Unstability and interpolation

Luca Chiantini Universitá di Siena, Italy

MODERN ALGEBRA AND CLASSICAL GEOMETRY

Together with Edoardo Sernesi

June 27, 2017

MODERN ALGEBRA AND CLASSICAL GE

Unstability and interpolation

- Applications to interpolation
- 4 Further extensions

LC, Edoardo Sernesi Nodal curves on surfaces of general type. Math. Ann. 307 (1997), 41-56

Nodal curves on surfaces of general type.

Math. Ann. 307 (1997), 41-56

Severi varieties of surfaces

Nodal curves on surfaces of general type.

Math. Ann. 307 (1997), 41-56

Severi varieties of surfaces

Varieties which parameterize singular system on a non-singular surface.

curves in a fixed linear

Nodal curves on surfaces of general type.

Math. Ann. 307 (1997), 41-56

Severi varieties of surfaces

Varieties which parameterize singular (nodal) curves in a fixed linear system on a non-singular surface.

Nodal curves on surfaces of general type.

Math. Ann. 307 (1997), 41-56

Severi varieties of surfaces

Varieties which parameterize singular (nodal) curves in a fixed linear system on a non-singular surface.

The name comes from Severi's result on the varieties which parameterize singular nodal curves in \mathbb{P}^2 .

S projective surface. $D \subset S$ smooth curve.

```
S projective surface. D \subset S smooth curve. D \in |L_D|.
```

S projective surface. $D \subset S$ smooth curve. $D \in |L_D|$. The Severi varieties of D are the varieties $V_{\delta,D} \subset |L_D|$ of curves $C \in |L_D|$ which are irreducible, with δ nodes.

S projective surface. $D \subset S$ smooth curve. $D \in |L_D|$. The Severi varieties of D are the varieties $V_{\delta,D} \subset |L_D|$ of curves $C \in |L_D|$ which are irreducible, with δ nodes.

```
S projective surface. D \subset S smooth curve.

D \in |L_D|.

The Severi varieties of D are the varieties V_{\delta,D} \subset |L_D| of curves C \in |L_D|

which are irreducible, with \delta nodes.
```

Problems

on non-emptiness?

```
S projective surface. D \subset S smooth curve.

D \in |L_D|.

The Severi varieties of D are the varieties V_{\delta,D} \subset |L_D| of curves C \in |L_D|

which are irreducible, with \delta nodes.
```

Problems

on non-emptiness? irreducibility?

S projective surface. $D \subset S$ smooth curve. $D \in |L_D|$. The Severi varieties of D are the varieties $V_{\delta,D} \subset |L_D|$ of curves $C \in |L_D|$ which are irreducible, with δ nodes.

Problems

• non-emptiness? irreducibility? connectedness?

S projective surface. $D \subset S$ smooth curve. $D \in |L_D|$. The Severi varieties of D are the varieties $V_{\delta,D} \subset |L_D|$ of curves $C \in |L_D|$ which are irreducible, with δ nodes.

- non-emptiness? irreducibility? connectedness?
- smoothness?

S projective surface. $D \subset S$ smooth curve. $D \in |L_D|$. The **Severi varieties** of D are the varieties $V_{\delta,D} \subset |L_D|$ of curves $C \in |L_D|$ which are irreducible, with δ nodes.

- non-emptiness? irreducibility? connectedness?
- smoothness?
- dimension?

S projective surface. $D \subset S$ smooth curve. $D \in |L_D|$. The **Severi varieties** of D are the varieties $V_{\delta,D} \subset |L_D|$ of curves $C \in |L_D|$ which are irreducible, with δ nodes.

- non-emptiness? irreducibility? connectedness?
- smoothness?
- dimension? (expected dimension = max $\{-1, \dim |L_D| \delta\}$).

Some results

Problems

- irreducibility? connectedness? non-emptiness?
- smoothness?
- dimension? (expected dimension = max $\{-1, \dim |L_D| \delta\}$).

Many classical and modern authors found results on the problems above, when the surface S is $\mathbb{P}^2,$

Problems

- irreducibility? connectedness? non-emptiness?
- smoothness?
- dimension? (expected dimension = max $\{-1, \dim |L_D| \delta\}$).

Many classical and modern authors found results on the problems above, when the surface S is \mathbb{P}^2 , or more in general when S is rational, K3, etc.

Problems

- irreducibility? connectedness? non-emptiness?
- smoothness?
- dimension? (expected dimension = max $\{-1, \dim |L_D| \delta\}$).

Many classical and modern authors found results on the problems above, when the surface S is \mathbb{P}^2 , or more in general when S is rational, K3, etc.

Main tool

Non-speciality of the normal sheaf of the desigularization $\tilde{C} \to C$ of C.

Problems

- irreducibility? connectedness? non-emptiness?
- smoothness?
- dimension? (expected dimension = max $\{-1, \dim |L_D| \delta\}$).

Many classical and modern authors found results on the problems above, when the surface S is \mathbb{P}^2 , or more in general when S is rational, K3, etc.

Main tool

Non-speciality of the normal sheaf of the designlarization $\tilde{C} \to C$ of C.

When S has general type, the previous tool fails and one needs new ideas of investigation.

S of general type

New idea (Edoardo)

Let $C \in |L_D|$ be a nodal curve. Call N the set of δ nodes of C.

S of general type

New idea (Edoardo)

Let $C \in |L_D|$ be a nodal curve. Call N the set of δ nodes of C. The tangent space to C in $|L_D|$ can be identified with

 $H^0(\mathcal{O}_S(L_D))/ < C >$

S of general type

New idea (Edoardo)

Let $C \in |L_D|$ be a nodal curve. Call N the set of δ nodes of C. The tangent space to C in $|L_D|$ can be identified with

 $H^0(\mathcal{O}_S(L_D))/ < C >$

The tangent space to C in $V_{\delta,D}$ can be identified with

 $H^0(\mathcal{I}_N(L_D))/ < C >$

Let $C \in |L_D|$ be a nodal curve. Call N the set of δ nodes of C. The tangent space to C in $|L_D|$ can be identified with

 $H^0(\mathcal{O}_S(L_D))/ < C >$

The tangent space to C in $V_{\delta,D}$ can be identified with

 $H^0(\mathcal{I}_N(L_D))/ < C >$

If $V_{\delta,D}$ is not smooth of codimension δ at C, then N fails to impose independent conditions to L_D .

Let $C \in |L_D|$ be a nodal curve. Call N the set of δ nodes of C. The tangent space to C in $|L_D|$ can be identified with

 $H^0(\mathcal{O}_S(L_D))/ < C >$

The tangent space to C in $V_{\delta,D}$ can be identified with

 $H^0(\mathcal{I}_N(L_D))/ < C >$

If $V_{\delta,D}$ is not smooth of codimension δ at C, then N fails to impose independent conditions to L_D .

 Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. Math. 127 (1988), 309-316.
 M Beltrametti P, Francia A, J. Sommese, On Beiders method and higher order.

M. Beltrametti, P. Francia, A. J. Sommese, *On Reiders method and higher order embeddings*. Duke Math. J. 58 (1989), 425-439.

If $V_{\delta,D}$ is not smooth of codimension δ at C, then N fails to impose independent conditions to L_D . So the map $H^0(\mathcal{O}_S(L_D)) \to H^0(\mathcal{O}_N) = \mathbb{C}^{\delta}$ has a non-trivial cokernel.

If $V_{\delta,D}$ is not smooth of codimension δ at C, then N fails to impose independent conditions to L_D . So the map $H^0(\mathcal{O}_S(L_D)) \to H^0(\mathcal{O}_N) = \mathbb{C}^{\delta}$ has a non-trivial cokernel.

By Serre's construction, this yields a rank 2 bundle ${\mathcal E}$ with a global section vanishing at N

If $V_{\delta,D}$ is not smooth of codimension δ at C, then N fails to impose independent conditions to L_D . So the map $H^0(\mathcal{O}_S(L_D)) \to H^0(\mathcal{O}_N) = \mathbb{C}^{\delta}$ has a non-trivial cokernel.

By Serre's construction, this yields a rank 2 bundle \mathcal{E} with a global section vanishing at N (or at some non-empty subset N_0 of N).

If $V_{\delta,D}$ is not smooth of codimension δ at C, then N fails to impose independent conditions to L_D . So the map $H^0(\mathcal{O}_S(L_D)) \to H^0(\mathcal{O}_N) = \mathbb{C}^{\delta}$ has a non-trivial cokernel.

By Serre's construction, this yields a rank 2 bundle \mathcal{E} with a global section vanishing at N (or at some non-empty subset N_0 of N). ([GH]).

If $V_{\delta,D}$ is not smooth of codimension δ at C, then N fails to impose independent conditions to L_D . So the map $H^0(\mathcal{O}_S(L_D)) \to H^0(\mathcal{O}_N) = \mathbb{C}^{\delta}$ has a non-trivial cokernel.

By Serre's construction, this yields a rank 2 bundle \mathcal{E} with a global section vanishing at N (or at some non-empty subset N_0 of N). ([GH]). The Chern classes of \mathcal{E} are:

$$c_1(\mathcal{E})=L_D-K_S;$$

$$c_2(\mathcal{E}) = \deg(N_0) \leq \delta.$$

MODERN ALGEBRA AND CLASSICAL GE

By Serre's construction, this yields a rank 2 bundle \mathcal{E} with a global section vanishing at N (or at some non-empty subset N_0 of N). The Chern classes of \mathcal{E} are: $c_1(\mathcal{E}) = L_D - K_S$; $c_2(\mathcal{E}) = \deg(N_0) \le \delta$.

When $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, the bundle \mathcal{E} is *Bogomolov unstable*,

By Serre's construction, this yields a rank 2 bundle \mathcal{E} with a global section vanishing at N (or at some non-empty subset N_0 of N). The Chern classes of \mathcal{E} are: $c_1(\mathcal{E}) = L_D - K_S$; $c_2(\mathcal{E}) = \deg(N_0) \le \delta$.

When $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, the bundle \mathcal{E} is Bogomolov unstable, thus there exists a destabilizing divisor M.

By Serre's construction, this yields a rank 2 bundle \mathcal{E} with a global section vanishing at N (or at some non-empty subset N_0 of N). The Chern classes of \mathcal{E} are: $c_1(\mathcal{E}) = L_D - K_S$; $c_2(\mathcal{E}) = \deg(N_0) \le \delta$.

When $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, the bundle \mathcal{E} is Bogomolov unstable, thus there exists a destabilizing divisor M.

 $h^0(\mathcal{E}(-M))>0$ and $(2M-c_1(\mathcal{E}))K_S>0.$

By Serre's construction, this yields a rank 2 bundle \mathcal{E} with a global section vanishing at N (or at some non-empty subset N_0 of N). The Chern classes of \mathcal{E} are: $c_1(\mathcal{E}) = L_D - K_S$; $c_2(\mathcal{E}) = \deg(N_0) \le \delta$.

When $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, the bundle \mathcal{E} is Bogomolov unstable, thus there exists a destabilizing divisor M.

$$h^0(\mathcal{E}(-M))>0$$
 and $(2M-c_1(\mathcal{E}))K_S>0.$

Then, work with the arithmetic of S, M, K_S, L_D , in order to exclude the existence of M.

Theorem (LC, E. Sernesi)

Let S be a smooth surface such that K_S is ample and let C be an irreducible curve on S such that $C =_{num} pK_S$; $p \ge 2$; $p \in \mathbb{Q}$ and the linear system L_D of C has smooth general member D. Assume that C has $\delta \ge 1$ nodes and no other singularities.

If $\delta < p(p-2)K_S^2/4$, then $V_{\delta,D}$ is smooth of codimension δ at C.
Theorem (LC, E. Sernesi)

Let S be a smooth surface such that K_S is ample and let C be an irreducible curve on S such that $C =_{num} pK_S$; $p \ge 2$; $p \in \mathbb{Q}$ and the linear system L_D of C has smooth general member D. Assume that C has $\delta \ge 1$ nodes and no other singularities.

If $\delta < p(p-2)K_S^2/4$, then $V_{\delta,D}$ is smooth of codimension δ at C.

Corollary

Let S be a smooth surface of degree $d \ge 5$ in \mathbb{P}^3 with plane section H. Assume that $C \in |nH|$ has δ nodes and no other singularities and

$$\delta < \frac{nd(n-2d+8)}{4}.$$

Then $V_{\delta,nH}$ is smooth of codimension δ at the point C.

Theorem (LC, E. Sernesi)

Let S be a smooth surface such that K_S is ample and let C be an irreducible curve on S such that $C =_{num} pK_S$; $p \ge 2$; $p \in \mathbb{Q}$ and the linear system L_D of C has smooth general member D. Assume that C has $\delta \ge 1$ nodes and no other singularities.

If $\delta < p(p-2)K_S^2/4$, then $V_{\delta,D}$ is smooth of codimension δ at C.

Corollary

Let S be a smooth surface of degree $d \ge 5$ in \mathbb{P}^3 with plane section H. Assume that $C \in |nH|$ has δ nodes and no other singularities and

$$\delta < \frac{nd(n-2d+8)}{4}.$$

Then $V_{\delta,nH}$ is smooth of codimension δ at the point C.

The result of the corollary is sharp, at least for d = 5.

MODERN ALGEBRA AND CLASSICAL GE

Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, *New asymptotics in the geometry of equisingular families of curves*, Internat. Math. Res. Notices 13 (1997), 595–611.

Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, *Castelnuovo function, zero-dimensional schemes and singular plane curves*, J. Algebraic Geom. 9 (2000), no. 4, 663–710.

Flaminio Flamini, *Moduli of nodal curves on smooth surfaces of general type*, J. Algebraic Geom. 11 (2001), no. 4, 725–760.

Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, *New asymptotics in the geometry of equisingular families of curves*, Internat. Math. Res. Notices 13 (1997), 595–611.

Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, *Castelnuovo function, zero-dimensional schemes and singular plane curves*, J. Algebraic Geom. 9 (2000), no. 4, 663–710.

Flaminio Flamini, *Moduli of nodal curves on smooth surfaces of general type*, J. Algebraic Geom. 11 (2001), no. 4, 725–760.

LC and Thomas Markwig, *Triple-Point Defective Ruled Surfaces*, J. Pure Appl. Alg. 212, n.6 (2008), 1337–1346.

LC and Thomas Markwig, *Triple-Point Defective Surfaces*, Adv. Geom. 10 (2010), 527–547.

Let P_1, \ldots, P_k be general points on the (smooth) surface S. Let |L| be a linear system on S

Let P_1, \ldots, P_k be general points on the (smooth) surface S. Let |L| be a linear system on S (complete and very ample).

Let P_1, \ldots, P_k be general points on the (smooth) surface *S*. Let |L| be a linear system on *S* (complete and very ample). Find the dimension of the system of curves $C \in |L|$ passing through each P_i with prescribed multiplicity m_i (at least).

$$\dim |L - \sum m_i P_i|$$

Let P_1, \ldots, P_k be general points on the (smooth) surface *S*. Let |L| be a linear system on *S* (complete and very ample). Find the dimension of the system of curves $C \in |L|$ passing through each P_i with prescribed multiplicity m_i (at least).

$$\dim |L - \sum m_i P_i|$$

$$\dim |L - \sum m_i P_i| \ge \dim |L| - \sum \binom{m_i + 1}{2}$$

MODERN ALGEBRA AND CLASSICAL GE

Let P_1, \ldots, P_k be general points on the (smooth) surface S. Let |L| be a linear system on S (complete and very ample). Find the dimension of the system of curves $C \in |L|$ passing through each P_i with prescribed multiplicity m_i (at least).

$$\dim |L - \sum m_i P_i|$$

$$\dim |L - \sum m_i P_i| \ge \dim |L| - \sum \binom{m_i + 1}{2}$$

expected dimension = max $\{-1, \dim |L| - \sum {m_i+1 \choose 2}\}$.

Some initial results on $S = \mathbb{P}^2$, L = dH

Some initial results on $S = \mathbb{P}^2$, L = dH

If $m_i = 2$ for all *i*, the situation is classified (classical);

Some initial results on $S = \mathbb{P}^2$, L = dH

If $m_i = 2$ for all *i*, the situation is classified (classical);

If k = 1 (interpolation on one point)

Some initial results on $S = \mathbb{P}^2$, L = dH

If $m_i = 2$ for all *i*, the situation is classified (classical);

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

Some initial results on $S = \mathbb{P}^2$, L = dH

If $m_i = 2$ for all *i*, the situation is classified (classical);

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

B. Segre's conjecture in \mathbb{P}^2

If dim $|L - \sum m_i P_i|$ > expected dimension, then $|L - \sum m_i P_i|$ has a fixed component of multiplicity ≥ 2 .

More general surfaces S

MODERN ALGEBRA AND CLASSICAL GE

More general surfaces S

Double points (nodal curves)

If $m_i = 2$ for all *i*, the situation is classified (Terracini 1923).

More general surfaces S

Double points (nodal curves)

If $m_i = 2$ for all *i*, the situation is classified (Terracini 1923).

The rest is widely open.

Double points (nodal curves)

If $m_i = 2$ for all *i*, the situation is classified (Terracini 1923).

The rest is widely open.

Some results

J. Huizenga, Interpolation on surfaces in \mathbb{P}^3 . Trans. Amer. Math. Soc. 365 (2013), 623-644.

C. De Volder, A. Laface, *Recent results on linear systems on generic K3 surfaces.* Rend. Sem. Mat. Univ. Pol. Torino 63 (2005) 91-94.

D. Franco, G. Ilardi, *On a theorem of Togliatti*. Intern. Math. J. 2 (2002), 379–397.

A. Landesman, A. Patel, *Interpolation Problems: Del Pezzo Surfaces*. (2016) arXiv:1601.05840

E. Mezzetti, R.M. Miró Roig, *Togliatti systems and Galois coverings*. (2016) arXiv:1611.05620

The case of \mathbb{P}^2 , L = dH

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

The case of \mathbb{P}^2 , L = dH

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

Let S be a ruled surface in \mathbb{P}^n and take L = H.

Then, imposing one triple point gives only 5 conditions (expected 6).

The case of \mathbb{P}^2 , L = dH

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

Let S be a ruled surface in \mathbb{P}^n and take L = H.

Then, imposing **one** triple point gives only 5 conditions (expected 6).

The case of \mathbb{P}^2 , L = dH

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

Let S be a ruled surface in \mathbb{P}^n and take L = H.

Then, imposing one triple point gives only 5 conditions (expected 6).

The divisor splits one line of the ruling

The case of \mathbb{P}^2 , L = dH

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

Let S be a ruled surface in \mathbb{P}^n and take L = H.

Then, imposing **one** triple point gives only 5 conditions (expected 6).

The divisor splits one line of the ruling but the picture is a FAKE ...

The case of \mathbb{P}^2 , L = dH

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

Let S be a ruled surface in \mathbb{P}^n and take L = H.

Then, imposing one triple point gives only 5 conditions (expected 6).

The divisor splits **two** lines of the ruling

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

Let S be a ruled surface in \mathbb{P}^n and take L = H.

Then, imposing one triple point gives only 5 conditions (expected 6).

The divisor splits **two** lines of the ruling so that the analogue of Segre conjecture holds

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

Even when $S = \mathbb{P}^2$ re-embedded with some **non-complete** linear system,

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

Even when $S = \mathbb{P}^2$ re-embedded with some **non-complete** linear system, (very particular sub-linear system of |3H|), there are examples that **one** triple point gives only 5 conditions (expected 6).

If k = 1 (interpolation on one point) the dimension is always equal to the expected one (elementary).

When S is not \mathbb{P}^2 , the previous result may fail.

Even when $S = \mathbb{P}^2$ re-embedded with some **non-complete** linear system, (very particular sub-linear system of |3H|), there are examples that **one** triple point gives only 5 conditions (expected 6).

The **Togliatti system**. A rather special projection of the 3-Veronese surface.

MODERN ALGEBRA AND CLASSICAL GE

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

CLASSICALLY

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

CLASSICALLY

C. Segre and T.G. Room apparently stated that

"every triple-point defective surface is ruled".

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

CLASSICALLY

C. Segre and T.G. Room apparently stated that

"every triple-point defective surface is ruled".

Dye's example (1992)

This is not true in general.
Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

CLASSICALLY

C. Segre and T.G. Room apparently stated that

"every triple-point defective surface is ruled".

Dye's example (1992)

This is not true in general.

Dye found an example of a special smooth intersection of three quadrics in \mathbb{P}^5 which is triple-point defective but contains only a finite number of lines.

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

CLASSICALLY

C. Segre and T.G. Room apparently stated that

"every triple-point defective surface is ruled".

Dye's example (1992)

This is not true in general.

Dye found an example of a special smooth intersection of three quadrics in \mathbb{P}^5 which is triple-point defective but contains only a finite number of lines.

R.H. Dye, *The extraordinary higher tangent spaces of certain quadric intersections*, Proceedings of the Edinburgh Mathematical Society 35 (1992), 437-447

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

CLASSICALLY

C. Segre and T.G. Room apparently stated that

"every triple-point defective surface is ruled".

Dye's example (1992)

This is not true in general.

Dye found an example of a special smooth intersection of three quadrics in \mathbb{P}^5 which is triple-point defective but contains only a finite number of lines.

R.H. Dye, *The extraordinary higher tangent spaces of certain quadric intersections*, Proceedings of the Edinburgh Mathematical Society 35 (1992), 437-447

In Dye's example the degree is
$$8 = L^2 = (L - K_S)^2$$

MODERN ALGEBRA AND CLASSICAL GE

Unstability and interpolation

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

Assume S is **linearly normal** (which wipes out Togliatti's example).

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

Assume S is **linearly normal** (which wipes out Togliatti's example).

Partial answer by means of vector bundles

LC and Thomas Markwig, *Triple-Point Defective Ruled Surfaces*, J. Pure Appl. Alg. 212, n.6 (2008), 1337–1346.

LC and Thomas Markwig, *Triple-Point Defective Surfaces*, Adv. Geom. 10 (2010), 527–547.

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

Assume S is **linearly normal** (which wipes out Togliatti's example).

Partial answer by means of vector bundles

LC and Thomas Markwig, *Triple-Point Defective Ruled Surfaces*, J. Pure Appl. Alg. 212, n.6 (2008), 1337–1346.

LC and Thomas Markwig, *Triple-Point Defective Surfaces*, Adv. Geom. 10 (2010), 527–547.

PARTIAL ANSWER: Under some (mainly numerical) hypothesis, a triple point defective surface is ruled

Triple-point defective surfaces = surfaces satisfying one Laplace equation of the second order = surfaces such that a triple point imposes only 5 conditions to the polarization.

Assume *S* is **linearly normal** (which wipes out Togliatti's example).

Partial answer by means of vector bundles

LC and Thomas Markwig, *Triple-Point Defective Ruled Surfaces*, J. Pure Appl. Alg. 212, n.6 (2008), 1337–1346.

LC and Thomas Markwig, *Triple-Point Defective Surfaces*, Adv. Geom. 10 (2010), 527–547.

PARTIAL ANSWER:

Under some (mainly numerical) hypothesis, a triple point defective surface is ruled

(in the sense that the embedding sends the rulings to lines).

The equisingular deformations of a triple point

The equisingular deformations of a triple point

T. Keilen, *Families of Curves with Prescribed Singularities*. PhD thesis, Universit[']at Kaiserslautern (2001).,

T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

The equisingular deformations of a triple point

T. Keilen, *Families of Curves with Prescribed Singularities*. PhD thesis, Universit[']at Kaiserslautern (2001).,

T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix x, y local coordinates of a general point $P \in S$. Fix a curve $C \in |L_D|$ with a triple point in P.

The equisingular deformations of a triple point

T. Keilen, *Families of Curves with Prescribed Singularities*. PhD thesis, Universit[']at Kaiserslautern (2001).,

T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix x, y local coordinates of a general point $P \in S$. Fix a curve $C \in |L_D|$ with a triple point in P.

Then the tangent space to the variety $V_{L_D}^3$ of curves in $|L_D|$ with a triple point has tangent space at C defined by

$$T(V_{L_D}^3) = H^0(\mathcal{I}_Z(L_D))/ < C >$$

where Z is the scheme, supported at P, defined by an ideal J isomorphic to either:

$$< x^2, y^2 > \text{ or } < x^3, y >$$

The equisingular deformations of a triple point

T. Keilen, *Families of Curves with Prescribed Singularities*. PhD thesis, Universit[']at Kaiserslautern (2001).,

T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix x, y local coordinates of a general point $P \in S$. Fix a curve $C \in |L_D|$ with a triple point in P.

Then the tangent space to the variety $V_{L_D}^3$ of curves in $|L_D|$ with a triple point has tangent space at C defined by

$$T(V_{L_D}^3) = H^0(\mathcal{I}_Z(L_D))/ < C >$$

where Z is the scheme, supported at P, defined by an ideal J isomorphic to either:

$$< x^2, y^2 >$$
 or $< x^3, y >$

(the **equisingular** schemes).

The tangent space to the variety $V_{L_D}^3$ of curves in $|L_D|$ with a triple point has tangent space at *C* defined by an ideal *J* isomorphic to either:

$$< x^2, y^2 > \text{ or } < x^3, y > .$$

Remark

J defines a (locally) complete intersection scheme Z (of length 3, 4).

The tangent space to the variety $V_{L_D}^3$ of curves in $|L_D|$ with a triple point has tangent space at *C* defined by an ideal *J* isomorphic to either:

$$< x^2, y^2 > \text{ or } < x^3, y > .$$

Remark

J defines a (locally) complete intersection scheme Z (of length 3, 4).

Edoardo's idea revisited

If the surface S is **not** triple point defective, then $V_{L_D}^3$ is smooth of codimension 4 at C.

The tangent space to the variety $V_{L_D}^3$ of curves in $|L_D|$ with a triple point has tangent space at C defined by an ideal J isomorphic to either:

$$< x^2, y^2 > \text{ or } < x^3, y > .$$

Remark

J defines a (locally) complete intersection scheme Z (of length 3, 4).

Edoardo's idea revisited

If $V_{L_D}^3$ is not smooth of codimension 4 at *C*, then *Z* fails to impose independent conditions to L_D .

The tangent space to the variety $V_{L_D}^3$ of curves in $|L_D|$ with a triple point has tangent space at C defined by an ideal J isomorphic to either:

$$< x^2, y^2 > \text{ or } < x^3, y > .$$

Remark

J defines a (locally) complete intersection scheme Z (of length 3, 4).

Edoardo's idea revisited

If $V_{L_D}^3$ is not smooth of codimension 4 at C, then Z fails to impose independent conditions to L_D . So the map $H^0(\mathcal{O}_S(L_D)) \to H^0(\mathcal{O}_Z)) = \mathbb{C}^4$ has a non-trivial cokernel.

The tangent space to the variety $V_{L_D}^3$ of curves in $|L_D|$ with a triple point has tangent space at C defined by an ideal J isomorphic to either:

$$< x^2, y^2 > \text{ or } < x^3, y > .$$

Remark

J defines a (locally) complete intersection scheme Z (of length 3, 4).

Edoardo's idea revisited

If $V_{L_D}^3$ is not smooth of codimension 4 at *C*, then *Z* fails to impose independent conditions to L_D . So the map $H^0(\mathcal{O}_S(L_D)) \to H^0(\mathcal{O}_Z)) = \mathbb{C}^4$ has a non-trivial cokernel. Thus, by Serre's construction, we find a rank 2 vector bundle \mathcal{E} with a section supported at the equisingular scheme *Z*.

Edoardo's idea revisited

If $V_{L_D}^3$ is not smooth of codimension 4 at *C*, then we find a rank 2 vector bundle \mathcal{E} with a section supported at *Z*.

Edoardo's idea revisited

If $V_{L_D}^3$ is not smooth of codimension 4 at *C*, then we find a rank 2 vector bundle \mathcal{E} with a section supported at *Z*.

Assume:

$$(L_D - K_S)^2 > 16.$$

Then $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, in other words \mathcal{E} is Bogomolov unstable.

Edoardo's idea revisited

If $V_{L_D}^3$ is not smooth of codimension 4 at *C*, then we find a rank 2 vector bundle \mathcal{E} with a section supported at *Z*.

Assume:

$$(L_D - K_S)^2 > 16.$$

Then $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, in other words \mathcal{E} is Bogomolov unstable. Then there exists a destabilizing divisor M

If $V_{L_D}^3$ is not smooth of codimension 4 at *C*, then we find a rank 2 vector bundle \mathcal{E} with a section supported at *Z*.

Assume:

$$(L_D - K_S)^2 > 16.$$

Then $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, in other words \mathcal{E} is Bogomolov unstable. Then there exists a destabilizing divisor M and the game starts again.

If $V_{L_D}^3$ is not smooth of codimension 4 at *C*, then we find a rank 2 vector bundle \mathcal{E} with a section supported at *Z*.

Assume:

$$(L_D - K_S)^2 > 16.$$

Then $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, in other words \mathcal{E} is Bogomolov unstable. Then there exists a destabilizing divisor M and the game starts again.

Theorem (LC and T. Markwig)

Let L be a very ample line bundle on S, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$.

If $V_{L_D}^3$ is not smooth of codimension 4 at *C*, then we find a rank 2 vector bundle \mathcal{E} with a section supported at *Z*.

Assume:

$$(L_D - K_S)^2 > 16.$$

Then $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, in other words \mathcal{E} is Bogomolov unstable. Then there exists a destabilizing divisor M and the game starts again.

Theorem (LC and T. Markwig)

Let *L* be a very ample line bundle on *S*, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let S be triple-point defective. Then S is ruled in the embedding defined by L.

If $V_{L_D}^3$ is not smooth of codimension 4 at *C*, then we find a rank 2 vector bundle \mathcal{E} with a section supported at *Z*.

Assume:

$$(L_D - K_S)^2 > 16.$$

Then $c_1(\mathcal{E})^2 - 4c_2(\mathcal{E}) > 0$, in other words \mathcal{E} is Bogomolov unstable. Then there exists a destabilizing divisor M and the game starts again.

Theorem (LC and T. Markwig)

Let *L* be a very ample line bundle on *S*, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let S be triple-point defective. Then S is ruled in the embedding defined by L. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the ruling through P as a fixed component with multiplicity at least two.

Let *L* be a very ample line bundle on *S*, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let S be triple-point defective. Then S is ruled in the embedding defined by L. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the ruling through P as a fixed component with multiplicity at least two.

It is a sort of analogue of Segre's conjecture,

Let L be a very ample line bundle on S, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let S be triple-point defective. Then S is ruled in the embedding defined by L. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the ruling through P as a fixed component with multiplicity at least two.

It is a sort of analogue of Segre's conjecture, but of course it requires non trivial numerical and non-numerical hypothesis.

Let L be a very ample line bundle on S, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let S be triple-point defective. Then S is ruled in the embedding defined by L. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the ruling through P as a fixed component with multiplicity at least two.

It is a sort of analogue of Segre's conjecture, but of course it requires non trivial numerical and non-numerical hypothesis.

Examples of ruled surfaces satisfying the assumption (and their description) can be found in: LC and Thomas Markwig, *Triple-Point Defective Ruled Surfaces*, J. Pure Appl. Alg. 212, n.6 (2008), 1337–1346.

Let *L* be a very ample line bundle on *S*, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let S be triple-point defective. Then S is ruled in the embedding defined by L. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the fibre of the ruling through P as fixed component with multiplicity at least two.

HINT of the PROOF:

Let *L* be a very ample line bundle on *S*, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let S be triple-point defective. Then S is ruled in the embedding defined by L. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the fibre of the ruling through P as fixed component with multiplicity at least two.

HINT of the PROOF:

Consider the destabilizing divisor M and define $A = L - K_S - M$.

Let *L* be a very ample line bundle on *S*, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let S be triple-point defective. Then S is ruled in the embedding defined by L. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the fibre of the ruling through P as fixed component with multiplicity at least two.

HINT of the PROOF:

Consider the destabilizing divisor M and define $A = L - K_S - M$.

Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H.

Let *L* be a very ample line bundle on *S*, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let *S* be triple-point defective. Then *S* is ruled in the embedding defined by *L*. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the fibre of the ruling through *P* as fixed component with multiplicity at least two.

HINT of the PROOF:

Consider the destabilizing divisor M and define $A = L - K_S - M$. Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$.

Let *L* be a very ample line bundle on *S*, such that $L - K_S$ is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let *S* be triple-point defective. Then *S* is ruled in the embedding defined by *L*. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the fibre of the ruling through *P* as fixed component with multiplicity at least two.

HINT of the PROOF:

Consider the destabilizing divisor M and define $A = L - K_S - M$. Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$. Moreover

$$4 \geq \operatorname{length}(Z) \geq M \cdot A \geq A^2 + 1.$$

HINT of the PROOF:

Consider the destabilizing divisor M and define $A = L - K_S - M$.

Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$.

$$4 \geq \text{length}(Z) \geq M \cdot A \geq A^2 + 1.$$

HINT of the PROOF:

Consider the destabilizing divisor M and define $A = L - K_S - M$. Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$.

$$4 \geq \operatorname{\mathsf{length}}(Z) \geq M \cdot A \geq A^2 + 1.$$

Need to prove that length(Z) < 4. I.e. exclude $J = \langle x^2, y^2 \rangle$.

HINT of the PROOF:

Consider the destabilizing divisor M and define $A = L - K_S - M$.

Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$. Moreover

$$4 \geq \operatorname{length}(Z) \geq M \cdot A \geq A^2 + 1.$$

HINT of the PROOF:

Consider the destabilizing divisor M and define $A = L - K_S - M$.

Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$. Moreover

$$4 \geq \text{length}(Z) \geq M \cdot A \geq A^2 + 1.$$

As the point moves, we obtain a family \mathcal{F} of divisors A as above.
Consider the destabilizing divisor M and define $A = L - K_S - M$. Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$. Moreover

$$4 \geq \text{length}(Z) \geq M \cdot A \geq A^2 + 1.$$

As the point moves, we obtain a family \mathcal{F} of divisors A as above. Then one proves that \mathcal{F} has no fixed part (numerical trick),

Consider the destabilizing divisor M and define $A = L - K_S - M$. Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$. Moreover

$$4 \geq \text{length}(Z) \geq M \cdot A \geq A^2 + 1.$$

As the point moves, we obtain a family \mathcal{F} of divisors A as above. Then one proves that \mathcal{F} has no fixed part (numerical trick), and concludes that length(Z) < 4.

Consider the destabilizing divisor M and define $A = L - K_S - M$. Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$. Moreover

$$4 \geq \text{length}(Z) \geq M \cdot A \geq A^2 + 1.$$

As the point moves, we obtain a family \mathcal{F} of divisors A as above. Then one proves that \mathcal{F} has no fixed part (numerical trick), and concludes that length(Z) < 4. Going back, it turns out that A is rational and $A^2 = 0$, $A \cdot L = 1$.

Consider the destabilizing divisor M and define $A = L - K_S - M$. Then A is effective and $(M - A)^2 > 0$, $(M - A) \cdot H > 0$ for any ample H. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in |A|$. Moreover

$$4 \geq \operatorname{length}(Z) \geq M \cdot A \geq A^2 + 1.$$

As the point moves, we obtain a family \mathcal{F} of divisors A as above. Then one proves that \mathcal{F} has no fixed part (numerical trick), and concludes that length(Z) < 4. Going back, it turns out that A is rational and $A^2 = 0$, $A \cdot L = 1$. QED

Let *L* be a very ample line bundle on *S*, such that LK_S is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let *S* be triple-point defective. Then *S* is ruled in the embedding defined by *L*. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the fibre of the ruling through *P* as fixed component with multiplicity at least two.

Let *L* be a very ample line bundle on *S*, such that LK_S is ample and base-point-free.

Assume moreover that $(L - K_S)^2 > 16$. Let *S* be triple-point defective. Then *S* is ruled in the embedding defined by *L*. Moreover, for $P \in S$ general, curves $C \in |L - 3P|$ contain the fibre of the ruling through *P* as fixed component with multiplicity at least two.

• The method is constructive as the double divisor which appears in the statement arises from the destabilizing divisor of \mathcal{E} .

Let *L* be a very ample line bundle on *S*, such that LK_S is ample and base-point-free. Assume moreover that $(L - K_S)^2 > 16$. Let *S* be triple-point defective. Then *S* is ruled in the embedding defined by *L*. Moreover, for $P \in S$

general, curves $C \in |L - 3P|$ contain the fibre of the ruling through P as fixed component with multiplicity at least two.

 The method is constructive as the double divisor which appears in the statement arises from the destabilizing divisor of *E*.
It gives a geometrical evidence to (and analogue of) Segre's conjecture.

Let *L* be a very ample line bundle on *S*, such that LK_S is ample and base-point-free. Assume moreover that $(L - K_S)^2 > 16$. Let *S* be triple-point defective. Then *S* is ruled in the embedding defined by *L*. Moreover, for $P \in S$

general, curves $C \in |L - 3P|$ contain the fibre of the ruling through P as fixed component with multiplicity at least two.

- The method is constructive as the double divisor which appears in the statement arises from the destabilizing divisor of *E*.
 It gives a geometrical evidence to (and analogue of) Segre's conjecture.
- The method itself clarifies why the surface must be linearly normal.

The method applies directly whenever **several** double and triple points are involved.

The method applies directly whenever **several** double and triple points are involved. (Never explored completely).

The method applies directly whenever **several** double and triple points are involved. (Never explored completely).

Straightforward application to blow ups of \mathbb{P}^2

Fix multiplicities $m_1 \leq m_2 \leq \cdots \leq m_k$. Let H denote the class of a line in \mathbb{P}^2 and assume that, for P_1, \ldots, P_k general in \mathbb{P}^2 , the linear system $rH - m_1P_1 - \cdots - m_kP_k$ is defective. Let $f : S \to \mathbb{P}^2$ be the blowing up of \mathbb{P}^2 at the points P_2, \ldots, P_k and set $L := rf^*H - m_2E_2 - \cdots - m_kE_k$, where each E_i is the exceptional divisor at P_i .

The method applies directly whenever **several** double and triple points are involved. (Never explored completely).

Straightforward application to blow ups of \mathbb{P}^2

Fix multiplicities $m_1 \leq m_2 \leq \cdots \leq m_k$. Let H denote the class of a line in \mathbb{P}^2 and assume that, for P_1, \ldots, P_k general in \mathbb{P}^2 , the linear system $rH - m_1P_1 - \cdots - m_kP_k$ is defective. Let $f: S \to \mathbb{P}^2$ be the blowing up of \mathbb{P}^2 at the points P_2, \ldots, P_k and set $L := rf^*H - m_2E_2 - \cdots - m_kE_k$, where each E_i is the exceptional divisor at P_i . Assume that L is very ample on S, of the expected dimension, and that $L - K_S$ is ample and base-point-free, with $(L - K_S)^2 > 16$. The method applies directly whenever **several** double and triple points are involved. (Never explored completely).

Straightforward application to blow ups of \mathbb{P}^2

Fix multiplicities $m_1 \leq m_2 \leq \cdots \leq m_k$. Let H denote the class of a line in \mathbb{P}^2 and assume that, for P_1, \ldots, P_k general in \mathbb{P}^2 , the linear system $rH - m_1P_1 - \cdots - m_kP_k$ is defective. Let $f: S \to \mathbb{P}^2$ be the blowing up of \mathbb{P}^2 at the points P_2, \ldots, P_k and set $L := rf^*H - m_2E_2 - \cdots - m_kE_k$, where each E_i is the exceptional divisor at P_i . Assume that L is very ample on S, of the expected dimension, and that $L - K_S$ is ample and base-point-free, with $(L - K_S)^2 > 16$. Assume, finally, that $m_1 \leq 3$. The method applies directly whenever **several** double and triple points are involved. (Never explored completely).

Straightforward application to blow ups of \mathbb{P}^2

Fix multiplicities $m_1 \leq m_2 \leq \cdots \leq m_k$. Let H denote the class of a line in \mathbb{P}^2 and assume that, for P_1, \ldots, P_k general in \mathbb{P}^2 , the linear system $rH - m_1P_1 - \cdots - m_kP_k$ is defective. Let $f: S \to \mathbb{P}^2$ be the blowing up of \mathbb{P}^2 at the points P_2, \ldots, P_k and set $L := rf^*H - m_2E_2 - \cdots - m_kE_k$, where each E_i is the exceptional divisor at P_i . Assume that L is very ample on S, of the expected dimension, and that $L - K_S$ is ample and base-point-free, with $(L - K_S)^2 > 16$. **Assume, finally, that** $m_1 \leq 3$. Then $m_1 = 3$ and the general element of the linear system is non-reduced.

Moreover L embeds S as a ruled surface.

イロト イヨト イヨト 一支

The method applies directly whenever **several** double and triple points are involved. (Never explored completely).

Straightforward application to blow ups of \mathbb{P}^2

Fix multiplicities $m_1 \leq m_2 \leq \cdots \leq m_k$. Let H denote the class of a line in \mathbb{P}^2 and assume that, for P_1, \ldots, P_k general in \mathbb{P}^2 , the linear system $rH - m_1P_1 - \cdots - m_kP_k$ is defective. Let $f : S \to \mathbb{P}^2$ be the blowing up of \mathbb{P}^2 at the points P_2, \ldots, P_k and set $L := rf^*H - m_2E_2 - \cdots - m_kE_k$, where each E_i is the exceptional divisor at P_i . Assume that L is very ample on S, of the expected dimension, and that $L - K_S$ is ample and base-point-free, with $(L - K_S)^2 > 16$. **Assume, finally, that** $m_1 \leq 3$. Then $m_1 = 3$ and the general element of the linear system is non-reduced.

Moreover L embeds S as a ruled surface. (Segre's conjecture holds).

- The method only applies when several numerical conditions are satisfied (due to the fact that one wants the bundle \mathcal{E} to be Bogomolov unstable).
 - Try to use other unstability conditions.

- Try to use other unstability conditions.

• The method produces a vector bundle only if the equisingular deformation scheme is (locally) complete intersection, which holds only for double and triple points.

- Try to use other unstability conditions.

- The method produces a vector bundle only if the equisingular deformation scheme is (locally) complete intersection, which holds only for double and triple points.
 - Try to use torsion free sheaves, or use sheaves in a smarter way.

- Try to use other unstability conditions.

- The method produces a vector bundle only if the equisingular deformation scheme is (locally) complete intersection, which holds only for double and triple points.
 - Try to use torsion free sheaves, or use sheaves in a smarter way.

challenging ...

Final remark

MODERN ALGEBRA AND CLASSICAL GE

Thank you for your attention

Thank you for your attention

... e auguri, Edoardo!

MODERN ALGEBRA AND CLASSICAL GE

Thank you for your attention

... e auguri, Edoardo!

MODERN ALGEBRA AND CLASSICAL GE

June 27, 2017 31 / 31