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The starting point

LC, Edoardo Sernesi

Nodal curves on surfaces of general type.

Math. Ann. 307 (1997), 41-56

Severi varieties of surfaces

Varieties which parameterize singular

(nodal)

curves in a fixed linear
system on a non-singular surface.

The name comes from Severi’s result on the varieties which parameterize
singular nodal curves in P2.
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Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.

D ∈ |LD |.
The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness? irreducibility? connectedness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.
D ∈ |LD |.

The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness? irreducibility? connectedness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.
D ∈ |LD |.
The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness? irreducibility? connectedness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.
D ∈ |LD |.
The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness? irreducibility? connectedness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.
D ∈ |LD |.
The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness?

irreducibility? connectedness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.
D ∈ |LD |.
The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness? irreducibility?

connectedness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.
D ∈ |LD |.
The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness? irreducibility? connectedness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.
D ∈ |LD |.
The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness? irreducibility? connectedness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.
D ∈ |LD |.
The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness? irreducibility? connectedness?

smoothness?

dimension?

(expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Severi varieties of liner systems

Definition

S projective surface. D ⊂ S smooth curve.
D ∈ |LD |.
The Severi varieties of D are the varieties Vδ,D ⊂ |LD | of curves C ∈ |LD |
which are irreducible, with δ nodes.

Problems

non-emptiness? irreducibility? connectedness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 4 / 31



Some results

Problems

irreducibility? connectedness? non-emptiness?

smoothness?

dimension? (expected dimension = max{−1, dim |LD | − δ).

Many classical and modern authors found results on the problems above,
when the surface S is P2,

or more in general when S is rational, K3, etc.

Main tool

Non-speciality of the normal sheaf of the desigularization C̃ → C of C .

When S has general type, the previous tool fails and one needs new ideas
of investigation.
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S of general type

New idea (Edoardo)

Let C ∈ |LD | be a nodal curve. Call N the set of δ nodes of C .

The tangent space to C in |LD | can be identified with

H0(OS(LD))/ < C >

The tangent space to C in Vδ,D can be identified with

H0(IN(LD))/ < C >

If Vδ,D is not smooth of codimension δ at C , then N fails to impose
independent conditions to LD .

I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann.
Math. 127 (1988), 309-316.
M. Beltrametti, P. Francia, A. J. Sommese, On Reiders method and higher order
embeddings. Duke Math. J. 58 (1989), 425-439.
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S of general type

New idea (Edoardo)

If Vδ,D is not smooth of codimension δ at C , then N fails to impose
independent conditions to LD . So the map H0(OS(LD))→ H0(ON) = Cδ
has a non-trivial cokernel.

By Serre’s construction, this yields a rank 2 bundle E with a global section
vanishing at N (or at some non-empty subset N0 of N). ([GH]).
The Chern classes of E are:

c1(E) = LD − KS ;

c2(E) = deg(N0) ≤ δ.
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S of general type

New idea (Edoardo)

By Serre’s construction, this yields a rank 2 bundle E with a global section
vanishing at N (or at some non-empty subset N0 of N).
The Chern classes of E are: c1(E) = LD − KS ; c2(E) = deg(N0) ≤ δ.

When c1(E)2 − 4c2(E) > 0, the bundle E is Bogomolov unstable,

thus there exists a destabilizing divisor M.

h0(E(−M)) > 0 and (2M − c1(E))KS > 0.

Then, work with the arithmetic of S ,M,KS , LD , in order to exclude the
existence of M.
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S of general type

Theorem (LC, E. Sernesi)

Let S be a smooth surface such that KS is ample and let C be an
irreducible curve on S such that C =num pKS ; p ≥ 2; p ∈ Q and the linear
system LD of C has smooth general member D. Assume that C has δ ≥ 1
nodes and no other singularities.
If δ < p(p − 2)K 2

S/4, then Vδ,D is smooth of codimension δ at C .

Corollary

Let S be a smooth surface of degree d ≥ 5 in P3 with plane section H.
Assume that C ∈ |nH| has δ nodes and no other singularities and

δ <
nd(n − 2d + 8)

4
.

Then Vδ,nH is smooth of codimension δ at the point C .

The result of the corollary is sharp, at least for d = 5.
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Results with make use of the idea.

Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, New
asymptotics in the geometry of equisingular families of curves, Internat.
Math. Res. Notices 13 (1997), 595–611.

Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, Castelnuovo
function, zero-dimensional schemes and singular plane curves, J. Algebraic
Geom. 9 (2000), no. 4, 663–710.

Flaminio Flamini, Moduli of nodal curves on smooth surfaces of general
type, J. Algebraic Geom. 11 (2001), no. 4, 725–760.

LC and Thomas Markwig, Triple-Point Defective Ruled Surfaces, J. Pure
Appl. Alg. 212, n.6 (2008), 1337–1346.

LC and Thomas Markwig, Triple-Point Defective Surfaces, Adv. Geom. 10
(2010), 527–547.
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Interpolation

The basic interpolation problem

Let P1, . . . ,Pk be general points on the (smooth) surface S .
Let |L| be a linear system on S

(complete and very ample).
Find the dimension of the system of curves C ∈ |L| passing through each
Pi with prescribed multiplicity mi (at least).

dim |L−
∑

miPi |

dim |L−
∑

miPi | ≥ dim |L| −
∑(

mi + 1

2

)
expected dimension = max{−1, dim |L| −

∑(mi+1
2

)
}.
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dim |L−
∑

miPi |

dim |L−
∑

miPi | ≥ dim |L| −
∑(

mi + 1

2

)

expected dimension = max{−1, dim |L| −
∑(mi+1

2

)
}.
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Interpolation

What if expected dimension 6= dim |L−
∑

miPi |?

Some initial results on S = P2, L = dH

If mi = 2 for all i , the situation is classified (classical);

If k = 1 (interpolation on one point) the dimension is always equal to the
expected one (elementary).

B. Segre’s conjecture in P2

If dim |L−
∑

miPi | > expected dimension, then |L−
∑

miPi | has a fixed
component of multiplicity ≥ 2.
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More general surfaces S

Double points (nodal curves)

If mi = 2 for all i , the situation is classified (Terracini 1923).

The rest is widely open.

Some results

J. Huizenga, Interpolation on surfaces in P3. Trans. Amer. Math. Soc. 365
(2013), 623-644.
C. De Volder, A. Laface, Recent results on linear systems on generic K3 surfaces.
Rend. Sem. Mat. Univ. Pol. Torino 63 (2005) 91-94.
D. Franco, G. Ilardi, On a theorem of Togliatti. Intern. Math. J. 2 (2002),
379–397.
A. Landesman, A. Patel, Interpolation Problems: Del Pezzo Surfaces. (2016)
arXiv:1601.05840
E. Mezzetti, R.M. Miró Roig, Togliatti systems and Galois coverings. (2016)
arXiv:1611.05620
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Other surfaces S

The case of P2, L = dH

If k = 1 (interpolation on one point) the dimension is always equal to the
expected one (elementary).

When S is not P2, the previous result may fail.

Let S be a ruled surface in Pn and take L = H.
Then, imposing one triple point gives only 5 conditions (expected 6).

The divisor splits
one line of the ruling

but the picture is a
FAKE ...
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The case of P2, L = dH

If k = 1 (interpolation on one point) the dimension is always equal to the
expected one (elementary).

When S is not P2, the previous result may fail.

Let S be a ruled surface in Pn and take L = H.
Then, imposing one triple point gives only 5 conditions (expected 6).

The divisor splits
two lines of the ruling

so that the analogue of
Segre conjecture holds
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Other surfaces S

The case of P2, L = dH

If k = 1 (interpolation on one point) the dimension is always equal to the
expected one (elementary).

When S is not P2, the previous result may fail.

Even when S = P2 re-embedded with some non-complete linear system,

(very particular sub-linear system of |3H|), there are examples that one
triple point gives only 5 conditions (expected 6).

The Togliatti system. A rather special projection of the 3-Veronese
surface.
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Question: characterize triple-point defective surfaces

Triple-point defective surfaces = surfaces satisfying one Laplace equation
of the second order = surfaces such that a triple point imposes only 5
conditions to the polarization.

CLASSICALLY

C. Segre and T.G. Room apparently stated that

“every triple-point defective surface is ruled”.

Dye’s example (1992)

This is not true in general.
Dye found an example of a special smooth intersection of three quadrics in
P5 which is triple-point defective but contains only a finite number of lines.

R.H. Dye, The extraordinary higher tangent spaces of certain quadric
intersections, Proceedings of the Edinburgh Mathematical Society 35 (1992),
437-447

In Dye’s example the degree is 8 = L2 = (L− KS)2
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Question: characterize triple-point defective surfaces

Triple-point defective surfaces = surfaces satisfying one Laplace equation
of the second order = surfaces such that a triple point imposes only 5
conditions to the polarization.

Assume S is linearly normal (which wipes out Togliatti’s example).

Partial answer by means of vector bundles

LC and Thomas Markwig, Triple-Point Defective Ruled Surfaces, J. Pure Appl.
Alg. 212, n.6 (2008), 1337–1346.

LC and Thomas Markwig, Triple-Point Defective Surfaces, Adv. Geom. 10
(2010), 527–547.

PARTIAL ANSWER:
Under some (mainly numerical) hypothesis, a triple point defective
surface is ruled

(in the sense that the embedding sends the rulings to lines).
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Question: characterize triple-point defective surfaces

The equisingular deformations of a triple point

T. Keilen, Families of Curves with Prescribed Singularities. PhD thesis,
Universit́’at Kaiserslautern (2001).,
T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix x , y local coordinates of a general point P ∈ S . Fix a curve C ∈ |LD |
with a triple point in P.

Then the tangent space to the variety V 3
LD

of curves in |LD | with a triple
point has tangent space at C defined by

T (V 3
LD

) = H0(IZ (LD))/ < C >

where Z is the scheme, supported at P, defined by an ideal J isomorphic
to either:

< x2, y2 > or < x3, y >

(the equisingular schemes).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 19 / 31



Question: characterize triple-point defective surfaces

The equisingular deformations of a triple point

T. Keilen, Families of Curves with Prescribed Singularities. PhD thesis,
Universit́’at Kaiserslautern (2001).,
T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix x , y local coordinates of a general point P ∈ S . Fix a curve C ∈ |LD |
with a triple point in P.

Then the tangent space to the variety V 3
LD

of curves in |LD | with a triple
point has tangent space at C defined by

T (V 3
LD

) = H0(IZ (LD))/ < C >

where Z is the scheme, supported at P, defined by an ideal J isomorphic
to either:

< x2, y2 > or < x3, y >

(the equisingular schemes).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 19 / 31



Question: characterize triple-point defective surfaces

The equisingular deformations of a triple point

T. Keilen, Families of Curves with Prescribed Singularities. PhD thesis,
Universit́’at Kaiserslautern (2001).,
T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix x , y local coordinates of a general point P ∈ S . Fix a curve C ∈ |LD |
with a triple point in P.

Then the tangent space to the variety V 3
LD

of curves in |LD | with a triple
point has tangent space at C defined by

T (V 3
LD

) = H0(IZ (LD))/ < C >

where Z is the scheme, supported at P, defined by an ideal J isomorphic
to either:

< x2, y2 > or < x3, y >

(the equisingular schemes).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 19 / 31



Question: characterize triple-point defective surfaces

The equisingular deformations of a triple point

T. Keilen, Families of Curves with Prescribed Singularities. PhD thesis,
Universit́’at Kaiserslautern (2001).,
T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix x , y local coordinates of a general point P ∈ S . Fix a curve C ∈ |LD |
with a triple point in P.

Then the tangent space to the variety V 3
LD

of curves in |LD | with a triple
point has tangent space at C defined by

T (V 3
LD

) = H0(IZ (LD))/ < C >

where Z is the scheme, supported at P, defined by an ideal J isomorphic
to either:

< x2, y2 > or < x3, y >

(the equisingular schemes).

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 19 / 31



Question: characterize triple-point defective surfaces

The equisingular deformations of a triple point

T. Keilen, Families of Curves with Prescribed Singularities. PhD thesis,
Universit́’at Kaiserslautern (2001).,
T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix x , y local coordinates of a general point P ∈ S . Fix a curve C ∈ |LD |
with a triple point in P.

Then the tangent space to the variety V 3
LD

of curves in |LD | with a triple
point has tangent space at C defined by

T (V 3
LD

) = H0(IZ (LD))/ < C >

where Z is the scheme, supported at P, defined by an ideal J isomorphic
to either:

< x2, y2 > or < x3, y >

(the equisingular schemes).
MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 19 / 31



Question: characterize triple-point defective surfaces

The tangent space to the variety V 3
LD

of curves in |LD | with a triple point
has tangent space at C defined by an ideal J isomorphic to either:

< x2, y2 > or < x3, y > .

Remark

J defines a (locally) complete intersection scheme Z (of length 3, 4).

Edoardo’s idea revisited

If the surface S is not triple point defective, then V 3
LD

is smooth of
codimension 4 at C .
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Remark

J defines a (locally) complete intersection scheme Z (of length 3, 4).

Edoardo’s idea revisited

If V 3
LD

is not smooth of codimension 4 at C , then Z fails to impose
independent conditions to LD .

So the map H0(OS(LD))→ H0(OZ )) = C4 has a non-trivial cokernel.
Thus, by Serre’s construction, we find a rank 2 vector bundle E with a
section supported at the equisingular scheme Z .
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Question: characterize triple-point defective surfaces

Edoardo’s idea revisited

If V 3
LD

is not smooth of codimension 4 at C , then we find a rank 2 vector
bundle E with a section supported at Z .

Assume:
(LD − KS)2 > 16.

Then c1(E)2 − 4c2(E) > 0, in other words E is Bogomolov unstable.
Then there exists a destabilizing divisor M and the game starts again.

Theorem (LC and T. Markwig)

Let L be a very ample line bundle on S , such that L− KS is ample and
base-point-free.
Assume moreover that (L− KS)2 > 16. Let S be triple-point defective.
Then S is ruled in the embedding defined by L.
Moreover, for P ∈ S general, curves C ∈ |L− 3P| contain the ruling
through P as a fixed component with multiplicity at least two.
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Question: characterize triple-point defective surfaces

Theorem (LC and T. Markwig)

Let L be a very ample line bundle on S , such that L− KS is ample and
base-point-free.
Assume moreover that (L− KS)2 > 16. Let S be triple-point defective.
Then S is ruled in the embedding defined by L. Moreover, for P ∈ S
general, curves C ∈ |L− 3P| contain the ruling through P as a fixed
component with multiplicity at least two.

It is a sort of analogue of Segre’s conjecture,

but of course it requires non
trivial numerical and non-numerical hypothesis.

Examples of ruled surfaces satisfying the assumption (and their
description) can be found in:
LC and Thomas Markwig, Triple-Point Defective Ruled Surfaces, J. Pure Appl.
Alg. 212, n.6 (2008), 1337–1346.
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Question: characterize triple-point defective surfaces

Theorem (LC and T. Markwig)

Let L be a very ample line bundle on S , such that L− KS is ample and
base-point-free.
Assume moreover that (L− KS)2 > 16. Let S be triple-point defective.
Then S is ruled in the embedding defined by L. Moreover, for P ∈ S
general, curves C ∈ |L− 3P| contain the fibre of the ruling through P as
fixed component with multiplicity at least two.

HINT of the PROOF:

Consider the destabilizing divisor M and define A = L− KS −M.
Then A is effective and (M − A)2 > 0, (M − A) · H > 0 for any ample H.
E(−M) has a section vanishing on a set Z ⊂ B, for some curve B ∈ |A|.
Moreover

4 ≥ length(Z ) ≥ M · A ≥ A2 + 1.
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Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor M and define A = L− KS −M.
Then A is effective and (M − A)2 > 0, (M − A) · H > 0 for any ample H.
E(−M) has a section vanishing on a set Z ⊂ B, for some curve B ∈ |A|.

4 ≥ length(Z ) ≥ M · A ≥ A2 + 1.

Need to prove that length(Z ) < 4. I.e. exclude J =< x2, y2 >.

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 25 / 31



Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor M and define A = L− KS −M.
Then A is effective and (M − A)2 > 0, (M − A) · H > 0 for any ample H.
E(−M) has a section vanishing on a set Z ⊂ B, for some curve B ∈ |A|.

4 ≥ length(Z ) ≥ M · A ≥ A2 + 1.

Need to prove that length(Z ) < 4. I.e. exclude J =< x2, y2 >.

MODERN ALGEBRA AND CLASSICAL GEOMETRY (Together with Edoardo Sernesi)Unstability and interpolation June 27, 2017 25 / 31



Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor M and define A = L− KS −M.
Then A is effective and (M − A)2 > 0, (M − A) · H > 0 for any ample H.
E(−M) has a section vanishing on a set Z ⊂ B, for some curve B ∈ |A|.
Moreover

4 ≥ length(Z ) ≥ M · A ≥ A2 + 1.

As the point moves, we obtain a family F of divisors A as above.
Then one proves that F has no fixed part (numerical trick),
and concludes that length(Z ) < 4.
Going back, it turns out that A is rational and A2 = 0, A · L = 1. QED
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Strength

Theorem (LC and T. Markwig)

Let L be a very ample line bundle on S , such that LKS is ample and
base-point-free.
Assume moreover that (L− KS)2 > 16. Let S be triple-point defective.
Then S is ruled in the embedding defined by L. Moreover, for P ∈ S
general, curves C ∈ |L− 3P| contain the fibre of the ruling through P as
fixed component with multiplicity at least two.

The method is constructive as the double divisor which appears in
the statement arises from the destabilizing divisor of E .
It gives a geometrical evidence to (and analogue of) Segre’s
conjecture.

The method itself clarifies why the surface must be linearly normal.
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Strength

The method applies directly whenever several double and triple points are
involved.

(Never explored completely).

Straightforward application to blow ups of P2

Fix multiplicities m1 ≤ m2 ≤ · · · ≤ mk . Let H denote the class of a line in
P2 and assume that, for P1, . . . ,Pk general in P2, the linear system
rH −m1P1 − · · · −mkPk is defective. Let f : S → P2 be the blowing up of
P2 at the points P2, . . . ,Pk and set L := rf ∗H −m2E2 − · · · −mkEk ,
where each Ei is the exceptional divisor at Pi .
Assume that L is very ample on S , of the expected dimension, and that
L− KS is ample and base-point-free, with (L− KS)2 > 16.
Assume, finally, that m1 ≤ 3.
Then m1 = 3 and the general element of the linear system is non-reduced.
Moreover L embeds S as a ruled surface. (Segre’s conjecture holds).
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Weakness

The method only applies when several numerical conditions are
satisfied (due to the fact that one wants the bundle E to be
Bogomolov unstable).

– Try to use other unstability conditions.

The method produces a vector bundle only if the equisingular
deformation scheme is (locally) complete intersection, which holds
only for double and triple points.

– Try to use torsion free sheaves, or use sheaves in a smarter way.

challenging . . .
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Final remark

Thank you for your attention

... e auguri, Edoardo!
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