next up previous
Next: Expansions in the limits Up: 1Dfermions Previous: Attractive one-dimensional two-component gas

Repulsive one-dimensional two-component gas

The equation of state is defined by following set of integral equations
$\displaystyle \rho(k) = \frac{1}{2\pi} + \int\limits_{-Q}^QK(k-\varkappa)\rho(\varkappa)\,\frac{d\varkappa}{2\pi},$     (6)

where the kernel is
$\displaystyle K(\xi) = %%\frac{4c}{c^2+4\xi^2}-\frac{\pi}{c\ch \frac{\pi x}{c}}
2\int\limits_0^\infty \frac{\cos\xi x}{1+e^{\gamma x}}\,dx$     (7)

It is possible to express the kernel in terms of $\beta$-function (see Gradstein-Ryzhik for definition). $K(\xi) = -\frac{1}{\gamma}\left(\beta\left(\frac{i\xi}{\gamma}\right)
+\beta\left(-\frac{i\xi}{\gamma}\right)\right).$ The density and energy are given by
$\displaystyle na_{1D} = \int\limits_{-Q}^Q\rho(k)\,dk,$     (8)
$\displaystyle \frac{E}{N} = \left[\frac{1}{na_{1D}}\int\limits_{-Q}^Qk^2\rho(k)\,dk
\right]\frac{\hbar^2}{2ma_{1D}^2}$     (9)