# Unstability and interpolation 

Luca Chiantini<br>Universitá di Siena, Italy

# MODERN ALGEBRA AND CLASSICAL GEOMETRY 

Together with Edoardo Sernesi

$$
\text { June 27, } 2017
$$

## Index of the talk

(1) Introduction
(2) An old result
(3) Applications to interpolation

4 Further extensions

## The starting point

LC, Edoardo Sernesi

Nodal curves on surfaces of general type.
Math. Ann. 307 (1997), 41-56

## The starting point

LC, Edoardo Sernesi

Nodal curves on surfaces of general type.
Math. Ann. 307 (1997), 41-56

## Severi varieties of surfaces

## The starting point

LC, Edoardo Sernesi

Nodal curves on surfaces of general type.
Math. Ann. 307 (1997), 41-56

## Severi varieties of surfaces

Varieties which parameterize singular curves in a fixed linear system on a non-singular surface.

## The starting point

LC, Edoardo Sernesi

Nodal curves on surfaces of general type.
Math. Ann. 307 (1997), 41-56

## Severi varieties of surfaces

Varieties which parameterize singular (nodal) curves in a fixed linear system on a non-singular surface.

## The starting point

LC, Edoardo Sernesi
Nodal curves on surfaces of general type.
Math. Ann. 307 (1997), 41-56

## Severi varieties of surfaces

Varieties which parameterize singular (nodal) curves in a fixed linear system on a non-singular surface.

The name comes from Severi's result on the varieties which parameterize singular nodal curves in $\mathbb{P}^{2}$.

## Severi varieties of liner systems

## Definition

## $S$ projective surface. $D \subset S$ smooth curve.

## Severi varieties of liner systems

## Definition

$S$ projective surface. $D \subset S$ smooth curve.
$D \in\left|L_{D}\right|$.

## Severi varieties of liner systems

## Definition

$S$ projective surface. $D \subset S$ smooth curve.
$D \in\left|L_{D}\right|$.
The Severi varieties of $D$ are the varieties $V_{\delta, D} \subset\left|L_{D}\right|$ of curves $C \in\left|L_{D}\right|$ which are irreducible, with $\delta$ nodes.

## Severi varieties of liner systems

## Definition

$S$ projective surface. $D \subset S$ smooth curve.
$D \in\left|L_{D}\right|$.
The Severi varieties of $D$ are the varieties $V_{\delta, D} \subset\left|L_{D}\right|$ of curves $C \in\left|L_{D}\right|$ which are irreducible, with $\delta$ nodes.

## Problems

## Severi varieties of liner systems

## Definition

$S$ projective surface. $D \subset S$ smooth curve.
$D \in\left|L_{D}\right|$.
The Severi varieties of $D$ are the varieties $V_{\delta, D} \subset\left|L_{D}\right|$ of curves $C \in\left|L_{D}\right|$ which are irreducible, with $\delta$ nodes.

## Problems

- non-emptiness?


## Severi varieties of liner systems

## Definition

$S$ projective surface. $D \subset S$ smooth curve.
$D \in\left|L_{D}\right|$.
The Severi varieties of $D$ are the varieties $V_{\delta, D} \subset\left|L_{D}\right|$ of curves $C \in\left|L_{D}\right|$ which are irreducible, with $\delta$ nodes.

## Problems

- non-emptiness? irreducibility?


## Severi varieties of liner systems

## Definition

$S$ projective surface. $D \subset S$ smooth curve.
$D \in\left|L_{D}\right|$.
The Severi varieties of $D$ are the varieties $V_{\delta, D} \subset\left|L_{D}\right|$ of curves $C \in\left|L_{D}\right|$ which are irreducible, with $\delta$ nodes.

## Problems

- non-emptiness? irreducibility? connectedness?


## Severi varieties of liner systems

## Definition

$S$ projective surface. $D \subset S$ smooth curve.
$D \in\left|L_{D}\right|$.
The Severi varieties of $D$ are the varieties $V_{\delta, D} \subset\left|L_{D}\right|$ of curves $C \in\left|L_{D}\right|$ which are irreducible, with $\delta$ nodes.

## Problems

- non-emptiness? irreducibility? connectedness?
- smoothness?


## Severi varieties of liner systems

## Definition

$S$ projective surface. $D \subset S$ smooth curve.
$D \in\left|L_{D}\right|$.
The Severi varieties of $D$ are the varieties $V_{\delta, D} \subset\left|L_{D}\right|$ of curves $C \in\left|L_{D}\right|$ which are irreducible, with $\delta$ nodes.

## Problems

- non-emptiness? irreducibility? connectedness?
- smoothness?
- dimension?


## Severi varieties of liner systems

## Definition

$S$ projective surface. $D \subset S$ smooth curve.
$D \in\left|L_{D}\right|$.
The Severi varieties of $D$ are the varieties $V_{\delta, D} \subset\left|L_{D}\right|$ of curves $C \in\left|L_{D}\right|$ which are irreducible, with $\delta$ nodes.

## Problems

- non-emptiness? irreducibility? connectedness?
- smoothness?
- dimension? (expected dimension $=\max \left\{-1, \operatorname{dim}\left|L_{D}\right|-\delta\right)$.


## Some results

## Problems

- irreducibility? connectedness? non-emptiness?
- smoothness?
- dimension? (expected dimension $=\max \left\{-1, \operatorname{dim}\left|L_{D}\right|-\delta\right.$ ).

Many classical and modern authors found results on the problems above, when the surface $S$ is $\mathbb{P}^{2}$,

## Some results

## Problems

- irreducibility? connectedness? non-emptiness?
- smoothness?
- dimension? (expected dimension $=\max \left\{-1, \operatorname{dim}\left|L_{D}\right|-\delta\right.$ ).

Many classical and modern authors found results on the problems above, when the surface $S$ is $\mathbb{P}^{2}$, or more in general when $S$ is rational, K3, etc.

## Some results

## Problems

- irreducibility? connectedness? non-emptiness?
- smoothness?
- dimension? (expected dimension $=\max \left\{-1, \operatorname{dim}\left|L_{D}\right|-\delta\right.$ ).

Many classical and modern authors found results on the problems above, when the surface $S$ is $\mathbb{P}^{2}$, or more in general when $S$ is rational, K3, etc.

## Main tool

Non-speciality of the normal sheaf of the desigularization $\tilde{C} \rightarrow C$ of $C$.

## Some results

## Problems

- irreducibility? connectedness? non-emptiness?
- smoothness?
- dimension? (expected dimension $=\max \left\{-1, \operatorname{dim}\left|L_{D}\right|-\delta\right.$ ).

Many classical and modern authors found results on the problems above, when the surface $S$ is $\mathbb{P}^{2}$, or more in general when $S$ is rational, K3, etc.

## Main tool

Non-speciality of the normal sheaf of the desigularization $\tilde{C} \rightarrow C$ of $C$.

When $S$ has general type, the previous tool fails and one needs new ideas of investigation.

## $S$ of general type

New idea (Edoardo)
Let $C \in\left|L_{D}\right|$ be a nodal curve. Call $N$ the set of $\delta$ nodes of $C$.

## $S$ of general type

## New idea (Edoardo)

Let $C \in\left|L_{D}\right|$ be a nodal curve. Call $N$ the set of $\delta$ nodes of $C$. The tangent space to $C$ in $\left|L_{D}\right|$ can be identified with

$$
H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) /<C>
$$

## $S$ of general type

## New idea (Edoardo)

Let $C \in\left|L_{D}\right|$ be a nodal curve. Call $N$ the set of $\delta$ nodes of $C$. The tangent space to $C$ in $\left|L_{D}\right|$ can be identified with

$$
H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) /<C>
$$

The tangent space to $C$ in $V_{\delta, D}$ can be identified with

$$
H^{0}\left(\mathcal{I}_{N}\left(L_{D}\right)\right) /<C>
$$

## $S$ of general type

## New idea (Edoardo)

Let $C \in\left|L_{D}\right|$ be a nodal curve. Call $N$ the set of $\delta$ nodes of $C$. The tangent space to $C$ in $\left|L_{D}\right|$ can be identified with

$$
H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) /<C>
$$

The tangent space to $C$ in $V_{\delta, D}$ can be identified with

$$
H^{0}\left(\mathcal{I}_{N}\left(L_{D}\right)\right) /<C>
$$

If $V_{\delta, D}$ is not smooth of codimension $\delta$ at $C$, then $N$ fails to impose independent conditions to $L_{D}$.

## $S$ of general type

## New idea (Edoardo)

Let $C \in\left|L_{D}\right|$ be a nodal curve. Call $N$ the set of $\delta$ nodes of $C$.
The tangent space to $C$ in $\left|L_{D}\right|$ can be identified with

$$
H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) /<C>
$$

The tangent space to $C$ in $V_{\delta, D}$ can be identified with

$$
H^{0}\left(\mathcal{I}_{N}\left(L_{D}\right)\right) /<C>
$$

If $V_{\delta, D}$ is not smooth of codimension $\delta$ at $C$, then $N$ fails to impose independent conditions to $L_{D}$.
I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. Math. 127 (1988), 309-316.
M. Beltrametti, P. Francia, A. J. Sommese, On Reiders method and higher order embeddings. Duke Math. J. 58 (1989), 425-439.

## $S$ of general type

## New idea (Edoardo)

If $V_{\delta, D}$ is not smooth of codimension $\delta$ at $C$, then $N$ fails to impose independent conditions to $L_{D}$. So the map $H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{N}\right)=\mathbb{C}^{\delta}$ has a non-trivial cokernel.

## $S$ of general type

## New idea (Edoardo)

If $V_{\delta, D}$ is not smooth of codimension $\delta$ at $C$, then $N$ fails to impose independent conditions to $L_{D}$. So the map $H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{N}\right)=\mathbb{C}^{\delta}$ has a non-trivial cokernel.

By Serre's construction, this yields a rank 2 bundle $\mathcal{E}$ with a global section vanishing at $N$

## $S$ of general type

## New idea (Edoardo)

If $V_{\delta, D}$ is not smooth of codimension $\delta$ at $C$, then $N$ fails to impose independent conditions to $L_{D}$. So the map $H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{N}\right)=\mathbb{C}^{\delta}$ has a non-trivial cokernel.

By Serre's construction, this yields a rank 2 bundle $\mathcal{E}$ with a global section vanishing at $N$ (or at some non-empty subset $N_{0}$ of $N$ ).

## $S$ of general type

## New idea (Edoardo)

If $V_{\delta, D}$ is not smooth of codimension $\delta$ at $C$, then $N$ fails to impose independent conditions to $L_{D}$. So the map $H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{N}\right)=\mathbb{C}^{\delta}$ has a non-trivial cokernel.

By Serre's construction, this yields a rank 2 bundle $\mathcal{E}$ with a global section vanishing at $N$ (or at some non-empty subset $N_{0}$ of $N$ ). ([GH]).

## $S$ of general type

## New idea (Edoardo)

If $V_{\delta, D}$ is not smooth of codimension $\delta$ at $C$, then $N$ fails to impose independent conditions to $L_{D}$. So the map $H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{N}\right)=\mathbb{C}^{\delta}$ has a non-trivial cokernel.

By Serre's construction, this yields a rank 2 bundle $\mathcal{E}$ with a global section vanishing at $N$ (or at some non-empty subset $N_{0}$ of $N$ ). ([GH]). The Chern classes of $\mathcal{E}$ are:

$$
\begin{gathered}
c_{1}(\mathcal{E})=L_{D}-K_{S} \\
c_{2}(\mathcal{E})=\operatorname{deg}\left(N_{0}\right) \leq \delta
\end{gathered}
$$

## $S$ of general type

## New idea (Edoardo)

By Serre's construction, this yields a rank 2 bundle $\mathcal{E}$ with a global section vanishing at $N$ (or at some non-empty subset $N_{0}$ of $N$ ).
The Chern classes of $\mathcal{E}$ are: $c_{1}(\mathcal{E})=L_{D}-K_{S} ; c_{2}(\mathcal{E})=\operatorname{deg}\left(N_{0}\right) \leq \delta$.
When $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, the bundle $\mathcal{E}$ is Bogomolov unstable,

## $S$ of general type

## New idea (Edoardo)

By Serre's construction, this yields a rank 2 bundle $\mathcal{E}$ with a global section vanishing at $N$ (or at some non-empty subset $N_{0}$ of $N$ ). The Chern classes of $\mathcal{E}$ are: $c_{1}(\mathcal{E})=L_{D}-K_{S} ; c_{2}(\mathcal{E})=\operatorname{deg}\left(N_{0}\right) \leq \delta$.

When $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, the bundle $\mathcal{E}$ is Bogomolov unstable, thus there exists a destabilizing divisor $M$.

## $S$ of general type

## New idea (Edoardo)

By Serre's construction, this yields a rank 2 bundle $\mathcal{E}$ with a global section vanishing at $N$ (or at some non-empty subset $N_{0}$ of $N$ ).
The Chern classes of $\mathcal{E}$ are: $c_{1}(\mathcal{E})=L_{D}-K_{S} ; c_{2}(\mathcal{E})=\operatorname{deg}\left(N_{0}\right) \leq \delta$.
When $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, the bundle $\mathcal{E}$ is Bogomolov unstable, thus there exists a destabilizing divisor $M$.

$$
h^{0}(\mathcal{E}(-M))>0 \quad \text { and } \quad\left(2 M-c_{1}(\mathcal{E})\right) K_{S}>0
$$

## $S$ of general type

## New idea (Edoardo)

By Serre's construction, this yields a rank 2 bundle $\mathcal{E}$ with a global section vanishing at $N$ (or at some non-empty subset $N_{0}$ of $N$ ).
The Chern classes of $\mathcal{E}$ are: $c_{1}(\mathcal{E})=L_{D}-K_{S} ; c_{2}(\mathcal{E})=\operatorname{deg}\left(N_{0}\right) \leq \delta$.
When $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, the bundle $\mathcal{E}$ is Bogomolov unstable, thus there exists a destabilizing divisor $M$.

$$
h^{0}(\mathcal{E}(-M))>0 \quad \text { and } \quad\left(2 M-c_{1}(\mathcal{E})\right) K_{S}>0
$$

Then, work with the arithmetic of $S, M, K_{S}, L_{D}$, in order to exclude the existence of $M$.

## $S$ of general type

## Theorem (LC, E. Sernesi)

Let $S$ be a smooth surface such that $K_{S}$ is ample and let $C$ be an irreducible curve on $S$ such that $C={ }_{\text {num }} p K_{S} ; p \geq 2 ; p \in \mathbb{Q}$ and the linear system $L_{D}$ of $C$ has smooth general member $D$. Assume that $C$ has $\delta \geq 1$ nodes and no other singularities.
If $\delta<p(p-2) K_{S}^{2} / 4$, then $V_{\delta, D}$ is smooth of codimension $\delta$ at $C$.

## $S$ of general type

## Theorem (LC, E. Sernesi)

Let $S$ be a smooth surface such that $K_{S}$ is ample and let $C$ be an irreducible curve on $S$ such that $C={ }_{\text {num }} p K_{S} ; p \geq 2 ; p \in \mathbb{Q}$ and the linear system $L_{D}$ of $C$ has smooth general member $D$. Assume that $C$ has $\delta \geq 1$ nodes and no other singularities.
If $\delta<p(p-2) K_{S}^{2} / 4$, then $V_{\delta, D}$ is smooth of codimension $\delta$ at $C$.

## Corollary

Let $S$ be a smooth surface of degree $d \geq 5$ in $\mathbb{P}^{3}$ with plane section $H$. Assume that $C \in|n H|$ has $\delta$ nodes and no other singularities and

$$
\delta<\frac{n d(n-2 d+8)}{4}
$$

Then $V_{\delta, n H}$ is smooth of codimension $\delta$ at the point $C$.

## $S$ of general type

## Theorem (LC, E. Sernesi)

Let $S$ be a smooth surface such that $K_{S}$ is ample and let $C$ be an irreducible curve on $S$ such that $C={ }_{\text {num }} p K_{S} ; p \geq 2 ; p \in \mathbb{Q}$ and the linear system $L_{D}$ of $C$ has smooth general member $D$. Assume that $C$ has $\delta \geq 1$ nodes and no other singularities.
If $\delta<p(p-2) K_{S}^{2} / 4$, then $V_{\delta, D}$ is smooth of codimension $\delta$ at $C$.

## Corollary

Let $S$ be a smooth surface of degree $d \geq 5$ in $\mathbb{P}^{3}$ with plane section $H$. Assume that $C \in|n H|$ has $\delta$ nodes and no other singularities and

$$
\delta<\frac{n d(n-2 d+8)}{4}
$$

Then $V_{\delta, n H}$ is smooth of codimension $\delta$ at the point $C$.
The result of the corollary is sharp, at least for $d=5$.

## Results with make use of the idea.

Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, New asymptotics in the geometry of equisingular families of curves, Internat. Math. Res. Notices 13 (1997), 595-611.
Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, Castelnuovo function, zero-dimensional schemes and singular plane curves, J. Algebraic Geom. 9 (2000), no. 4, 663-710.
Flaminio Flamini, Moduli of nodal curves on smooth surfaces of general type, J. Algebraic Geom. 11 (2001), no. 4, 725-760.

## Results with make use of the idea.

Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, New asymptotics in the geometry of equisingular families of curves, Internat. Math. Res. Notices 13 (1997), 595-611.
Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, Castelnuovo function, zero-dimensional schemes and singular plane curves, J. Algebraic Geom. 9 (2000), no. 4, 663-710.
Flaminio Flamini, Moduli of nodal curves on smooth surfaces of general type, J. Algebraic Geom. 11 (2001), no. 4, 725-760.

LC and Thomas Markwig, Triple-Point Defective Ruled Surfaces, J. Pure Appl. Alg. 212, n. 6 (2008), 1337-1346.
LC and Thomas Markwig, Triple-Point Defective Surfaces, Adv. Geom. 10 (2010), 527-547.

## Interpolation

The basic interpolation problem
Let $P_{1}, \ldots, P_{k}$ be general points on the (smooth) surface $S$.
Let $|L|$ be a linear system on $S$

## Interpolation

## The basic interpolation problem

Let $P_{1}, \ldots, P_{k}$ be general points on the (smooth) surface $S$. Let $|L|$ be a linear system on $S$ (complete and very ample).

## Interpolation

## The basic interpolation problem

Let $P_{1}, \ldots, P_{k}$ be general points on the (smooth) surface $S$.
Let $|L|$ be a linear system on $S$ (complete and very ample).
Find the dimension of the system of curves $C \in|L|$ passing through each $P_{i}$ with prescribed multiplicity $m_{i}$ (at least).

$$
\operatorname{dim}\left|L-\sum m_{i} P_{i}\right|
$$

## Interpolation

## The basic interpolation problem

Let $P_{1}, \ldots, P_{k}$ be general points on the (smooth) surface $S$.
Let $|L|$ be a linear system on $S$ (complete and very ample).
Find the dimension of the system of curves $C \in|L|$ passing through each $P_{i}$ with prescribed multiplicity $m_{i}$ (at least).

$$
\operatorname{dim}\left|L-\sum m_{i} P_{i}\right|
$$

$$
\operatorname{dim}\left|L-\sum m_{i} P_{i}\right| \geq \operatorname{dim}|L|-\sum\binom{m_{i}+1}{2}
$$

## Interpolation

## The basic interpolation problem

Let $P_{1}, \ldots, P_{k}$ be general points on the (smooth) surface $S$. Let $|L|$ be a linear system on $S$ (complete and very ample).
Find the dimension of the system of curves $C \in|L|$ passing through each $P_{i}$ with prescribed multiplicity $m_{i}$ (at least).

$$
\operatorname{dim}\left|L-\sum m_{i} P_{i}\right|
$$

$$
\operatorname{dim}\left|L-\sum m_{i} P_{i}\right| \geq \operatorname{dim}|L|-\sum\binom{m_{i}+1}{2}
$$

expected dimension $=\max \left\{-1, \operatorname{dim}|L|-\sum\binom{m_{i}+1}{2}\right\}$.

## Interpolation

## What if expected dimension $\neq \operatorname{dim}\left|L-\sum m_{i} P_{i}\right|$ ?

## Interpolation

## What if expected dimension $\neq \operatorname{dim}\left|L-\sum m_{i} P_{i}\right|$ ?

Some initial results on $S=\mathbb{P}^{2}, L=d H$

## Interpolation

What if expected dimension $\neq \operatorname{dim}\left|L-\sum m_{i} P_{i}\right|$ ?
Some initial results on $S=\mathbb{P}^{2}, L=d H$
If $m_{i}=2$ for all $i$, the situation is classified (classical);

## Interpolation

What if expected dimension $\neq \operatorname{dim}\left|L-\sum m_{i} P_{i}\right|$ ?
Some initial results on $S=\mathbb{P}^{2}, L=d H$
If $m_{i}=2$ for all $i$, the situation is classified (classical);
If $k=1$ (interpolation on one point)

## Interpolation

What if expected dimension $\neq \operatorname{dim}\left|L-\sum m_{i} P_{i}\right|$ ?
Some initial results on $S=\mathbb{P}^{2}, L=d H$
If $m_{i}=2$ for all $i$, the situation is classified (classical);
If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## Interpolation

What if expected dimension $\neq \operatorname{dim}\left|L-\sum m_{i} P_{i}\right|$ ?
Some initial results on $S=\mathbb{P}^{2}, L=d H$
If $m_{i}=2$ for all $i$, the situation is classified (classical);
If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## B. Segre's conjecture in $\mathbb{P}^{2}$

If $\operatorname{dim}\left|L-\sum m_{i} P_{i}\right|>$ expected dimension, then $\left|L-\sum m_{i} P_{i}\right|$ has a fixed component of multiplicity $\geq 2$.

## More general surfaces $S$

## More general surfaces $S$

## Double points (nodal curves)

If $m_{i}=2$ for all $i$, the situation is classified (Terracini 1923).

## More general surfaces $S$

## Double points (nodal curves) <br> If $m_{i}=2$ for all $i$, the situation is classified (Terracini 1923).

The rest is widely open.

## More general surfaces $S$

## Double points (nodal curves)

If $m_{i}=2$ for all $i$, the situation is classified (Terracini 1923).

The rest is widely open.

## Some results

J. Huizenga, Interpolation on surfaces in $\mathbb{P}^{3}$. Trans. Amer. Math. Soc. 365 (2013), 623-644.
C. De Volder, A. Laface, Recent results on linear systems on generic K3 surfaces. Rend. Sem. Mat. Univ. Pol. Torino 63 (2005) 91-94.
D. Franco, G. Ilardi, On a theorem of Togliatti. Intern. Math. J. 2 (2002), 379-397.
A. Landesman, A. Patel, Interpolation Problems: Del Pezzo Surfaces. (2016) arXiv:1601.05840
E. Mezzetti, R.M. Miró Roig, Togliatti systems and Galois coverings. (2016) arXiv:1611.05620

## Other surfaces $S$

The case of $\mathbb{P}^{2}, L=d H$
If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.

## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.
Let $S$ be a ruled surface in $\mathbb{P}^{n}$ and take $L=H$.
Then, imposing one triple point gives only 5 conditions (expected 6 ).

## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.

Let $S$ be a ruled surface in $\mathbb{P}^{n}$ and take $L=H$.
Then, imposing one triple point gives only 5 conditions (expected 6 ).


## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.

Let $S$ be a ruled surface in $\mathbb{P}^{n}$ and take $L=H$.
Then, imposing one triple point gives only 5 conditions (expected 6 ).


The divisor splits one line of the ruling

## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.

Let $S$ be a ruled surface in $\mathbb{P}^{n}$ and take $L=H$.
Then, imposing one triple point gives only 5 conditions (expected 6 ).


The divisor splits one line of the ruling but the picture is a FAKE ...

## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.

Let $S$ be a ruled surface in $\mathbb{P}^{n}$ and take $L=H$.
Then, imposing one triple point gives only 5 conditions (expected 6 ).


The divisor splits two lines of the ruling

## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.

Let $S$ be a ruled surface in $\mathbb{P}^{n}$ and take $L=H$.
Then, imposing one triple point gives only 5 conditions (expected 6 ).


The divisor splits two lines of the ruling so that the analogue of Segre conjecture holds

## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.

Even when $S=\mathbb{P}^{2}$ re-embedded with some non-complete linear system,

## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.

Even when $S=\mathbb{P}^{2}$ re-embedded with some non-complete linear system, (very particular sub-linear system of $|3 \mathrm{H}|$ ), there are examples that one triple point gives only 5 conditions (expected 6 ).

## Other surfaces $S$

## The case of $\mathbb{P}^{2}, L=d H$

If $k=1$ (interpolation on one point) the dimension is always equal to the expected one (elementary).

## When $S$ is not $\mathbb{P}^{2}$, the previous result may fail.

Even when $S=\mathbb{P}^{2}$ re-embedded with some non-complete linear system, (very particular sub-linear system of $|3 H|$ ), there are examples that one triple point gives only 5 conditions (expected 6 ).

The Togliatti system. A rather special projection of the 3-Veronese surface.

## Question: characterize triple-point defective surfaces

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

## CLASSICALLY

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

## CLASSICALLY

C. Segre and T.G. Room apparently stated that
"every triple-point defective surface is ruled".

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

## CLASSICALLY

C. Segre and T.G. Room apparently stated that
"every triple-point defective surface is ruled".

## Dye's example (1992)

This is not true in general.

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

## CLASSICALLY

C. Segre and T.G. Room apparently stated that
"every triple-point defective surface is ruled".

## Dye's example (1992)

This is not true in general.
Dye found an example of a special smooth intersection of three quadrics in $\mathbb{P}^{5}$ which is triple-point defective but contains only a finite number of lines.

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

## CLASSICALLY

C. Segre and T.G. Room apparently stated that
"every triple-point defective surface is ruled".

## Dye's example (1992)

This is not true in general.
Dye found an example of a special smooth intersection of three quadrics in $\mathbb{P}^{5}$ which is triple-point defective but contains only a finite number of lines.
R.H. Dye, The extraordinary higher tangent spaces of certain quadric intersections, Proceedings of the Edinburgh Mathematical Society 35 (1992), 437-447

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

## CLASSICALLY

C. Segre and T.G. Room apparently stated that
"every triple-point defective surface is ruled".

## Dye's example (1992)

This is not true in general.
Dye found an example of a special smooth intersection of three quadrics in $\mathbb{P}^{5}$ which is triple-point defective but contains only a finite number of lines.
R.H. Dye, The extraordinary higher tangent spaces of certain quadric intersections, Proceedings of the Edinburgh Mathematical Society 35 (1992), 437-447

In Dye's example the degree is $8=L^{2}=\left(L-K_{S}\right)^{2}$

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

Assume $S$ is linearly normal (which wipes out Togliatti's example).

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

Assume $S$ is linearly normal (which wipes out Togliatti's example).

## Partial answer by means of vector bundles

LC and Thomas Markwig, Triple-Point Defective Ruled Surfaces, J. Pure Appl. Alg. 212, n. 6 (2008), 1337-1346.
LC and Thomas Markwig, Triple-Point Defective Surfaces, Adv. Geom. 10 (2010), 527-547.

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

Assume $S$ is linearly normal (which wipes out Togliatti's example).

## Partial answer by means of vector bundles

LC and Thomas Markwig, Triple-Point Defective Ruled Surfaces, J. Pure Appl. Alg. 212, n. 6 (2008), 1337-1346.
LC and Thomas Markwig, Triple-Point Defective Surfaces, Adv. Geom. 10 (2010), 527-547.

## PARTIAL ANSWER:

Under some (mainly numerical) hypothesis, a triple point defective surface is ruled

## Question: characterize triple-point defective surfaces

Triple-point defective surfaces $=$ surfaces satisfying one Laplace equation of the second order $=$ surfaces such that a triple point imposes only 5 conditions to the polarization.

Assume $S$ is linearly normal (which wipes out Togliatti's example).

## Partial answer by means of vector bundles

LC and Thomas Markwig, Triple-Point Defective Ruled Surfaces, J. Pure Appl. Alg. 212, n. 6 (2008), 1337-1346.
LC and Thomas Markwig, Triple-Point Defective Surfaces, Adv. Geom. 10 (2010), 527-547.

## PARTIAL ANSWER:

Under some (mainly numerical) hypothesis, a triple point defective surface is ruled
(in the sense that the embedding sends the rulings to lines).

## Question: characterize triple-point defective surfaces

The equisingular deformations of a triple point

## Question: characterize triple-point defective surfaces

## The equisingular deformations of a triple point

T. Keilen, Families of Curves with Prescribed Singularities. PhD thesis, Universit'at Kaiserslautern (2001)., T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

## Question: characterize triple-point defective surfaces

## The equisingular deformations of a triple point

T. Keilen, Families of Curves with Prescribed Singularities. PhD thesis, Universit'at Kaiserslautern (2001).,
T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix $x, y$ local coordinates of a general point $P \in S$. Fix a curve $C \in\left|L_{D}\right|$ with a triple point in $P$.

## Question: characterize triple-point defective surfaces

## The equisingular deformations of a triple point

T. Keilen, Families of Curves with Prescribed Singularities. PhD thesis, Universit'at Kaiserslautern (2001).,
T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix $x, y$ local coordinates of a general point $P \in S$. Fix a curve $C \in\left|L_{D}\right|$ with a triple point in $P$.
Then the tangent space to the variety $V_{L_{D}}^{3}$ of curves in $\left|L_{D}\right|$ with a triple point has tangent space at $C$ defined by

$$
T\left(V_{L_{D}}^{3}\right)=H^{0}\left(\mathcal{I}_{Z}\left(L_{D}\right)\right) /<C>
$$

where $Z$ is the scheme, supported at $P$, defined by an ideal $J$ isomorphic to either:

$$
<x^{2}, y^{2}>\text { or }\left\langle x^{3}, y\right\rangle
$$

## Question: characterize triple-point defective surfaces

## The equisingular deformations of a triple point

T. Keilen, Families of Curves with Prescribed Singularities. PhD thesis, Universit'at Kaiserslautern (2001).,
T. Markwig, A note on equimultiple deformations. arXiv:0705.3911 (2007).

Fix $x, y$ local coordinates of a general point $P \in S$. Fix a curve $C \in\left|L_{D}\right|$ with a triple point in $P$.
Then the tangent space to the variety $V_{L_{D}}^{3}$ of curves in $\left|L_{D}\right|$ with a triple point has tangent space at $C$ defined by

$$
T\left(V_{L_{D}}^{3}\right)=H^{0}\left(\mathcal{I}_{Z}\left(L_{D}\right)\right) /<C>
$$

where $Z$ is the scheme, supported at $P$, defined by an ideal $J$ isomorphic to either:

$$
\left\langle x^{2}, y^{2}\right\rangle \text { or }\left\langle x^{3}, y\right\rangle
$$

## Question: characterize triple-point defective surfaces

The tangent space to the variety $V_{L_{D}}^{3}$ of curves in $\left|L_{D}\right|$ with a triple point has tangent space at $C$ defined by an ideal $J$ isomorphic to either:

$$
<x^{2}, y^{2}>\text { or }<x^{3}, y>
$$

## Remark

$J$ defines a (locally) complete intersection scheme $Z$ (of length 3,4 ).

## Question: characterize triple-point defective surfaces

The tangent space to the variety $V_{L_{D}}^{3}$ of curves in $\left|L_{D}\right|$ with a triple point has tangent space at $C$ defined by an ideal $J$ isomorphic to either:

$$
<x^{2}, y^{2}>\text { or }<x^{3}, y>
$$

## Remark

$J$ defines a (locally) complete intersection scheme $Z$ (of length 3,4 ).

## Edoardo's idea revisited

If the surface $S$ is not triple point defective, then $V_{L_{D}}^{3}$ is smooth of codimension 4 at $C$.

## Question: characterize triple-point defective surfaces

The tangent space to the variety $V_{L_{D}}^{3}$ of curves in $\left|L_{D}\right|$ with a triple point has tangent space at $C$ defined by an ideal $J$ isomorphic to either:

$$
<x^{2}, y^{2}>\text { or }<x^{3}, y>
$$

## Remark

$J$ defines a (locally) complete intersection scheme $Z$ (of length 3,4 ).

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then $Z$ fails to impose independent conditions to $L_{D}$.

## Question: characterize triple-point defective surfaces

The tangent space to the variety $V_{L_{D}}^{3}$ of curves in $\left|L_{D}\right|$ with a triple point has tangent space at $C$ defined by an ideal $J$ isomorphic to either:

$$
\left.<x^{2}, y^{2}\right\rangle \text { or }\left\langle x^{3}, y>\right.
$$

## Remark

$J$ defines a (locally) complete intersection scheme $Z$ (of length 3,4 ).

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then $Z$ fails to impose independent conditions to $L_{D}$.
So the map $\left.H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{Z}\right)\right)=\mathbb{C}^{4}$ has a non-trivial cokernel.

## Question: characterize triple-point defective surfaces

The tangent space to the variety $V_{L_{D}}^{3}$ of curves in $\left|L_{D}\right|$ with a triple point has tangent space at $C$ defined by an ideal $J$ isomorphic to either:

$$
\left.<x^{2}, y^{2}\right\rangle \text { or }\left\langle x^{3}, y>\right.
$$

## Remark

$J$ defines a (locally) complete intersection scheme $Z$ (of length 3,4 ).

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then $Z$ fails to impose independent conditions to $L_{D}$.
So the map $\left.H^{0}\left(\mathcal{O}_{S}\left(L_{D}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{Z}\right)\right)=\mathbb{C}^{4}$ has a non-trivial cokernel. Thus, by Serre's construction, we find a rank 2 vector bundle $\mathcal{E}$ with a section supported at the equisingular scheme $Z$.

## Question: characterize triple-point defective surfaces

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then we find a rank 2 vector bundle $\mathcal{E}$ with a section supported at $Z$.

## Question: characterize triple-point defective surfaces

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then we find a rank 2 vector bundle $\mathcal{E}$ with a section supported at $Z$.

Assume:

$$
\left(L_{D}-K_{S}\right)^{2}>16
$$

Then $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, in other words $\mathcal{E}$ is Bogomolov unstable.

## Question: characterize triple-point defective surfaces

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then we find a rank 2 vector bundle $\mathcal{E}$ with a section supported at $Z$.

Assume:

$$
\left(L_{D}-K_{S}\right)^{2}>16
$$

Then $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, in other words $\mathcal{E}$ is Bogomolov unstable. Then there exists a destabilizing divisor $M$

## Question: characterize triple-point defective surfaces

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then we find a rank 2 vector bundle $\mathcal{E}$ with a section supported at $Z$.

Assume:

$$
\left(L_{D}-K_{S}\right)^{2}>16
$$

Then $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, in other words $\mathcal{E}$ is Bogomolov unstable. Then there exists a destabilizing divisor $M$ and the game starts again.

## Question: characterize triple-point defective surfaces

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then we find a rank 2 vector bundle $\mathcal{E}$ with a section supported at $Z$.

Assume:

$$
\left(L_{D}-K_{S}\right)^{2}>16
$$

Then $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, in other words $\mathcal{E}$ is Bogomolov unstable. Then there exists a destabilizing divisor $M$ and the game starts again.

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$.

## Question: characterize triple-point defective surfaces

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then we find a rank 2 vector bundle $\mathcal{E}$ with a section supported at $Z$.

Assume:

$$
\left(L_{D}-K_{S}\right)^{2}>16
$$

Then $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, in other words $\mathcal{E}$ is Bogomolov unstable. Then there exists a destabilizing divisor $M$ and the game starts again.

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$.

## Question: characterize triple-point defective surfaces

## Edoardo's idea revisited

If $V_{L_{D}}^{3}$ is not smooth of codimension 4 at $C$, then we find a rank 2 vector bundle $\mathcal{E}$ with a section supported at $Z$.

Assume:

$$
\left(L_{D}-K_{S}\right)^{2}>16
$$

Then $c_{1}(\mathcal{E})^{2}-4 c_{2}(\mathcal{E})>0$, in other words $\mathcal{E}$ is Bogomolov unstable. Then there exists a destabilizing divisor $M$ and the game starts again.

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$.
Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the ruling through $P$ as a fixed component with multiplicity at least two.

## Question: characterize triple-point defective surfaces

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the ruling through $P$ as a fixed component with multiplicity at least two.

It is a sort of analogue of Segre's conjecture,

## Question: characterize triple-point defective surfaces

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the ruling through $P$ as a fixed component with multiplicity at least two.

It is a sort of analogue of Segre's conjecture, but of course it requires non trivial numerical and non-numerical hypothesis.

## Question: characterize triple-point defective surfaces

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the ruling through $P$ as a fixed component with multiplicity at least two.

It is a sort of analogue of Segre's conjecture, but of course it requires non trivial numerical and non-numerical hypothesis.

Examples of ruled surfaces satisfying the assumption (and their description) can be found in:
LC and Thomas Markwig, Triple-Point Defective Ruled Surfaces, J. Pure Appl. Alg. 212, n. 6 (2008), 1337-1346.

## Question: characterize triple-point defective surfaces

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the fibre of the ruling through $P$ as fixed component with multiplicity at least two.

HINT of the PROOF:

## Question: characterize triple-point defective surfaces

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the fibre of the ruling through $P$ as fixed component with multiplicity at least two.

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$.

## Question: characterize triple-point defective surfaces

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the fibre of the ruling through $P$ as fixed component with multiplicity at least two.

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$. Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$.

## Question: characterize triple-point defective surfaces

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the fibre of the ruling through $P$ as fixed component with multiplicity at least two.

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$. Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$.

## Question: characterize triple-point defective surfaces

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L-K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the fibre of the ruling through $P$ as fixed component with multiplicity at least two.

## HINT of the PROOF:

Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$. Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$. Moreover

$$
4 \geq \operatorname{length}(Z) \geq M \cdot A \geq A^{2}+1
$$

## Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$. Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$.

$$
4 \geq \operatorname{length}(Z) \geq M \cdot A \geq A^{2}+1
$$

## Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$. Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$.

$$
4 \geq \operatorname{length}(Z) \geq M \cdot A \geq A^{2}+1
$$

Need to prove that length $(Z)<4$. I.e. exclude $J=<x^{2}, y^{2}>$.


## Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$. Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$. Moreover

$$
4 \geq \operatorname{length}(Z) \geq M \cdot A \geq A^{2}+1
$$

## Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$. Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$. Moreover

$$
4 \geq \operatorname{length}(Z) \geq M \cdot A \geq A^{2}+1
$$

As the point moves, we obtain a family $\mathcal{F}$ of divisors $A$ as above.

## Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$.
Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$.
Moreover

$$
4 \geq \text { length }(Z) \geq M \cdot A \geq A^{2}+1
$$

As the point moves, we obtain a family $\mathcal{F}$ of divisors $A$ as above. Then one proves that $\mathcal{F}$ has no fixed part (numerical trick),

## Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$.
Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$.
Moreover

$$
4 \geq \operatorname{length}(Z) \geq M \cdot A \geq A^{2}+1
$$

As the point moves, we obtain a family $\mathcal{F}$ of divisors $A$ as above. Then one proves that $\mathcal{F}$ has no fixed part (numerical trick), and concludes that length $(Z)<4$.

## Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$.
Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$.
Moreover

$$
4 \geq \text { length }(Z) \geq M \cdot A \geq A^{2}+1
$$

As the point moves, we obtain a family $\mathcal{F}$ of divisors $A$ as above. Then one proves that $\mathcal{F}$ has no fixed part (numerical trick), and concludes that length $(Z)<4$.
Going back, it turns out that $A$ is rational and $A^{2}=0, A \cdot L=1$.

## Question: characterize triple-point defective surfaces

HINT of the PROOF:
Consider the destabilizing divisor $M$ and define $A=L-K_{S}-M$.
Then $A$ is effective and $(M-A)^{2}>0,(M-A) \cdot H>0$ for any ample $H$. $\mathcal{E}(-M)$ has a section vanishing on a set $Z \subset B$, for some curve $B \in|A|$. Moreover

$$
4 \geq \text { length }(Z) \geq M \cdot A \geq A^{2}+1
$$

As the point moves, we obtain a family $\mathcal{F}$ of divisors $A$ as above. Then one proves that $\mathcal{F}$ has no fixed part (numerical trick), and concludes that length $(Z)<4$.
Going back, it turns out that $A$ is rational and $A^{2}=0, A \cdot L=1$.

## Strength

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the fibre of the ruling through $P$ as fixed component with multiplicity at least two.

## Strength

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the fibre of the ruling through $P$ as fixed component with multiplicity at least two.

- The method is constructive as the double divisor which appears in the statement arises from the destabilizing divisor of $\mathcal{E}$.


## Strength

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the fibre of the ruling through $P$ as fixed component with multiplicity at least two.

- The method is constructive as the double divisor which appears in the statement arises from the destabilizing divisor of $\mathcal{E}$. It gives a geometrical evidence to (and analogue of) Segre's conjecture.


## Strength

## Theorem (LC and T. Markwig)

Let $L$ be a very ample line bundle on $S$, such that $L K_{S}$ is ample and base-point-free.
Assume moreover that $\left(L-K_{S}\right)^{2}>16$. Let $S$ be triple-point defective. Then $S$ is ruled in the embedding defined by $L$. Moreover, for $P \in S$ general, curves $C \in|L-3 P|$ contain the fibre of the ruling through $P$ as fixed component with multiplicity at least two.

- The method is constructive as the double divisor which appears in the statement arises from the destabilizing divisor of $\mathcal{E}$. It gives a geometrical evidence to (and analogue of) Segre's conjecture.
- The method itself clarifies why the surface must be linearly normal.


## Strength

The method applies directly whenever several double and triple points are involved.

## Strength

The method applies directly whenever several double and triple points are involved. (Never explored completely).

## Strength

The method applies directly whenever several double and triple points are involved. (Never explored completely).

## Straightforward application to blow ups of $\mathbb{P}^{2}$

Fix multiplicities $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$. Let $H$ denote the class of a line in $\mathbb{P}^{2}$ and assume that, for $P_{1}, \ldots, P_{k}$ general in $\mathbb{P}^{2}$, the linear system $r H-m_{1} P_{1}-\cdots-m_{k} P_{k}$ is defective. Let $f: S \rightarrow \mathbb{P}^{2}$ be the blowing up of $\mathbb{P}^{2}$ at the points $P_{2}, \ldots, P_{k}$ and set $L:=r f^{*} H-m_{2} E_{2}-\cdots-m_{k} E_{k}$, where each $E_{i}$ is the exceptional divisor at $P_{i}$.

## Strength

The method applies directly whenever several double and triple points are involved. (Never explored completely).

## Straightforward application to blow ups of $\mathbb{P}^{2}$

Fix multiplicities $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$. Let $H$ denote the class of a line in $\mathbb{P}^{2}$ and assume that, for $P_{1}, \ldots, P_{k}$ general in $\mathbb{P}^{2}$, the linear system $r H-m_{1} P_{1}-\cdots-m_{k} P_{k}$ is defective. Let $f: S \rightarrow \mathbb{P}^{2}$ be the blowing up of $\mathbb{P}^{2}$ at the points $P_{2}, \ldots, P_{k}$ and set $L:=r f^{*} H-m_{2} E_{2}-\cdots-m_{k} E_{k}$, where each $E_{i}$ is the exceptional divisor at $P_{i}$.
Assume that $L$ is very ample on $S$, of the expected dimension, and that $L-K_{S}$ is ample and base-point-free, with $\left(L-K_{S}\right)^{2}>16$.

## Strength

The method applies directly whenever several double and triple points are involved. (Never explored completely).

## Straightforward application to blow ups of $\mathbb{P}^{2}$

Fix multiplicities $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$. Let $H$ denote the class of a line in $\mathbb{P}^{2}$ and assume that, for $P_{1}, \ldots, P_{k}$ general in $\mathbb{P}^{2}$, the linear system $r H-m_{1} P_{1}-\cdots-m_{k} P_{k}$ is defective. Let $f: S \rightarrow \mathbb{P}^{2}$ be the blowing up of $\mathbb{P}^{2}$ at the points $P_{2}, \ldots, P_{k}$ and set $L:=r f^{*} H-m_{2} E_{2}-\cdots-m_{k} E_{k}$, where each $E_{i}$ is the exceptional divisor at $P_{i}$.
Assume that $L$ is very ample on $S$, of the expected dimension, and that $L-K_{S}$ is ample and base-point-free, with $\left(L-K_{S}\right)^{2}>16$.
Assume, finally, that $m_{1} \leq 3$.

## Strength

The method applies directly whenever several double and triple points are involved. (Never explored completely).

## Straightforward application to blow ups of $\mathbb{P}^{2}$

Fix multiplicities $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$. Let $H$ denote the class of a line in $\mathbb{P}^{2}$ and assume that, for $P_{1}, \ldots, P_{k}$ general in $\mathbb{P}^{2}$, the linear system $r H-m_{1} P_{1}-\cdots-m_{k} P_{k}$ is defective. Let $f: S \rightarrow \mathbb{P}^{2}$ be the blowing up of $\mathbb{P}^{2}$ at the points $P_{2}, \ldots, P_{k}$ and set $L:=r f^{*} H-m_{2} E_{2}-\cdots-m_{k} E_{k}$, where each $E_{i}$ is the exceptional divisor at $P_{i}$.
Assume that $L$ is very ample on $S$, of the expected dimension, and that $L-K_{S}$ is ample and base-point-free, with $\left(L-K_{S}\right)^{2}>16$.
Assume, finally, that $m_{1} \leq 3$.
Then $m_{1}=3$ and the general element of the linear system is non-reduced. Moreover $L$ embeds $S$ as a ruled surface.

## Strength

The method applies directly whenever several double and triple points are involved. (Never explored completely).

## Straightforward application to blow ups of $\mathbb{P}^{2}$

Fix multiplicities $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$. Let $H$ denote the class of a line in $\mathbb{P}^{2}$ and assume that, for $P_{1}, \ldots, P_{k}$ general in $\mathbb{P}^{2}$, the linear system $r H-m_{1} P_{1}-\cdots-m_{k} P_{k}$ is defective. Let $f: S \rightarrow \mathbb{P}^{2}$ be the blowing up of $\mathbb{P}^{2}$ at the points $P_{2}, \ldots, P_{k}$ and set $L:=r f^{*} H-m_{2} E_{2}-\cdots-m_{k} E_{k}$, where each $E_{i}$ is the exceptional divisor at $P_{i}$.
Assume that $L$ is very ample on $S$, of the expected dimension, and that $L-K_{S}$ is ample and base-point-free, with $\left(L-K_{S}\right)^{2}>16$.
Assume, finally, that $m_{1} \leq 3$.
Then $m_{1}=3$ and the general element of the linear system is non-reduced. Moreover $L$ embeds $S$ as a ruled surface. (Segre's conjecture holds).

## Weakness

- The method only applies when several numerical conditions are satisfied (due to the fact that one wants the bundle $\mathcal{E}$ to be Bogomolov unstable).


## Weakness

- The method only applies when several numerical conditions are satisfied (due to the fact that one wants the bundle $\mathcal{E}$ to be Bogomolov unstable).
- Try to use other unstability conditions.


## Weakness

- The method only applies when several numerical conditions are satisfied (due to the fact that one wants the bundle $\mathcal{E}$ to be Bogomolov unstable).
- Try to use other unstability conditions.
- The method produces a vector bundle only if the equisingular deformation scheme is (locally) complete intersection, which holds only for double and triple points.


## Weakness

- The method only applies when several numerical conditions are satisfied (due to the fact that one wants the bundle $\mathcal{E}$ to be Bogomolov unstable).
- Try to use other unstability conditions.
- The method produces a vector bundle only if the equisingular deformation scheme is (locally) complete intersection, which holds only for double and triple points.
- Try to use torsion free sheaves, or use sheaves in a smarter way.


## Weakness

- The method only applies when several numerical conditions are satisfied (due to the fact that one wants the bundle $\mathcal{E}$ to be Bogomolov unstable).
- Try to use other unstability conditions.
- The method produces a vector bundle only if the equisingular deformation scheme is (locally) complete intersection, which holds only for double and triple points.
- Try to use torsion free sheaves, or use sheaves in a smarter way.


## Final remark

## Final remark

## Thank you for your attention



## Final remark

## Thank you for your attention


... e auguri, Edoardo!

## Final remark

## Thank you for your attention


... e auguri, Edoardo!

