Families of Rational Curves
which determine the structure of the
(projective) Space

Marco Andreatta

Dipartimento di Matematica di Trento, Italia

Korea, January 2016
The Tangent Map

Let X be a smooth projective variety and $\mathcal{V} \subset \text{RatCurves}^n(X)$, a closed irreducible component; fix a point $x \in X$ and consider \mathcal{V}_x. The tangent map Φ_x is defined by

$\Phi_x([f]) = [(Tf)_0(\partial/\partial t)]$, where f is smooth at 0.

Notation. By P we denote the "natural projectivisation". With t we denote a local coordinate around $0 \in P^1$.
Let X be a smooth projective variety and $\mathcal{V} \subset RatCurves^n(X)$, a closed irreducible component; fix a point $x \in X$ and consider \mathcal{V}_x.

Definition

The rational map $\Phi_x : \mathcal{V}_x \rightarrow P(T_xX)$, defined, at $[f] \in \mathcal{V}_x$ which is smooth at 0, by

$$\Phi_x([f]) = [(Tf)_0(\partial/\partial t)]$$

is called the tangent map (c.f. [Mori79, pp.602-603]). It sends a member of \mathcal{V}_x which is smooth at 0 to its tangent direction.

Notation. By P we denote the “natural projectivisation”. With t we denote a local coordinate around $0 \in \mathbb{P}^1$.
The Tangent Map

Proposition

If \(f : \mathbb{P}^1 \to C \subset X \) *is an unbending member of* \(\mathcal{V}_x \), *the tangent map can be extended to* \([f]\), *even when* \(C \) *is singular at* \(x \), *because the differential*

\[Tf : T(\mathbb{P}^1) \to f^*T(X) \]

is injective.

Moreover \(\Phi_x \) *is immersive at* \([f]\) *\(\in \mathcal{V}_x \).*
The Tangent Map

Proposition

If $f : \mathbb{P}^1 \to C \subset X$ is an unbending member of \mathcal{V}_x, the tangent map can be extended to $[f]$, even when C is singular at x, because the differential $Tf : T(\mathbb{P}^1) \to f^*T(X)$ is injective. Moreover Φ_x is immersive at $[f] \in \mathcal{V}_x$.

In particular for an unbreakable uniruling \mathcal{V} and a general point $x \in X$, the tangent map Φ_x is generically finite over its image.
Proof The proof that \(\Phi_x \) is immersive is taken from Hwang.
Proof The proof that Φ_x is immersive is taken from Hwang. Let $V = u^{-1} \mathcal{V}$ the Hilbert family corresponding to \mathcal{V}, $B = \emptyset$ or x: $T[f]V_B = H^0(\mathbb{P}^1, f^* T_X(-B)) = H^0(\mathbb{P}^1, \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}(-B))$. Passing to the quotient by $Aut(\mathbb{P}^1)$, i.e. passing to \mathcal{V}, we delete the part corresponding to $T(\mathbb{P}^1)$:

$$T[f](\mathcal{V}_x) = H^0(\oplus \mathcal{O}^p \oplus \mathcal{O}(-1)^{n-1-p}) \subset T[f](\mathcal{V}) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}).$$
The Tangent Map

Proof The proof that Φ_x is immersive is taken from Hwang. Let $V = u^{-1}V$ the Hilbert family corresponding to V, $B = \emptyset$ or x:
\[T_{[f]} V_B = H^0(\mathbb{P}^1, f^* T_X(−B)) = H^0(\mathbb{P}^1, \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}(-B)). \]
Passing to the quotient by $Aut(\mathbb{P}^1)$, i.e. passing to V, we delete the part corresponding to $T(\mathbb{P}^1)$:
\[T_{[f]}(V_x) = H^0(\oplus \mathcal{O}^{p} \oplus \mathcal{O}(-1)^{n-1-p}) \subset T_{[f]}(V) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}). \]
Take $v \in T_{[f]}(V_x) \subset T_{[f]}(V)$; we can find a deformation f_t of $f_0 := f$ such that $\frac{df}{dt} |_{t=0} = v$. Let z be a local coordinate in \mathbb{P}^1 centered at 0.
The Tangent Map

Proof The proof that Φ_x is immersive is taken from Hwang. Let $V = u^{-1} V$ the Hilbert family corresponding to V, $B = \emptyset$ or x:

$T[f] V_B = H^0(\mathbb{P}^1, f^* T_X(-B)) = H^0(\mathbb{P}^1, \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}(-B))$.

Passing to the quotient by $Aut(\mathbb{P}^1)$, i.e. passing to V, we delete the part corresponding to $T(\mathbb{P}^1)$:

$T[f] (V_x) = H^0(\oplus \mathcal{O}^p \oplus \mathcal{O}(-1)^{n-1-p}) \subset T[f] (V) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p})$.

Take $v \in T[f] (V_x) \subset T[f] (V)$; we can find a deformation f_t of $f_0 := f$ such that $\frac{df}{dt} \big|_{t=0} = v$. Let z be a local coordinate in \mathbb{P}^1 centered at 0.

Then the differential $d\Phi_x : T[f] (V_x) \to T_{\Phi_x (f)} P(T_x X)$ send v to

$$d\Phi_x (v) = \frac{d}{dt} \bigg|_{t=0} \frac{df_t}{dz} \bigg|_{z=0} = \frac{d}{dz} \bigg|_{z=0} \frac{df_t}{dt} \bigg|_{z=0} = \frac{dv}{dz} \bigg|_{z=0}.$$

To derive v with respect to z we think it in $T[f] (V) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p})$; a non zero section here has non vanishing differential.
The Tangent Map

Proof The proof that Φ_x is immersive is taken from Hwang. Let $V = u^{-1}\mathcal{V}$ the Hilbert family corresponding to \mathcal{V}, $B = \emptyset$ or x: $T_{[f]} V_B = H^0(\mathbb{P}^1, f^* T_X(-B)) = H^0(\mathbb{P}^1, \mathcal{O}(2) \oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}(-B))$. Passing to the quotient by $Aut(\mathbb{P}^1)$, i.e. passing to \mathcal{V}, we delete the part corresponding to $T(P^1)$:

$$T_{[f]}(\mathcal{V}_x) = H^0(\oplus \mathcal{O}^p \oplus \mathcal{O}(-1)^{n-1-p}) \subset T_{[f]}(\mathcal{V}) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p}).$$

Take $v \in T_{[f]}(\mathcal{V}_x) \subset T_{[f]}(\mathcal{V})$; we can find a deformation f_t of $f_0 := f$ such that $\frac{df}{dt}|_{t=0} = v$. Let z be a local coordinate in \mathbb{P}^1 centered at 0. Then the differential $d\Phi_x : T_{[f]}(\mathcal{V}_x) \rightarrow T_{\Phi_x([f])} P(T_xX)$ send v to

$$d\Phi_x(v) = \frac{d}{dt}|_{t=0} \frac{df_t}{dz}|_{z=0} = \frac{d}{dz}|_{z=0} \frac{df_t}{dt}|_{z=0} = \frac{dv}{dz}|_{z=0}.$$

To derive v with respect to z we think it in $T_{[f]}(\mathcal{V}) = H^0(\oplus \mathcal{O}(1)^p \oplus \mathcal{O}^{n-1-p})$; a non zero section here has non vanishing differential.
Using the above mentioned result of Kebekus one can prove the following.

Theorem

For an unbreakable uniruling \(\mathcal{V} \) and a general point \(x \in X \), the tangent morphism \(\Phi_x : \mathcal{V}_x \rightarrow P(T_xX) \) can be defined by assigning to each member \(C \) of \(\mathcal{V}_x \) its tangent direction. This morphism \(\Phi_x \) is finite over its image.
Proof. Let $i_x : U_x \to X$ be the evaluation map; by Kebekus the preimage $i_x^{-1}(x)$ contains a section, which we call $\sigma_\infty \cong \mathcal{V}_x$, and at most a finite number of further points. Let U_x be the inverse image of \mathcal{V}_x in the universal family.
Proof. Let \(i_x : U_x \rightarrow X \) be the evaluation map; by Kebekus the preimage \(i_x^{-1}(x) \) contains a section, which we call \(\sigma_\infty \cong \mathcal{V}_x \), and at most a finite number of further points. Let \(U_x \) be the inverse image of \(\mathcal{V}_x \) in the universal family.

Since all curves are immersed at \(x \), the tangent morphism of \(i_x \) gives a nowhere vanishing morphism of vector bundles,

\[
T i_x : T_{U_x} \mathcal{V}_x |_{\sigma_\infty} \rightarrow i_x^* (T_{X|_x}).
\]

The tangent map \(\Phi_x \) is given by the projectivization of this map.
Proof. Let $i_x : U_x \to X$ be the evaluation map; by Kebekus the preimage $i_x^{-1}(x)$ contains a section, which we call $\sigma_\infty \cong \mathcal{V}_x$, and at most a finite number of further points. Let U_x be the inverse image of \mathcal{V}_x in the universal family. Since all curves are immersed at x, the tangent morphism of i_x gives a nowhere vanishing morphism of vector bundles,

$$T i_x : T_{U_x}|_{\mathcal{V}_x|_{\sigma_\infty}} \to i_x^*(T_X|_x).$$

The tangent map Φ_x is given by the projectivization of this map. Assume, by contradiction, that Φ_x is not finite: by the above morphism, we can find a curve $C \subset \mathcal{V}_x$ such that N_{σ_∞, U_x} is trivial along C. But σ_∞ is contracted and the normal bundle must be negative.
The next result was proved in general by Hwang and Mok.

Theorem

For an unbreakable uniruling \mathcal{V} and a general point $x \in X$, the tangent morphism $\Phi_x : \mathcal{V}_x \to P(T_xX)$ is birational (i.e. generically injective) over its image.
The next result was proved in general by Hwang and Mok.

Theorem

For an unbreakable uniruling \mathcal{V} and a general point $x \in X$, the tangent morphism $\Phi_x : \mathcal{V}_x \longrightarrow P(T_xX)$ is birational (i.e. generically injective) over its image.

Therefore Φ_x is the normalization of its image in $P(T_xX)$.
The Tangent Map if tangent bundle is ample

Note (c.f Mori ’79 Corollary 7.ii) that if TX is ample (in particular $-K_X$ is ample and X is uniruled) and we take a locally unsplit (unbreakable) family of rational curves, \mathcal{V}, then for every element $[f] \in \mathcal{V}$ we have

$$f^*TX = \mathcal{O}_\mathbb{P}^1(2) \oplus \mathcal{O}_\mathbb{P}^1(1) \oplus \ldots \oplus \mathcal{O}_\mathbb{P}^1(1).$$
The Tangent Map if tangent bundle is ample

Note (c.f Mori ’79 Corollary 7.ii) that if TX is ample (in particular $-K_X$ is ample and X is uniruled) and we take a locally unsplit (unbreakable) family of rational curves, \mathcal{V}, then for every element $[f] \in \mathcal{V}$ we have

$$f^*TX = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1) \oplus ... \oplus \mathcal{O}_{\mathbb{P}^1}(1).$$

Thus the tangent map $\Phi_x : \mathcal{V}_x \rightarrow P(T_xX)$ is defined at every point, it is finite and at every point it is immersive.
The Tangent Map if tangent bundle is ample

Note (c.f Mori ’79 Corollary 7.ii) that if TX is ample (in particular $-K_X$ is ample and X is uniruled) and we take a locally unsplit (unbreakable) family of rational curves, \mathcal{V}, then for every element $[f] \in \mathcal{V}$ we have

$$f^*TX = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1) \oplus \ldots \oplus \mathcal{O}_{\mathbb{P}^1}(1).$$

Thus the tangent map $\Phi_x : \mathcal{V}_x \rightarrow P(T_x X)$ is defined at every point, it is finite and at every point it is immersive. Thus it is an etale cover of $P(T_x X) = \mathbb{P}^{n-1}$. But \mathbb{P}^{n-1} is simply connected and therefore Φ_x is birational and thus an isomorphism.
The Variety of Minimal Rational Tangents

Definition

We define $S_x \subseteq P(T_xX)$ as the closure of the image of the map Φ_x and we call it tangent cone of curves from \mathcal{V} at the point x.

J.-M. Hwang and N. Mok call this Variety of Minimal Rational Tangents. The name tangent cone follows from the fact that S_x is (at least around $[f]$) the tangent cone to Locus(V_x).
Variety of Minimal Rational Tangents

For our purposes we need the following observation which follows from the above discussion.

Lemma

*The projectivised tangent space of the tangent cone S_x at $\Phi_x([f])$ is equal to $P((f^*TX_0^+) \subset P((f^*TX_0) = P(T_xX).$*
Variety of Minimal Rational Tangents

For our purposes we need the following observation which follows from the above discussion.

Lemma
The projectivised tangent space of the tangent cone S_x at $\Phi_x([f])$ is equal to $P((f^*TX)_0^+ \subset P((f^*TX)_0) = P(T_xX)$.

Proof The tangent space to Locus(V_x) at $f(p)$, for $p \neq 0$, is the image of the evaluation of sections of the twisted pull-back of TX which is

$$\text{Im}(T\hat{F})_p = (f^*TX)_p^+ \subset (f^*TX)_p = T_{f(p)}X.$$

Thus passing with p to 0 we get the result.
The following is the celebrated Theorem of Mori of 1979.

Theorem

Let X be a complex projective manifold of dimension $n \geq 3$. Assume that TX is ample. Then X is isomorphic to the projective space.
The following is the celebrated Theorem of Mori of 1979.

Theorem

Let X be a complex projective manifold of dimension $n \geq 3$. Assume that TX is ample. Then X is isomorphic to the projective space.

The next Theorem was first proved by Cho-Miyaoka-Shepherd Barron; subsequently Kebekus gave a shorter proof.

Theorem

Let X be a complex projective manifold of dimension $n \geq 3$. Assume that for every curve $C \subset X$ we have $-K_X \cdot C \geq n + 1$. Then X is isomorphic to the projective space.

Note that Mori’s Theorem follows immediately from it.
Proof. Take an unbreakable uniruling \mathcal{V}. By our assumption and the above results, for a general point $x \in X$ we have that \mathcal{V}_x is smooth and $\dim(\mathcal{V}_x) = -K_X \cdot C - 2 = (n - 1)$.
Proof. Take an unbreakable uniruling \mathcal{V}. By our assumption and the above results, for a general point $x \in X$ we have that \mathcal{V}_x is smooth and $\dim(\mathcal{V}_x) = -K_X \cdot C - 2 = (n - 1)$. By the above results we have that $\mathcal{V}_x \cong \sigma_\infty \cong \mathbb{P}^{n-1}$.
Proof. Take an unbreakable uniruling \mathcal{V}. By our assumption and the above results, for a general point $x \in X$ we have that \mathcal{V}_x is smooth and $\text{dim}(\mathcal{V}_x) = -K_X \cdot C - 2 = (n - 1)$.

By the above results we have that $\mathcal{V}_x \cong \sigma_\infty \cong \mathbb{P}^{n-1}$.

Let $\tilde{i}_x : \mathcal{V}_x \to \tilde{X} = Bl_x X$ be the lift up of i_x; since $T\tilde{i}_x$ has rank one along σ_∞, then $T\tilde{i}_x$ has maximal rank along σ_∞, in particular $N_{\sigma_\infty, U_x} \cong N_{E/\tilde{X}} = O_{\mathbb{P}^{n-1}}(-1)$.
Proof

Consider the Stein factorization of the universal map
\[i_x : U_x \to X : U_x \to Y \to X, \]
where the first map \(\alpha : U_x \to Y \) contracts the divisor \(\sigma_\infty \) and the second \(\beta : Y \to X \) is a finite map.
Proof

Consider the Stein factorization of the universal map

\[i_x : U_x \to X : U_x \to Y \to X, \]

where the first map \(\alpha : U_x \to Y \) contracts the divisor \(\sigma_\infty \) and the second \(\beta : Y \to X \) is a finite map.

Since \(R^1 \pi_* (\mathcal{O}_{U_x}) = 0 \) and \(\mathcal{O}_{U_x}(\sigma_\infty)|_{\sigma_\infty} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(-1) \), the push forward of the twisted ideal sheaf sequence

\[
0 \to \mathcal{O}_{U_x} \to \mathcal{O}_{U_x}(\sigma_\infty) \to \mathcal{O}_{U_x}(\sigma_\infty)|_{\sigma_\infty} \to 0
\]

gives on \(V_x \cong \mathbb{P}^{n-1} \) a sequence,

\[
0 \to \mathcal{O}_{\mathbb{P}^{n-1}} \to \mathcal{E} \to \mathcal{O}_{\mathbb{P}^{n-1}}(-1) \to 0,
\]

where \(U_x \cong \mathbb{P}(\mathcal{E}^*) \). Since \(Ext^1_{\mathbb{P}^{n-1}}(\mathcal{O}_{\mathbb{P}^{n-1}}(-1), \mathcal{O}_{\mathbb{P}^{n-1}}) = 0 \), then \(U_x \cong \mathbb{P}(\mathcal{O}_{\mathbb{P}^{n-1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{n-1}}) \).
Proof

Consider the Stein factorization of the universal map

\[i_x : U_x \to X : U_x \to Y \to X, \]

where the first map \(\alpha : U_x \to Y \) contracts the divisor \(\sigma_\infty \) and the second \(\beta : Y \to X \) is a finite map.

Since \(R^1 \pi_* (\mathcal{O}_{U_x}) = 0 \) and \(\mathcal{O}_{U_x}(\sigma_\infty)|_{\sigma_\infty} \cong \mathcal{O}_{\mathbb{P}^{n-1}}(-1) \), the push forward of the twisted ideal sheaf sequence

\[0 \to \mathcal{O}_{U_x} \to \mathcal{O}_{U_x}(\sigma_\infty) \to \mathcal{O}_{U_x}(\sigma_\infty)|_{\sigma_\infty} \to 0 \]

gives on \(V_x \cong \mathbb{P}^{n-1} \) a sequence,

\[0 \to \mathcal{O}_{\mathbb{P}^{n-1}} \to \mathcal{E} \to \mathcal{O}_{\mathbb{P}^{n-1}}(-1) \to 0, \]

where \(U_x \cong \mathbb{P}(\mathcal{E}^*) \). Since \(\text{Ext}^1_{\mathbb{P}^{n-1}}(\mathcal{O}_{\mathbb{P}^{n-1}}(-1), \mathcal{O}_{\mathbb{P}^{n-1}}) = 0 \), then \(U_x \cong \mathbb{P}(\mathcal{O}_{\mathbb{P}^{n-1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{n-1}}) \).

An application of Zariski’s main theorem shows that \(\alpha \) is the standard contraction of \(\sigma_\infty \), that is \(Y = \mathbb{P}^n \).
Proof

We have that adjunction formula for a finite, surjective morphism:

$$-K_{\mathbb{P}^n} = \beta^*(-K_X) + \text{branch divisor}. $$

Let l be a line through $\alpha(x)$ and $t = \beta(l)$; t is a curve associated with \mathcal{V}_x.
Proof

We have that adiunction formula for a finite, surjective morphism:

$-K_{\mathbb{P}^n} = \beta^*(-K_X) + \text{branch divisor}.$

Let l be a line through $\alpha(x)$ and $t = \beta(l)$; t is a curve associated with V_x. Thus we have

$n + 1 = -K_X \cdot t = (\beta^*(-K_X)) \cdot l = (-K_{\mathbb{P}^n} - (\text{branch divisor})) \cdot l = n + 1 - (\text{branch divisor}) \cdot l$

Then the branch divisor is empty and β is birational, thus an isomorphism.
Another generalization

The following generalization of Mori’s is due to A. and Wisniewski.

Theorem

Let X be a complex projective manifold of dimension $n \geq 3$. Assume that there exist a subsheaf $E \subset TX$ which is an ample vector bundle. Then X is isomorphic to the projective space.
Another generalization

The following generalization of Mori’s is due to A. and Wisniewski.

Theorem

Let X be a complex projective manifold of dimension $n \geq 3$. Assume that there exist a subsheaf $E \subset TX$ which is an ample vector bundle. Then X is isomorphic to the projective space.

Proof. By the assumption we can apply the Theorem of Miyaoka, therefore X is uniruled.

Take an unbreakable uniruling \mathcal{V}: for a general $f \in \mathcal{V}$ we have $f^*TX = \mathcal{O}(2) \oplus \mathcal{O}(1)^d \oplus \mathcal{O}^{(n-d-1)}$, where $d = \text{deg}(f^*(-K_X)) - 2$.
Lemma

For any \(f \in \mathcal{V} \) the pull-back \(f^* E \) is isomorphic either to \(\mathcal{O}(1)^{\oplus r} \) or to \(\mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (r-1)} \). In particular the family of curves parametrized by \(\mathcal{V} \) is unsplit.

Proof. For a general \(f \in \mathcal{V} \) the pull-back \(f^* E \) is an ample subbundle of \(f^* \mathcal{T}_X = \mathcal{O}(2) \oplus \mathcal{O}(1)^{\oplus (d)} \oplus \mathcal{O}^{\oplus (n-d-1)} \) and thus it is as in the lemma.
Proof

Lemma

For any $f \in V$ the pull-back $f^* E$ is isomorphic either to $O(1)^{\oplus r}$ or to $O(2) \oplus O(1)^{\oplus (r-1)}$. In particular the family of curves parametrized by V is unsplit.

Proof. For a general $f \in V$ the pull-back $f^* E$ is an ample subbundle of $f^* TX = O(2) \oplus O(1)^{\oplus (d)} \oplus O^{\oplus (n-d-1)}$ and thus it is as in the lemma. Since E is ample this is true also for all $f \in V$.
Proof

Lemma

For any \(f \in \mathcal{V} \) the pull-back \(f^*E \) is isomorphic either to \(\mathcal{O}(1)^{r} \) or to \(\mathcal{O}(2) \oplus \mathcal{O}(1)^{(r-1)} \). In particular the family of curves parametrized by \(V \) is unsplit.

Proof. For a general \(f \in \mathcal{V} \) the pull-back \(f^*E \) is an ample subbundle of \(f^*TX = \mathcal{O}(2) \oplus \mathcal{O}(1)^{(d)} \oplus \mathcal{O}^{(n-d-1)} \) and thus it is as in the lemma. Since \(E \) is ample this is true also for all \(f \in V \).

Since \(\text{deg}(f^*E) = r \) or \(\text{deg}(f^*E) = r + 1 \) and \(r > 1 \), and for any ample bundle \(\mathcal{E} \) over a rational curve we have \(\text{deg}(\mathcal{E}) \geq \text{rank}(\mathcal{E}) \), it follows that no curve from \(V \) can be split into a sum of two or more rational curves, hence \(V \) is unsplit.
Proof

We shall analyze X using the notions of rc\mathcal{V} relation and rc\mathcal{V} fibration.
Proof

We shall analyze X using the notions of rcV relation and rcV fibration. The following is a key observation.

Lemma

Let X, E and V be as above and moreover assume that $\varphi^0 : X^0 \to Z^0$ is an rcV fibration. Then E is tangent to a general fiber of φ^0. That is, if X_g is a general fiber of φ^0, then the injection $E|_{X_g} \to TX|_{X_g}$ factors via $E|_{X_g} \hookrightarrow TX_g$.
Proof

We shall analyze X using the notions of rc\mathcal{V} relation and rc\mathcal{V} fibration. The following is a key observation.

Lemma

Let X, E and \mathcal{V} be as above and moreover assume that $\varphi^0 : X^0 \to Z^0$ is an rc\mathcal{V} fibration. Then E is tangent to a general fiber of φ^0. That is, if X_g is a general fiber of φ^0, then the injection $E|_{X_g} \to TX|_{X_g}$ factors via $E|_{X_g} \hookrightarrow TX_g$.

Proof Choose a general X_g (in particular smooth) and let $x \in X_g$ and $f \in \mathcal{V}_x$ be general as well. By construction $Locus(\mathcal{V}_x) \subset X_g$.

Proof

We shall analyze X using the notions of rc \mathcal{V} relation and rc \mathcal{V} fibration. The following is a key observation.

Lemma

Let X, E and \mathcal{V} be as above and moreover assume that $\varphi^0 : X^0 \rightarrow Z^0$ is an rc \mathcal{V} fibration. Then E is tangent to a general fiber of φ^0. That is, if X_g is a general fiber of φ^0, then the injection $E|_{X_g} \rightarrow TX|_{X_g}$ factors via $E|_{X_g} \hookrightarrow TX_g$.

Proof Choose a general X_g (in particular smooth) and let $x \in X_g$ and $f \in \mathcal{V}_x$ be general as well. By construction $\text{Locus}(\mathcal{V}_x) \subset X_g$. The tangent space to $\text{Locus}(\mathcal{V}_x)$ at $f(p)$ is the image of the evaluation of sections of the twisted pull-back of TX, which is $= (f^*TX)_p^+$, therefore $(f^*TX)_p^+ \subset (f^*TX_g)_p$ for every $p \in \mathbb{P}^1 \setminus \{0\}$.
Proof

We shall analyze X using the notions of rc-\mathcal{V} relation and rc-\mathcal{V} fibration. The following is a key observation.

Lemma

Let X, E and \mathcal{V} be as above and moreover assume that $\varphi^0 : X^0 \to Z^0$ is an rc-\mathcal{V} fibration. Then E is tangent to a general fiber of φ^0. That is, if X_g is a general fiber of φ^0, then the injection $E|_{X_g} \to TX|_{X_g}$ factors via $E|_{X_g} \hookrightarrow TX_g$.

Proof Choose a general X_g (in particular smooth) and let $x \in X_g$ and $f \in \mathcal{V}_x$ be general as well. By construction $\text{Locus}(\mathcal{V}_x) \subset X_g$.

The tangent space to $\text{Locus}(\mathcal{V}_x)$ at $f(p)$ is the image of the evaluation of sections of the twisted pull-back of TX, which is $= (f^*TX)_p^+$, therefore $(f^*TX)_p^+ \subset (f^*TX_g)_p$ for every $p \in \mathbb{P}^1 \setminus \{0\}$.

This implies that $E|_{X_g} \to TX|_{X_g}$ factors to $E|_{X_g} \to TX_g$ generically and since the map $TX_g \to TX|_{X_g}$ has cokernel which is torsion free (it is the normal sheaf which is locally free) this yields $E|_{X_g} \hookrightarrow TX_g$, a sheaf injection.
Proof

Proposition

The general fiber of φ^0, X_g, is \mathbb{P}^k and $E|_{X_g} = \mathcal{O}(1)^{r}$ or $E|_{X_g} = TX_g$.

Proof By abuse we denote the general fiber with $X := X_g$. We consider here only the case when for $f \in V$ the pull-back f^*E is isomorphic to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{(r-1)}$. In particular $f^*E \subset (f^*TX)^+$.

Proof

Theorem

The general fiber of φ^0, X_g, is \mathbb{P}^k and $E|_{X_g} = \mathcal{O}(1)^{+} r$ or $E|_{X_g} = TX_g$.

Proof

By abuse we denote the general fiber with $X := X_g$. We consider here only the case when for $f \in \mathcal{V}$ the pull-back f^*E is isomorphic to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{+}(r-1)$. In particular $f^*E \subset (f^*TX)^{+}$.

Comparing the splitting type of f^*E and f^*TX we see that the tangent map $Tf : T\mathbb{P}^1 \rightarrow f^*TX$ factors to a vector bundle (nowhere degenerate) injection $T\mathbb{P}^1 \rightarrow f^*E$. (In other words, we have surjective morphism $(f^*E)^* \rightarrow \Omega_{\mathbb{P}^1} \cong \mathcal{O}(-2))$.

Proof

Proposition

The general fiber of φ^0, X_g, is \mathbb{P}^k and $E|_{X_g} = \mathcal{O}(1)^r$ or $E|_{X_g} = TX_g$.

Proof By abuse we denote the general fiber with $X := X_g$. We consider here only the case when for $f \in \mathcal{V}$ the pull-back f^*E is isomorphic to $\mathcal{O}(2) \oplus \mathcal{O}(1)^{(r-1)}$. In particular $f^*E \subset (f^*TX)^+$. Comparing the splitting type of f^*E and f^*TX we see that the tangent map $Tf : T\mathbb{P}^1 \to f^*TX$ factors to a vector bundle (nowhere degenerate) injection $T\mathbb{P}^1 \to f^*E$. (In other words, we have surjective morphism $(f^*E)^* \to \Omega_{\mathbb{P}^1} \cong \mathcal{O}(-2)$).

The vector bundle (nowhere degenerate) injection $T\mathbb{P}^1 \to f^*E$ implies $(f^*TX)^+ \hookrightarrow f^*E$. In fact, choose a general f which is an immersion at $0 \rightarrow x$. Then $\Phi_x([f]) \in P(E_x) = P((f^*E)_0) \subset P(T_xX) = P((f^*TX)_0)$ and the same holds for morphisms in a neighborhood of $[f]$ in V_x. Thus around $\Phi_x([f])$ the tangent cone S_x is contained in $P(E_x) = P((f^*E)_0)$, so is its tangent space $P((f^*TX)_0^+)$.

Rational Curves
Marco Andreatta
The Tangent Map
Characterization of \mathbb{P}^n
Proof

Therefore $f^*E = (f^* TX)^+$ and thus $\deg(f^* E) = \deg(f^* (-K_X))$. Since $\rho(X) = 1$ it follows that $\det(E) = -K_X$.
Therefore \(f^*E = (f^*TX)^+ \) and thus \(\deg(f^*E) = \deg(f^*(-K_X)) \).
Since \(\rho(X) = 1 \) it follows that \(\det(E) = -K_X \).

The embedding \(E \hookrightarrow TX \) gives rise to a non-trivial morphism \(\det(E) \to \Lambda^rTX \) and thus to a non-zero section of \(\Lambda^rTX \otimes K_X \). We use dualities to have the equalities:

\[
\begin{align*}
 h^0(X, \Lambda^rTX \otimes K_X) &= h^n(X, \Omega^n_X) = h^r(X, \Omega^n_X) = h^r(X, K_X) = h^{n-r}(X, \mathcal{O}_X) \\
\end{align*}
\]

and, since \(X \) is Fano, the latter number is non-zero only if \(r = n \).
Proof

Therefore $f^*E = (f^*TX)^+$ and thus $\deg(f^*E) = \deg(f^*(-K_X))$. Since $\rho(X) = 1$ it follows that $\det(E) = -K_X$.

The embedding $E \hookrightarrow TX$ gives rise to a non-trivial morphism $\det(E) \to \Lambda^rTX$ and thus to a non-zero section of $\Lambda^rTX \otimes K_X$. We use dualities to have the equalities:

$$h^0(X, \Lambda^rTX \otimes K_X) = h^n(X, \Omega_X^r) = h^r(X, \Omega_X^n) = h^r(X, K_X) = h^{n-r}(X, O_X)$$

and, since X is Fano, the latter number is non-zero only if $r = n$.

Thus $\Lambda^rTX \otimes (\det E)^{-1} \cong O_X$ so $E \hookrightarrow TX$ is nowhere degenerate, hence an isomorphism.
Proof

Therefore \(f^* E = (f^* TX)^+ \) and thus \(\deg(f^* E) = \deg(f^* (-K_X)) \).

Since \(\rho(X) = 1 \) it follows that \(\det(E) = -K_X \).

The embedding \(E \hookrightarrow TX \) gives rise to a non-trivial morphism \(\det(E) \to \Lambda^r TX \) and thus to a non-zero section of \(\Lambda^r TX \otimes K_X \). We use dualities to have the equalities:

\[
\begin{align*}
 h^0(X, \Lambda^r TX \otimes K_X) &= h^n(X, \Omega^n_X) = h^r(X, \Omega^r_X) = h^r(X, K_X) = h^{n-r}(X, \mathcal{O}_X)
\end{align*}
\]

and, since \(X \) is Fano, the latter number is non-zero only if \(r = n \).

Thus \(\Lambda^r TX \otimes (\det E)^{-1} \cong \mathcal{O}_X \) so \(E \hookrightarrow TX \) is nowhere degenerate, hence an isomorphism.

We conclude by the Theorem of Mori.
Finally we prove that $\dim Z_0$ is zero, i.e. X is rationally connected. By contradiction if $\dim Z_0 \geq 1$ one can prove that:

Lemma

Outside a subset of codimension ≥ 2 the morphism φ_0 is a \mathbb{P}^k-bundle (in the analytic topology).

Then we take a complete curve $B \subset Z_0$ and we consider the \mathbb{P}^k-bundle $\varphi_0 : X_B := \varphi_0^{-1}(B) \to B$ with the ample vector bundle $E|_{X_B}$.
Proof

We get a contradiction applying the following straightforward result, due to Campana and Peternell.

Lemma

Let X be a n-dimensional projective manifold, $\varphi : X \to Y$ a \mathbb{P}^k bundle ($k < n$) of the form $X = \mathbb{P}(V)$ with a vector bundle V on Y. Then the relative tangent sheaf $T_{X/Y}$ does not contain an ample locally free subsheaf.