12 predators competing for 1 prey

I consider here the equations for two predator species competing for 1 prey species. The equations of the system are

$$
\left\{\begin{align*}
H^{\prime}(t) & =r H\left(1-\frac{H}{K}\right)-\frac{a_{1} H P_{1}}{1+a_{1} T_{1} H}-\frac{a_{2} H P_{2}}{1+a_{2} T_{2} H} \tag{1}\\
P_{1}^{\prime}(t) & =\frac{\gamma_{1} a_{1} H P_{1}}{1+a_{1} T_{1} H}-d_{1} P_{1} \\
P_{2}^{\prime}(t) & =\frac{\gamma_{2} a_{2} H P_{2}}{1+a_{2} T_{2} H}-d_{2} P_{2}
\end{align*}\right.
$$

It follows the standard assumptions of a prey-predator: the prey species grows (in absence of predators) logistically, while predation rate of each species follows Holling's model (a_{i} is the attack coefficient and T_{i} is the time necessary for "handling" a prey); finally γ_{i} are the coefficients of conversion prey-predator, and d_{i} are the mortality rates of predators in absence of preys.

IIt can be found numerically that, for certain parameter values, it is possible to find positive periodic solution, i.e. the two predators coexisting with the prey along a limit cycle (see Figs. 1 and 3).

To (partially) understand the behaviour of the system and the existence of the periodic solution shown in figure, we start from the analysis of the local stability of the equilibrium points (and of some periodic solutions) of system (1). First of all, I make the system non-dimensional, using the same transformation used for the system with a single prey species ${ }^{1}$:

$$
u=\frac{H}{K}, v_{1}=\frac{P_{1}}{\gamma_{1} K}, v_{2}=\frac{P_{2}}{\gamma_{2} K}, \tau=d_{1} t
$$

Using these transformations and setting $\doteq \frac{d}{d \tau}$, one obtains

$$
\left\{\begin{align*}
\dot{u}(t) & =\rho u(1-u)-\frac{\beta_{1} u v_{1}}{1+\alpha_{1} u}-\frac{\beta_{2} u v_{2}}{1+\alpha_{2} u} \tag{2}\\
\dot{v}_{1}(t) & =\frac{\beta_{1} u v_{1}}{1+\alpha_{1} u}-v_{1} \\
\dot{v}_{2}(t) & =\frac{\beta_{2} u v_{2}}{1+\alpha_{2} u}-\delta v_{2}
\end{align*}\right.
$$

with

$$
\rho=\frac{r}{d_{1}}, \beta_{1}=\frac{\gamma_{1} a_{1} K^{2}}{d_{1}}, \beta_{2}=\frac{\gamma_{2} a_{2} K^{2}}{d_{1}}, \alpha_{i}=a_{i} T_{i} K, \delta=\frac{d_{2}}{d_{1}} .
$$

The equilibria are those found analysing the system 1 prey- 1 predator:

$$
\begin{equation*}
E_{0}=(1,0,0) \quad E_{1}=\left(u_{1}^{*}, \Psi_{1}\left(u_{1}^{*}\right), 0\right) \quad E_{2}=\left(u_{2}^{*}, 0, \Psi_{2}\left(u_{2}^{*}\right)\right) \tag{3}
\end{equation*}
$$

where

$$
u_{1}^{*}=\frac{1}{\beta_{1}-\alpha_{1}} \quad \text { and } \quad u_{2}^{*}=\frac{\delta}{\beta_{2}-\alpha_{2} \delta}
$$

[^0]are the solutions of
$$
\omega_{1}(u)=1, \omega_{2}(u)=\delta, \quad \text { with } \omega_{i}(u)=\frac{\beta_{i} u}{1+\alpha_{i} u}
$$
and
$$
\Psi_{i}(u)=\frac{\rho}{\beta_{i}}(1-u)\left(1+\alpha_{i} u\right)
$$

In what follows, we will assume $\beta_{1}>\alpha_{1}$ and $\beta_{2}>\alpha_{2} \delta$, so that the expressions for u_{i}^{*} are positive. Moreover, for the equilibrium E_{i} to be in the positive half-plane it is necessary $1>u_{i}^{*}$.

We remind that the equilibrium $(1,0)$ is (globally) asymptotically stable for the system with 1 prey and the predator i if $1<u_{i}^{*}$. The equilibrium $\left(u_{i}^{*}, \Psi_{i}\left(u_{i}^{*}\right)\right)$ is (globally) asymptotically stable if $u_{i}^{*}<1$ and $u_{i}^{*}>\hat{u}_{i}$ where \hat{u}_{i} is the maximum point on $[0,1])$ of $\Psi_{i}(u)$. In the specific case,the condition for the stability of E_{1} is

$$
\frac{\alpha_{1}-1}{2 \alpha_{i}}<u_{1}^{*}<1 \Longleftrightarrow \alpha_{1}+1<\beta_{1}<\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{\alpha_{1}-1}
$$

Finally, for $\beta_{1}<\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{\alpha_{1}-1}$ the system with 1 prey and the predator 1 has a periodic orbit (of period τ_{1})

$$
\Gamma_{1}=\left\{\left(\bar{u}_{1}(t), \bar{v}_{1}(t)\right), t \in\left[0, \tau_{1}\right]\right\}
$$

asimptoticaly stable, and globally attractive from the positive half-plane, with the exception of the equilibrium $\left(u_{1}^{*}, \Psi_{1}\left(u_{1}^{*}\right)\right)$. An example of the periodic solution is shown in Fig. 1. Similar considerations hold for the system with prey and predator 2 , except for the need to keep track of the constant δ.

Let us now consider if the system (2) has internal equilibrium points. Setting \dot{v}_{1} equal to 0 , we see that it must be (if $v_{1} \neq 0$) $u=u_{1}^{*}$; setting \dot{v}_{2} equal to 0 , we see that it must be (if $v_{2} \neq 0$) $u=u_{2}^{*}$. Assuming, generically $u_{1}^{*} \neq u_{2}^{*}$, it turns out that there are no internal equilibria, and all the equilibria are presented in (3).

In what follows, let us assume, without loss of generality, $u_{1}^{*}<u_{2}^{*}$. As u_{i}^{*} is the resource $(=$ prey $)$ level at which the population of predators i can maintain, the principle of survival of the competitor with the lowest level of necessary resource makes us think that only the predator 1 will survive, while the 2 predators will go extinct.

Let us now analyse the problem, starting from the local stability of equilibria. Letting J_{i} be the Jacobian of the system in E_{i}, we have
$J_{0}=\left(\begin{array}{ccc}-\rho & -\frac{\beta_{1}}{1+\alpha_{1}} & -\frac{\beta_{2}}{1+\alpha_{2}} \\ 0 & \omega_{1}(1)-1 & 0 \\ 0 & 0 & \omega_{2}(1)-\delta\end{array}\right) \quad J_{1}=\left(\begin{array}{ccc}\frac{u_{1}^{*}}{1+\alpha_{1} u_{1}^{*}} \Psi_{1}^{\prime}\left(u_{1}^{*}\right) & -\frac{\beta_{1} u_{1}^{*}}{1+\alpha_{1} u_{1}^{*}} & -\frac{\beta_{2} u_{1}^{*}}{1+\alpha_{2} u_{1}^{*}} \\ \frac{\beta_{1} v_{1}^{*}}{\left(1+a_{1}^{*}\right)_{1}^{2}} & 0 & 0 \\ 0 & 0 & \omega_{2}\left(u_{1}^{*}\right)-\delta\end{array}\right)$
and J_{2} analogous to J_{1} exchanging 1 with 2 , and vice versa.
J_{0} is triangular; hence its eigenvalues are the elements on the diagonal: the first $(-\rho)$ is certainly negative, while $\omega_{1}(K)-1<0$ if and only if $1<u_{1}^{*}$ (remember that ω_{i} is an increasing function and u_{1}^{*} is the solution of $\omega_{1}(u)=1$); similarly $\omega_{2}(1)-\delta$ if and only if $1<u_{2}^{*}$. Thus E_{0} is asymptotically stable if

Figure 1: The values of $u(t)$ (red) and $v_{1}(t)$ (blue) over a periodic orbit. Parameter values are $r=1.2, K=1, \lambda_{1}=15.6, d_{1}=1, \alpha_{1}=13$. The horizontal lines denote the values of the (unstable) equilibrium $\left(u_{1}^{*}, v_{1}^{*}\right)$; it can be seen that $u(t)$ is more often above u_{1}^{*} than below, while the opposite holds for $v(t)$.
$1<u_{1}^{*}<u_{2}^{*}$ (and then, the equilibria E_{1} and E_{2} are non-positive) and is unstable if $1>u_{1}^{*}$.
J_{1} is block- triangular; hence its eigenvalues are $\omega_{2}\left(u_{1}^{*}\right)-\delta$ and the eigenvalues of the top-left 2×2 matrix:

$$
J_{11}=\left(\begin{array}{cc}
\frac{u_{1}^{*}}{1+\alpha_{1} u_{1}^{*}} \Psi_{1}^{\prime}\left(u_{1}^{*}\right) & -\frac{\beta_{1} u_{1}^{*}}{1+\alpha_{1} u_{1}^{*}} \\
\frac{\beta_{1} v_{1}^{*}}{\left(1+a_{1} u_{1}^{*}\right)^{2}} & 0
\end{array}\right) .
$$

J_{11} is the Jacobian matrix in $\left(u_{1}^{*}, v_{1}^{*}\right)$ of the system with prey and predator 1 only; we know that it has both eigenvalues with negative real part if and only if

$$
\begin{equation*}
\alpha_{1}+1<\beta_{1}<\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{\alpha_{1}-1} . \tag{4}
\end{equation*}
$$

The third eigenvalue $\left(\omega_{2}\left(u_{1}^{*}\right)-\delta\right)$ is instead always negative under the assumption $u_{1}^{*}<u_{2}^{*}$. In fact ω_{2} is increasing; thus $\omega_{2}\left(u_{1}^{*}\right)<\omega_{2}\left(u_{2}^{*}\right)=\delta$.

In conclusion, all eigenvalues di J_{1} have negative real part, and so E_{1} is asymptotically stable, if and only if condition (4) holds.

Moving to J_{2}, we can use the same arguments. An eigenvalue is $\omega_{1}\left(u_{2}^{*}\right)-1$, always positive under the assumption $u_{1}^{*}<u_{2}^{*}$. The other two are the eigenvalues of J_{21}, top-left submatrix of J_{2}; these have negative real part under the condition

$$
\delta\left(\alpha_{2}+1\right)<\beta_{2}<\frac{\alpha_{2} \delta\left(\alpha_{2}+1\right)}{\alpha_{2}-1}
$$

In any case, the equilibrium E_{2} is unstable.

We have seen that, when $\beta_{1}>\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{\alpha_{1}-1}$, the system with prey and predator 1 only has a periodic orbit Γ_{1} which is asymptotically stable. Γ_{1} will be a periodic orbit also for the system (2); we may ask whether it will be asymptotically stable also for this.

Linearization can be used also for the analysis of the stability of periodic orbits, but is somewhat delicate. Proceeding formally, assume that $\bar{x}(t)$ is a periodic solution (of period T) (its values make the periodic orbit Γ) of the autonomous system $x^{\prime}(t)=f(x(t))$. Let $u(t)=x(t)-\bar{x}(t)$ (the deviation, assumed to be small when studying the stability, from the periodic solution) and take its derivative. We obtain

$$
u^{\prime}(t)=f(x(t))-f(\bar{x}(t))=f^{\prime}(\bar{x}(t)) u(t)+o(u(t)) \approx f^{\prime}(\bar{x}(t)) u(t)
$$

The linearized equation for the deviation is then

$$
\begin{equation*}
u^{\prime}(t)=A(t) u(t) \quad \text { with } \quad A(t)=f^{\prime}(\bar{x}(t)) \tag{5}
\end{equation*}
$$

$A(t)$ is an $n \times n T$-periodic matrix.
It can be shown (this is known as Floquet theory) that the fundamental solutions ${ }^{2} X(t)$ of (5) can be written in the form

$$
X(t)=Z(t) e^{t R} \quad \text { with } Z(t+T)=Z(t)
$$

It then follows that the asymptotic behaviour of the solutions of (5) is determined by the eigenvalues of $e^{T R}$. By linearisation, this determines also the stability of Γ.

The eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of $e^{T R}$ are known as Floquet's multipliers. It can be proved that one of them (say λ_{n}) is equal to 1 , because, if one considers a starting point deviating from $\bar{x}(0)$ in the direction of Γ, the solution from it will run again the same orbit Γ. The linearization theorem states that if $\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n-1}\right|<1$, then the periodic orbit Γ is asymptotically stable; if at least one eigenvalue $\lambda_{i}, i=1 \ldots n-1$ satisfies $\left|\lambda_{i}\right|>1$, then the periodic orbit Γ is unstable ${ }^{3}$. Unfortunately, it is generally impossible to obtain analytic expressions for the Floquet multipliers, or any sufficiente condition for them to be less than 1 in module.

In the specific case of system (1), it is instead possible to make some explicit computations. Without discussing explicitly Floquet theory, I simply look for solutions of (5) in the specific case. I limit myself to the third equation that becomes

$$
\begin{equation*}
u_{3}^{\prime}(t)=u_{3}(t)\left(\frac{\beta_{2} \bar{u}(t)}{1+\alpha_{2} \bar{u}(t)}-\delta\right) \tag{6}
\end{equation*}
$$

where $\bar{u}(t)$ refers to the values of u through the periodic orbit Γ_{1} on the $\left(u, v_{1}\right)$ plane.

The solution of (6) is

$$
u_{3}(t)=u_{3}(0) \exp \left\{\int_{0}^{t}\left(\frac{\beta_{2} \bar{u}(s)}{1+\alpha_{2} \bar{u}(s)}-\delta\right) d s\right\}
$$

[^1]

Figure 2: A periodic solution of the model (2); the red curve represents $u(t)$, the magenta $v_{1}(t)$ and the blue one $v_{2}(t)$. Parameter values are $\rho=1.2, \beta_{1}=15.6$, $\beta_{2}=8.925, \alpha_{1}=13, \alpha_{2}=7.436, \delta=0.9$.

It is easy to see that the asymptotic behaviour of $u_{3}(t)$ is the same as that of $e^{z t}$ with

$$
\begin{equation*}
z=\frac{1}{T} \int_{0}^{T}\left(\frac{\beta_{2} \bar{u}(s)}{1+\alpha_{2} \bar{u}(s)}-\delta\right) d s \tag{7}
\end{equation*}
$$

In other words, one Floquet multiplier is $e^{z T}$.
If $z>0, \Gamma_{1}$ is then unstable. On the other hand, if $z<0$, one has to look at the other Floquet multiplier (beyond 1). This can be found by looking at the first two equations. Without performing any computation (that anyway is very difficult), one can note that these will be the same equations that would be obtained by looking at the stability of Γ_{1} for the 2-dimensional system with only the prey and predator 1.

As I have already stated, the periodic orbit Γ_{1} for the 2-dimensional system with only the prey and predator 1is always asymptotically stable when it exists. Hence, its Floquet multipliers are 1 and another one smaller than 1 in module.

Summarizing, we have obtained that the periodic orbit Γ_{1} is asymptotically stable for system (1) if $z<0(z$ defined in (7)) and is unstable if $z>0$.

One may wonder whether it is possible that $z>0$ under the assumption $u_{1} *<u_{2}^{*}$. In fact, $\bar{u}(s)$ will fluctuate around u_{1}^{*} and, if one susbstitutes $\bar{u}(t) \equiv u_{1}^{*}$ in (7), one would obtain

$$
\begin{equation*}
\tilde{z}=\frac{1}{T} \int_{0}^{T} t\left(\frac{\beta_{2} u_{1}^{*}}{1+\alpha_{2} u_{1}^{*}}-\delta\right) d s=\frac{\beta_{2} u_{1}^{*}}{1+\alpha_{2} u_{1}^{*}}-\delta<\frac{\beta_{2} u_{2}^{*}}{1+\alpha_{2} u_{2}^{*}}-\delta=0 \tag{8}
\end{equation*}
$$

by the definition of u_{2}^{*},
The fact is, however, that $\bar{u}(t)$, while fluctuating around u_{1}^{*}, is more often above it than below it (see an illustration in Fig. 1) so that the value of z will generally be higher than \tilde{z}.

To make this argument precise, first note, by integrating $\frac{d}{d t} \log \left(v_{1}(t)\right)$ from

Figure 3: The periodic solution of the model (2) of Figure 1 in the phase planes $\left(u, v_{i}\right)$. The blue curve represents $\left(u, v_{1}\right)$, the red one $\left(u, v_{2}\right)$

0 to T, that over the periodic orbit Γ_{1} necessarily holds

$$
\frac{1}{T} \int_{0}^{T} \frac{\beta_{1} \bar{u}(s)}{1+\alpha_{1} \bar{u}(s)}=1
$$

Using the functions $\omega_{i}(u(\cdot))$, this can be written as $\left\langle\omega_{1}(u)\right\rangle=1$ where by $\langle\cdot\rangle$ we mean the average of a function over a period. Now $\omega_{2}(u)$ can be written as $G(x):=\omega_{2}\left(\omega_{1}^{-1}(x)\right)$ with $x=\omega_{1}(u)$.

By inverting explictly ω_{1}, one computes

$$
G(x)=\frac{\beta_{2} x}{\beta_{1}+x\left(\alpha_{2}-\alpha_{1}\right)}, \text { so that } G^{\prime \prime}(x)=\frac{\beta_{2}\left(\alpha_{1}-\alpha_{2}\right)}{\left(\beta_{1}+x\left(\alpha_{2}-\alpha_{1}\right)\right)^{2}}
$$

Hence, if $\alpha_{1}>\alpha_{2}, G$ is a convex function.
By Jensen's inequality, if $\alpha_{1}>\alpha_{2}$,

$$
\langle G(x)\rangle>G(\langle x\rangle)=G(1)=\omega_{2}\left(u_{1}^{*}\right) .
$$

In other words, while $\omega_{2}\left(u_{1}^{*}\right)<\omega_{2}\left(u_{2}^{*}\right)=\delta$, also the quantity used in (7) $\left\langle\omega_{2}(u)\right\rangle=\langle G(x)\rangle$ is greater than $\omega_{2}\left(u_{1}^{*}\right)$, so that it may be possible that $\left\langle\omega_{2}(u)\right\rangle>\delta$, i.e. $z>0$. The numerical example in Figures 1 and 3 shows that indeed this is possible.

On the other hand, if $\alpha_{1} \leq \alpha_{2}$, Jensen's inequality in the opposite direction shows that $z<0$.

Hence, having chosen $u_{1}^{*}<u_{2}^{*}, \alpha_{1}>\alpha_{2}$ together with $\beta_{1}>\frac{\alpha_{1}\left(\alpha_{1}+1\right)}{\alpha_{1}-1}$, is a necessary condition for the instability of all boundary attractors. It still does not guarantee that $z>0$, but, trying parameters carefully, one can obtain that. When all boundary attractors are unstable, then it appears that an internal periodic solution exists. Note that the system is not persistent, according to the definition given in a previous Section, since initial points in the (onedimensional) stable manifold (which intersects the positive orthant) of E_{1} will be attracted to E_{1}.

[^0]: ${ }^{1}$ in this case, choosing $\tau=r t$ would yield a more symmetric system, but I stick to the same transformations

[^1]: ${ }^{2}$ i.e. a matrix such that its columns are independent solutions of the equation
 ${ }^{3}$ alternatively, $\lambda_{1}, \ldots, \lambda_{n-1}$ can be obtained as the eigenvalues of the linearization of the Poincaré's map in an arbitrary point of the periodic orbit.

