Secant Loci and Syzygies (joint work with Edoardo Sernesi)

Marian Aprodu

University of Bucharest \&
"Simion Stoilow" Institute of Mathematics

Edoardo Fest, Trento, June 2017

The goal

Find sufficient conditions in terms of secant loci for the vanishing of syzygies of curves.

Origins

Previous results
 - Green's conjecture for tetragonal curves - F.-O. Schreyer, C. Voisin

 - A result of E. Arbarello and E. Sernesi
Origins

Previous results

- Green's conjecture for tetragonal curves - F.-O. Schreyer, C. Voisin - A result of E. Arbarello and E. Sernesi

Origins

Setup

$C \xrightarrow{\mid L L} \mathbb{P}^{r}, L$ special over a field $k=\bar{k}$ of characteristic zero. The multiplication map:

morphism of graded modules over $S:=$ Sym $H^{0}(L)$.

Theorem (Arbarello-Sernesi)
If $r \geq 3$ then the map u_{L} is surjective.

Origins

Setup

$C \xrightarrow{|L|} \mathbb{P}^{r}, L$ special over a field $k=\bar{k}$ of characteristic zero.
The multiplication map:

$$
u_{L}: \bigoplus_{q} S^{q} H^{0}(L) \otimes_{k} H^{0}\left(K_{C}\right) \xrightarrow{u_{L}} \bigoplus_{q} H^{0}\left(L^{q} \otimes K_{C}\right)
$$

morphism of graded modules over $S:=\operatorname{Sym} H^{0}(L)$.

Theorem (Arbarello-Sernesi) If $r \geq 3$ then the map u_{L} is surjective.

Origins

Setup

$C \xrightarrow{|L|} \mathbb{P}^{r}, L$ special over a field $k=\bar{k}$ of characteristic zero.
The multiplication map:

$$
u_{L}: \bigoplus_{q} S^{q} H^{0}(L) \otimes_{k} H^{0}\left(K_{C}\right) \xrightarrow{u_{L}} \bigoplus_{q} H^{0}\left(L^{q} \otimes K_{C}\right)
$$

morphism of graded modules over $S:=\operatorname{Sym} H^{0}(L)$.
Theorem (Arbarello-Sernesi)
If $r \geq 3$ then the map u_{L} is surjective.

Origins

Definition (Arbarello-Sernesi)

$I_{K, L}:=\operatorname{ker}\left(u_{L}\right)$ graded module over S s.t.

$$
I_{K, L, 2}:=\operatorname{ker}\left\{H^{0}(L) \otimes H^{0}\left(K_{C}\right) \rightarrow H^{0}\left(L \otimes K_{C}\right)\right\} .
$$

It is called the semi-canonical ideal.
The definition makes sense for any L.
The module $\oplus_{q} H^{0}\left(L^{q} \otimes K_{C}\right)$ is called the Arbarello-Sernesi module.

Origins

$$
\begin{aligned}
& \text { Definition (Arbarello-Sernesi) } \\
& I_{K, L}:=\operatorname{ker}\left(u_{L}\right) \text { graded module over } S \text { s.t. } \\
& \qquad I_{K, L, 2}:=\operatorname{ker}\left\{H^{0}(L) \otimes H^{0}\left(K_{C}\right) \rightarrow H^{0}\left(L \otimes K_{C}\right)\right\} .
\end{aligned}
$$

It is called the semi-canonical ideal.
The definition makes sense for any L.
The module $\bigoplus_{q} H^{0}\left(L^{q} \otimes K_{C}\right)$ is called the Arbarello-Sernesi module.

Origins

Theorem (Arbarello-Sernesi, 1978)
 Assume $r \geq 4$. The module $I_{K, L}$ is generated in degree two unless C lies on a surface of minimal degree in \mathbb{P}^{r}.

Origins

Arbarello-Sernesi's Theorem

The proof is a fine analysis of the generators of the ideal (Petri). It relies on the existence of an effective divisor $\mathrm{D}=x_{1}+\cdots+x_{r}$ s.t.

Origins

Arbarello-Sernesi's Theorem

The proof is a fine analysis of the generators of the ideal (Petri). It relies on the existence of an effective divisor $D=x_{1}+\cdots+x_{r}$ s.t.

Origins

Arbarello-Sernesi's Theorem

The proof is a fine analysis of the generators of the ideal (Petri). It relies on the existence of an effective divisor $D=x_{1}+\cdots+x_{r}$ s.t.
(1) $h^{0}(L(-D))=2$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=2$ for any i.

Origins

Arbarello-Sernesi's Theorem

The proof is a fine analysis of the generators of the ideal (Petri). It relies on the existence of an effective divisor $D=x_{1}+\cdots+x_{r}$ s.t.
(1) $h^{0}(L(-D))=2$,
(2) $L(-D)$ is base-point-free,

Origins

Arbarello-Sernesi's Theorem

The proof is a fine analysis of the generators of the ideal (Petri). It relies on the existence of an effective divisor $D=x_{1}+\cdots+x_{r}$ s.t.
(1) $h^{0}(L(-D))=2$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=2$ for any i.

Origins

Translation
 In terms of projective geometry,
 (1) $\langle D\rangle=\mathbb{P}^{r-2}$,
 (2) $\langle D\rangle \cap C=\operatorname{supp}(D)$,
 (3) $\left\langle D-x_{i}\right\rangle=\langle D\rangle$ for any i i.e. x_{1}, \ldots, x_{r} are in linearly general position in $\langle D\rangle$.

Origins

> Translation
> In terms of projective geometry,
> (1) $\langle D\rangle=\mathbb{P}^{r-2}$,
> (2) $\langle D\rangle \cap C=\operatorname{supp}(D)$,
> (3) $\left\langle D-x_{i}\right\rangle=\langle D\rangle$ for any ii.e. x_{1}, \ldots, x_{r} are in linearly general

Origins

Translation

In terms of projective geometry,
(1) $\langle D\rangle=\mathbb{P}^{r-2}$,
(2) $\langle D\rangle \cap C=\operatorname{supp}(D)$,
(3) $\left\langle D-x_{i}\right\rangle=\langle D\rangle$ for any i i.e. x_{1}, \ldots, x_{r} are in linearly general position in $\langle D\rangle$.

Origins

For $L=K_{C}$

The three conditions give a primitive \mathfrak{g}_{g-1}^{1}.
Brill-Noether theory: there exists always a primitive \mathfrak{g}_{g-1}^{1} except for trigonal curves and plane quintics.
The homogeneous ideal of a non-hyperelliptic canonical curve is generated by quadrics if and only if the curve is neither trigonal nor plane quintic (K. Petri, 1922).

The goal

Go one step further and analyse the module of syzygies of $I_{K, L}$.

The result

Theorem (A.-Sernesi, 2015)

Assume $r \geq 5$. Suppose that the curve C is non-tetragonal and $I_{K, L}$ is generated in degree two. The module of syzygies of $I_{K, L}$ is generated in degree one if the dimension of the secant locus $V_{r-1}^{r-2}(L)$ equals the expected dimension and in any component of $V_{r-1}^{r-2}(L)$ there exists an effective divisor $D=x_{1}+\cdots+x_{r-1}$ s.t.

The result

Theorem (A.-Sernesi, 2015)

Assume $r \geq 5$. Suppose that the curve C is non-tetragonal and $I_{K, L}$ is generated in degree two. The module of syzygies of $I_{K, L}$ is generated in degree one if the dimension of the secant locus $V_{r-1}^{r-2}(L)$ equals the expected dimension and in any component of $V_{r-1}^{r-2}(L)$ there exists an effective divisor $D=x_{1}+\cdots+x_{r-1}$ s.t.
(1) $h^{0}(L(-D))=3$,

The result

Theorem (A.-Sernesi, 2015)

Assume $r \geq 5$. Suppose that the curve C is non-tetragonal and $I_{K, L}$ is generated in degree two. The module of syzygies of $I_{K, L}$ is generated in degree one if the dimension of the secant locus $V_{r-1}^{r-2}(L)$ equals the expected dimension and in any component of $V_{r-1}^{r-2}(L)$ there exists an effective divisor $D=x_{1}+\cdots+x_{r-1}$ s.t.
(1) $h^{0}(L(-D))=3$,
(2) $L(-D)$ is base-point-free,

The result

Theorem (A.-Sernesi, 2015)

Assume $r \geq 5$. Suppose that the curve C is non-tetragonal and $I_{K, L}$ is generated in degree two. The module of syzygies of $I_{K, L}$ is generated in degree one if the dimension of the secant locus $V_{r-1}^{r-2}(L)$ equals the expected dimension and in any component of $V_{r-1}^{r-2}(L)$ there exists an effective divisor $D=x_{1}+\cdots+x_{r-1}$ s.t.
(1) $h^{0}(L(-D))=3$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=3$ for any i.

The result

Theorem (A.-Sernesi, 2015)

Assume $r \geq 5$. Suppose that the curve C is non-tetragonal and $I_{K, L}$ is generated in degree two. The module of syzygies of $I_{K, L}$ is generated in degree one if the dimension of the secant locus $V_{r-1}^{r-2}(L)$ equals the expected dimension and in any component of $V_{r-1}^{r-2}(L)$ there exists an effective divisor $D=x_{1}+\cdots+x_{r-1}$ s.t.
(1) $h^{0}(L(-D))=3$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=3$ for any i.

The result

Theorem (A.-Sernesi, 2015)

Assume $r \geq 5$. Suppose that the curve C is non-tetragonal and $I_{K, L}$ is generated in degree two. The module of syzygies of $I_{K, L}$ is generated in degree one if the dimension of the secant locus $V_{r-1}^{r-2}(L)$ equals the expected dimension and in any component of $V_{r-1}^{r-2}(L)$ there exists an effective divisor $D=x_{1}+\cdots+x_{r-1}$ s.t.
(1) $h^{0}(L(-D))=3$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=3$ for any i.

Remark

If C carries a \mathfrak{g}_{4}^{1}, say $\mathcal{O}_{C}(\eta)$, and η imposes independent conditions on $|L|$ then the module of syzygies of $I_{K, L}$ cannot be generated in degree one. (Green-Lazarsfeld, 1984.)

The result

Translation
 In terms of projective geometry,
 (1) $\langle D\rangle=\mathbb{P}^{r-3}$,
 (2) $\langle D\rangle \cap C=\operatorname{supp}(D)$,
 (3) $\left\langle\mathrm{D}-x_{i}\right\rangle=\langle\mathrm{D}\rangle$ for any i i.e. x_{1}, \ldots, x_{r-1} are in linearly general

The result

> Translation
> In terms of projective geometry,
> (1) $\langle D\rangle=\mathbb{P}^{r-3}$,
> (2) $\langle D\rangle \cap C=\operatorname{supp}(D)$,
> (3) $\left\langle D-x_{i}\right\rangle=\langle D\rangle$ for any ii.e. x_{1}, \ldots, x_{r-1} are in linearly general

The result

Translation

In terms of projective geometry,
(1) $\langle D\rangle=\mathbb{P}^{r-3}$,
(2) $\langle D\rangle \cap C=\operatorname{supp}(D)$,
(3) $\left\langle D-x_{i}\right\rangle=\langle D\rangle$ for any i i.e. x_{1}, \ldots, x_{r-1} are in linearly general position in $\langle D\rangle$.

Secant Loci

Secant loci

$\Xi_{n} \subset C \times C_{n}$ the universal divisor on the n-th symmetric product C_{n} of $C, \pi: C \times C_{n} \rightarrow C, \pi_{n}: C \times C_{n} \rightarrow C_{n}$ the projections.

The secant bundle of L is the rank $-n$ vector bundle on C_{n} defined by:

For any $\xi \in C_{n}$, the fibre of $E_{L, n}$ over ξ is isomorphic to $\left.L\right|_{\xi}$.

Secant loci

$\Xi_{n} \subset C \times C_{n}$ the universal divisor on the n-th symmetric product C_{n} of $C, \pi: C \times C_{n} \rightarrow C, \pi_{n}: C \times C_{n} \rightarrow C_{n}$ the projections.

The secant bundle of L is the rank $-n$ vector bundle on C_{n} defined by:

$$
E_{L, n}:=\pi_{n *}\left(\pi^{*} L \otimes \mathcal{O}_{\Xi_{n}}\right)
$$

For any $\xi \in C_{n}$, the fibre of $E_{L, n}$ over ξ is isomorphic to $\left.L\right|_{\xi}$.

Secant loci

$\Xi_{n} \subset C \times C_{n}$ the universal divisor on the n-th symmetric product C_{n} of $C, \pi: C \times C_{n} \rightarrow C, \pi_{n}: C \times C_{n} \rightarrow C_{n}$ the projections.

The secant bundle of L is the rank $-n$ vector bundle on C_{n} defined by:

$$
E_{L, n}:=\pi_{n *}\left(\pi^{*} L \otimes \mathcal{O}_{\Xi_{n}}\right)
$$

For any $\xi \in C_{n}$, the fibre of $E_{L, n}$ over ξ is isomorphic to $\left.L\right|_{\xi}$.

Secant loci

$\pi_{n *} \pi^{*} L \cong H^{0}(L) \otimes \mathcal{O}_{C_{n}}$ and hence we have a sheaf morphism

$$
e_{L, n}: H^{0}(L) \otimes \mathcal{O}_{C_{n}} \rightarrow E_{L, n}
$$

$e_{L, n}$ is generically surjective for $n \leq r$.
For any $k \leq n-1$, the secant locus $V_{n}^{k}(L)$ is the closed subscheme

$$
V_{n}^{k}(L):=D_{k}\left(e_{L, n}\right) \subset C_{n} .
$$

$V_{n}^{k}(L) \backslash V_{n}^{k-1}(L)$ parametrizes the n-secant $(k-1)$-planes in the induced embedding.

Secant loci

$\pi_{n *} \pi^{*} L \cong H^{0}(L) \otimes \mathcal{O}_{C_{n}}$ and hence we have a sheaf morphism

$$
e_{L, n}: H^{0}(L) \otimes \mathcal{O}_{C_{n}} \rightarrow E_{L, n}
$$

$e_{L, n}$ is generically surjective for $n \leq r$.
For any $k \leq n-1$, the secant locus $V_{n}^{k}(L)$ is the closed subscheme

$$
V_{n}^{k}(L):=D_{k}\left(e_{L, n}\right) \subset C_{n}
$$

$V_{n}^{k}(L) \backslash V_{n}^{k-1}(L)$ parametrizes the n-secant $(k-1)$-planes in the induced embedding.

Secant loci

The expected dimension of $V_{n}^{k}(L)$ is

$$
\operatorname{expdim} V_{n}^{k}(L)=n-(r+1-k)(n-k)
$$

If non-empty, then $V_{n}^{k}(L)$ has dimension $\geq n-(r+1-k)(n-k)$. For $k=n-1$: $\operatorname{expdim} V_{n}^{n-1}(L)=2 n-r-2$.

Secant loci

The expected dimension of $V_{n}^{k}(L)$ is

$$
\operatorname{expdim} V_{n}^{k}(L)=n-(r+1-k)(n-k)
$$

If non-empty, then $V_{n}^{k}(L)$ has dimension $\geq n-(r+1-k)(n-k)$.
For $k=n-1$:

$$
\operatorname{expdim} V_{n}^{n-1}(L)=2 n-r-2
$$

The result

Conditions

$D \in C_{r-1}$ with
(1) $h^{0}(L(-D))=3$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=3$ for any i.

Translation
In terms of the geometry of secant loci,

The result

Conditions

$D \in C_{r-1}$ with
(1) $h^{0}(L(-D))=3$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=3$ for any i.

Translation

In terms of the geometry of secant loci,
(1) $D \in V_{r-1}^{r-2}(L) \backslash V_{r-1}^{r-3}(L)$,

The result

Conditions

$D \in C_{r-1}$ with
(1) $h^{0}(L(-D))=3$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=3$ for any i.

Translation

In terms of the geometry of secant loci,
(1) $D \in V_{r-1}^{r-2}(L) \backslash V_{r-1}^{r-3}(L)$,
(2) $\{D\}+C \subset V_{r}^{r-1}(L) \backslash V_{r}^{r-2}(L)$,

The result

Conditions

$D \in C_{r-1}$ with
(1) $h^{0}(L(-D))=3$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=3$ for any i.

Translation

In terms of the geometry of secant loci,
(1) $D \in V_{r-1}^{r-2}(L) \backslash V_{r-1}^{r-3}(L)$,
(2) $\{D\}+C \subset V_{r}^{r-1}(L) \backslash V_{r}^{r-2}(L)$,
(3) $D \notin \operatorname{Im}\left\{V_{r-2}^{r-3}(L) \times C \rightarrow C_{r-1}\right\}$.

Syzygies

Syzygies

James Joseph Sylvester (1814-1897)

Syzygies

It will be recollected that we have assigned as the condition of contact in three consecutive points, that a certain cubic equation shall have all its roots real. Now, as well remarked by Mr. Cayley, we cannot express this fact by less than three equations in integral terms of the coefficients. Thus if the cubic be written

$$
a \lambda^{3}+3 b \lambda^{2}+3 c \lambda+d=0,
$$

we have as one of such ternary systems,

$$
U=a c-b^{2}=0, \quad V=b d-c^{2}=0, \quad W=b c-a d=0
$$

The significant parts of these equations are of course, however capable of being connected by integral multipliers $U^{\prime}, V^{\prime}, W^{\prime}$, such that

$$
U^{\prime} U+V^{\prime} V+W^{\prime} W=0
$$

Any number of functions U, V, W so related, I call syzygetic functions, and $U^{\prime}, V^{\prime}, V^{\prime \prime}$ I term the syzygetic multipliers.* These in the case supposed are c, a, b, respectively.

In like manner it is evident that the members of any group of functions, more than two in number, whose nullity is implied in the relation of double contact, whether such group form a complete system or not, must be in syzygy.

Syzygies

P_{1}, \ldots, P_{m} homogeneous polynomials in z_{0}, \ldots, z_{r} over k A syzygy between P_{1}, \ldots, P_{m} is a relation

with $Q_{1}, \ldots, Q_{m} \in k\left[z_{0}, \ldots, z_{r}\right]$ homogeneous.
Examole
$P_{2} P_{1}-P_{1} P_{2}=0$ is a syzygy between P_{1} and P_{2}.

Syzygies

P_{1}, \ldots, P_{m} homogeneous polynomials in z_{0}, \ldots, z_{r} over k A syzygy between P_{1}, \ldots, P_{m} is a relation

$$
Q_{1} P_{1}+\cdots+Q_{m} P_{m}=0
$$

with $Q_{1}, \ldots, Q_{m} \in k\left[z_{0}, \ldots, z_{r}\right]$ homogeneous.
\square

Syzygies

P_{1}, \ldots, P_{m} homogeneous polynomials in z_{0}, \ldots, z_{r} over k A syzygy between P_{1}, \ldots, P_{m} is a relation

$$
Q_{1} P_{1}+\cdots+Q_{m} P_{m}=0
$$

with $Q_{1}, \ldots, Q_{m} \in k\left[z_{0}, \ldots, z_{r}\right]$ homogeneous.

Example

$P_{2} P_{1}-P_{1} P_{2}=0$ is a syzygy between P_{1} and P_{2}.

Syzygies

David Hilbert (1862 - 1943)

Syzygies

Ueber die Theorie der algebraischen Formen*).
Von
David Hubert in Königsberg.

Inhalt:

I. Die Eidlichkeit der Formen in einem beliebigen Formensysteme.
II. Die Endlichkeit der Formen mit ganzzahligen Coefficienten.
III. Die Gleichungen awischen den Formen beliebiger Formensysteme.
IV. Die ebarakteristische Function eines Moduls.
V. Die Theorie der algebraischen Invarianten.
I.

Die Endlichkeit der Formen in einem beliebigen Formensysteme.
Unter einer algebraischen Form verstehen wir in ublicher Weise eine ganze rationale homog ene Function von gewissen Veränderlichen und die Coefficienten der Form denken wir uns als Zahlen eines bestimmten Rationalitätsbereiches. Ist dann durch irgend ein Gesetz ein System von unbegrenzt vielen Formen von beliebigen Ordnungen in den Veränderlichen vorgelegt, so entsteht die Frage, ob es stets möglich ist, ans diesem Formensysteme eine endliche Zahl von Formen derart anszuwählen, dass jede andere Form des Systems durch lineare Combination jener ausgewählten Formen erhalten werden kann, d.h. ob eine jede Form des Systems sich in die Gestalt

$$
F=A_{1} F_{1}+A_{2} F_{2}+\cdots+A_{m} F_{m}
$$

bringen lässt, wo $F_{1}, F_{2}, \ldots, F_{m}$ bestimmt ausgewählte Formen des gegebenen Systems und $A_{1}, A_{2}, \ldots, A_{m}$ irgendwelche, dem nämlichen Rationalitätsbereiche angehörige Formen der Veränderlichen sind. Um diese Frage zu entscheiden, beweisen wir zunächst das folgende für unsere weiteren Untersuchungen grundlegende Theorem:

[^0]annimmt, wo $A_{1}^{(3)}, A_{2}^{(2)}, \ldots, A_{m(s)}^{(2)}$ irgend welche Formen sind. Der letztere Ansafz fuhrt auf das Gleichungssystem
(12) $F_{t 1}^{(2)} X_{1}^{(2)}+F_{t 2}^{(2)} X_{2}^{(2)}+\cdots+F_{t m^{(3)}}^{(2)} X_{m^{(3)}}^{(2)}=0, \quad\left(t=1,2, \ldots, m^{(2)}\right)$
wo $F_{t 1}^{(3)}, F_{t 3}^{(9)}, \ldots, F_{t \mathbb{x}^{(3)}}^{(2)}$ die gegebenen Coefficienten und $X_{1}^{(2)}, X_{2}^{(2)}, \ldots$, $X_{\mathrm{m}^{(3)}}^{(3)}$ die zu bestimmenden Formen sind. Dieses dritte Gleichungssystem (12) ist ans dem zweiten Gleichungssysteme (11) in der nămlichen Weise abgeleitet, wie das zweite Gleichungssystem aus der ursprünglichen Gleichong (9). Durch Fortsetzang des eben eingeschlagenen Verfahrens erhalten wir eine Kette von abgeleiteten Gleichungssystemen, in welcher stets die Zahl der zu bestimmenden Formen irgend eines Gleichungssystemes abereinstimmt mit der Zahl der Gleiehungen des darauf folgenden Gleichungssystems.

Zur einheitlicheren Darstellung der weiteren Untersuchungen ist es nöthig, an Stelle der einen ursprünglichen Gleichung (9) ein beliebiges Gleichungssystem von der Gestalt
(13) $\quad F_{t 1} X_{1}+F_{t 2} X_{2}+\cdots+F_{t m(1)} X_{m(1)}=0 \quad(t=1,2, \ldots, m)$
zu setzen. Die Anwendung des oben angegebenen Verfahrens gestaltet sich dann zu einer allgemeinen Theorie solcher Gleichungssysteme, deren Kern in dem folgenden Satze liegt:

Theorem III. Ist ein Gleichungssystem von der Gestalt (13) vorgelegt, so führt die Aufstellung der Relationen awischen den Lösungen desselben su cinem wweiten Gleichungssysteme won der näntlichen Gestalt; aus diesem zweiten abgeleiteten Gleichungssysteme entspringt in gleicher Weise ein drittes abgeleitetes Gleichungssystem. Das so begonnene Verfahren erreicht bei weiterer Fortsetzung stets ein Ende and wwar ist spätestens das $n^{\text {te }}$ Gleichungssystem jener Kette ein solches, welches keine Lösung mehr besitst.

Der Beweis dieses Theorems ist nicht mühelos; er ergiebt sich aus *den folgenden Schlüssen.

Unter den Gleichungen des vorgelegten Systems könnten einige eine Folge der übrigen sein, indem sie von jedem Formensysteme befriedigt werden, welches diesen letateren Gleichungen genügt. Nehmen wir an, dass solche Gleichungen bereits ausgeschaltet sind, so ist, wenn tuberhaupt Lösungen vorhanden sein sollen, nothwendig, die Zahl m der Gleichungen des Systems (13) kleiner als die Zahl $m^{(x)}$ der zu bestimmenden Formen und ausserdem sind die m-reihigen Determinanten

Minimal resolutions

Setup

V is a k-vector space of dimension $r+1$
z_{0}, \ldots, z_{r} a basis in V
$S:=\operatorname{Sym} V=k\left[z_{0}, \ldots, z_{r}\right]=\bigoplus_{d} S_{d}$ the symmetric algebra of S $\mathfrak{m}=\left(z_{0}, \ldots, z_{r}\right) \subset S$ the irrelevant ideal
$M=\bigoplus_{j} M_{j}$ a finitely generated graded S-module .

Minimal resolutions

Theorem (Hilbert, 1890)

There exists a free resolution of graded S-modules:

$$
0 \leftarrow M \leftarrow F_{0} \leftarrow \cdots \leftarrow F_{i-1} \stackrel{d_{i}}{\leftarrow} F_{i} \leftarrow \cdots \leftarrow F_{r+1} \leftarrow 0
$$

with $F_{i}=\oplus_{j} S(-i-j)^{b_{i j}}$ such that $\operatorname{Im}\left(d_{i}\right) \subset \mathfrak{m} \cdot F_{i-1}$. This is called the minimal resolution of M and is unique up to automorphisms of its factors.

Minimal resolutions

Explanation

Minimality:

- the matrix associated to d_{i} does not contain any non-zero constant.
- when reduced modulo \mathfrak{m}, all the differentials become zero.

Minimal resolutions

The elements of F_{i} are the syzygies of M, the numbers $b_{i j}=b_{i j}(M)$ are the graded Betti numbers of M.

If we organise $b_{i j}$ in a table, we obtain the Betti table of M.

Minimal resolutions

The elements of F_{i} are the syzygies of M, the numbers $b_{i j}=b_{i j}(M)$ are the graded Betti numbers of M.

If we organise $b_{i j}$ in a table, we obtain the Betti table of M.

	i	\rightarrow
	\ldots	
j	$b_{i j}$	
\downarrow	\ldots	

$0 \leftarrow M \leftarrow \oplus_{j} S(-j)^{b_{0 j}} \leftarrow \cdots \leftarrow \oplus_{j} S(-i-j)^{b_{i j}} \leftarrow \cdots \leftarrow \oplus_{j} S(-r-1-j)^{b_{r+1, j}} \leftarrow 0$.

Minimal resolutions

Example (Ulrich bundles)

$X \subset \mathbb{P}^{r}$ a smooth irreducible n-dimensional variety, E an Ulrich bundle on X.

Betti table of the section module $H_{*}^{0}(E)=\bigoplus H^{0}(E(i))$:

Minimal resolutions

Example (Ulrich bundles)

$X \subset \mathbb{P}^{r}$ a smooth irreducible n-dimensional variety, E an Ulrich bundle on X.

Betti table of the section module $H_{*}^{0}(E)=\bigoplus H^{0}(E(i))$:

	0	\cdots	i	\cdots	$r-n$
0	$\operatorname{deg}(E)$	\cdots	$\operatorname{deg}(E)\binom{r-n}{i}$	\cdots	$\operatorname{deg}(E)$

Minimal resolutions

Example (Twisted cubic)

Equations: (2×2)-minors of the matrix

$$
\left(\begin{array}{lll}
z_{0} & z_{1} & z_{2} \\
z_{1} & z_{2} & z_{3}
\end{array}\right)
$$

Relations:

$$
\left|\begin{array}{lll}
z_{0} & z_{1} & z_{2} \\
z_{0} & z_{1} & z_{2} \\
z_{1} & z_{2} & z_{3}
\end{array}\right|=0 \text { and }\left|\begin{array}{ccc}
z_{1} & z_{2} & z_{3} \\
z_{0} & z_{1} & z_{2} \\
z_{1} & z_{2} & z_{3}
\end{array}\right|=0
$$

Betti table of the coordinate ring:

	0	1	2
0	1	-	-
1	-	3	2

Minimal resolutions

Example (Koszul resolution)

$M=S / \mathfrak{m}$ the residual field.

$$
0 \leftarrow S / \mathfrak{m} \leftarrow S \leftarrow V \otimes_{k} S(-1) \leftarrow \ldots \leftarrow \wedge^{r+1} V \otimes_{k} S(-r-1) \leftarrow 0
$$

the map $\wedge^{p} V \otimes S(-p) \rightarrow \wedge^{p-1} V \otimes S(-p+1)$ is given by

$$
z_{i_{1}} \wedge \ldots \wedge z_{i_{p}} \otimes P \mapsto \sum_{\ell}(-1)^{\ell} z_{i_{1}} \wedge \ldots \widehat{\ell} \ldots \wedge z_{i_{p}} \otimes z_{i_{\ell}} P .
$$

Minimal resolutions

Remark

$0 \leftarrow M \leftarrow \oplus_{j} S(-j)^{b_{0 j}} \leftarrow \cdots \leftarrow \oplus_{j} S(-i-j)^{b_{i j}} \leftarrow \cdots \leftarrow \oplus_{j} S(-r-1-j)^{b_{r+1, j}} \leftarrow 0$.

$$
b_{i j}=\operatorname{dim} \operatorname{Tor}_{i}(M, S / \mathfrak{m})_{i+j}
$$

Minimal resolutions

Moral

The Betti number $b_{p q}$ coincides with the dimension of the space $K_{p, q}(M)$, called Koszul cohomology space of M, and defined as the cohomology at the middle of the induced complex (called the Koszul complex)

$$
\begin{gathered}
\wedge^{p+1} V \otimes M_{q-1} \rightarrow \wedge^{p} V \otimes M_{q} \rightarrow \wedge^{p-1} V \otimes M_{q+1} \\
z_{i_{1}} \wedge \ldots \wedge z_{i_{p}} \otimes x \mapsto \sum_{\ell}(-1)^{\ell} z_{i_{1}} \wedge \ldots \widehat{\ell} \ldots \wedge z_{i_{p}} \otimes z_{i_{\ell}} x .
\end{gathered}
$$

Minimal resolutions

Geometric cases

- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $M=S_{X}$.
- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $M=I_{X}$.
- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $L=\mathcal{O}_{X}(1)$,
$M=R(X, L):=\oplus_{n} H^{0}\left(X, L^{n}\right)$.
- X a projective variety, $L \in \operatorname{Pic}(X), V \subset H^{0}(L), \mathcal{F}$ a coherent sheaf, $M=R(X, \mathcal{F}, L):=\oplus_{n} H^{0}\left(X, \mathcal{F} \otimes L^{n}\right)$.

Minimal resolutions

Geometric cases

- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $M=S_{X}$.
- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $M=I_{X}$.
- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $L=\mathcal{O}_{X}(1)$,
$M=R(X, L):=\oplus_{n} H^{0}\left(X, L^{n}\right)$.
- X a projective variety, $L \in \operatorname{Pic}(X), V \subset H^{0}(L), \mathcal{F}$ a coherent sheaf, $M=R(X, \mathcal{F}, L):=\oplus_{n} H^{0}\left(X, \mathcal{F} \otimes L^{n}\right)$.

Minimal resolutions

Geometric cases

- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $M=S_{X}$.
- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $M=I_{X}$.
- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $L=\mathcal{O}_{X}(1)$,
$M=R(X, L):=\oplus_{n} H^{0}\left(X, L^{n}\right)$.
$M=R(X, \mathcal{F}, L):=\oplus_{n} H^{0}\left(X, \mathcal{F} \otimes L^{n}\right)$.

Minimal resolutions

Geometric cases

- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $M=S_{X}$.
- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $M=I_{X}$.
- $X \subset \mathbb{P}^{r}$ a non-degenerate variety, $L=\mathcal{O}_{X}(1)$,
$M=R(X, L):=\oplus_{n} H^{0}\left(X, L^{n}\right)$.
- X a projective variety, $L \in \operatorname{Pic}(X), V \subset H^{0}(L), \mathcal{F}$ a coherent sheaf, $M=R(X, \mathcal{F}, L):=\oplus_{n} H^{0}\left(X, \mathcal{F} \otimes L^{n}\right)$.

Minimal resolutions

Notation:

For $M=R(X, \mathcal{F}, L)$, we use the notation $K_{i, j}(X, \mathcal{F} ; L, V)$.
Further notation:

```
K
K
K
```


Minimal resolutions

Important notice

$X \subset \mathbb{P}^{r}, V=H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}}(1)\right)$, and $L=\mathcal{O}_{X}(1)$.
Then X is projectively normal if and only if $K_{0, j}(X ; L)=0$ for all $j \geq 1$.
If X is projectively normal, then to homogeneous ideal is generated by quadrics if and only if $K_{1, j}(X ; L)=0$ for all $j \geq 2$.
Further, the module of relations between the quadrics is generated by linear forms if and only if $K_{2, j}(X ; L)=0$ for all $j \geq 2$.

Minimal resolutions

> Important notice
> $X \subset \mathbb{P}^{r}, V=H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(1)\right)$, and $L=\mathcal{O}_{X}(1)$.

Then X is projectively normal if and only if $K_{0, j}(X ; L)=0$ for all $j \geq 1$.
If X is projectively normal, then to homogeneous ideal is generated by quadrics if and only if $K_{1, j}(X ; L)=0$ for all $j \geq 2$.

Further the module of relations between the quadrics is generated by linear forms if and only if $K_{2, j}(X ; L)=0$ for all $j \geq 2$.

Minimal resolutions

Important notice

$X \subset \mathbb{P}^{r}, V=H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}}(1)\right)$, and $L=\mathcal{O}_{X}(1)$.
Then X is projectively normal if and only if $K_{0, j}(X ; L)=0$ for all $j \geq 1$.
If X is projectively normal, then to homogeneous ideal is generated by quadrics if and only if $K_{1, j}(X ; L)=0$ for all $j \geq 2$.
Further, the module of relations between the quadrics is generated by linear forms if and only if $K_{2, j}(X ; L)=0$ for all $j \geq 2$.

Minimal resolutions

Important notice

$X \subset \mathbb{P}^{r}, V=H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(1)\right)$, and $L=\mathcal{O}_{X}(1)$.
Then X is projectively normal if and only if $K_{0, j}(X ; L)=0$ for all $j \geq 1$.
If X is projectively normal, then to homogeneous ideal is generated by quadrics if and only if $K_{1, j}(X ; L)=0$ for all $j \geq 2$.
Further, the module of relations between the quadrics is generated by linear forms if and only if $K_{2, j}(X ; L)=0$ for all $j \geq 2$.

Minimal resolutions

Definition (Green, 1984)

The property $K_{i, j}(X ; L)=0$ for all $i \leq p$ and $j \geq 2$ is called the property (N_{p}).

Meaning. Purity of the minimal resolution up to the p th step.

	0	1	\ldots	p	$p+1$	\ldots
0	1	-	\ldots	-	-	\ldots
1	-	b_{11}	\ldots	$b_{p 1}$	$b_{p+1,1}$	\ldots
2	-	-	\ldots	-	$b_{p+1,2}$	\ldots
3	-	-	\ldots	-	$b_{p+1,3}$	\ldots
\vdots	-	-	\ldots	-	\vdots	\ldots

Minimal resolutions

Conjecture (Green, 1984)
If a canonical curve C fails property $\left(N_{p}\right)$ then $\operatorname{Cliff}(C) \leq p$.
The case $p=2$ was solved by Voisin and Schreyer.

Minimal resolutions

$X \subset \mathbb{P}^{r}$ curve, $L=\mathcal{O}_{X}(1)$, can define the analogue of property $\left(N_{p}\right)$ for the (shift of the) Arbarello-Sernesi module

$$
R\left(X, K_{X}, L\right)(-1)=\bigoplus_{q} H^{0}\left(L^{q-1} \otimes K_{X}\right)
$$

By duality, it amounts to the vanishing of $K_{p, 1}(X ; L)$ for p large. If $\operatorname{deg}(L) \gg 0$ then $K_{p, 1}(X ; L)=0$ if and only if $p \geq h^{0}(L)-\operatorname{gon}(X)$.

Minimal resolutions

$X \subset \mathbb{P}^{r}$ curve, $L=\mathcal{O}_{X}(1)$, can define the analogue of property $\left(N_{p}\right)$ for the (shift of the) Arbarello-Sernesi module

$$
R\left(X, K_{X}, L\right)(-1)=\bigoplus_{q} H^{0}\left(L^{q-1} \otimes K_{X}\right)
$$

By duality, it amounts to the vanishing of $K_{p, 1}(X ; L)$ for p large.

Minimal resolutions

$X \subset \mathbb{P}^{r}$ curve, $L=\mathcal{O}_{X}(1)$, can define the analogue of property $\left(N_{p}\right)$ for the (shift of the) Arbarello-Sernesi module

$$
R\left(X, K_{X}, L\right)(-1)=\bigoplus_{q} H^{0}\left(L^{q-1} \otimes K_{X}\right)
$$

By duality, it amounts to the vanishing of $K_{p, 1}(X ; L)$ for p large.
Theorem (Green-Lazarsfeld, 1984, Ein-Lazarsfeld, 2015)
If $\operatorname{deg}(L) \gg 0$ then $K_{p, 1}(X ; L)=0$ if and only if $p \geq h^{0}(L)-\operatorname{gon}(X)$.

Syzygy varieties

M. Green, F.-O. Schreyer, S. Ehbauer, H.-C. Graf von Bothmer.

Produce aeometry out of nontrivial linear syzygies.

Syzygy varieties

M. Green, F.-O. Schreyer, S. Ehbauer, H.-C. Graf von Bothmer.

```
The idea
Produce geometry out of nontrivial linear syzygies.
```


Syzygy varieties

Example (Seven points in \mathbb{P}^{3})
$X=\left\{p_{1}, \ldots, p_{7}\right\} \subset \mathbb{P}^{3}$ set of distinct points in linearly general position. $I_{X, 2}$ generated by three quadrics.
The three quadrics have a linear syzygy if and only if X lies on a twisted cubic. This twisted cubic is one example of a syzygy variety.

Syzygy varieties

Example (Seven points in \mathbb{P}^{3})
$X=\left\{p_{1}, \ldots, p_{7}\right\} \subset \mathbb{P}^{3}$ set of distinct points in linearly general position.
$I_{X, 2}$ generated by three quadrics.
The three quadrics have a linear syzygy if and only if X lies on a twisted cubic. This twisted cubic is one example of a syzygy variety.

Syzygy varieties

Example (Seven points in \mathbb{P}^{3})
$X=\left\{p_{1}, \ldots, p_{7}\right\} \subset \mathbb{P}^{3}$ set of distinct points in linearly general position.
$I_{X, 2}$ generated by three quadrics.
The three quadrics have a linear syzygy if and only if X lies on a twisted cubic. This twisted cubic is one example of a syzygy variety.

Syzygy varieties

Example (Seven points in \mathbb{P}^{3})
Moreover, the Betti tables in the two cases are the following

Syzygy varieties

Example (Seven points in \mathbb{P}^{3})
Moreover, the Betti tables in the two cases are the following

	0	1	2	3
0	1	-	-	-
1	-	3	-	-
2	-	1	6	3
	0	1	2	3
0	1	-	-	-
1	-	3	2	-
2	-	3	6	3

Syzygy varieties

Example (Seven points in \mathbb{P}^{3})
Moreover, the Betti tables in the two cases are the following

	0	1	2	3
0	1	-	-	-
1	-	3	-	-
2	-	1	6	3
	0	1	2	3
0	1	-	-	-
1	-	3	2	-
2	-	3	6	3

Syzygy varieties

Definition
$X \subset \mathbb{P}^{r}=\mathbb{P} V^{*}$ non-degenerate, $p \geq 2,0 \neq \alpha \in K_{p, 1}\left(S_{X}\right)$.

Define the syzygy variety of α

The syzygy variety of X is

Syzygy varieties

Definition

$X \subset \mathbb{P}^{r}=\mathbb{P} V^{*}$ non-degenerate, $p \geq 2,0 \neq \alpha \in K_{p, 1}\left(S_{X}\right)$.

$$
\begin{gathered}
K_{p, 1}\left(S_{X}\right) \cong K_{p-1,2}\left(I_{X}\right)=\operatorname{ker}\left\{\wedge^{p-1} V \otimes I_{X, 2} \rightarrow \wedge^{p-2} V \otimes I_{X, 3}\right\} \\
\alpha=\sum_{|I|=p-1} z_{I} \otimes Q_{I}, Q_{I} \in I_{X, 2} .
\end{gathered}
$$

Define the syzygy variety of α

$$
\operatorname{Syz}(\alpha)=\mathbb{V}\left(\left(Q_{I}\right)_{|I|=p-1}\right) .
$$

The syzygy variety of X is

Syzygy varieties

Definition

$X \subset \mathbb{P}^{r}=\mathbb{P} V^{*}$ non-degenerate, $p \geq 2,0 \neq \alpha \in K_{p, 1}\left(S_{X}\right)$.

$$
\begin{gathered}
K_{p, 1}\left(S_{X}\right) \cong K_{p-1,2}\left(I_{X}\right)=\operatorname{ker}\left\{\wedge^{p-1} V \otimes I_{X, 2} \rightarrow \wedge^{p-2} V \otimes I_{X, 3}\right\} \\
\alpha=\sum_{|I|=p-1} z_{I} \otimes Q_{I}, Q_{I} \in I_{X, 2}
\end{gathered}
$$

Define the syzygy variety of α

$$
\operatorname{Syz}(\alpha)=\mathbb{V}\left(\left(Q_{I}\right)_{|I|=p-1}\right)
$$

The syzygy variety of X is

Syzygy varieties

Definition

$X \subset \mathbb{P}^{r}=\mathbb{P} V^{*}$ non-degenerate, $p \geq 2,0 \neq \alpha \in K_{p, 1}\left(S_{X}\right)$.

$$
\begin{gathered}
K_{p, 1}\left(S_{X}\right) \cong K_{p-1,2}\left(I_{X}\right)=\operatorname{ker}\left\{\wedge^{p-1} V \otimes I_{X, 2} \rightarrow \wedge^{p-2} V \otimes I_{X, 3}\right\} \\
\alpha=\sum_{|I|=p-1} z_{I} \otimes Q_{I}, Q_{I} \in I_{X, 2}
\end{gathered}
$$

Define the syzygy variety of α

$$
\operatorname{Syz}(\alpha)=\mathbb{V}\left(\left(Q_{I}\right)_{|I|=p-1}\right)
$$

The syzygy variety of X is

$$
\operatorname{Syz}_{p}(X):=\bigcap_{0 \neq \alpha \in K_{p-1,2}\left(I_{X}\right)} \operatorname{Syz}(\alpha) .
$$

Syzygy varieties

Classification: large p.
Theorem (M. Green's $K_{p, 1}$ Theorem)
Assume X is of pure dimension n. Then

$$
\begin{aligned}
& \text { X curve embedded by a complete linear system of degree } \geq 2 g+2 \text {, } \\
& \text { third case: } K_{r-2,1}\left(S_{X}\right) \neq 0 \text { then } X \text { is a normal elliptic curve or } X \text { lies on } \\
& \text { a surface of minimal degree }(r-1) \text { which induces a double cover of } \mathbb{P}^{1}
\end{aligned}
$$

Syzygy varieties

Classification: large p.
Theorem (M. Green's $K_{p, 1}$ Theorem)
Assume X is of pure dimension n. Then

- $K_{p, 1}\left(S_{X}\right)=0$ for all $p>r-n$,
- $K_{r-n, 1}\left(S_{X}\right) \neq 0$ if and only if X is a variety of minimal degree $(r-n+1)$ and in this case $\mathrm{X}=\mathrm{Syz}_{r-n}(\mathrm{X})$,
- If $K_{r-n, 1}\left(S_{X}\right)=0$ and $K_{r-n-1,1}\left(S_{X}\right) \neq 0$ then either $X=\operatorname{Syz}_{r-n-1}(X)$ and $\operatorname{deg}(X)=r-n+2 \operatorname{orSyz}_{r-n-1}(X)$ is an $(n-1)$-fodd of minimal degree $(r-n)$.

[^1]
Syzygy varieties

Classification: large p.
Theorem (M. Green's $K_{p, 1}$ Theorem)
Assume X is of pure dimension n. Then

- $K_{p, 1}\left(S_{X}\right)=0$ for all $p>r-n$,
- $K_{r-n, 1}\left(S_{X}\right) \neq 0$ if and only if X is a variety of minimal degree $(r-n+1)$ and in this case $X=\operatorname{Syz}_{r-n}(X)$,
- If $K_{r-n, 1}\left(S_{X}\right)=0$ and $K_{r-n-1,1}\left(S_{X}\right) \neq 0$ then either $X=\operatorname{Syz}_{r-n-1}(X)$ and $\operatorname{deg}(X)=r-n+2 \operatorname{orSyz}_{r-n-1}(X)$ is an $(n+1)$-fold of minimal degree $(r-n)$.

X curve embedded by a complete linear system of degree

 third case: $K_{r-2,1}\left(S_{X}\right) \neq 0$ then X is a normal elliptic curve or X lies on a surface of minimal degree $(r-1)$ which induces a double cover of \mathbb{P}^{1}
Syzygy varieties

Classification: large p.

Theorem (M. Green's $K_{p, 1}$ Theorem)

Assume X is of pure dimension n. Then

- $K_{p, 1}\left(S_{X}\right)=0$ for all $p>r-n$,
- $K_{r-n, 1}\left(S_{X}\right) \neq 0$ if and only if X is a variety of minimal degree $(r-n+1)$ and in this case $X=\operatorname{Syz}_{r-n}(X)$,
- If $K_{r-n, 1}\left(S_{X}\right)=0$ and $K_{r-n-1,1}\left(S_{X}\right) \neq 0$ then either $X=\operatorname{Syz}_{r-n-1}(X)$ and $\operatorname{deg}(X)=r-n+2 \operatorname{orSyz}_{r-n-1}(X)$ is an $(n+1)$-fold of minimal degree $(r-n)$.

Syzygy varieties

Classification: large p.

Theorem (M. Green's $K_{p, 1}$ Theorem)

Assume X is of pure dimension n. Then

- $K_{p, 1}\left(S_{X}\right)=0$ for all $p>r-n$,
- $K_{r-n, 1}\left(S_{X}\right) \neq 0$ if and only if X is a variety of minimal degree $(r-n+1)$ and in this case $X=\operatorname{Syz}_{r-n}(X)$,
- If $K_{r-n, 1}\left(S_{X}\right)=0$ and $K_{r-n-1,1}\left(S_{X}\right) \neq 0$ then either $X=\operatorname{Syz}_{r-n-1}(X)$ and $\operatorname{deg}(X)=r-n+2 \operatorname{orSyz}_{r-n-1}(X)$ is an $(n+1)$-fold of minimal degree $(r-n)$.

Syzygy varieties

Classification: large p.

Theorem (M. Green's $K_{p, 1}$ Theorem)

Assume X is of pure dimension n. Then

- $K_{p, 1}\left(S_{X}\right)=0$ for all $p>r-n$,
- $K_{r-n, 1}\left(S_{X}\right) \neq 0$ if and only if X is a variety of minimal degree $(r-n+1)$ and in this case $X=\operatorname{Syz}_{r-n}(X)$,
- If $K_{r-n, 1}\left(S_{X}\right)=0$ and $K_{r-n-1,1}\left(S_{X}\right) \neq 0$ then either $X=\operatorname{Syz}_{r-n-1}(X)$ and $\operatorname{deg}(X)=r-n+2$ or $\operatorname{Syz}_{r-n-1}(X)$ is an $(n+1)$-fold of minimal degree $(r-n)$.
X curve embedded by a complete linear system of degree $\geq 2 g+2$, third case: $K_{r-2,1}\left(S_{X}\right) \neq 0$ then X is a normal elliptic curve or X lies on a surface of minimal degree $(r-1)$ which induces a double cover of \mathbb{P}^{1}.

Syzygy varieties

Theorem (S. Ehbauer)
Assume X is a curve. If $K_{r-3,1}\left(S_{X}\right) \neq 0$, then $\operatorname{Syz}_{r-3}(X)$ is either

Syzygy varieties

Theorem (S. Ehbauer)
Assume X is a curve. If $K_{r-3,1}\left(S_{X}\right) \neq 0$, then $\mathrm{Syz}_{r-3}(X)$ is either

- a surface of minimal degree ($r-1$), or
- a surface of degree r, or
- a threefold of minimal degree $(r-2)$.

Syzygy varieties

Theorem (S. Ehbauer)
Assume X is a curve. If $K_{r-3,1}\left(S_{X}\right) \neq 0$, then $\mathrm{Syz}_{r-3}(X)$ is either

- a surface of minimal degree ($r-1$), or
- a surface of degree r, or

Syzygy varieties

Theorem (S. Ehbauer)
Assume X is a curve. If $K_{r-3,1}\left(S_{X}\right) \neq 0$, then $\mathrm{Syz}_{r-3}(X)$ is either

- a surface of minimal degree ($r-1$), or
- a surface of degree r, or
- a threefold of minimal degree ($r-2$).

Syzygy varieties

Example

If X is a generic canonical curve of genus 6 then it is a quadratic section of a del Pezzo surface in \mathbb{P}^{5}. This del Pezzo surface is a syzygy variety $\mathrm{Syz}_{2}\left(K_{X}\right)$. The Betti table:

	0	1	2	3	4
0	1	-	-	-	-
1	-	6	5	-	-
2	-	-	5	6	-
3	-	-	-	-	1

Syzygy varieties

> Theorem (A.-Bruno-Sernesi, work in progress)
> If C is a canonical 4-gonal curve of genus ≥ 6 then $\mathrm{Syz}_{2}(C)=C$ unless C is either bielliptic or a quadric section of a del Pezzo surface. In the bielliptic case, the second syzygy variety is a cone over the elliptic curve. For quadric sections of del Pezzo's the second syzygy variety is the del Pezzo surface itself.

Syzygy varieties tend to have small degree.

Syzygy varieties

> Theorem (A.-Bruno-Sernesi, work in progress)
> If C is a canonical 4-gonal curve of genus ≥ 6 then $\mathrm{Syz}_{2}(C)=C$ unless C is either bielliptic or a quadric section of a del Pezzo surface. In the bielliptic case, the second syzygy variety is a cone over the elliptic curve. For quadric sections of del Pezzo's the second syzygy variety is the del Pezzo surface itself.

Syzygy varieties tend to have small degree.

The result

Theorem

Suppose that the curve is non-tetragonal and $I_{K, L}$ is generated in degree two. The module of syzygies of $I_{K, L}$ is generated in degree one if the dimension of the secant locus $V_{r-1}^{r-2}(L)$ equals the expected dimension and in any component of $V_{r-1}^{r-2}(L)$ there exists an effective divisor $D=x_{1}+\cdots+x_{r-1}$ s.t.
(1) $h^{0}(L(-D))=3$,
(2) $L(-D)$ is base-point-free,
(3) $h^{0}\left(L\left(-D+x_{i}\right)\right)=3$ for any i.

Proof idea

Arbarello-Sernesi: the map u_{L} is surjective.

Koszul cohomology: translate into

$$
K_{1, j}\left(I_{K, L}\right) \cong K_{2, j}\left(C, K_{C} \otimes L^{-1} ; L\right)=0 \text { for } j \geq 2
$$

this is the analogue of the property $\left(N_{2}\right)$ for the graded module

Duality for Koszul cohomology

$$
K_{r-3,1}\left(C_{;} L\right)=0,
$$

equivalently

Proof idea

Arbarello-Sernesi: the map u_{L} is surjective.
Koszul cohomology: translate into

$$
K_{1, j}\left(I_{,, L}\right) \cong K_{2, j}\left(C, K_{C} \otimes L^{-1} ; L\right)=0 \text { for } j \geq 2 ;
$$

this is the analogue of the property $\left(N_{2}\right)$ for the graded module

$$
\bigoplus_{q} H^{0}\left(C, L^{q-1} \otimes K_{C}\right)
$$

Duality for Koszul cohomology

equivalently

Proof idea

Arbarello-Sernesi: the map u_{L} is surjective.
Koszul cohomology: translate into

$$
K_{1, j}\left(I_{K, L}\right) \cong K_{2, j}\left(C, K_{C} \otimes L^{-1} ; L\right)=0 \text { for } j \geq 2
$$

this is the analogue of the property $\left(N_{2}\right)$ for the graded module

$$
\bigoplus_{q} H^{0}\left(C, L^{q-1} \otimes K_{C}\right)
$$

Duality for Koszul cohomology

$$
K_{r-3,1}(C ; L)=0
$$

equivalently

$$
K_{r-4,2}\left(I_{C}\right)=\operatorname{ker}\left\{\wedge^{r-4} V \otimes I_{C, 2} \rightarrow \wedge^{r-5} V \otimes I_{C, 3}\right\}=0
$$

Proof idea

Use the syzygy variety

$$
\operatorname{Syz}_{r-3}(C):=\bigcap_{0 \neq \alpha \in K_{r-4,2}\left(I_{C}\right)} \operatorname{Syz}(\alpha) .
$$

Proof idea

Theorem (Ehbauer)

If $K_{r-3,1}\left(S_{C}\right) \neq 0$, then $\mathrm{Syz}_{r-3}(C)$ is either

- a surface of minimal degree ($r-1$), or
- a surface of degree r, or
- a threefold of minimal degree ($r-2$).

Proof idea

1st Step. Prove that the hypotheses of the theorem are preserved under generic inner projections; can assume $r=5$ and hence

$$
\operatorname{expdim} V_{4}^{3}(L)=2 \times 4-5-2=1
$$

2nd Step. Prove that our hypotheses prevent the curve from lying on a surface of minimal degree 4 in \mathbb{P}^{5} or a smooth del Pezzo surface in \mathbb{P}^{5} or a singular surface of degree 5 in \mathbb{P}^{5} or on a threefold of degree 3 in \mathbb{P}^{5}.

Proof idea

1st Step. Prove that the hypotheses of the theorem are preserved under generic inner projections; can assume $r=5$ and hence

$$
\operatorname{expdim} V_{4}^{3}(L)=2 \times 4-5-2=1
$$

2nd Step. Prove that our hypotheses prevent the curve from lying on a surface of minimal degree 4 in \mathbb{P}^{5} or a smooth del Pezzo surface in \mathbb{P}^{5} or a singular surface of degree 5 in \mathbb{P}^{5} or on a threefold of degree 3 in \mathbb{P}^{5}.

Many Happy Returns, Edoardo!

[^0]: *) Vgl. die vorlaufigen Mittheilungen des Verfassers: „Zur Theorie der algebraischen Gebilde", Nachrichten v. d. kgl. Ges. d. Wiss. zu Göttingen, 1888 (ersite Note) und 1889 (zweite und dritte Note).

 Mathematiacho Ansalen. XXXVI.

[^1]: X curve embedded by a complete linear system of degree third case: $K_{r-2,1}\left(S_{X}\right) \neq 0$ then X is a normal elliptic curve or X lies on a surface of minimal degree $(r-1)$ which induces a double cover of \mathbb{P}^{1}

