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Notation

1 Our base field is C, the field of complex numbers;
2 O(X ) is the algebra of regular functions on the variety X ;
3 The topology is always the ZARISKI-topology;
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Ind-varieties and ind-groups

Definition (“Infinite dimensional variety”, SHAFAREVICH 1966)
An ind-variety is a set V together with a filtration
V1 ⊂ V2 ⊂ · · · ⊂ V such that

1 V =
⋃

i Vi ,
2 Every Vi is a variety, and Vi ⊂ Vi+1 is closed.

Definition (continued)
• Affine ind-varieties;
• Morphisms of ind-varieties, products, . . .;
• Topology of an ind-variety:

A ⊆ V closed :⇐⇒ A ∩Vk ⊆ Vk closed for all k ;
• Ind-groups G.
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Examples of ind-varieties and ind-groups

Example (Ind-varieties)
• Vector spaces of countable dimension, e.g.

Mor(X ,An) = O(X )n, X an affine variety;
• Locally closed subsets of ind-varieties, e.g. Mor(X ,Y ),

X ,Y affine varieties;
• Countable set: discrete ind-varieties.

Theorem
Let X be an affine variety. Then Aut(X ) has the structure of an
affine ind-group, with the usual universal properties.
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Automorphism group of affine n-space

For g ∈ Aut(An), g = (g1, . . . ,gn), define deg g := maxi{deg gi}
and put

Aut(An)k := {g ∈ G(n) | deg g ≤ k}.

Lemma
Aut(An)k ⊂ End(An)k is locally closed and affine.

In general, we show that Aut(X ) ⊂ End(X )× End(X ) is locally
closed and affine.
We do not know if Aut(X ) ⊂ End(X ) is locally closed!
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Example (Ind-groups)

• GL(C[x1, . . . , xn]);
• Closed subgroups of ind-groups, e.g. the standard

constructions like center, centralizer, normalizer, . . .
• Countable groups, e.g. Zn, or any character group X (G);
• “Discrete” subgroups of G, e.g. the braid group B3 appears

as a discrete subgroup of Aut(A3).

Remarks and Questions
• For a “general” X the group Aut(X ) is trivial.
• Every finite group appears as Aut(X ) (cf. JELONEK, 1992).
• Is there an X with Aut(X ) discrete, or ' Z?
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Locally finite subsets

Let V be any C-vector space. Define
• LEnd(V ), the algebra of linear endomorphisms of V ;
• GL(V ), the group of linear automorphisms.

Definition
S ⊂ LEnd(V ) locally finite :⇐⇒ every v ∈ V is contained in a
finite dimensional S-stable subspace.

Remark
S ⊂ GL(V ) locally finite :⇐⇒ 〈S〉 ⊂ GL(V ) locally finite.
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Algebraic elements

From now on the varieties are affine, and G =
⋃

k Gk denotes
an affine ind-group.

Definition
• ϕ ∈ End(X ) algebraic :⇐⇒ ϕ∗ ∈ LEndO(X ) locally finite.
• g ∈ G algebraic :⇐⇒ 〈g〉 bounded degree, i.e. 〈g〉 ⊂ Gk

for some k ⇐⇒ 〈g〉 is an algebraic group.

• 〈g〉 ' D, C+ or D × C+, where D is a diagonalizable group
(i.e. closed subgroup of a torus) with D/D0 cyclic;
• Can define unipotent and semisimple elements;
• Have a Jordan decomposition g = gs · gu, well-behaved

under homomorphisms.
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Algebraically generated groups

Definition
A subgroup G ⊆ G generated by a family (Gi)i∈I of connected
algebraic subgroups Gi ⊂ G is called algebraically generated.

Proposition (ARZHANTSEV-FLENNER-KALIMAN-ET AL)

Let G = 〈Gi | i ∈ I〉 ⊆ Aut(X ). Then every G-orbit is open in its
closure, and there is a finite sequence j1, . . . , jm such that
Gx = Gj1 · · ·Gjmx for all x ∈ X.

Corollary

G and its closure G have the same orbits on X.
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The DE JONQUIÈRE subgroup

J(n) := {g = (g1, . . . ,gn) ∈ Aut(An) | gi = gi(xi , xi+1, . . . , xn)}

It follows that gi = aixi + hi(xi+1, . . . , xn).

Proposition (FURTER)

The subgroup 〈J(n)k 〉 is bounded. In particular,
J(n) =

⋃
k 〈J(n)k 〉 is a union of closed algebraic subgroups.

Question
Assume that every element of the ind-group G is algebraic. Is
then G a union of closed algebraic subgroups?

We have some partial results (H.K. & IMMANUEL STAMPFLI).
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The Lie algebra of an ind-group

For an ind-group G =
⋃
Gk the space

LieG :=
⋃

TeGk

has the structure of a Lie algebra with the usual properties.
If G = Aut(X ), then there is a canonical homomorphism

ν : LieG→ Vec(X ), A 7→ −ξA,

where Vec(X ) the Lie algebra of algebraic vector fields on X .
(As usual, we use the orbit map µx : G→ X , g 7→ gx , to define
ξA(x) := (dµx)e(A).)
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Vector fields

Example

Vec(An) = {ξ =
∑

i

fi
∂

∂xi
| fi ∈ C[x1, . . . , xn]}

Proposition

The map ν : Lie Aut(An)→ Vec(An) induces an isomorphism of
Lie Aut(An) with

Vecc(An) := {ξ =
∑

i

fi
∂

∂xi
| div ξ ∈ C} ⊂ Vec(An)

where div ξ :=
∑

i
∂fi
∂xi

.
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What happens in general?

Theorem (K-ZAIDENBERG)

The map ν : Lie Aut(X )→ Vec(X ) is injective.

Question
What is the relation between closed ind-subgroups of Aut(X )
and Lie subalgebras of Vec(X )?

Theorem (COHEN-DRAISMA, 2003)

Let L ⊂ Vec(X ) be a finite dimensional Lie subalgebra. Then
L ⊂ Lie G for an algebraic group G ⊂ Aut(X ) if and only if L is
locally finite, as a subset of LEnd(O(X )).

Hanspeter Kraft (joint work with Mikhail Zaidenberg) Automorphism Groups and Vector Fields



Introduction and Notation
Ind-Varieties and Ind-Groups

Locally finite and algebraic elements
Lie algebra and vector fields

Example

If m ∈ C[x1, . . . , xn] is a monomial not containing xi , then

ui,m := (x1, . . . , xi + m, . . . , xn) ∈ End(An)

is a unipotent automorphism of An. It defines a subgroup
Ui,m := 〈ui,m〉 isomorphic to C+, and

Ui,m ⊂ SAut(An) := {g ∈ Aut(An) | Jac g = 1}.

Lemma

The vector fields m ∂
∂xi

associated to the subgroups Ui,m

generate Vec0(An). Hence Lie 〈Ui,m〉 = Lie SAut(An).
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Question

Is 〈Ui,m〉 = SAut(An)?

Put U := {(x + sy2, y)}, V := {(x , y + sx2)}, both ' C+. Then
• G = 〈U,V 〉 = U ∗ V ⇒ only algebraic subgroups are U,V .
• L := 〈x2 ∂

∂y , y
2 ∂
∂x 〉 contains many locally nilpotent VF.

Proposition (ANDRIY REGETA)
The following are equivalent:

(i) All Lie subalgebras L ⊂ Vec0(A2) isomorphic to sl2 are
conjugate under Aut(A2).

(ii) The Jacobian conjecture holds for A2.
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Actions of ind-groups

If the ind-group G acts on the affine variety X , ρ : G→ Aut(X ),
we get a canonical homomorphism

dρ : LieG→ Vec(X ).

Questions
• Is Ker dρ = Lie Ker ρ?
• Is the action ρ determined by dρ in case G is connected?
• What can we say about the image of dρ, e.g. is

Im dρ = Lie ρ(G)?
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RAMANUJAM-connected subgroups

Definition (RAMANUJAM 1964)
Y ⊆ V is R-connected :⇐⇒ for y1, y2 ∈ Y there is an
irreducible algebraic subvariety C ⊂ V such that
y1, y2 ∈ C ⊂ Y .

E.g. algebraically generated subgroups are R-connected.

Proposition (RAMANUJAM 1964)

Let G ⊆ Aut(X ) be a R-connected subgroup. Then one of the
following holds:

(i) G is a closed algebraic subgroup;
(ii) G contains algebraic subvarieties of arbitrary large

dimension.
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The Lie algebra of an algebraically generated group

Proposition (K-ZAIDENBERG)

Let G = 〈Gi | i ∈ I〉 ⊆ Aut(X ) be algebraically generated, and
let L ⊆ Vec(X ) be the Lie algebra generated by the Lie Gi , i ∈ I.
Then

1 L is stable under G and G;
2 L depends only on G and not on the generating subgroups

Gi ;
3 L ⊆ Lie G, and this is an ideal;
4 Every vector field in L is tangent to the G-orbits.
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Questions

G = 〈Gi | i ∈ I〉 ⊆ G ⊆ Aut(X ), L = 〈Lie Gi〉 ⊆ Vec(X ).
• Is L = Lie G?
• Does Lie H ⊆ L imply that H ⊆ G?

Theorem (K-ZAIDENBERG)

Let G = 〈Gi | i ∈ I〉 ⊆ Aut(X ) and L = 〈Lie Gi〉 ⊆ Vec(X ) be as
above. Then

L is finite dimensional ⇐⇒ G is an algebraic group

And then L = Lie G.
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