endomorphisms of *V*;
- GL(V), the group of linear automorphisms.

Definition

 $S \subset \text{LEnd}(V)$ locally finite : \iff every $v \in V$ is contained in a finite dimensional *S*-stable subspace.

Remark

 $\mathcal{S} \subset \operatorname{GL}(\mathcal{V})$ locally finite : $\iff \langle \mathcal{S} \rangle \subset \operatorname{GL}(\mathcal{V})$ locally finite.

Algebraic elements

From now on the varieties are affine, and $\mathfrak{G} = \bigcup_k \mathfrak{G}_k$ denotes an affine ind-group.

Definition

- $\varphi \in \text{End}(X)$ algebraic : $\iff \varphi^* \in \text{LEnd} \mathcal{O}(X)$ locally finite.
- g ∈ 𝔅 algebraic : ↔ ⟨g⟩ bounded degree, i.e. ⟨g⟩ ⊂ 𝔅_k for some k ↔ ⟨g⟩ is an algebraic group.
- ⟨g⟩ ≃ D, ℂ⁺ or D × ℂ⁺, where D is a *diagonalizable* group (i.e. closed subgroup of a torus) with D/D⁰ cyclic;
- Can define *unipotent* and *semisimple* elements;
- Have a *Jordan decomposition* $g = g_s \cdot g_u$, well-behaved under homomorphisms.

Algebraically generated groups

Definition

A subgroup $G \subseteq \mathfrak{G}$ generated by a family $(G_i)_{i \in I}$ of connected algebraic subgroups $G_i \subset \mathfrak{G}$ is called *algebraically generated*.

Proposition (ARZHANTSEV-FLENNER-KALIMAN-ET AL)

Let $G = \langle G_i | i \in I \rangle \subseteq Aut(X)$. Then every G-orbit is open in its closure, and there is a finite sequence j_1, \ldots, j_m such that $Gx = G_{j_1} \cdots G_{j_m} x$ for all $x \in X$.

Corollary

G and its closure \overline{G} have the same orbits on X.

The DE JONQUIÈRE subgroup

 $\mathfrak{J}(n) := \{g = (g_1, \ldots, g_n) \in \operatorname{Aut}(\mathbb{A}^n) \mid g_i = g_i(x_i, x_{i+1}, \ldots, x_n)\}$

It follows that $g_i = a_i x_i + h_i(x_{i+1}, \ldots, x_n)$.

Proposition (FURTER)

The subgroup $\langle \mathfrak{J}(n)_k \rangle$ is bounded. In particular, $\mathfrak{J}(n) = \bigcup_k \overline{\langle \mathfrak{J}(n)_k \rangle}$ is a union of closed algebraic subgroups.

Question

Assume that every element of the ind-group \mathfrak{G} is algebraic. Is then \mathfrak{G} a union of closed algebraic subgroups?

We have some partial results (H.K. & IMMANUEL STAMPFLI).

The Lie algebra of an ind-group

For an ind-group $\mathfrak{G} = \bigcup \mathfrak{G}_k$ the space

 $\mathsf{Lie}\,\mathfrak{G}:=\bigcup T_e\mathfrak{G}_k$

has the structure of a Lie algebra with the usual properties. If $\mathfrak{G} = \operatorname{Aut}(X)$, then there is a canonical homomorphism

$$u \colon \operatorname{Lie} \mathfrak{G} \to \operatorname{Vec}(X), \quad A \mapsto -\xi_A,$$

where Vec(X) the Lie algebra of algebraic vector fields on X. (As usual, we use the orbit map $\mu_{X:} \mathfrak{G} \to X$, $g \mapsto gx$, to define $\xi_A(x) := (d\mu_X)_e(A)$.)

Vector fields

Example

$$\mathsf{Vec}(\mathbb{A}^n) = \{\xi = \sum_i f_i \frac{\partial}{\partial x_i} \mid f_i \in \mathbb{C}[x_1, \dots, x_n]\}$$

Proposition

The map ν : Lie Aut(\mathbb{A}^n) \rightarrow Vec(\mathbb{A}^n) induces an isomorphism of Lie Aut(\mathbb{A}^n) with

$$\mathsf{Vec}^{c}(\mathbb{A}^{n}) := \{\xi = \sum_{i} f_{i} \frac{\partial}{\partial x_{i}} \mid \mathsf{div}\, \xi \in \mathbb{C}\} \subset \mathsf{Vec}(\mathbb{A}^{n})$$

where div $\xi := \sum_{i} \frac{\partial f_i}{\partial x_i}$.

What happens in general?

Theorem (K-ZAIDENBERG)

The map ν : Lie Aut(X) \rightarrow Vec(X) is injective.

Question

What is the relation between closed ind-subgroups of Aut(X) and Lie subalgebras of Vec(X)?

Theorem (COHEN-DRAISMA, 2003)

Let $L \subset \text{Vec}(X)$ be a finite dimensional Lie subalgebra. Then $L \subset \text{Lie } G$ for an algebraic group $G \subset \text{Aut}(X)$ if and only if L is locally finite, as a subset of $\text{LEnd}(\mathcal{O}(X))$.

Example

If $m \in \mathbb{C}[x_1, \ldots, x_n]$ is a monomial not containing x_i , then

$$u_{i,m} := (x_1, \ldots, x_i + m, \ldots, x_n) \in \mathsf{End}(\mathbb{A}^n)$$

is a unipotent automorphism of \mathbb{A}^n . It defines a subgroup $U_{i,m} := \overline{\langle u_{i,m} \rangle}$ isomorphic to \mathbb{C}^+ , and

$$U_{i,m} \subset \operatorname{SAut}(\mathbb{A}^n) := \{g \in \operatorname{Aut}(\mathbb{A}^n) \mid \operatorname{Jac} g = 1\}.$$

Lemma

The vector fields $m_{\partial x_i}^{\partial}$ associated to the subgroups $U_{i,m}$ generate $\operatorname{Vec}^0(\mathbb{A}^n)$. Hence $\operatorname{Lie} \overline{\langle U_{i,m} \rangle} = \operatorname{Lie} \operatorname{SAut}(\mathbb{A}^n)$.

Question

Is $\overline{\langle U_{i,m} \rangle} = \text{SAut}(\mathbb{A}^n)$?

Put $U := \{(x + sy^2, y)\}$, $V := \{(x, y + sx^2)\}$, both $\simeq \mathbb{C}^+$. Then

• $G = \langle U, V \rangle = U * V \Rightarrow$ only algebraic subgroups are U, V.

• $L := \langle x^2 \frac{\partial}{\partial y}, y^2 \frac{\partial}{\partial x} \rangle$ contains many locally nilpotent VF.

Proposition (ANDRIY REGETA)

The following are equivalent:

(i) All Lie subalgebras L ⊂ Vec⁰(A²) isomorphic to sl₂ are conjugate under Aut(A²).

(ii) The Jacobian conjecture holds for \mathbb{A}^2 .

Actions of ind-groups

If the ind-group \mathfrak{G} acts on the affine variety $X, \rho \colon \mathfrak{G} \to \operatorname{Aut}(X)$, we get a canonical homomorphism

 $d\rho$: Lie $\mathfrak{G} \to \operatorname{Vec}(X)$.

Questions

- Is Ker $d\rho$ = Lie Ker ρ ?
- Is the action ρ determined by dρ in case 𝔅 is connected?
- What can we say about the image of dρ, e.g. is Im dρ = Lie ρ(𝔅)?

RAMANUJAM-connected subgroups

Definition (RAMANUJAM 1964)

 $Y \subseteq \mathfrak{V}$ is *R*-connected : \iff for $y_1, y_2 \in Y$ there is an irreducible algebraic subvariety $C \subset \mathfrak{V}$ such that $y_1, y_2 \in C \subset Y$.

E.g. algebraically generated subgroups are R-connected.

Proposition (RAMANUJAM 1964)

Let $G \subseteq Aut(X)$ be a *R*-connected subgroup. Then one of the following holds:

- (i) *G* is a closed algebraic subgroup;
- (ii) G contains algebraic subvarieties of arbitrary large dimension.

The Lie algebra of an algebraically generated group

Proposition (K-ZAIDENBERG)

Let $G = \langle G_i | i \in I \rangle \subseteq Aut(X)$ be algebraically generated, and let $L \subseteq Vec(X)$ be the Lie algebra generated by the Lie G_i , $i \in I$. Then

- L is stable under G and \overline{G} ;
- L depends only on G and not on the generating subgroups G_i;
- 3 $L \subseteq \text{Lie } \overline{G}$, and this is an ideal;
- Every vector field in L is tangent to the G-orbits.

Questions

$$G = \langle G_i \mid i \in I \rangle \subseteq \overline{G} \subseteq \operatorname{Aut}(X), L = \langle \operatorname{Lie} G_i \rangle \subseteq \operatorname{Vec}(X).$$

- Is $L = \text{Lie } \overline{G}$?
- Does Lie $H \subseteq L$ imply that $H \subseteq \overline{G}$?

Theorem (K-ZAIDENBERG)

Let $G = \langle G_i | i \in I \rangle \subseteq Aut(X)$ and $L = \langle Lie G_i \rangle \subseteq Vec(X)$ be as above. Then

L is finite dimensional \iff G is an algebraic group

And then L = Lie G.