A collection of results on polynomial maps over finite fields

Stefan Maubach

Jacobs University

Bremen, Germany

Basics

Let R be a ring. Denote:

- $MA_n(R)$ the set of polynomial endomorphisms,
- $GA_n(R)$ the set of polynomial automorphisms,
- $BA_n^0(R)$ is the set of strictly upper triangular polynomial automorphisms,
- $TA_n(R) := \langle BA^0(R), GL_n(R) \rangle$ the set of tame polynomial automorphisms,
- $SA_n(R) = \{ F \in GA_n(R) \mid \det(Jac(F)) = 1 \},$
- $STA_n(R) = TA_n(R) \cap SA_n(R)$.

Let $q = p^m$ where p is prime. We can define

$$\pi_q: \mathrm{MA}_n(\mathbb{F}_q) \longrightarrow \mathrm{Maps}((\mathbb{F}_q)^n, (\mathbb{F}_q)^n)$$

and thus also

$$\pi_q: \mathrm{GA}_n(\mathbb{F}_q) \longrightarrow \mathrm{Perm}((\mathbb{F}_q)^n).$$

Main question

What is $\pi_{q^m}(GA_n(\mathbb{F}_q), \pi_{q^m}(TA_n(\mathbb{F}_q))$ and are they different?

Finding a difference would imply that there exist wild polynomial automorphisms.

Theorems on the case m=1

- $\pi_q \operatorname{TA}_n(\mathbb{F}_q) = \operatorname{Sym}((\mathbb{F}_q)^n)$ if $q = \operatorname{odd}$ or q = 2, and
- $\pi_q \operatorname{TA}_n(\mathbb{F}_q) = \operatorname{Alt}((\mathbb{F}_q)^n)$ if q = even but notq=2.
- $\pi_q \operatorname{STA}_n(\mathbb{F}_q) = \operatorname{Alt}((\mathbb{F}_q)^n),$
- unless q=2, when it is $\mathrm{Sym}((\mathbb{F}_q)^n)$.

Interesting connections

The profinite polynomial automorphism group

Since there exist restriction maps $\pi_{q^m} \operatorname{GA}_n(\mathbb{F}_q) \longrightarrow \pi_q \operatorname{GA}_n(\mathbb{F}_q)$ we get the following chain and inverse limit:

We call $\varprojlim \pi_{q^m}(GA_n(\mathbb{F}_q))$ the profinite polynomial automorphism group (which contains $GA_n(\mathbb{F}_q)$). Similarly, we define the profinite tame automorphism group $\varprojlim \pi_{q^m}(GA_n(\mathbb{F}_q))$ and profinite polynomial endomorphisms $\varprojlim \ \pi_{q^m}(\mathrm{MA}_n(\mathbb{F}_q)).$

Theorem: Wild automorphisms in profinite tame group

Assume

 $GA_n(\mathbb{F}_q[X_{n+1}]),$ $(2) \quad F \quad \in$ \in $TA_n(\mathbb{F}_q(X_{n+1})), \quad (3) \ F(X_{n+1} = c) \in TA_n(\mathbb{F}_q) \text{ for }$ all $c \in \mathbb{F}_q$.

Then F is in the profinite tame automorphism group, i.e.

$$F \in \varprojlim_{m \in \mathbb{N}} \pi_{q^m}(\mathrm{TA}_n(\mathbb{F}_q)).$$

In particular:

$$\operatorname{GA}_2(\mathbb{F}_q[Z]) \subseteq \varprojlim_{m \in \mathbb{N}} \pi_{q^m}(\operatorname{TA}_n(\mathbb{F}_q)).$$

This theorem implies that it is not possible to distinguish for example Nagata's automorphism from a tame automorphism by only examining its permutations.

A theorem on the Derksen group

$$\varprojlim_{n \in \mathbb{N}} \pi_{p^n}(GA_n(\mathbb{F}_p)) \text{ If } n \geq 3, \text{ define } DA_n(\mathbb{F}_q) = \text{ where}$$

$$E = (x_1 + (x_1 x_3 \cdots x_n)^{p-1}, x_2, \dots, x_n).$$

This group we called the Derksen group. Theorem:

$$\lim_{m \in \mathbb{N}} \pi_{q^m}(\mathrm{DA}_n(\mathbb{F}_q)) = \lim_{m \in \mathbb{N}} \pi_{q^m}(\mathrm{TA}_n(\mathbb{F}_q))$$

so we do have actual smaller groups that give the same profinite groups. Well - as soon as we prove that $\mathrm{DA}_n(\mathbb{F}_q)$ is not equal to $\mathrm{TA}_n(\mathbb{F}_q)$!

The profinite polynomial endomorphism monoid

We define $\varprojlim \pi_{q^m}(\mathrm{MA}_n(\mathbb{F}_q))$ as the profinite polynomial endomorphism monoid. Consider

$$\mathcal{M}_{n,m}(\mathbb{F}_q) := \pi_{q^m} \operatorname{MA}_n(\mathbb{F}_q) \cap \operatorname{Perm}((\mathbb{F}_{q^m})^n).$$

Then $\varprojlim \mathcal{M}_{n,m}(\mathbb{F}_q)$ is the subset of invertible elements in $\varprojlim \pi_{q^m}(\mathrm{MA}_n(\mathbb{F}_q))$, i.e. we can call it the profinite polynomial endomorphism group. How does it look like? Define X as the set of orbits of $\mathbb{F}_{q^m}^n$ under the action of $\operatorname{Gal}(\mathbb{F}_{q^m}:\mathbb{F}_q)$, and let X_d be the set of orbits of size d. Then

 $\varprojlim \ \mathcal{M}_{n,m}(\mathbb{F}_q) \cong \prod_{i=1} ((\mathbb{Z}/d\mathbb{Z}) \operatorname{wr}_{X_d} \operatorname{Perm}(X_d)).$

Profinite tame group vs. profinite polynomial endomorphism group

How much does $\varprojlim \pi_{q^m}(\mathrm{GA}_n(\mathbb{F}_q))$ differ from $\varprojlim_{m\in\mathbb{N}} \mathcal{M}_{n,m}(\mathbb{F}_q)$? By far it is not equal - but: define

$$\Pi_q: \mathrm{GA}_n(\mathbb{F}_q) \longrightarrow \mathrm{Perm}(X)$$

then consider $\Pi_{q^m}(\mathrm{TA}_n(\mathbb{F}_q))$. Apparently: $\Pi_{q^m}(\mathrm{TA}_n(\mathbb{F}_q)) = \mathcal{M}_{n,m}(\mathbb{F}_q) \text{ if } n \geq 3 \text{ except finitely}$ many q. In particular: $\Pi_{q^m}(GA_n(\mathbb{F}_q)) = \mathcal{M}_{n,m}(\mathbb{F}_q)$ in those cases!

This gives a foothold in tacking (parts of) the main question!

Alternative to LFIHderivations: \mathbb{Z} -flows

If k a field, then k-actions on k^n correspond to locally nilpotent derivations (LNDs) on $k^{[n]}$ if char k =0. If char(k) = p, then k-actions on k^n correspond to so-called locally finite iterative higher derivations. Longer name, less nice properties! For example:

$$(x+y+z,y+z,z)$$

is a unipotent map, but is not exponent of a LFIHD if char(k) = 2 (for exp(D) has order p). Bah!

Example of a Z-flow

Define

$$R := \mathbb{Z}[Q_i \mid i \in \mathbb{N}]/(p, Q_i^p - Q_i \mid i \in \mathbb{N})$$

where Q_i corresponds to $\mathbb{Z} \longrightarrow \mathbb{F}_p$ given by $t \longrightarrow$ $\binom{t}{n^i} \mod p$. Then $F := (x + y + z, y + z, z) \in$ $\overline{T}A_3(\mathbb{F}_2)$ has a "Z-flow":

$$F_t := (x + Q_0y + (Q_1 + Q_0)z, y + Q_0z, z).$$

Indeed, $F_t(t=n) = F^n$ for each $n \in \mathbb{Z}$.

Interesting object

This opens up the idea to examine $GA_n(R)$.

Fast forward functions from cryptography

It is desireable of a function f if $f^n(v)$ is efficiently computable w.r.t. computation of f(v) for any n, v. Let $\sigma \in \pi_p(BA_n^0(\mathbb{F}_p))$ such that σ has only one orbit in \mathbb{F}_p^n . Then there exists $\tau \in \mathrm{BA}_n^0(\mathbb{F}_p)$, D a diagonal linear map, and a trivial map $\zeta: (\mathbb{F}_p)^n \longrightarrow \mathbb{Z}/p^n\mathbb{Z}$ such that

$$\zeta D \tau \sigma \tau^{-1} D^{-1} \zeta^{-1} = \text{inc}$$

where $\operatorname{inc}(z) = z + 1$ on $\mathbb{Z}/p^n\mathbb{Z}$, making iterations of σ efficiently computable.

References

- [1] S.Maubach, Polynomial automorphisms over finite fields. Serdica Math. J. 27 (2001) no.4. 343-350
- [2] S.Maubach, R.Willems, Polynomial automorphisms over finite fields: Mimicking non-tame and tame maps by the Derksen group. Serdica math. J. 37, 2011 (305-322)
- [3] S.Maubach, Triangular polynomial \mathbb{Z} -actions on \mathbb{F}_n^n and a cryptographic application. Arxiv:1106.5800