next up previous contents
Next: Series expansion of the Up: Appendix Previous: Notation for Fourier transforamtion   Contents

useful formulae


$\displaystyle \begin{array}{lc}
E(p)&=\qquad\displaystyle\sqrt{\left(\frac{\hba...
...(\frac{p}{mc}\right)\sqrt{1+\frac{1}{4}\left(\frac{p}{mc}\right)^2}
\end{array}$     (5.5)


$\displaystyle L_p = \frac{1}{mc^2} \left(E(p)-\frac{p^2}{2m} -mc^2\right)$     (5.6)


$\displaystyle \begin{array}{lc}
L_p^2&\quad\displaystyle
=\frac{2E(p)}{(mc^2)^2...
...\frac{2E(p)}{(mc^2)^2} \left(E(p)-\sqrt{E(p)^2+(mc^2)^2}\right) + 1
\end{array}$     (5.7)


$\displaystyle \begin{array}{lc}
u_k^2&\quad\displaystyle
= \frac{1}{1-L_p^2}
= ...
...2}
= \frac{(mc^2)^2}{2E(p)\left(\sqrt{E^2(k)+(mc^2)^2}-E(p)\right)}
\end{array}$     (5.8)


$\displaystyle \begin{array}{lc}
v_k^2&\quad\displaystyle = \frac{L_p^2}{1-L_p^2...
...2}
= \frac{(mc^2)^2}{2E(p)\left(\sqrt{E^2(k)+(mc^2)^2}+E(p)\right)}
\end{array}$     (5.9)


$\displaystyle u_k v_k = \frac{L_p}{1-L_p^2}
=-\frac{mc^2}{2E(p)}$     (5.10)


$\displaystyle \frac{1+L_p}{1-L_p} =
\frac{u_k+v_k}{u_k-v_k} =
\frac{\hbar^2k^2}{2mE(p)}$     (5.11)