The Correspondence

Normal algebraic compactifications of \longleftrightarrow Algebraic curves in \mathbb{C}^2 with one place at \mathbb{C}^2 with one irreducible curve at infinity infinity

Main Theorem:

 $\bar{\mathbf{X}}$ algebraic \iff \exists algebraic $\mathbf{C} \subseteq \mathbb{C}^2$ such that $\bar{\mathbf{C}} \cap \left(\tilde{\mathbf{X}} \setminus \mathbb{C}^2 \right) = \{ \mathbf{P} \}$ for some point $\mathbf{P} \in \tilde{\mathbf{X}} \setminus \mathbf{E}'$ and $\bar{\mathbf{C}}$ is analytically irreducible at \mathbf{P} .

Applications

- Computations of
 - 1. Group of automorphisms of $\bar{\mathbf{X}}$ when $\bar{\mathbf{X}}$ is algebraic.
 - 2. Explicit equations and moduli space of normal algebraic compactifications of \mathbb{C}^2 with one irreducible curve at infinity.
 - 3. Canonical divisor of $\bar{\mathbf{X}}$.
- ▶ Algorithm to determine if a valuation is *negative* or non-positive on $\mathbb{C}[x,y] \setminus \{0\}$.

Reference

Primitive normal completions of the affine plane I and II, arxiv:1110.6905, arxiv:1110.6914 (very rough drafts).

Main application: An effective criterion for algebraicity of rational normal surfaces

Pinaki Mondal, Weizmann Institute of Science

Question: Is **X** algebraic?

Answer: Given by an algorithm induced by the Main Theorem.

Algorithm when C has one Puiseux pair

Let $L := \{u = 0\}$, $O := \{u = v = 0\}$, where (u, v) linear coordinates on \mathbb{P}^2 . Assume C has Puiseux expansion $v = \phi(u)$ such that ϕ has only one characteristic exponent, namely q/p.

Algorithm:

Find the Weirstrass polynomial $\mathbf{F} \in \mathbb{C}\{\mathbf{u}, \mathbf{v}\}$ in \mathbf{v} that defines \mathbf{C} .

Then $\check{\mathbf{X}}$ is algebraic iff there is no monomial $\mathbf{u}^{\alpha}\mathbf{v}^{\beta}$ in \mathbf{F} with non-zero coefficients such that $\alpha\mathbf{p} + \beta\mathbf{q} < \mathbf{pq} + \mathbf{r}$ and $\alpha + \beta > \mathbf{p}$.

Example

Let $C_i := \{f_i = 0\}$ for j = 1, 2, where $f_1 := v^5 - u^3$ and $f_2 := (v - u^2)^5 - u^3$, and let r := 8.

Then p = 5 and q = 3 and pq + r = 23.

Therefore $\check{\mathbf{X}}_1$ is algebraic.

Coefficient of $\mathbf{u}^2\mathbf{v}^4$ in \mathbf{f}_2 is non-zero and therefore $\check{\mathbf{X}}_2$ is *not* algebraic.

Both $\check{\mathbf{X}}_{\mathbf{j}}$ have the *same* dual graph for their minimal resolution of singularities.