Cremona transformations, diffeomorphisms of surfaces and approximation by (-1)-curves

> Frédéric Mangolte (Angers) joint work with János Kollár (Princeton)

Trento, November 2012

Approximating by algebraic maps

Weierstrass (1885) Every C^{∞} -map $f : \mathbb{R} \to \mathbb{R}$ is approximated by polynomials.

Approximating by algebraic maps

Weierstrass (1885) Every C^{∞} -map $f : \mathbb{R} \to \mathbb{R}$ is approximated by polynomials.

 $S^1 := \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 = 1\}$ Every C^{∞} -map $f : S^1 \to S^1$ is approximated by rational maps

$$\Phi\colon (x,y)\mapsto \big(\frac{p_1(x,y)}{q_1(x,y)},\frac{p_2(x,y)}{q_2(x,y)}\big)$$

Approximating by algebraic maps

Weierstrass (1885) Every C^{∞} -map $f : \mathbb{R} \to \mathbb{R}$ is approximated by polynomials.

 $S^1 := \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 = 1\}$ Every C^{∞} -map $f : S^1 \to S^1$ is approximated by rational maps

$$\Phi\colon (x,y)\mapsto \big(\frac{p_1(x,y)}{q_1(x,y)},\frac{p_2(x,y)}{q_2(x,y)}\big)$$

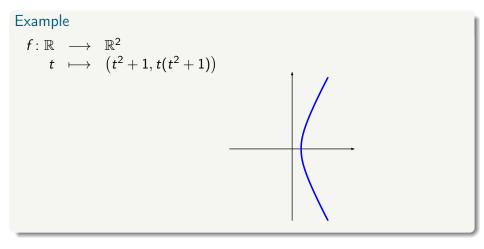
X real algebraic variety Is a given C^{∞} -map $f: S^1 \to X$ approximated by rational curves? [Recall: $\mathbb{P}^1(\mathbb{R}) \sim S^1$.]

Rational curves

Example

$$egin{array}{cccc} f \colon \mathbb{R} & \longrightarrow & \mathbb{R}^2 \ t & \longmapsto & ig(t^2+1,t(t^2+1)ig) \end{array}$$

Rational curves

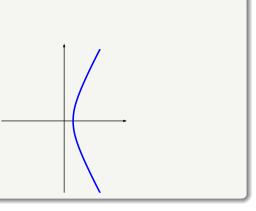


Rational curves

Example

$$egin{array}{rcl} f : \mathbb{R} & \longrightarrow & \mathbb{R}^2 \ t & \longmapsto & ig(t^2+1,t(t^2+1)ig) \end{array}$$

Compactification $\mathbb{R} \hookrightarrow \mathbb{P}^1(\mathbb{R}) \xrightarrow{\hat{f}} X \xleftarrow{bir} \mathbb{R}^2$ X rational surface



Approximating by rational curves

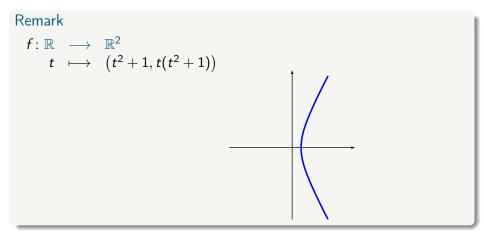
X nonsingular real algebraic variety $\mathcal{C}^{\infty}(S^1, X)$:= space of maps endowed with the \mathcal{C}^{∞} -topology $\mathcal{A}_X \subset \mathcal{C}^{\infty}(S^1, X)$:= subset of rational curves $\mathbb{P}^1(\mathbb{R}) \to X$

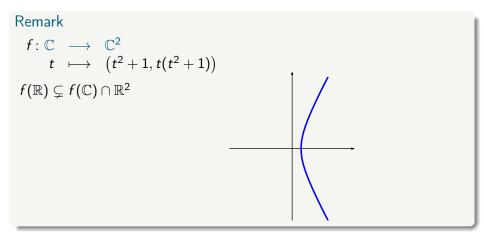
Definition

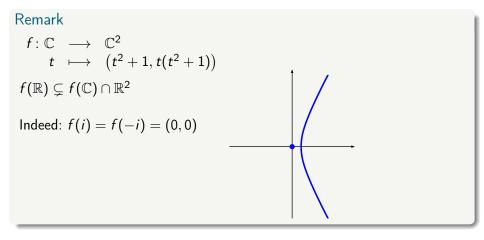
Let $f \in \mathcal{C}^{\infty}(S^1, X)$ be a \mathcal{C}^{∞} -map f is approximated by rational curves $\Leftrightarrow f \in \overline{\mathcal{A}_X}$.

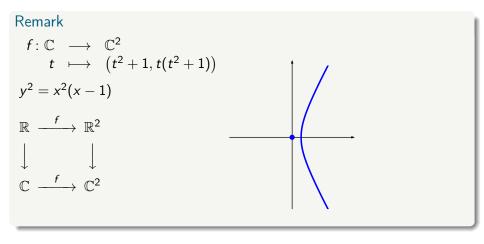
Theorem (Bochnak, Kucharz, 1999)

Let X be a nonsingular real rational variety, then any \mathcal{C}^{∞} -map $\mathbb{P}^{1}(\mathbb{R}) \to X$ is approximated by rational curves.









Approximating by smooth rational curves

 $\mathcal{B}_X \subset \mathcal{A}_X \subset \mathcal{C}^\infty(S^1,X) :=$ subset of smooth rational curves $\mathbb{P}^1(\mathbb{R}) o X$

Definition

 $f \in \mathcal{C}^{\infty}(S^1, X)$ is approximated by smooth rational curves \Leftrightarrow $f \in \overline{\mathcal{B}_X}.$

Approximating by smooth rational curves

 $\mathcal{B}_X \subset \mathcal{A}_X \subset \mathcal{C}^\infty(S^1,X)$:= subset of smooth rational curves $\mathbb{P}^1(\mathbb{R}) o X$

Definition

 $f \in \mathcal{C}^{\infty}(S^1, X)$ is approximated by smooth rational curves \Leftrightarrow $f \in \overline{\mathcal{B}_X}.$

Main Theorem

Any embedded circle in a nonsingular real rational surface admits a C^{∞} -approximation by smooth rational curves.

Approximating by smooth rational curves

 $\mathcal{B}_X \subset \mathcal{A}_X \subset \mathcal{C}^\infty(S^1,X) :=$ subset of smooth rational curves $\mathbb{P}^1(\mathbb{R}) o X$

Definition

 $f \in \mathcal{C}^{\infty}(S^1, X)$ is approximated by smooth rational curves $\Leftrightarrow f \in \overline{\mathcal{B}_X}.$

Main Theorem

Any embedded circle in a nonsingular real rational surface admits a C^{∞} -approximation by smooth rational curves.

Corollary

Let X be a nonsingular real rational variety, then any embedded circle is approximated by smooth rational curves.

Real rational surfaces

Theorem (Comessatti, 1914)

X orientable nonsingular real rational surface

 \Rightarrow X diffeomorphic to the sphere S² or to the torus S¹ imes S¹

Real rational surfaces

Theorem (Comessatti, 1914)

X orientable nonsingular real rational surface

 \Rightarrow X diffeomorphic to the sphere S² or to the torus S¹ imes S¹

Conversely: $S^2 \sim \text{rational model } \{x^2 + y^2 + z^2 = 1\} \subset \mathbb{R}^3$ $S^1 \times S^1 \sim \text{rational model } \{x^2 + y^2 = z^2 + t^2 = 1\} \subset \mathbb{R}^4$ $\mathbb{RP}^2 \sim \text{rational model } \mathbb{P}^2(\mathbb{R})$ $\#^h \mathbb{RP}^2 \sim \text{rational model } B_{p_1, p_2, \dots, p_{h-1}} \mathbb{P}^2(\mathbb{R}) \text{ (blow-up at } h-1 \text{ points)}$

Classification of rational models

 $S^1 := \{(x, y) \in \mathbb{R}^2, \ x^2 + y^2 = 1\}$

Real algebraic manifold := compact connected submanifold of \mathbb{R}^n defined by real polynomial equations, for some *n*.

- X, Y real algebraic manifolds, $f: X \rightarrow Y$ map
- f algebraic := (i) real rational (ii) defined $\forall x \in X$
- f isomorphism := (i) algebraic, (ii) f^{-1} exists (iii) f^{-1} algebraic

Classification of rational models

 $S^1 := \{(x, y) \in \mathbb{R}^2, x^2 + y^2 = 1\}$ Real algebraic manifold := compact connected submanifold of \mathbb{R}^n defined by real polynomial equations, for some *n*.

- X, Y real algebraic manifolds, $f: X \rightarrow Y$ map
- f algebraic := (i) real rational (ii) defined $\forall x \in X$
- f isomorphism := (i) algebraic, (ii) f^{-1} exists (iii) f^{-1} algebraic

 $x \mapsto x + x^3$ algebraic self-diffeomorphism of \mathbb{R} is not an isomorphism. (Implicit function Theorem does not hold in the algebraic setting.)

Classification of rational models

 $S^1 := \{(x, y) \in \mathbb{R}^2, x^2 + y^2 = 1\}$ Real algebraic manifold := compact connected submanifold of \mathbb{R}^n defined by real polynomial equations, for some *n*. *X*, *Y* real algebraic manifolds, $f : X \to Y$ map

- f algebraic := (i) real rational (ii) defined $\forall x \in X$
- f isomorphism := (i) algebraic, (ii) f^{-1} exists (iii) f^{-1} algebraic

 $x \mapsto x + x^3$ algebraic self-diffeomorphism of \mathbb{R} is not an isomorphism. (Implicit function Theorem does not hold in the algebraic setting.)

Theorem (Biswas, Huisman, 2007)

Two nonsingular real rational surfaces are isomorphic if and only if they are diffeomorphic.

Real (-1)-curves

Let $L \subset X$ be a real algebraic curve on a real algebraic surface

Definition

L is a (-1)-curve iff \exists birational morphism $\pi: X \to Y$ such that $\pi(L)$ is a smooth point on *Y* and π restricted to $X \setminus L \to Y \setminus \pi(L)$ is an isomorphism.

By Casteluovo's criterium, \exists such a birational morphism $\pi: X \to Y$ iff there exists a real algebraic surface X' and a real algebraic isomorphism $\Phi: X \to X'$ such that $L' := \Phi(L)$ is rational, irreducible and nonsingular and $L' \cdot L' = -1$ (self-intersection over complex points).

Approximating by (-1)-curves

Theorem

X nonsingular real rational surface and $L \subset X$ a nonsingular curve, the following assertions are equivalent:

• X is nonorientable near L and one of the following is satisfied:

 $X \setminus L$ is a punctured sphere, or

- $X \setminus L$ is a punctured torus, or
- $X \setminus L$ is nonorientable.
- 2 L is homotopic to a (-1)-curve
- **3** L admits C^{∞} -approximation by (-1)-curves

• Classify all topological pairs (K, S) such that S closed surface either nonorientable or of genus ≤ 1 and K embedded circle in S

- Classify all topological pairs (K, S) such that S closed surface either nonorientable or of genus ≤ 1 and K embedded circle in S
- Onstruct rational models for each topological pair

- Classify all topological pairs (K, S) such that S closed surface either nonorientable or of genus ≤ 1 and K embedded circle in S
- Onstruct rational models for each topological pair
- Get: ∀ pair (K, S), ∃X nonsingular real rational surface ∃φ: S → X diffeomorphism such that L := φ(K) ⊂ X nonsingular real rational curve

- Classify all topological pairs (K, S) such that S closed surface either nonorientable or of genus ≤ 1 and K embedded circle in S
- Onstruct rational models for each topological pair
- Get: ∀ pair (K, S), ∃X nonsingular real rational surface ∃φ: S → X diffeomorphism such that L := φ(K) ⊂ X nonsingular real rational curve
- The rest of the talk is devoted to deduce the approximation result!

Density of Aut(X)

Recall: $f: X \to X$ automorphism \Leftrightarrow (i) f birational map, (ii) f is a self-diffeomorphism on the real locus Aut(X) := group of real algebraic automorphisms $X \to X$ Remark: let $V|_{\mathbb{R}}$ such that $V(\mathbb{R}) = X$, then Aut_R(V) \subset Aut(X) \subset Bir_R(V)

Density of Aut(X)

Recall: $f: X \to X$ automorphism \Leftrightarrow (i) f birational map, (ii) f is a self-diffeomorphism on the real locus Aut(X) := group of real algebraic automorphisms $X \to X$ Remark: let $V|_{\mathbb{R}}$ such that $V(\mathbb{R}) = X$, then Aut_R(V) \subset Aut(X) \subset Bir_R(V)

Theorem (Kollár, M. 2009)

Density of Aut(X)

Recall: $f: X \to X$ automorphism \Leftrightarrow (i) f birational map, (ii) f is a self-diffeomorphism on the real locus $\operatorname{Aut}(X) :=$ group of real algebraic automorphisms $X \to X$ Remark: let $V|_{\mathbb{R}}$ such that $V(\mathbb{R}) = X$, then $\operatorname{Aut}_{\mathbb{R}}(V) \subset \operatorname{Aut}(X) \subset \operatorname{Bir}_{\mathbb{R}}(V)$

Theorem (Kollár, M. 2009)

- S = S², S¹ × S¹, or any non-orientable surface,
 ⇒ ∃ real algebraic model X ~ S such that Aut(X) = Diff(X) for the C[∞]-topology.
- S any orientable surface of genus ≥ 2,
 ⇒ ∀ model X ~ S, Aut(X) is not dense in Diff(X), even for the C⁰-topology.

Cremona transformation (around 1860)

On \mathbb{P}^3 take $(x : y : z : t) \mapsto (\frac{1}{x} : \frac{1}{y} : \frac{1}{z} : \frac{1}{t}) = (yzt : ztx : txy : xyz)$ Base locus = 6 edges of a tetraedron T. Move vertices to $(1, \pm i, 0, 0), (0, 0, 1, \pm i),$ get: $\sigma : (x : y : z : t) \mapsto ((x^2 + y^2)z : (x^2 + y^2)t : (z^2 + t^2)x : (z^2 + t^2)y)$ σ diffeomorphism of $\mathbb{P}^3(\mathbb{C}) \setminus T$

Cremona transformation (around 1860)

On \mathbb{P}^3 take $(x : y : z : t) \mapsto (\frac{1}{x} : \frac{1}{y} : \frac{1}{z} : \frac{1}{t}) = (yzt : ztx : txy : xyz)$ Base locus = 6 edges of a tetraedron *T*. Move vertices to $(1, \pm i, 0, 0), (0, 0, 1, \pm i),$ get: $\sigma : (x : y : z : t) \mapsto ((x^2 + y^2)z : (x^2 + y^2)t : (z^2 + t^2)x : (z^2 + t^2)y)$ σ diffeomorphism of $\mathbb{P}^3(\mathbb{C}) \setminus T$

Each quadric $Q_{abcdef} := a(x^2 + y^2) + b(z^2 + t^2) + cxz + dyt + ext + fyz$ (i) passes through the vertices of T, (ii) has no real points on T.

Cremona transformation (around 1860)

On \mathbb{P}^3 take $(x : y : z : t) \mapsto (\frac{1}{x} : \frac{1}{y} : \frac{1}{z} : \frac{1}{t}) = (yzt : ztx : txy : xyz)$ Base locus = 6 edges of a tetraedron T. Move vertices to $(1, \pm i, 0, 0), (0, 0, 1, \pm i),$ get: $\sigma : (x : y : z : t) \mapsto ((x^2 + y^2)z : (x^2 + y^2)t : (z^2 + t^2)x : (z^2 + t^2)y)$ σ diffeomorphism of $\mathbb{P}^3(\mathbb{C}) \setminus T$

Each quadric $Q_{abcdef} := a(x^2 + y^2) + b(z^2 + t^2) + cxz + dyt + ext + fyz$ (i) passes through the vertices of T, (ii) has no real points on T.

$$\sigma \colon Q_{abcdef}(\mathbb{R}) \stackrel{\cong}{\longrightarrow} Q_{abcdfe}(\mathbb{R})$$

Action on spheres

$$egin{aligned} S^2 &:= \{(x,y,z) \in \mathbb{R}^3, \; x^2 + y^2 + z^2 = 1\} \ Q_0 &:= \{(x,y,z,t) \in \mathbb{P}^3, \; x^2 + y^2 + z^2 - t^2 = 0\} \end{aligned}$$

Take Q_{abcdef} with $Q_{abcdef}(\mathbb{R}) \sim S^2$, $\Rightarrow Q_{abcdfe}(\mathbb{R}) \sim S^2$, then both are equivalent to Q_0 up to linear change of coordinates. Get: $\sigma_{abcdef} \colon S^2 \xrightarrow{\cong} S^2$, well defined up to O(3,1).

Theorem

The Cremona transformations with imaginary base points and O(3,1) generate $Aut(S^2)$ which is dense in $Diff(S^2)$.

Theorem (Lukackiĭ 1977)

SO(m+1,1) is a maximal closed subgroup of $Diff_0(S^m)$.

Rational models of non-orientable surfaces: $(\chi(R_g) = 2 - g)$ $R_g \sim B_{p_1,...,p_g} S^2$, the sphere blown-up at g points Let $q_1, \ldots, q_n \in R_g$ n distinct points (n can be zero.)

Theorem

Aut (R_g, q_1, \ldots, q_n) is dense in Diff (R_g, q_1, \ldots, q_n) in the C^{∞} -topology on R_g .

Rational models of non-orientable surfaces: $(\chi(R_g) = 2 - g)$ $R_g \sim B_{p_1,...,p_g} S^2$, the sphere blown-up at g points Let $q_1, \ldots, q_n \in R_g$ n distinct points (n can be zero.)

Theorem

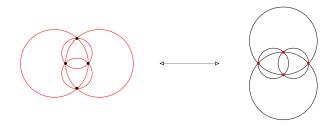
Aut (R_g, q_1, \ldots, q_n) is dense in Diff (R_g, q_1, \ldots, q_n) in the C^{∞} -topology on R_g .

Steps of the proof:

- Marked points
 [Huisman, M. 2007: Aut(S^m) acts ∞-transitively on S^m, ∀m > 1]
 ⇒ Aut(S², p₁,..., p_{g+n}) is dense in Diff(S², p₁,..., p_{g+n}) for any finite set of distinct points p₁,..., p_{g+n} ∈ S².
- Identity components
 [Fragmentation Lemma]
 ⇒ Aut₀(R_g, q₁,..., q_n) is dense in Diff₀(R_g, q₁,..., q_n).
 Mapping class group

$$\operatorname{Aut}(R_g, q_1, \ldots, q_n)$$
 surjects to $\mathcal{M}(R_g, q_1, \ldots, q_n)$.

Cremona transformation with real base points



Factored as: $S^2 \longleftarrow B_{p_1,\dots,p_4} S^2 \cong B_{q_1,\dots,q_4} S^2 \longrightarrow S^2$

Proposition

Cremona transformations act transitively on isotopy classes of g disjoint Möbius bands in $R_{\rm g}$.

Cremona $\sigma: B_{p_1,\ldots,p_4}S^2 \cong B_{q_1,\ldots,q_4}S^2$, $\exists \Phi \in Aut(S^2)$ such that $\Phi(p_i) = q_i$, get $\Phi \circ \sigma$:

$$B_{\rho_1,\ldots,\rho_4}S^2 \xrightarrow{\sigma} B_{q_1,\ldots,q_4}S^2 \xrightarrow{\Phi} B_{\rho_1,\ldots,\rho_4}S^2$$

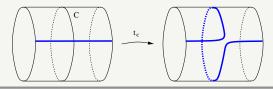
Frédéric Mangolte (Angers)

The mapping class group

R smooth compact surface $\mathcal{M}(R, q_1, \ldots, q_n) := \pi_0(\mathsf{Diff}(R, q_1, \ldots, q_n))$

Theorem (Dehn 1938)

When R orientable, \mathcal{M} is generated by Dehn twists around simple closed curves:



Theorem

When R non-orientable, Dehn twists generate an index 2 subgroup of \mathcal{M} , need to add cross-cap slides.

Reduction of the set of generators

Chillingworth (1969), and Korkmaz (2002) with base points Recall $R_g = B_{\rho_1,\ldots,\rho_g}S^2$

Theorem

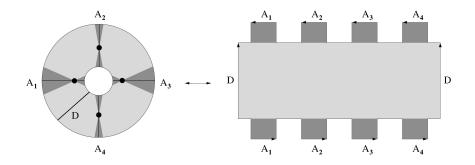
Dehn twists around lifts of simple closed curves of S^2 passing through an even number of the p_i (no self-intersection at the p_i) suffice.

```
With lantern relation \Rightarrow
```

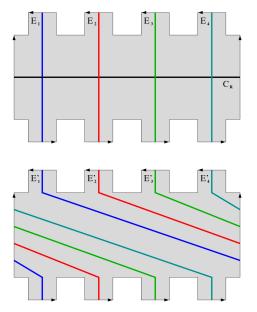
Corollary

Dehn twists around lifts of simple closed curves of S^2 passing through 0, 2 or 4 of the p_i suffice.

Two models of the annulus blown up in 4 points

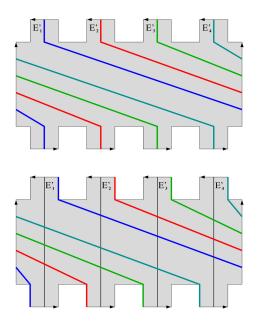


The 4 exceptional curves and Dehn twist around C_R



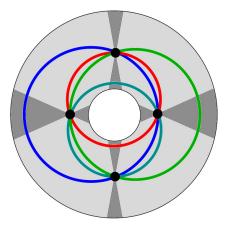
Frédéric Mangolte (Angers)

Deformation



Frédéric Mangolte (Angers)

Image of the four exceptional curves

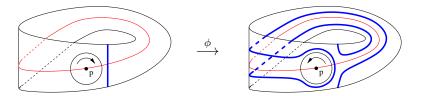


Cremona with 4 real base points represents the Dehn twist around C_R passing through the 4 base points.

Cross-cap slide ($g \ge 2$)

Let $R_g = B_{q,p,p_3,...,p_g}S^2$, and $D \subset S^2$ a disc containing q, p and none of the other points.

Consider the Möbius band $B_q D$ and slide a small disc around red curve:



Then glue to $B_q S^2 \setminus B_q D$. Realized by Cremona with 2 real base points.

Theorem

For any g, the Cremona transformations with 4,2 or 0 real base points generate the (non-orientable) mapping class group \mathcal{M}_g .

Frédéric Mangolte (Angers)

Curves on real rational surfaces

Let X be an orientable real algebraic surface.

- $\mathbb{C}X$ rational or ruled $\Rightarrow X \sim S^2$, or $X \sim S^1 \times S^1$ (Comessatti, 1914);
- **2** $\mathbb{C}X$ K3 or abelian \Rightarrow Aut(X) preserves a volume form;
- **3** $\mathbb{C}X$ elliptic \Rightarrow Aut(X) preserves fibration;
- $\mathbb{C}X$ general type $\Rightarrow \operatorname{Aut}(X)$ is finite.

Generalization of the ∞ -transitivity on spheres

Theorem (Blanc, Mangolte 2009)

Let X be a nonsingular real projective surface. Then Aut(X) has a very transitive action on X if and only if the following holds:

X is geometrically rational, and

Furthermore, when Aut(X) is not very transitive, it is not even 2-transitive.

Generalization of the density of $\mathsf{Aut} \subset \mathsf{Diff}$

Up to this point, the question of density is left open only for some geometrically rational surfaces with 2, 3, 4 or 5 connected components. The following result deals with the non-density for most of the surfaces with at least 3 connected components

Proposition (Blanc, Mangolte 2009)

Let X be a geometrically rational surface.

- If $\#X \ge 5$, then Aut(X) is not dense in Diff(X);
- if #X = 3 or #X = 4, then Aut(X) is not dense in Diff(X) for a general X, but could be dense in some special cases;
- if #X = 2, the density of Aut \subset Diff remains an open question