Mathematical biology

A/A 2009-10

Program

- Classic models in population ecology
 - Growth of single populations:
 - Models of Malthus and Verhulst;
 - Generalized logistic model;
 - Allee effect ;
 - Models for the harvesting of a renewable resource;
 - Idea of modelling through a birth-and-death stochastic process.
 - Prey-predator models:
 - Volterra model
 - Prey with logistic growth
 - Functional response: Rosenzweig-MacArthur model; periodic solutions and Hopf bifurcation.
 - Construction of Holling functional response through prey handling time.
 - Effect of fishing (or harvesting): Volterra's principle.
 - The chemostat:
 - Modelling growth of a species in the chemostat;
 - Reduction to a single equation.
 - Competition among species:
 - Volterra's classic model: competitive exclusion;
 - Lotka-Volterra models: possible behaviours;
 - Definition of cooperative and competitive systems; proof of convergence in 2 dimensions;
 - Competition for 1 non-renewable resource;
 - Competition in the chemostat.
 - Models with several species and trophic levels:
 - Introduction to some interesting cases: 2 predators and 1 prey; 1 predatore and 2 preys; 3 trophic levels; 3 species in non-transitive competition.
 - Models of discrete-time population growth:
 - Logistic and Ricker model: equilibria, periodic solutions, chaos;
 - Models with age classes; linear case and possible extensions.
 - Other areas in mathematical biology
 - Epidemic models:

_

- SIS and SIR models with closed or open population;
- Definition of R₀ and relation with the initial growth rate r of an epidemic.
- Trasmissione of neural impulse:
 - biophysical background; Hodgkin-Huxley model;
 - FitzHugh-Nagumo model and an euristic analysis.
- Regulation of cellular cycle
 - biological background;
 - Novak-Tyson model.
- Spatial diffusion
 - Modelling through reaction-diffusion equations;
 - Travelling-wave solutions: examples of logistic and Nagumo equation with diffusion;
 - Turing instability in reaction-diffusion systems.

- Mathematical theory
 - Main ideas in the qualitative theory for ordinary differential equations:
 - Linearized stability; stable and unstable manifold; ω-limit sets, Liapunov functions and applications.
 - Poincaré-Bendixson theory. Bendixson and Dulac criteria.
 - Ideas from bifurcation theory.
 - Discrete maps:
 - Equilibria, periodic solutions, stability.