
1 2 predators competing for 1 prey

I consider here the equations for two predator species competing for 1 prey
species. The equations of the system are



































H ′(t) = rH(1 −
H

K
) − a1HP1

1+a1T1H
−

a2HP2

1 + a2T2H

P ′

1(t) =
γ1a1HP1

1 + a1T1H
− d1P1

P ′

2(t) =
γ2a2HP2

1 + a2T2H
− d2P2.

(1)

It follows the standard assumptions of a prey-predator: the prey species grows
(in absence of predators) logistically, while predation rate of each species follows
Holling’s model (ai is the attack coefficient and Ti is the time necessary for
“handling” a prey); finally γi are the coefficients of conversion prey-predator,
and di are the mortality rates of predators in absence of preys.

IIt can be found numerically that, for certain parameter values, it is possible
to find positive periodic solution, i.e. the two predators coexisting with the prey
along a limit cycle (see Figs. 1 and 3).

To (partially) understand the behaviour of the system and the existence
of the periodic solution shown in figure, we start from the analysis of the local
stability of the equilibrium points (and of some periodic solutions) of system (1).
First of all, I make the system non-dimensional, using the same transformation
used for the system with a single prey species1:

u =
H

K
, v1 =

P1

γ1K
, v2 =

P2

γ2K
, τ = d1t.

Using these transformations and setting =̇
d

dτ
, one obtains



































u̇(t) = ρu(1 − u) −
β1uv1

1 + α1u
−

β2uv2

1 + α2u

v̇1(t) =
β1uv1

1 + α1u
− v1

v̇2(t) =
β2uv2

1 + α2u
− δv2.

(2)

with

ρ =
r

d1
, β1 =

γ1a1K
2

d1
, β2 =

γ2a2K
2

d1
, αi = aiTiK, δ =

d2

d1
.

The equilibria are those found analysing the system 1 prey- 1 predator:

E0 = (1, 0, 0) E1 = (u∗

1, Ψ1(u
∗

1), 0) E2 = (u∗

2, 0, Ψ2(u
∗

2)) (3)

where

u∗

1 =
1

β1 − α1
and u∗

2 =
δ

β2 − α2δ

1in this case, choosing τ = rt would yield a more symmetric system, but I stick to the

same transformations
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are the solutions of

ω1(u) = 1, ω2(u) = δ, with ωi(u) =
βiu

1 + αiu

and
Ψi(u) =

ρ

βi

(1 − u)(1 + αiu).

In what follows, we will assume β1 > α1 and β2 > α2δ, so that the expres-
sions for u∗

i are positive. Moreover, for the equilibrium Ei to be in the positive
half-plane it is necessary 1 > u∗

i .
We remind that the equilibrium (1, 0) is (globally) asymptotically stable

for the system with 1 prey and the predator i if 1 < u∗

i . The equilibrium
(u∗

i , Ψi(u
∗

i )) is (globally) asymptotically stable if u∗

i < 1 and u∗

i > ûi where ûi

is the maximum point on [0, 1]) of Ψi(u). In the specific case,the condition for
the stability of E1 is

α1 − 1

2αi

< u∗

1 < 1 ⇐⇒ α1 + 1 < β1 <
α1(α1 + 1)

α1 − 1
.

Finally, for β1 <
α1(α1 + 1)

α1 − 1
the system with 1 prey and the predator 1 has a

periodic orbit (of period τ1)

Γ1 = {(ū1(t), v̄1(t)), t ∈ [0, τ1]}

asimptoticaly stable, and globally attractive from the positive half-plane, with
the exception of the equilibrium (u∗

1, Ψ1(u
∗

1)). An example of the periodic so-
lution is shown in Fig. 1. Similar considerations hold for the system with prey
and predator 2, except for the need to keep track of the constant δ.

Let us now consider if the system (2) has internal equilibrium points. Setting
v̇1 equal to 0, we see that it must be (if v1 6= 0) u = u∗

1; setting v̇2 equal to 0, we
see that it must be (if v2 6= 0) u = u∗

2. Assuming, generically u∗

1 6= u∗

2, it turns
out that there are no internal equilibria, and all the equilibria are presented in
(3).

In what follows, let us assume, without loss of generality, u∗

1 < u∗

2. As u∗

i is
the resource(=prey) level at which the population of predators i can maintain,
the principle of survival of the competitor with the lowest level of necessary re-
source makes us think that only the predator 1 will survive, while the 2 predators
will go extinct.

Let us now analyse the problem, starting from the local stability of equilibria.
Letting Ji be the Jacobian of the system in Ei, we have

J0 =





−ρ − β1

1+α1

− β2

1+α2

0 ω1(1) − 1 0
0 0 ω2(1) − δ



 J1 =







u∗

1

1+α1u∗

1

Ψ′

1(u
∗

1) −
β1u∗

1

1+α1u∗

1

−
β2u∗

1

1+α2u∗

1

β1v∗

1

(1+a1u∗

1
)2 0 0

0 0 ω2(u
∗

1) − δ







and J2 analogous to J1 exchanging 1 with 2, and vice versa.
J0 is triangular; hence its eigenvalues are the elements on the diagonal:

the first (−ρ) is certainly negative, while ω1(K) − 1 < 0 if and only if 1 < u∗

1

(remember that ωi is an increasing function and u∗

1 is the solution of ω1(u) = 1);
similarly ω2(1) − δ if and only if 1 < u∗

2. Thus E0 is asymptotically stable if
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Figure 1: The values of u(t) (red) and v1(t) (blue) over a periodic orbit. Pa-
rameter values are r = 1.2, K = 1, λ1 = 15.6, d1 = 1, α1 = 13. The horizontal
lines denote the values of the (unstable) equilibrium (u∗

1, v
∗

1); it can be seen that
u(t) is more often above u∗

1 than below, while the opposite holds for v(t).

1 < u∗

1 < u∗

2 (and then, the equilibria E1 and E2 are non-positive) and is
unstable if 1 > u∗

1.
J1 is block- triangular; hence its eigenvalues are ω2(u

∗

1) − δ and the eigen-
values of the top-left 2 × 2 matrix :

J11 =

(

u∗

1

1+α1u∗

1

Ψ′

1(u
∗

1) −
β1u∗

1

1+α1u∗

1

β1v∗

1

(1+a1u∗

1
)2 0

)

.

J11 is the Jacobian matrix in (u∗

1, v
∗

1) of the system with prey and predator 1
only; we know that it has both eigenvalues with negative real part if and only if

α1 + 1 < β1 <
α1(α1 + 1)

α1 − 1
. (4)

The third eigenvalue (ω2(u
∗

1) − δ) is instead always negative under the as-
sumption u∗

1 < u∗

2. In fact ω2 is increasing; thus ω2(u
∗

1) < ω2(u
∗

2) = δ.
In conclusion, all eigenvalues di J1 have negative real part, and so E1 is

asymptotically stable, if and only if condition (4) holds.
Moving to J2, we can use the same arguments. An eigenvalue is ω1(u

∗

2)− 1,
always positive under the assumption u∗

1 < u∗

2. The other two are the eigen-
values of J21, top-left submatrix of J2; these have negative real part under the
condition

δ(α2 + 1) < β2 <
α2δ(α2 + 1)

α2 − 1
.

In any case, the equilibrium E2 is unstable.
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We have seen that, when β1 >
α1(α1 + 1)

α1 − 1
, the system with prey and preda-

tor 1 only has a periodic orbit Γ1 which is asymptotically stable. Γ1 will be a
periodic orbit also for the system (2); we may ask whether it will be asymptot-
ically stable also for this.

Linearization can be used also for the analysis of the stability of periodic
orbits, but is somewhat delicate. Proceeding formally, assume that x̄(t) is a
periodic solution (of period T ) (its values make the periodic orbit Γ) of the
autonomous system x′(t) = f(x(t)). Let u(t) = x(t) − x̄(t) (the deviation,
assumed to be small when studying the stability, from the periodic solution)
and take its derivative. We obtain

u′(t) = f(x(t)) − f(x̄(t)) = f ′(x̄(t))u(t) + o(u(t)) ≈ f ′(x̄(t))u(t).

The linearized equation for the deviation is then

u′(t) = A(t)u(t) with A(t) = f ′(x̄(t)). (5)

A(t) is an n × n T -periodic matrix.
It can be shown (this is known as Floquet theory) that the fundamental

solutions2 X(t) of (5) can be written in the form

X(t) = Z(t)etR with Z(t + T ) = Z(t).

It then follows that the asymptotic behaviour of the solutions of (5) is deter-
mined by the eigenvalues of eTR. By linearisation, this determines also the
stability of Γ.

The eigenvalues λ1, . . . , λn of eTR are known as Floquet’s multipliers. It can
be proved that one of them (say λn) is equal to 1, because, if one considers
a starting point deviating from x̄(0) in the direction of Γ, the solution from
it will run again the same orbit Γ. The linearization theorem states that if
|λ1|, . . . , |λn−1| < 1, then the periodic orbit Γ is asymptotically stable; if at
least one eigenvalue λi, i = 1 . . . n − 1 satisfies |λi| > 1, then the periodic
orbit Γ is unstable3. Unfortunately, it is generally impossible to obtain analytic
expressions for the Floquet multipliers, or any sufficiente condition for them to
be less than 1 in module.

In the specific case of system (1), it is instead possible to make some explicit
computations. Without discussing explicitly Floquet theory, I simply look for
solutions of (5) in the specific case. I limit myself to the third equation that
becomes

u′

3(t) = u3(t)

(

β2ū(t)

1 + α2ū(t)
− δ

)

(6)

where ū(t) refers to the values of u through the periodic orbit Γ1 on the (u, v1)
plane.

The solution of (6) is

u3(t) = u3(0) exp

{∫ t

0

(

β2ū(s)

1 + α2ū(s)
− δ

)

ds

}

.

2i.e. a matrix such that its columns are independent solutions of the equation
3alternatively, λ1, . . . , λn−1 can be obtained as the eigenvalues of the linearization of the

Poincaré’s map in an arbitrary point of the periodic orbit.
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Figure 2: A periodic solution of the model (2); the red curve represents u(t), the
magenta v1(t) and the blue one v2(t). Parameter values are ρ = 1.2, β1 = 15.6,
β2 = 8.925, α1 = 13, α2 = 7.436, δ = 0.9.

It is easy to see that the asymptotic behaviour of u3(t) is the same as that of
ezt with

z =
1

T

∫ T

0

(

β2ū(s)

1 + α2ū(s)
− δ

)

ds. (7)

In other words, one Floquet multiplier is ezT .
If z > 0, Γ1 is then unstable. On the other hand, if z < 0, one has to look

at the other Floquet multiplier (beyond 1). This can be found by looking at
the first two equations. Without performing any computation (that anyway is
very difficult), one can note that these will be the same equations that would
be obtained by looking at the stability of Γ1 for the 2-dimensional system with
only the prey and predator 1.

As I have already stated, the periodic orbit Γ1 for the 2-dimensional system
with only the prey and predator 1is always asymptotically stable when it exists.
Hence, its Floquet multipliers are 1 and another one smaller than 1 in module.

Summarizing, we have obtained that the periodic orbit Γ1 is asymptotically
stable for system (1) if z < 0 (z defined in (7)) and is unstable if z > 0.

One may wonder whether it is possible that z > 0 under the assumption
u1∗ < u∗

2. In fact, ū(s) will fluctuate around u∗

1 and, if one susbstitutes ū(t) ≡ u∗

1

in (7), one would obtain

z̃ =
1

T

∫ T

0

t

(

β2u
∗

1

1 + α2u
∗

1

− δ

)

ds =
β2u

∗

1

1 + α2u
∗

1

− δ <
β2u

∗

2

1 + α2u
∗

2

− δ = 0 (8)

by the definition of u∗

2,
The fact is, however, that ū(t), while fluctuating around u∗

1, is more often
above it than below it (see an illustration in Fig. 1) so that the value of z will
generally be higher than z̃.

To make this argument precise, first note, by integrating d
dt

log(v1(t)) from
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Figure 3: The periodic solution of the model (2) of Figure 1 in the phase planes
(u, vi). The blue curve represents (u, v1), the red one (u, v2)

0 to T , that over the periodic orbit Γ1 necessarily holds

1

T

∫ T

0

β1ū(s)

1 + α1ū(s)
= 1.

Using the functions ωi(u(·)), this can be written as 〈ω1(u)〉 = 1 where by 〈·〉
we mean the average of a function over a period. Now ω2(u) can be written as
G(x) := ω2(ω

−1
1 (x)) with x = ω1(u).

By inverting explictly ω1, one computes

G(x) =
β2x

β1 + x(α2 − α1)
, so that G′′(x) =

β2(α1 − α2)

(β1 + x(α2 − α1))2
.

Hence, if α1 > α2, G is a convex function.
By Jensen’s inequality, if α1 > α2,

〈G(x)〉 > G(〈x〉) = G(1) = ω2(u
∗

1).

In other words, while ω2(u
∗

1) < ω2(u
∗

2) = δ, also the quantity used in (7)
〈ω2(u)〉 = 〈G(x)〉 is greater than ω2(u

∗

1), so that it may be possible that
〈ω2(u)〉 > δ, i.e. z > 0. The numerical example in Figures 1 and 3 shows
that indeed this is possible.

On the other hand, if α1 ≤ α2, Jensen’s inequality in the opposite direction
shows that z < 0.

Hence, having chosen u∗

1 < u∗

2, α1 > α2 together with β1 >
α1(α1 + 1)

α1 − 1
,

is a necessary condition for the instability of all boundary attractors. It still
does not guarantee that z > 0, but, trying parameters carefully, one can obtain
that. When all boundary attractors are unstable, then it appears that an inter-
nal periodic solution exists. Note that the system is not persistent, according
to the definition given in a previous Section, since initial points in the (one-
dimensional) stable manifold (which intersects the positive orthant) of E1 will
be attracted to E1.
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