
Mathematical Biology A.A. 2009/10
Exercises

1 Single population growth

1.1. Assume that growth of population N depends on available resources R, accord-
ing to a general law

dN

dt
= NG(R). (1)

Assume for the moment that the amount of resources is a fixed constant C, but
they can be free (hence available) or used by the population. In other words

R = C −H(N). (2)

The model will be specified when the functions G and H are given.

(a) Explain why reasonable assumptions are that both G and H are increasing
functions with G(0) < 0, H(0) = 0.

(b) Choose a linear from for G and H and show that N follows the logistic
equation.

(c) In the previous case find the expressions for the intrinsic rate of growth r
and the carrying capacity K.

(d) Does equation (??) always have a positive equilibrium? If not, find the
conditions under which it does.

(e) Using generic functions G and H satisfying the assumptions in a), un-
der which conditions the equation (??) has a unique positive equilibrium.
When is it asymptotically stable?

What could be other reasonable assumptions for R instead of (??)?

1.2. A population N is growing according to a logistic differential equation, and
N(t1) = n1, N(t1 + τ) = n2, N(t1 + 2τ) = n3. Show that

K =
1/n1 + 1/n3 − 2/n2

1/(n1n3)− 1/n2
2

.

1



1.3. It may be considered reasonable that, for a sexual species, growth is propor-
tional to the number of encounters, hence, choosing appropriately the time
unit:

dN

dt
= N2.

(a) Show that the solutions of this equation tend to infinity in a finite time.

(b) Let us correct the equation, by assuming that the term N2 describes only
the births, and that they are anyway limited by density dependence; deaths
are proportional to N . Hence the resulting equation would be

dN

dt
= N2(1− N

K
)− µN.

Discuss whether it seems a reasonable equation. Find its positive equilibria
and their stability properties. Does the equation still have the problem of
solutions going to infinity in a finite time?

1.4. Harvesting problem.

Let us consider a population growing according to a logistic dynamics. Let
assume that a constant effort E of fishing1 so that the yield per unit time is
qEx, where x is population size q is a coefficient denoting the return to effort.

(a) Write down the differential equation for x(t) which translate these as-
sumptions; find its equilibria and the asymptotic behaviour of solutions,
according to parameter values.

(b) Let assume that the unit price at which the fish is sold is p, and that
the cost of fishing is proportional (through a coefficient c) to the effort
E. Let assume that an enlightened dictator wants to set E at the value
that maximizes the gain (= revenue − cost) when the population is at
its asymptotically stable equilibrium. Find the value of E and the corre-
sponding equilibrium value for x.

(c) Economic theory predicts that, for an open access fishery, the effort E will
in the long run reach the value at which the gain is equal to 0. Find the
value of E and the corresponding equilibrium value of x; compare them
(i.e, find, if they are greater or smaller) than the previous case.

(d) Let assume that the government taxes at a percentage ρ the gains obtained
by fisheries. How does this affect the results obtained with open-access
fishery?

1or hunting, or harvesting



(e) Let assume that the government taxes according to how much has been
fished Y . Let us consisre two separate cases: a constant fraction ρY , or a
progressive tax τ(Y ) given by the formula

τ(Y ) =

{
0 se Y ≤ Y0

ρ(Y − Y0) se Y > Y0

Which are the results of these regulations?

(f) Let us assume that the dynamics of x be described, in absence of fishing,
by the generalized logistic equation

x′(t) = rx(t)

(
1−

(
x(t)

K

)α)
. α > 0

How do previous results change?

2 Analysis of planar systems

2.1. A theoretical model for mutual inhibition between two proteins is

dx

dt
=

(
1
2

)n(
1
2

)n
+ yn

− x

dy

dt
=

(
1
2

)n(
1
2

)n
+ xn

− y

where x(t) and y(t) represent the concentrations of the two proteins.

(a) Show that

(
1

2
,
1

2

)
is an equilibrium for all n > 0.

(b) Study its stability in dependence of n.

(c) With the help of a computer, show that there exist other positive equilibria
for n > 2.

2.2. The following system has been proposed to study a plant-herbivore system: q
represents plant quality (low q means that the plant is toxic because of chemicals
released, while high q means that the plant is a good food for the herbivores).
We assume that quality decreases (toxic compounds are synthetised) as a result
of high herbivory). The density of herbivores isH and their growth rate depends
on the quality of food they consume. The model equations are

dq

dt
= k1 − k2qH(H −H0)

dH

dt
= k3H

(
1− k4H

q

)
.



(a) Explain why the equations correspond to the biological assumptions, and
suggest possible meanings for its parameters.

(b) Show that the equations can be written in dimensionless form as

dx

dτ
= 1− kxy(y − 1)

dy

dτ
= αy

(
1− y

x

)
.

Determine k and α in terms of the original parameters.

(c) Show that there is only one positive equilibrium2.

(d) Determine its stability3

3 Predator-prey

3.1. It is often observed that, in the pools where fish have been added, water has
a greenish colour, indicating a high algal biomass. Try to explain this us-
ing a prey-predator system with functional and numerical response of Holling
type, assuming that algae (the prey) follow the logistic equation (in absence
of predators) and that zooplankton (predators) have mortality rate given by
d+ bP where P is fish density (assumed to be constant). Specifically, find how
equilbrium algal biomass varies with fish density P , and comment the results.

3.2. In all Canada moose are preyed by packs of wolves that cause a relevant mor-
tality. The ecologist Messier (1994) has collected data in different areas in the
country and found that the following relation (approximately) holds between
the density L (# of wolves per km2) of wolves and the density A (# of moose
per km2) of moose:

L =
0.0587(A− 0.03)

0.76 + A
.

Let us interpret this relation as the isocline of predators, i.e. the equilibrium
number of wolves for each constant density A of moose. Is it possible to obtain
such an isocline from a prey-predator system of Gause-Rosenzweig-McArthur
type?

Messier has also obtained that, in absence of wolves, the growth of moose is
logistic with intrinsic rate of growth equal to 0.51 years−1 and carrying capacity
equal to 1.96 moose per km2 and that the rate of mortality bacause of predation
(in years−1) is proportional to wolf density and equal to 5.2L.

2It is not possible computing it explicitly, but its uniqueness can easily be established graphically.
3It is not necessary to know explicitly the equilibrium; its sign is sufficient for the computations.



Draw the prey and predator isoclines and find the positive equilibrium of the
system. Is such equilibrium stable4?

3.3. Consider a prey-predator system, in which prey dynamics, in absence of preda-
tors, is logistic, while predators interact among themselves. For instance, the
number of preys captured per predator could increase with the number of preda-
tors (hunting in group could be more efficient) or decrease with the number of
predators (predators could waste time fighting among them; or preys may be
more careful when there are many predators around).

(a) Write a generic system according to these assumptions.

(b) Choose a specific model, corresponding to one of those cases.

(c) Analyse the equilibria and their stability (local) per the chosen model.

3.4. Leslie (1948) proposed the following system as a model for the prey-predator
dynamics:

dH

dt
= H(a− bH − cP ),

dP

dt
= P (r − sP

H
),

in other words, the predators (P ) have a logistic type dynamics with carrying
capacity proportional to the density of preys (H).

State clearly, and in case criticize, the assumptions of the model.

Draw the isoclines in the phase plane, and find the positive equilibrium.

Show that the function (where (H∗, P ∗) is the positive equilibrium)

V (H,P ) = log

(
H

H∗

)
+
H∗

H
+
cH∗

s

(
log

(
P

P ∗

)
+
P ∗

P

)
is a Liapunov function for the system5

3.5. Consider the following prey-predator system:

dH

dt
= H

[
r(1−H/K)− αHP

(H2 + β2)

]
dP

dt
= P

[
−c+

γH2

(H2 + β2)

]
where all parameters are positive.

4think of the relation betwen isocline and the differential equation for predators
5The proof requires careful computations: 1. compute the derivative along the trajectories of V .

2. using the relations satisfied by H∗ and P ∗, show that the terms including both H and P cancel,
and the derivative is the sum of a term depending only on H and one depending only on P . 3.
using again the relations satisfied by H∗ and P ∗, show that each term is a perfect square, so that
the derivative has a definite sign.



(a) Give a biological interpretation to these equations.

(b) Find all equilibria (in the first quadrant) and study their stability for γ < c.

(c) Assume γ > c. Find the conditions on K that make unstable the ’equilib-
rium without predators (but with a positive number of preys).

(d) Show that a positive equilibrium (H∗, P ∗), if it exists, is stable if
r

K
+ αP ∗ϕ′(H∗) > 0 where ϕ(H) =

H

H2 + β2
.6

(e) Show that the condition of stability in (d) is equivalent7 to

1 +

(
K −H∗

H∗

)(
β2 − (H∗)2

β2 + (H∗)2

)
> 0.

4 Two species competition

4.1. Show that in the Lotka-Volterra competition model, two species can coexist at
a stable equilibrium only if the point representing the equilibrium densities of
the two species (N∗1 , N

∗
2 ) lies above the line connecting the two equilibria with

a single species (K1, 0) e (0, K2).

This represents a powerful test of the model: one can grow the two species in
isolation, record their equilibrium densities; then grow the two species together
and, if they reach a coexistence equilibrium, measure their densities and see
whether the condition is satisfied.

Such an experiment was performed by Ayala (1969) with two species of fruit
flies, Drosophila pseudoobscura and D. serrata, obtaining the following results:

Species grown Species grown
in isolation together

# D. pseudoobscura 664 252
# D. serrata 1251 278

What can we conclude about the competition model? What may be reasons
for the discrepancy from theoretical predictions?

4.2. For each of the following systems, determine the outcome of competition:

(a) x′ = x(60− 3x− y), y′ = y(75− 4x− y);

(b) x′ = x(80− x− y), y′ = y(120− x− 3y − 2y2).

6To show this, it is convenient to rewrite the system using the function ϕ, and compute the
positive equilibrium and the Jacobian through ϕ(H∗) and ϕ′(H∗), without explictly computing
these.

7Use simple algebraic steps



4.3. Figure ?? shows some results of experiments by Tilman et al. (1981) with two
species of algae (Asterionella formosa and Cyclotella meneghiniana) in two
different circumstances: on the left when phosphates are limiting while silicates
are abundant; on the right, when silicates are limiting while phosphates are
abundant (see caption for details). Suppose that the two species are grown

Figure 1: Rates of reproduction (in days−1 of Asterionella formosa (continuous line)
and Cyclotella meneghiniana (dashed line) as a function of PO4 with abundant sili-
cates (left panel), or of SiO2 with abundant phosphates (right panel).

together in two different experimental set-ups: abundant silicates and limiting
phosphates; or abundant phosphates and limiting silicates.

(a) Which of the two species will outcompete the other one in the two exper-
iments?

(b) Assume that mortality is equal to 0.25 days−1 for both species. Moreover,
in the experiment with limiting phosphates the concentration of available
phosphates P is obtained from the total number N of algae of the two
species; similarly, in the experiment with limiting silicates the concentra-
tion of available silicates S is obtained from the numbers (per ml) N1 and
N2 of the two species, according to the following relations

P =
2

1 + 0.02N1 + 0.01N2

S =
30

1 + 0.04N1 + 0.006N2

.

Find the equilibrium concentrations towards which, in the two different
experiments, the concentrations of the algae will converge.

(c) Assume that when a species is grown with limiting both phosphates and
silicates, its rate of reproduction is given by the minimum of what shown in
the two panels of Fig. ?? (Liebig’s minimum law). Show that a coexistence
equilibrium would then exist, and find its coordinates.



4.4. Assume that the dynamics of two competing species can be described by Lotka-
Volterra system where the growth rates r1 and r2 are periodic functions of t
(positive at all times).

(a) Find the asymptotic behaviour of the system with only one species, say 18

(b) Find the conditions under which species 2 would increase, if introduced
in small numbers when species 1 has approached its asymptotic state. Is
it possible to find parameter values such that species 2 would increase,
if introduced in small numbers when species 1 is close to its asymptotic
state9, and vice versa?

(c) Repeat the scheme assuming that r1 and r2 are constant, but the carrying
capacities K1 and K2 are periodic functions of t (positive at all times). The
computations are possible, but awful; it is enough describing the procedure
conceptually, after having guessed correctly the asymptotic behaviour of
the system with only species 1.

5 3 species ecological system

5.1. Consider the system con 2 prey species (H1 and H2) and 1 predator with Lotka-
Volterra interactions:

H ′1 = r1H1(1−
H1

K1

− α12
H2

K1

)− c1H1P

H ′2 = r2H2(1− α21
H1

K2

− H2

K2

)− c2H2P

P ′ = γ1c1H1P + γ2c2H2P − dP

(a) Make the equations non-dimensional, through suitable variable changes.

(b) List the possible equilibria with 1 or 2 species present, and examine the
conditions for their existence and stability. As for positive equilibria, find
the equations it must satisfy, without discussing its existence (in the pos-
itive quadrant) or its stability.

(c) Find parameter values10 such that:

i. without predator the preys do not coexist, but will coexist together
with the predator11;

8the equation can be solved exactly using the transformation used for obtaining the exact solution
of the logistic equation, or via separation of variables. This is actually not necessary, since the
asymptotic behaviour of N1 can be guessed intuitively, or obtained by plotting the vector field in
the plane (t, N1).

9this verbal specification means that a linearization has to be performed
10a computer may help
11Note that I did not precise the meaning of ‘coexistence’



ii. without predator the preys coexist, but the introduction of the preda-
tor causes extinction of one of them12.

5.2. Consider the food-chain model with one prey species (H), a predator (P ) and
a predator of the predator (Q), using Holling-type laws:

H ′ = rH(1− H

K
)− aHP

1 + aTH

P ′ =
γaHP

1 + aTH
− dP − bPQ

1 + bSP

Q′ =
ρbPQ

1 + bSP
− eQ

All parameters can be considered positive constants.

(a) Make the equations non-dimensional, through suitable variable changes.

(b) List the possible equilibria, and examine the conditions for their existence
and stability.

(c) Does the enrichment paradox still hold?

6 Logistic equation with delay

6.1. Consider the equation

N ′(t) = rN(t)

(
1− N(t− τ)

K

)
.

(a) Find the linearized equation at the equilibrium K.

(b) Show that the corresponding characteristic equation is λ = −re−λτ .
(c) Let λ = x + iy and transform the characteristic equation into a couple of

equations for x and y.

(d) Show, using one of the previous equations, that, if x ≥ 0, necessarily
|y| ≤ r.

(e) Using the previous relation in the other equation, show that, if rτ < π/2,
there are no solutions of the characteristic equation with x ≥ 0.

6.2. Consider the equation

N ′(t) = rN(t)

(
1−

∫ +∞
0

p(s)N(t− s) ds
K

)
with p(s) =

1

τ
e−s/τ .

Let P (t) =
+∞∫
0

p(s)N(t− s) ds.

12check the stability of the boundary equilibria



(a) Show13 that N(t) and P (t) satisfy a two–dimensional system of ordinary
differential equations.

(b) Show that the system has an equilibrium with the first component equal
to K.

(c) Prove that that equilibrium is asymptotically stable.

7 Models in discrete time

7.1. Let xt the population of a species in year t. The dynamics is in discrete time;
it is assumed that a fraction p of the population survives to the following year.
Moreover, each individual generates on average 2/(1+ax2

t ) children that survive
to the following year: these are then identical to older individuals in terms of
birth and death rates.

Write down xt+1 in terms of xt; make the equations non-dimensional in a way
that reduces the number of parameters. Find the equilibria of the resulting
discrete map. Study their stability according to the values of the (reduced)
parameters.

7.2. According to Barrowclough and Rockwell (1993), the snow goose (Anser cau-
rulescens) has the following demography:

i s P
0 0.46 0.00
1 0.76 0.00
2 0.76 0.50
3 0.76 0.86

4-7 0.81 1.00

z # number of chicks born alive
⇓ 0 1 2 3 4 5 6 7
2 3 0 3 9 3 1 0 0
3 4 4 6 17 29 11 1 0
4 12 2 8 25 25 14 5 0
5 5 1 4 22 37 35 3 2
6 3 1 3 24 36 25 10 0
7 4 0 2 11 35 21 3 0

In the table to the left, i denotes the age (in years), s the probability of surviving
to the following year, P the probability of laying eggs. These probabilities refer
to females only and, for simpliicity, let us assume that there is 0 probability of
surviving to age 8 or beyond.

The table to the right shows, for each age of the mother (z), the number of
observed nests with a certain number (between 0 and 7) of chicks born alive.
Assume that on average 50% of them will be males, 50% females.

On the basis of these data prepare a Leslie matrix for female demography.

13a change of variable in the integral may be useful



Compute the expected life of a female at birth, and the expected number of
female chicks produced over her life14.

7.3. Consider an age-structured population growing according to a Leslie matrix.
Suppose the population is in stable exponential growth (i.e. its age-structure
is constant in time, while the total population is exponentially growing (or
decreasing) with exponent r.

(a) Compute the two quantities:

• Tf : the average age of the mothers of all children born at time t;

• Tm: the average age at which the children born at time t will give
birth during their life.

(b) Show that Tf < Tm if r > 1, and vice versa if r < 1.

(c) Show that, when R ≈ 1, (R the expected number of children born over a
lifetime) the following relation holds in first approximation

(r − 1)Tm ≈ R− 1.

7.4. Consider an age-structured population growing according to a (2-dimensional)

nonlinear Leslie model. Precisely, letting ut =

(
ut1
ut2

)
, the model is

ut+1 =

(
m1 m2

ψ(N t)s1 0

)
ut

where N t = ut1 + ut2, 0 < m1 < 1, 0 < s1 < 1, m2 > 0 and ψ is a decreasing
function such that ψ(0) = 1 and lim

N→∞
ψ(N) = 0.

(a) Find the conditions under which this system has a positive equilibrium.

(b) Study the conditions for its stability.

For answering this question, it is almost necessary to use the Jury condi-
tions15: all the eigenvalues of a 2× 2 matrix A satisfy |λ| < 1 if and only
if

det(A) < 1, −det(A)− 1 < tr(A) < det(A) + 1.

14if such an exercise is given at the exam, the size of the matrices will be reduced, to decrease the
number of computations

15one might wish to prove the Jury conditions, but this is not part of the exercise



8 Molecular and cellular biology

8.1. A molecule X is synthetised from a substrate S through an enzymatic reaction
of Michaelis-Menten kinetics, proportionally to the concentration of the enzyme
E in active configuration. The enzyme E moves from bound to active config-
uration at rate k1, while the presence of X helps the opposite transition that
occurs at rate k−1X, where X is the concentration of X. These reactions can be

summarised in the scheme to the right:

Finally the substrate is produced at constant rate, and X dissociates propor-
tionally to its concentrations.

(a) Can we say that there is a positive or negative feedback of X on its syn-
thesis?

(b) Write down a system of differential equations corresponding to the as-
sumptions.

(c) Compute the (unique) equilibrium of the system, finding conditions for its
feasibility? [Hint: consider the equation for the sum S +X]

(d) Suggest what might be the behaviour of the system, when the conditions
for the feasibility of the equilibrium are not satisfied.

8.2. [Positive feedback on gene transcription (Griffith 1968).] Consider the simple
case of a protein that activates transcription of its own gene, as in the following
figure:

This mechanism is described by a pair of ordinary differential equations:

d[M ]

dt
= ν1

ε2 + ([P ]/Kl)
2

1 + ([P ]/Kl)
2 − k2[M ],

d[P ]

dt
= k3[M ]− k4[P ].

(a) How must the variables be scaled to write the ODEs in dimensionless form:

dx

dτ
=
ε2 + y2

1 + y2
− x, dy

dτ
= κ(σx− y) ?



(b) Assume ε = 0.2, κ = 1. Draw phase plane portraits for several values of
σ.

(c) Show graphically how the number of equilibria of the system changes with
σ.

(d) Plot the equilibrium value of y as a function of σ. [it is enough a picture
showing the qualitative pattern.]

8.3. In the derivation of Michaelis-Menten equation, it is assumed that the back-

reaction SE
k−2←− P + E is neglibly slow. Consider now the full system of

reactions:

S + E
k1−→←−
k−1

SE
k2−→←−
k−2

P + E

(a) Write down the system of equations corresponding to this scheme. Assume
that at the start, there is no complex SE nor product P .

(b) Note that there are two quantities that are conserved: [E] + [SE] and
[S] + [SE] + [P ]. Use this to decrease the number of equations.

(c) Make the equations non-dimensional, and in so doing introduce the pa-
ramete ε = E0/S0, ratio of initial values of enzyme and substrate.

(d) Go to the limit ε → 0+ which amounts to make the ‘quasi-equilibrium’
approximation.

(e) Consider the resulting differential equation for S(t) and show that it will
converge to an equilibrium S∗ where the concentrations of substrate and
product will satisfy Haldane’s relation

P ∗

S∗
=

k1k2

k−1k−2

.

8.4. FitzHugh’s original model for the action potential was

dx

dt
= c

(
y + x− x3

3
− I
)
, c

dy

dt
= a− x− by.

Here x is an excitability variable such as membrane potential, y is a recovery
variable such as potassium permeability. I is applied current (assumed to be
constant), a, b and c are positive parameters such that b < 1 < c.

(a) Noting that equilibria are found through the intersections of a line and a
cubic, show that, under the assumptions on parameters, there is always a
unique equilibrium (x∗, y∗). [Hint: consider the slopes of the line and of
the cubic.]



(b) Computing the Jacobian at the equilibrium, show that it is asymptotically
stable if

b

c
− c(1− (x∗)2) > 0, 1− b(1− (x∗)2) > 0.

(c) Show that the equilibrium is unstable if x∗ falls in the range −r < x∗ < r
with r =

√
1− b/c2. Show that when this happens the equilibrium lies in

the portion of the cubic between its local maximum and minimum.

(d) Show that at

I = Ic =
a− r
b

+ r − r3

3

the equilibrium is at x∗ = r, and that the Jacobian has purely imaginary
eigenvalues.

(e) Show, using the implicit function theorem, that the value of x∗ is a de-
creasing function of the applied current I.

(f) Deduce from this that the equilibrium will be unstable and that there will
be a periodic solution of the system when I belongs to the interval (Ic, IM)
for an appropriate value of IM .

(g) Assume that c is very large. Changing the scale of time, rewrite the system
as a pair of slow-fast equations. Show graphically what is the behaviour
of the resulting system in the limit c→∞.

9 Travelling waves

9.1. Show that an exact travelling wave solution exists for the scalar reaction-
diffusion equation

∂u

∂t
= uq+1(1− uq) +

∂2u

∂x2

where q > 0 by looking for solutions in the form

u(x, t) = U(z) =
1

(1 + debz)s
, z = x− ct

where c is the wave speed and b and s positive constants. Determine the values
for c, b and s in terms of q [Hint: first choose s such that sq is simple, so that
uq+1(1− uq) has a simple expression].

Choose a value for d such that the magnitude of the wave’s gradient is maximal
at z = 0.



10 Birth and death processes

10.1. The release of sterile males is a technique has sometimes been applied in the
attempt to eradicate pests. The idea is that a certain proportion of females will
mate with the released sterile males and will not produce offspring, leading to
a reduction of the population. Clearly, this can be effective only if sterile males
are quite abundant compared to normal males.

Repeating this process for a few generations (while normal males become less
and less abundant) could lead to a strong reduction of the population, and
possibly to extinction.

We make extreme assumptions, in order to be able to build a very simplified
model of this mechanism in the form of a birth-and-death process.

First, assume that the number of females and ‘normal’ males is at all times
equal: a male dies when and only when a female dies (at rate µ, independently
of population size); offspring are born in pairs (one male and one female).

Second, assume that the number of sterile males is kept constant at the value
S (as soon as one dies, it is replaced by a newly released one).

Finally, assume that each females mates at rate λ (independently of population
size) with a male chosen at random among the normal and sterile ones present
in the population: if the male chosen is normal, it produces one female and one
male; if it sterile, it does not produce offspring.

(a) Write the infinitesimal transition rates for this process (i.e., the rates at
which the number of females changes from j at a different value).

(b) Write down the corresponding Kolmogorov differential equations.

(c) Noting that 0 is an absorbing state for the process, write down a system
for the probabilities of the population to become extinct sooner or later,
conditional to the initial number of females (and males) being equal to j.
Intuitively, will these probabilities be always equal to 1?

(d) Modify the model by assuming that there exists a level K > 0, such that
when the number of females reaches the number K the mating rate drops
to 0, while being given by the model above for j < K. Write down a
system of equation for the mean time to extinction, conditional on the
number of females (and males) at time 0.

(e) Assume K = 3, λ = 1.2, µ = 1. Find the value of T1, the mean time to
extinction, conditional on 1 being the number of females (and males) at
time 0 [I believe that a simple expression can be obtained using a generic
value for S; if this seems too difficult, use S = 2]



11 Models for infectious diseases

11.1. Considerate an infectious disease of SIR type with an average period of infec-
tivity of 7 days and a per-capita rate of being infected of 1/490.000 per day
per infective individual [a mass-action law for infections is implicitly assumed].
Assume that the initial population is 1.4 millions of susceptibles, that the ini-
tial number of infectives be extremely low, and that births and deaths can be
neglected.

(a) Determine the basic reproductive number R0;

(b) Determine the number of infectives at the peak;

(c) Determine the fraction of the population that should be vaccinated at the
start of the epidemic to prevent its spread.

(d) Approximate as well as you can the number of susceptibles at the end of
the epidemic.

11.2. Let us assume that an infectious disease has a behviour of S → I → R → S
type, i.e. infected individuals, once recovered, remain immune from the infection
for some time (and can then be considered removed) but then become again
susceptibles.

(a) Write a model for the spreas of an infectious disease of this type in a closed
population, following the lines of the SIR model analysed in class.

(b) Find the equilibria of such model and study their local stability, according
to parameter values.

(c) Study the global behaviour of the system. [Hint: it could be useful em-
ploying the function (SI)−1 as a Bendixson-Dulac function.]

11.3. Consider a Markov process modelling an SIR epidemic (with closed population)
in which 1 infected is introduced in a population with 3 susceptibles.

(a) Write down the infinitesimal transition rates

(b) Compute the probability that the epidemics ends after 0, 1, 2 or 3 new
infections. [Hint: sketch on a piece of paper all possible paths of infec-
tions and recoveries, and compute the probability of each path through the
embedded jump Markov chain]


