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Group of polynomial automorphisms

Notation
We write R[n] for the polynomial ring R[X1, . . . ,Xn ] over R.

For R a commutative ring the symbol GAn(R) denotes the
general automorphism group, by which we mean the
automorphism group of An

R = SpecR[n] over SpecR. An
element of GAn(R) is represented by a vector
ϕ = (F1, . . . ,Fn) ∈ (R[n])n .

When R = k a field, GAn(k) is also called the affine Cremona
group.
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Subgroups of GAn

Subgroups that play a role: GLn , Afn , EAn , TAn , Jn , Hi,n

EAn is the subgroup generated by the elementary
automorphisms. An elementary automorphism is one of the
form

ei(f ) = (X1, . . . ,Xi−1,Xi + f ,Xi+1, . . . ,Xn)

for some i ∈ {1, . . . ,n}, f ∈ R[X , î]. (fact: En = EAn ∩GLn .)

TAn = 〈Afn ,EAn〉 is the tame subgroup.

Jn is the triangular, or Jonquière, group consisting of
(F1, . . . ,Fn) where Fi ∈ R[X1, . . . ,Xi ].

We also have the subgroups H1,n ,H2,n , . . . ,Hn,n , where Hi,n is
the stabilizer of the R ⊕ RX1 ⊕ · · · ⊕ RXi in R[X1, . . . ,Xn ]. We
have

Hi,n = Afi(R)nGAn−i(R[X1, . . . ,Xi ])

Note Hn,n = Afn(R).
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Structure of GA2(k)

We begin with the following classical theorem in polynomial
automorphisms.

Theorem (Jung, van der Kulk)
The group of polynomial automorphisms of A2

k , k a field, is
generated by the linear and the elementary automorphisms.
More strongly,

GA2(k) = Af2(k) ∗Bf2(k) J2(k) .

The generation statement was proved by Jung in 1942 for k of
characteristic 0, and generalized to arbitrary characteristic by
van der Kulk in 1953, who also (essentially) proved the
structure statement.
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Structure of GA2(k), continued

Theorem (Jung, van der Kulk)
The group of polynomial automorphisms of A2

k , k a field, is
generated by the linear and the elementary automorphisms.
More strongly,

GA2(k) = Af2(k) ∗Bf2(k) J2(k) .

The Jung-van der Kulk Theorem gives TA2(k) = GA2(k).

Note that J2(k) coincides with H1,2, the stabilizer of
k ⊕ kX ⊂ k[X ,Y ]. Also Af2(k) is H2,2, the stabilizer of
k ⊕ kX ⊕ kY . So we have

GA2(k) = TA2(k) = H2,2 ∗H2,2∩H1,2 H1,2
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Why study rings other than fields?

In trying to understand automorphisms over a field we are
quickly led to considering other rings, especially polynomial
rings over fields. Examples of mysterious polynomials and
potential counterexamples to cancellation can also be generated
by considering such.

Note that
GA2(k[T ]) ⊂ GA3(k) .

More generally,

GAn(R[m]) ⊂ GAn+m(R) .

We call this inclusion “restriction of scalars”.
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Non-tameness

The Jung-van der Kulk Theorem is false for R a domain, not a
field. A standard example of a non-tame automorphism is(

X + a(aY −X2),Y + 2X(aY −X2) + a(aY −X2)2
)

where a is any non-zero non-unit in a domain R. This
automorphism can be realized as exp(aY −X2)D, where

D(X) = a , D(Y ) = 2X (i.e., D = a∂X + 2X∂Y ) .

It has the following tame factorization over R[1/a]:(
X ,Y + 1

aX
2
)
◦
(
X + a2Y ,Y

)
◦
(
X ,Y − 1

aX
2
)
.

For R = k[T ], a = T , this is the example given by Nagata in
1972.
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Nagata’s example

Nagata’s example can be viewed as an element of GA3(k) by
restriction of scalars:(

T ,X + T (TY −X2),Y + 2X(TY −X2) + T (TY −X2)2
)

It is not tame as over k[T ]. Nagata (1972) conjectured it is not
tame over k, i.e., does not lie in TA3(k), a conjecture that
remained open for 30 years.

A remarkable breakthrough came in 2002:

Theorem (Shestakov, Umirbaev)
For char k = 0, the Nagata automorphism is not tame.

However it had long been known (Smith, Wright) that this
automorphism is stably tame, with one more variable needed to
achieve tameness.
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Actions of Ga on An
k

In characteristic zero, one can run a parameter through any
locally nilpotent derivation D of k [n] by writing exp(tD), t ∈ k.
This defines an action of the additive group Ga on kn , hence a
homomorphism (k,+) ↪→ GAn(k). Much effort has been
devoted to understanding such subgroups, up to conjugacy.

Theorem (Rentschler, 1968)
For char k = 0, any Ga-action on A2

k is conjugate to one of the
form (X ,Y + tf (X)).

The analogue in characteristic p > 0, where a Ga-action is
defined by a “locally finite iterative higher derivation”. Here:

Theorem (Miyanishi, 1971)
For char k = p, any Ga-action on A2

k is conjugate to one of the
form

(
X ,Y + tf0(X) + tpf1(X) + +tp2f2(X) + · · ·+ tpr fr(X)

)
.
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Non-triangularizable Ga-actions on An
k

We get a Ga on A3
k by running the parameter t through the

Nagata automorphism:(
T ,X + tT (TY −X2),Y + 2tX(TY −X2) + t2T (TY −X2)2

)
= exp(t(TY −X2)D)

where D(T ) = 0, D(X) = T , D(Y ) = 2X , so D = T∂X + 2X∂Y .

In 1984 Bass observed that this action is non-triangularizable by
virtue of the fact that its fixed locus has an isolated singularity,
whereas the fixed locus of a triangular action is cylindrical.

In 1987 Popov, using s similar strategy, showed there exist
non-triangular actions of Ga on An

k for all n ≥ 3.
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Tame Ga-actions

It is not known how to classify all Ga-actions on A3
k . We

restrict the question.

A Ga-action is called tame if it induces a homormorphism
(k,+) ↪→ TAn(k).

Question
Are all tame Ga-actions on An

k triangularizable?

The answer is yes for n = 2, no for n ≥ 4.

For n = 3 the question is open. Later we will present a recent
result that might help resolve this question.
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Possible generators for GAn(k)?

Question
Is GAn(k) generated by Afn(k) together with automorphisms of
the form expD, where D is an locally nilpotent derivation on
k [n].

The following example in GA3(k), a modification of Nagata’s
example using the technique of “pseudo-conjugation”, suggests
that the above question may not be true.(
T ,X ,Y + 1

T 2X
2 + 2

T X3
)
◦
(
T ,X + T 3Y ,Y

)
◦
(
T ,X ,Y − 1

T 2X
2
)

There is no known factorization of this by linear and
exponential automorphisms.
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Actions of Gm on An
k

Conjecture
Are all Gm on An

k linearizable, i.e., conjugate to an action of
the form

(ta1X1, . . . , tanXn)

with a1, . . . , an ∈ Z?

n = 1 : not difficult
n = 2 : Bialynicki-Birula (1967)
n = 3, k = C: Koras, Russell + Kaliman, Makar-Limanov
(1997)
n ≥ 4, char k = p > 0: false, Asanuma (1994)
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Linearization of Gm-actions on A3
k

Theorem (Koras, Russell / Kaliman, Makar-Limanov, 1997)
All Gm-actions on A3

C are linearizable.

The proof was a long saga. The “weights” a1, a2, a3 can be
determined from the action by looking at the action on the
tangent space of a fixed point. The “hard case” was a1 < 0,
a2, a3 > 0. The quest to solve the “hard case” led to trying to
prove certain k-algebras A were not isomorphic to k [3], the
simplest case being C[T ,X ,Y ,Z ]/(X + X2Y + Z 3 + T 2).

The linearization theorem was generalized to:

Theorem (Popov, 1998)
Every action of a connected reductive algebraic group on A3

C is
linearizable.
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Makar-Liminov invariant

The tool used to distinguish the Koras-Russell threefolds from
A3

C was the Makar-Limanov invariant subring

ML(A) =
⋂
D

Ker(D)

where D runs through all locally nilpotent derivations of A.
This turned out to be a quite useful tool for many purposes.

Later Derksen defined the invariant subring

DK(A) = subring generated by
⋃
D

Ker(D)

which was used in Neena Gupta’s recent proof that the
cancellation property does not hold for k [3] for k of
characteristic p > 0.

Wright Survey on Polynomial Automorphism Groups



Structure of TA3(k)
Recall the subgroups Hi,n = stab (k ⊕ kX1 ⊕ · · · ⊕ kXi) in
GAn(k). Note Hn,n = Afn . Also Hn−1,n ⊂ TAn .

H1,3 contains the Nagata automorphism, so is not contained in
TA3(k). So let

H̃1,3 = H1,3 ∩ TA3(k) = Af1(k)n TA2(k[X1])

The second equality follows from the very deep results of
Shestakov-Umirbaev, which say that in GA3(k) we have

GA2(k[X1]) ∩ TA3(k) = TA2(k[X1]) .

The following has been proved using Umirbaev’s theorem on
generators and relations.

Theorem (Wright)
For k a field of characteristic zero, TA3(k) is the amalgamated
product of the three groups H̃1,3,H2,3,H3,3 along their pairwise
intersections.
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Structure of TA3(k), continued
Restating:

Theorem (Wright)
For k a field of characteristic zero, TA3(k) is the amalgamated
product of the three groups H̃1,3,H2,3,H3,3 along their pairwise
intersections.

This invites these questions:

Question
Is the associated 2-dimensional simplicial complex 2-connected?

If yes, this might be a tool to address tame Ga-actions on A3
k .

Question
Is the subgroup 〈H1,3,H2,3,H3,3〉 ⊂ GA3(k) the amalgamated
product of H1,3,H2,3,H3,3 along their pairwise intersections?
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Generation of GA3(k)?
As to whether GA3(k) = 〈H1,3,H2,3,H3,3〉, we point to this
example:

Example (Freudenburg, 1996)
In k[X ,Y ,Z ], define

F = XZ −Y 2, G = ZF2 + 2X2YF + X5, R = X3 + YF

Then ∆F ,G = |J (F ,G, ∗)| is a locally nilpotent derivation with
kernel k[F ,G] and local slice R (so (F,G,R) are birational
variables). Note that k[F ,G] contains no variables.
Letting γ = exp∆(F ,G), we have γ = (A,B,C ) with
A,B,C ∈ k[X ,Y ,Z ] having degrees 9, 25, 41, respectively.

The algorithm of Shestakov-Umirbaev shows γ /∈ TA3(k). We
do not know whether γ ∈ 〈H1,3,H2,3,H3,3〉, or if it is stably
tame.
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Stabilization

The study of polynomial automorphisms adopts the following
concept from K -theory.

Definition
Stabilization refers to the embedding of GAn(R) into
GAn+m(R) (the “stabilization homomorphism”). If
ϕ = (F1, . . . ,Fn) ∈ GAn(R), we write ϕ[m] for its image

(F1, . . . ,Fn ,Xm+1, . . . ,Xn+m)

in GAn+m(R). We say, for example, an automorphism ϕ is
stably tame if it becomes tame in some higher dimension.

We write GA∞(R) for the direct limit limn→∞GAn(R), and
similarly for the other automorphism groups (TA∞, EA∞, etc.).
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Stable tameness of the Nagata automorphism
Let D be a locally nilpotent derivation on R[n], a ∈ KerD.
Extend D to R[n+1] by setting D(Xn+1) = 0.

Define τ ∈ GAn+1(R) by τ = (X1, . . . ,Xn ,Xn+1 + a).

Theorem (Smith’s commutator formula, 1989)

exp(aD)[1] = τ−1 exp(−Xn+1D) τ exp(Xn+1D)

Nagata example: On k[T ,X ,Y ], η = exp ((TY −X2)D) where
D = T∂X + 2X∂Y .

Smith’s formula shows that η[1] is tame. Smith’s formula cannot
be used to show the altered Nagata automorphism(
T ,X ,Y + 1

T 2X
2 + 2

T X3
)
◦
(
T ,X + T 3Y ,Y

)
◦
(
T ,X ,Y − 1

T 2X
2
)

is stably tame. We will see, however, that it is.
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Recent result (Adv. Math.)

Theorem (Berson, van den Essen, Wright, 2010)

Let R be a regular ring, ϕ ∈ GA2(R). Then ϕ is stably tame.

Stronger result for characteristic zero, R one-dimensional:

Theorem (One-dimensional Q-algebra case)
Let R be a Dedekind Q-algebra, and let ϕ ∈ GA2(R). Then, ϕ
becomes tame with the addition of three more dimensions. In
other words, GA2(R) ⊂ TA5(R).

Hence all automorphisms in GA3(k) that fix one coordinate lie
in TA6(k).

Question
Are three new dimensions actually needed, say for R = k[Z ]?
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More general versions

The Main Theorem is an immediate consequence of the
following, thanks to the Jung-van der Kulk Theorem.

Theorem (Main Theorem, First General Form)

For a fixed integer n ≥ 2 assume it is true that for all fields k,
all elements of GAn(k) are stably tame. Then the same is true
replacing “field” by “regular ring”.

Which, in turn, follows from:

Theorem (Main Theorem, Second General Form)
Let R be a regular ring, ϕ ∈ GAn(R). Assume ϕP is stably tame
in GAn(k(P)) for all P ∈ Spec (R). Then ϕ is stably tame.
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Characterizing polynomial rings
The latter statement hearkens to:
Theorem (Asanuma, 1987)
Let R be a regular local ring, A a finitely generated, flat
R-algebra for which A⊗ k(P) ∼=k(P) k(P)[n] for all P ∈ Spec (R).
Then A is stably a polynomial ring over R, i.e., A[m] ∼=R R[n+m]

for some m ≥ 0.

Theorem (Sathaye, 1983)
Let R be a Q-algebra which is a DVR with maximal ideal πR, A
a finitely generated R-algebra for which A⊗ k(P) ∼=k(P) k(P)[2]

for P = (0), πR. Then A ∼= R[2].

Theorem (Bass, Connell, Wright / Suslin, 1977)
Let R be a Noetherian ring, A a finitely generated R-algebra for
which AP

∼= R[n]
P for all P ∈ Spec (R). Then A ∼= S(P) for some

projective R-module P. (If P is free then A ∼= R[n].)
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How to recognize a coordinate

We turn to the question of when a single polynomial F is a
coordinate, i.e., can be completed into an automorphism.

Definition
F ∈ R[n] is called a hyperplane if R[n]/(F) ∼= R[n−1].

Theorem (Abhyankar, Moh / Suzuki, 1975)

For k a field, char k = 0, hyperplanes in k [2] are coordinates.

Russell and Sataye showed this holds replacing k by k[T ].
False for char k = p > 0: X + X sp + Y pe , pe - sp, sp - pe

Conjecture (Abhyankar, Sathaye)

For k a field, char k = 0, hyperplanes in k [n] are coordinates.

Open for n ≥ 3.
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Polynomials with coordinate-like behaviour

The “non-rectifiable line” in A2
k given by X + X sp + Y pe , for

char k = p > 0, pe - sp, sp - pe, inspired the following:

Example (ala Weisfeiler)
Let R be Noetherian domain, charR = p > 0, a ∈ R, 6= 0, a not
a unit. Let F = aU + X + X sp + Y pe ∈ R[U ,X ,Y ] and let
A = R[U ,X ,Y ]/(F).

Note that A satisfies the hypothesis of Asanuma’s theorem, if A
is regular, hence is stably a polynomial ring.

Asanuma shows that in fact A[1] ∼= R[3] and A � R[2].
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Counterexample to cancellation

Applying this with R = k[T ], where char k = p > 0, and
a = Tm , we get

A = k[T ,U ,X ,Y ]/(TmU + X + X sp + Y pe) = k[t, u, x, y]

having the property that A[1] ∼= k[T ][3], hence A[1] ∼= k [4].

A very recent breakthrough is:

Theorem (Gupta, 2012)

A � k [3] for m ≥ 2.

Thus we have a counterexample to the cancellation in
characteristic p > 0.

This was accomplished by showing that the Derksen invariant
DKA ⊆ k[t, x, y] $ A.
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Vénéreau polynomials

Vénéreau (2001): Over k[T ,T−1,U ], consider the following
variation of the Nagata example:

ϕ =
(
X ,Y + 1

U X2
)
◦
(
X + U 2

T Y ,Y
)
◦
(
X ,Y − 1

U X2
)

=
(
X + U

T (UY −X2), ∗
)

Now restrict scalars to k[T ,T−1] and compose on the left with
τ = (U + Tm+1X ,X ,Y ), m ≥ 1, to get

τϕ =
(
U + Tm(TX + U (UY −X2)),X + U

T (UY −X2), ∗
)

The first coordinate, Bm = U + Tm(TX + U (UY −X2)), is the
mth Vénéreau polynomial.
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Vénéreau polynomials, continued
Vénéreau polynomial: Bm = U + Tm(TX + U (UY −X2))

Vénéreau noted:

Bm is a coordinate over the residue fields of all prime ideals
in k[T ]. (This implies using Asanuma’s theorem that it is a
stable coordinate.)
Bm is a hyperplane over k[T ]. (This follows from Sathaye’s
theorem and the Bass-Connell-Wright/Suslin theorem.)

Vénéreau showed Bm a coordinate over k[T ] for m ≥ 3 and
asked about m = 1, 2.

Freudenburg (2009) showed B1,B2 are 1-stable coordinates.

Lewis (2011) showed B2 is a coordinate.

Question
Is B1 = U + T (TX + U (UY −X2)) a coordinate?
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Related question
Let ϕ = (F1, . . . ,Fn) ∈ EAn(k[T ,T−1,U ] and let r be the
smallest non-negative integer such that
T rF1 ∈ k[T ,U ,X1, . . . ,Xn ]. Restrict scalars to k[T ,T−1] and
compose on the left with τ = (U + T r+mX1,X1, . . . ,Xn),
m ≥ 1, to get

τϕ = (U + T r+mF1,F1, . . . ,Fn)

Again we ask:

Question
Is the first coordinate U + T r+mF1 a coordinate?

Lewis showed the answer is yes in many cases. He uses the
technique of “pseudo-conjugation”.

For n = 1 the answer is yes (and all such coordinates are stably
tame, by B-vdE-W). For n = 2 this question is unsolved.
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Problems for the next generation

Solve the Jacobian Conjecture (Problem #16 on Smale’s
list).
Gain a greater understanding of GA3(k) (e.g., generators,
Ga-actions, characteristic p > 0). Determine whether “very
wild” automorphisms such as Freudenburg’s example lie in
〈H1,3,H2,3,H3,3〉.
Develop the structure of GAn(k) as an infinite-dimensional
algebraic group.
Solve the Abhyankar-Sathaye Conjecture for n = 3:
Hyperplanes in k [3] are coordinates (char k = 0).
Determine whether the first Vénéreau plynomial B1, and
the other related polynomials we discussed, are coordinates,
Understand elements of GAn(k) in terms of an appropriate
birational factorization of the induced map Pn

k 99K Pn
k .
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Finally . . .

THANK YOU

and thanks to the organizers

for the invitation to speak

and the opportunity to visit Levico Terme
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