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Abstract

We introduce the concept of attainable sets of payoffs in two-player repeated games

with vector payoffs. A set of payoff vectors is called attainable if Player 1 can ensure

that there is a finite horizon T such that after time T the distance between the set and

the cumulative payoff is arbitrarily small, regardless of what strategy Player 2 is using.

This paper focuses on the case where the attainable set consists of one payoff vector.

In this case the vector is called an attainable vector. We study properties of the set of

attainable vectors, and characterize when a specific vector is attainable and when every

vector is attainable.
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1 Introduction

There are various dynamic situations in which the stage payoff is multi-dimensional, and

the goal of the decision maker is to drive the total vector payoff as close as possible to a

given target set. One such example is dynamic network models, which include a variety of

different logistic applications such as production, distribution and transportation networks.

In the literature on dynamic network flow control [2, 3, 8, 9, 17], the supplier tries to meet

a multi-dimensional demand. His goal is to ensure that the difference between the total

demand and the total supply converges with time to a desirable target. One can model

such a situation as a two-player repeated game, where Player 1 is the decision maker, and

Player 2 represents the adversarial market that controls the demand. For instance, in the

distribution network scenario, the supplier has a desirable multi-dimensional inventory level

that he would like to maintain, despite erratic behavior of the demand side. Having to deal

with an adversarial opponent requires the supplier to cope with the worst case possible. This

motivates our main objective: to find conditions that characterize when a specific target

vector x can be attained against any possible demand pattern exhibited by the market.

A second example is the Capital Adequacy Ratio. The third Basel Accord states that

(a) the bank’s Common Equity Tier 1 must be at least 4.5% of its risk-weighted assets at

all times, (b) the bank’s Tier 1 Capital must be at least 6.0% of its risk-weighted assets at

all times, and (c) the total capital, that is, Tier 1 Capital plus Tier 2 Capital, must be at

least 8.0% of the bank’s risk weighted assets at all times. To accommodate this example

in our setup, consider the following 3-dimensional vector. The first coordinate stands for

the per-period difference between the bank’s Tier 1 Capital and 6.0% of its risk-weighted

assets; the second coordinate stands for the per-period difference between the bank’s Tier

1 Capital and 6.0% of its risk-weighted assets; and the third stands for the per-period

difference between the total capital and 8.0% of the bank’s risk weighted assets. According

to the Capital Adequacy Ratio the coordinates of this vector should be non-negative. Here,

Player 1 represents the bank’s managers who control its assets, and Player 2 represents

market behavior, which is unpredictable and thought of as adversarial. Thus, the goal of

Player 1 is to design a strategy that would drive the 3-dimensional total payoff to the target

set – the non-negative orthant. To ensure that they fulfill the requirements of the Basel

Accord, banks try to hold a capital buffer on top of the regulatory minimum, and they

periodically adjust their assets to be at the top of the buffer [15, 27].

To model such situations we study two-player repeated games with vector payoffs in

continuous time. We say that a set A in the payoff space is attainable by Player 1 if there is
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a time T such that for every level of proximity, ε > 0, Player 1 has a strategy guaranteeing

that against every possible strategy for Player 2, the distance between A and the cumulative

payoff up to any time t greater than T is smaller than ε. When a set A is attainable, Player

1 can plan his actions, based on historical inventory and market data, to ensure that the

inventory level would converge to A. In the case where A consists of one point, the supplier

may guarantee that his inventory level will be as close as he wishes to an ideal level.

The definition of attainability is close in spirit to the concept of approachable sets [6],

which refers to the average stage payoff rather than the cumulative payoff. While a set A

is attainable by Player 1 if he can ensure that the cumulative payoff converges to it, A is

approachable by him if he can ensure that the average payoff converge to the set.

In case a point, say x, is attainable by Player 1, it implies that the long run inventory

level is stable around x. On the other hand, if x is approachable, it merely guarantees that

the average payoff converges to x. This may happen even when the actual payoff does not

converge to x, and, in fact, even when any fixed running average does not converge to x.

This observation suggests that although the notions of attainability and approachability

look similar, and indeed are related, the flavor of the results and their proofs are completely

different.

When a vector x is attainable by a player, the player can ensure that the total payoff

converges to that vector. In particular, he can ensure that the total payoff gets close to x,

and remains around x forever. This implies that once some vector x is attainable, so it the

vector ~0. The first main result, Theorem 1, characterizes when ~0 is attainable. The result

implies that, with regard to the vector ~0, attainability and approachability coincide: the

vector ~0 is attainable by a player if and only if it is approachable by him in the game in

discrete time.

The second main result, Theorem 2, characterizes when a given vector x is attainable. It

turns out that a vector x is attainable by a player if and only if (i) the vector ~0 is attainable

by him, and (ii) the vector ~0 is attainable by him in a game whose payoffs are translated

by δx for some δ > 0. Condition (i) is shared by all x: in order for any x to be attainable,

the vector ~0 must be attainable. Condition (ii), on the other hand, is point specific, and it

uses the attainability of ~0 in a modified version of the original game.

The last result, Theorem 3, characterizes the cases in which the controller has full

freedom in setting his target level, in the sense that any vector x is attainable.

There is a literature on decision problems related to dynamic multi-inventory in con-

tinuous time (see for instance, the continuous-time control strategy in [8]). The control
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literature up to this point refers to one-person (the controller) decision problems facing

uncertainty. As far as we know, this paper is the first taking a strategic approach to the

problem.

In the game in continuous time we discuss, players are allowed to use a special type of

behavior strategies. These strategies are characterized by an increasing sequence of positive

real numbers, that divide the time span [0,∞) into sub-interval. The play of the player

in each interval depends on the play of the other player before the interval starts, but is

independent of the play of the other player during that time interval. This is equivalent to

saying that before the game starts, a player sets an alarm clock to ring in certain times,

and whenever the clock rings, the player looks at the historical play path up to that point

and determines how to play until the next time the clock rings. We later discuss the

interpretation of this type of strategies.

This paper is organized as follows. In Section 2, we provide motivating examples. In

Section 3 we introduce the model and main definitions. In Section 4, we introduce and

discuss the results. Section 5 is devoted to the discussion of a few aspects related to the

definition of attainability and to the type of continuous strategies that we are using. Proofs

are relegated to Section 6.

2 Motivations

This section details one motivation of our study: distribution networks. Consider a dis-

tributer of a certain product who has two warehouses A and B in different regions. Every

month the distributer can order products from factories to each of the warehouses, and he

can transport products between the two warehouses, while vendors order products from the

warehouses. This situation is described graphically in Figure 1(a).

fA

fB

fT

wA

wB

A

B

(a) Three distribution flows fA, fT ,

fB and two vendors requests wA, wB .

fA

fB

fT

wA

wB

wC
A

B

C

(b) Factory manager can sell directly to

vendors: node C represents factory.

Figure 1: Distribution network with warehouses A and B.

In Figure 1(a), fA and fB are the number of products that are sent from factories
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to the two warehouses A and B, fT is the number of products that are transported from

warehouse A to warehouse B, and wA and wB are the number of products sent from the two

warehouses to vendors. Negative flows are interpreted as flows in the opposite direction;

e.g., if vendors return products to warehouse A (resp. to warehouse B), then wA (resp.

wB) is negative. If products are transported from warehouse B to warehouse A, then fT

is negative. We analyze this situation in continuous time. The change of stock in the two

warehouses is given by the 2-dimensional vector

u(at1, a
t
2) =

(
1 −1 0

0 1 1

)
︸ ︷︷ ︸

F


f tA

f tT

f tB


︸ ︷︷ ︸

at1

−

(
wtA

wtB

)
︸ ︷︷ ︸

at2

,

where at1 = (f tA, f
t
B, f

t
T ) is the decision variable of the distributer, and at2 = (wtA, w

t
B) is the

uncontrolled market demand at time t.

Suppose that the number of products that can be ordered by vendors at each time

instance is bounded by 2, and the number of products that can be returned by vendors

to each warehouse at every time instance is 3. In other words, wtA and wtB are in [−3, 2].

Suppose also that the amount of product that the distributer can order from or return to

the factories and transport between the two warehouses is bounded by 5.

This situation can be described by a two-person game as follows. The distributer (Player

1) has 8 actions

(5, 5, 5), (5, 5,−5), (5,−5, 5), (5,−5,−5), (−5, 5, 5), (−5, 5,−5), (−5,−5, 5), (−5,−5,−5),

while the market demand or nature (Player 2) has 4 actions

(−3,−3), (−3, 2), (2,−3), (2, 2).

The payoffs correspond to the change of stock in the two warehouses, and are given by the

following table:
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(-5,-5,-5)

(-5,-5,5)

(-5,5,-5)

(-5,5,5)

(5,-5,-5)

(5,-5,5)

(5,5,-5)

(5,5,5)

(-3,-3) (-3,2) (2,-3) (2,2)

(3,-7)

(3,3)

(-7,3)

(-7,13)

(13,-7)

(13,3)

(3,3)

(3,13)

(3,-12)

(3,-2)

(-7,-2)

(-7,8)

(13,-12)

(13,-2)

(3,-2)

(3,8)

(-2,-7)

(-2,3)

(-12,3)

(-12,-13)

(8,-7)

(8,3)

(-2,3)

(-2,13)

(-2,-12)

(-2,-2)

(-12,-2)

(-12,8)

(8,-12)

(8,-2)

(-2,-2)

(-2,8)

Figure 2: The strategic-form game corresponding to the situation.

per-period At every time instance the two players choose their actions. Each market

behavior translates into a mixed action of Player 2, and each behavior of the distributer

corresponds to a mixed action of Player 1. The (2-dimensional) total payoff up to time

t is the number of products that are stored in each of the two warehouses. The goal of

the distributer is to ensure that the total number of products in each warehouse does not

exceed its capacity, that is, that the total payoff should not exceed a certain (2-dimensional)

bound.

Figure 1(b) describes the case where the factory manager can sell directly to vendors,

bypassing the distribution to warehouses. This situation can be represented by adding an

additional node C modeling the factory, and an edge that represents the market demand.

The stock is now a 3-dimensional vector, as we have to take into account the inventory

available at the factory, and consequently the change in the stock modifies as shown below:

u(at1, a
t
2) =


1 −1 0

0 1 1

−1 0 −1




f tA

f tT

f tB

−


wtA

wtB

wtC

 .

A recurrent question in the network flow control literature [3, 2, 8, 9, 17] is about

conditions that ensure the existence of a control strategy that drives the excess supply

vector to a desired target level in Rm regardless of the unpredictable realization of the

demand. The equivalence between the excess supply and the cumulative payoff in the

dynamic game motivates our study. The rest of the paper is devoted to the analysis of

conditions under which Player 1 has a strategy ensuring the attainability of a given point,

regardless of the behavior of Player 2.
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Situations where the target is to control the total payoff occur also in production and

transportation networks. Production networks describe production processes and activities

necessary to turn raw materials into intermediate products and eventually into final prod-

ucts. The nodes of the networks represent raw materials and intermediate/final products.

The buffer at each single node i models the amount of material or product of type i stored

or produced up to the current time, and hyper-arcs describe the materials or products con-

sumed (tail nodes) and produced (head nodes) in each activity or process. Transportation

networks model the flow of commodities, information, or traffic; nodes of the networks rep-

resent hubs and the buffers at the nodes describe the quantity of commodities present in

the hubs. The edges describe transportation routes.

2.1 Related control and approachability literature

We highlight two main streams of related literature, one from the control area and the

second from the approachability area. These two bodies of literature have in common the

interest towards robustness.

Connections between robust control and noncooperative game theory has a long history

(see, e.g., [1]). Robust control is the area of control theory that looks for strategies that

“control” the state of a dynamical system, for instance, drive it to a given set, despite

the effects of disturbances (see the seminal paper [5]). Among the foundations of robust

control we find two main notions that can be related to attainability and are surveyed in

[7]. The first notion, robust global attractiveness, refers to the property of a set to “attract”

the state of the system under a proper control strategy, independently of the effects of the

disturbance. The second notion, robustly controlled invariance, describes the property of

a set to bound the state trajectory under a proper control strategy, independently of the

effects of the disturbance. Both notions are widely exploited in a variety of works that

contribute to the use of robust control in dynamic network flow models [2, 3, 4, 8, 9, 17].

With regard to the second stream of literature, the definition of attainability is close

in spirit to the concept of approachability (see [6, 16, 19, 21, 22, 23, 24, 25, 26]). The

two concepts differ in that approachability aims at controlling the average payoff whereas

attainability aims at controlling the cumulative payoff. Approachability theory has been

applied in several areas of game theory, such as allocation processes in coalitional games

[18], regret minimization [20, 14], and adaptive learning [10, 11, 12, 13], just to name a few.

Approachability theory has been originally formulated for discrete-time repeated games with

finite-dimensional payoffs. Since then it has been extended to infinite-dimensional payoffs
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[19] and to continuous-time repeated games, showing common elements with Lyapunov

theory [14].

This paper focuses on the game theoretic aspects related to attainable sets. A discussion

on applications to network flow control problems is introduced in a companion paper [22].

3 Attainability

In the first part of this section we introduce the mathematical model of repeated game

in continuous time and elaborate on the type of strategies used by the players. In the

remaining part, we provide a formal definition of attainability.

3.1 The model

We study a two-player repeated game with vector payoffs in continuous time Γ. The set of

players is N = {1, 2}, and the finite set of actions of each player i is Ai. The instantaneous

payoff is given by a function u : A1 ×A2 → Rm, where m is a natural number. We assume

w.l.o.g. that payoffs are bounded by 1, so that u : A1×A2 → [−1, 1]m. We extend u to the

set of mixed-action pairs, ∆(A1)×∆(A2), in a bilinear fashion. The one-shot vector-payoff

game (A1, A2, u) is denoted by G and we will say that the game in continuous time Γ is

based on G. If i ∈ {1, 2}, then −i denotes the player who is not i.

The game Γ is played over the time interval [0,∞). We assume that the players use

non-anticipating behavior strategies with delay, which we define now. Roughly, a non-

anticipating behavior strategy with delay divides time into blocks. The behavior of a player

in a given block depends on the behavior of the other player up to the beginning of that

block. In other words, the way a player plays during a given block of time does not affect

the way the other player plays during that block. Still, it may affect the other player’s play

in subsequent blocks.

Denote by Ci the set of all controls of player i, that is, the set of all measurable functions

from the time space, [0,∞), to player i’s mixed actions. That is,

Ci := {ai : [0,∞)→ ∆(Ai), ai is measurable} .

Definition 1 A function σi : C−i → Ci is a behavior strategy with delay (or simply a

strategy) for player i, if there exists an increasing sequence of real numbers (τki )k∈N such

that for every a−i, a
′
−i ∈ C−i,

a−i(t) = a′−i(t) ∀t ∈ [0, τki ) =⇒ (σi(a−i))(t) = (σi(a
′
−i))(t) ∀k ≥ 0∀t ∈ [0, τk+1

i ),
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where τ0i = 0.

Remark 1 A strategy as we defined here is called a non-anticipating strategy with delay

in the literature of differential games. An equivalent formulation, that may look more trans-

parent to game theorists, is as follows. A strategy for player i is a vector (τki , σ
k
i )k∈N where

(τki )k∈N is an increasing sequence of real numbers, and for each k ∈ N, σki is a function

that maps play paths (of both players) on the interval [0, τk−1i ) to plays of player i in the

interval [τk−1i , τki ).

When defining a strategy and when referring to a strategy we will usually take the equiv-

alent formulation given in this remark.

In the sequel we will refer to the real numbers (τki )k∈N in Definition 1 as the updating

times related to σi.

Remark 2 Continuous time is usually used as a convenient model for discrete time, when

the gap between two stages is small. This is the case here as well. Suppose that time is

discrete, and the time difference between any two decision moments is extremely small.

Suppose that observation of the actions of the other player is time consuming and possibly

costly, so that players cannot observe each other at every decision point. Thus, the players

are in fact playing a game in discrete time, in which they can randomize at every decision

point, but they observe the actions of the other player only rarely, relative to the frequency

in which they take actions. By improving the observation technology a player can observe

the actions of the other player more frequently, but this frequency will always be significantly

slower than the frequency in which actions are taken.

Every pair of strategies σ = (σ1, σ2) uniquely determines a play path (at(σ))t∈R+ . The

payoff (vector) up to time T associated with the pair of strategies σ is given by

γT (σ) =

∫ T

0
u(at(σ))dt ∈ Rm. (1)

When we wish to emphasize that the payoff is in the game based on G we will write γTG

rather than γT . Since payoffs are bounded by 1, the integral in (1), which is the cumulative

payoff up to time T , is well-defined.

3.2 Attainability: the definition

The subject matter of the paper is the concept of attainable sets: a set of vectors is attainable

by a player if he can guarantee that the distance between the set and the total payoff
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converges to 0, regardless of the strategy of the other player. We provide here one definition

for this concept. Two alternative definitions are given and discussed in Section 5.

Definition 2 The set Y ⊆ Rm is attainable by Player 1 if there is T > 0 such that for

every ε > 0 there is a strategy σ1 of Player 1 such that1

d(γt(σ1, σ2), Y ) ≤ ε, ∀t ≥ T, ∀σ2.

A set Y is attainable if there is a finite horizon T such that Player 1 can ensure, against

any possible strategy of Player 2, that the cumulative payoff up to any time t ≥ T is within

ε from Y . Note that the time T is uniform across all levels of precision. That is, in order

for Y to be attainable by Player 1, Player 1 must be able to guarantee that the cumulative

payoff at any time longer than T would be within any ε from Y . However, different ε’s

might require different strategies employed by Player 1. It might therefore happen that

although Y is attainable by Player 1, the cumulative payoff would never touch Y itself. We

say that the strategy σ1 in Definition 2 attains the set Y up to ε.

When Y = {x}, that is, Y contains a single vector, we say that the vector x is attainable

by Player 1. Denote by W the set of attainable vectors.

The definition of an attainable set looks close in spirit to that of approachable set in

games played over discrete set of times [6]. There is, however, a significant difference between

the two concepts. A set is approachable if the average payoff converges to it, while a set

is attainable if the cumulative payoff converges to the set. In other words, approachability

refers to the convergence of the average payoff, while attainability to the convergence of the

cumulative payoff. Indeed, the results characterizing approachable sets and attainable sets

are significantly different, both in contents and in spirit.

4 Results

This section presents the three main results of our study. The first result, Theorem 1, focuses

on the conditions under which the vector ~0 is attainable. Attainability of ~0 turns out to be

crucial if we wish to inspect attainability of a single vector x 6= ~0, and this constitutes our

second result (see Theorem 2). The third result builds upon the previous two results, and

provides a stronger condition that ensures that any vector x ∈ Rm is attainable.

We start with a simple observation regarding the notion of attainability, which holds

due to the continuous time setup. Its proof is differed to the last section.

1The distance and the norm referred to throughout the paper is ‖.‖2. For instance, d(x,A) = miny∈Y ‖x−
y‖2.
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Proposition 1 The set W is a convex cone.

The next theorem characterizes when the vector ~0 is attainable. To state this result we

need the following notations. Let λ ∈ Rm. Denote2 by 〈λ,G〉 the zero-sum one-shot game

whose set of players and their action sets are as in the game G, and the payoff that Player

2 pays to Player 1 is 〈λ, u(a1, a2)〉 for every (a1, a2) ∈ A1 × A2. As a zero-sum one-shot

game, the game 〈λ,G〉 has a value, denoted vλ.

For every mixed action p ∈ ∆(A1) denote

D1(p) = {u(p, q) : q ∈ ∆(A2)}.

D1(p) is the set of all payoffs that might be realized when Player 1 plays the mixed action p.

If vλ ≥ 0 (resp. vλ > 0), then there is a mixed action p ∈ ∆(A1) such that D1(p) is a subset

of the closed half space {x ∈ Rm : 〈λ, x〉 ≥ 0} (resp. half space {x ∈ Rm : 〈λ, x〉 > 0}).

Theorem 1 The following conditions are equivalent.

B1 The vector ~0 ∈ Rm is attainable by Player 1;

B2 vλ ≥ 0 for every λ ∈ Rm.

Corollary 2 in [6] implies that the vector ~0 is approachable in the game in discrete time

with payoff function u if and only if condition B2 holds. We thus deduce the following

corollary to Theorem 1.

Corollary 1 The vector ~0 ∈ Rm is attainable by Player 1 in Γ if and only if it is approach-

able by Player 1 in the repeated game in discrete time with payoff function u.

The following result characterizes when a given vector x is attainable. We will need the

following notation. For every y ∈ Rm denote by (G− y) the two-player one-shot game that

is identical to G except for its payoff function. The payoff function of (G − y) is (u − y),

where (u− y)(a1, a2) = u(a1, a2)− y for every a1 ∈ A1 and a2 ∈ A2.

Theorem 2 Let ~0 6= x ∈ Rm. The vector x is attainable by Player 1 if and only if

B1 The vector ~0 ∈ Rm is attainable by Player 1

and either one of the following conditions holds:

2 The inner product is defined by 〈x, y〉 :=
∑m
i=1 xiyi for every x, y ∈ Rm.
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B3 There is δ0 > 0 such that for every q ∈ ∆(A2) there is p ∈ ∆(A1) and δ > δ0 satisfying

u(p, q) = δx.

B4 There is δ > 0 such that the vector ~0 ∈ Rm is attainable by Player 1 in the game based

on (G− δx).

Theorem 2 implies that whenever any vector x is attainable, so is the vector ~0. Since

attainability is concerned with the cumulative payoff, once a target level is (almost) reached,

this level should be maintained in the long run. This means that once a neighborhood of a

target level x is reached, from that point on the level ~0 ought to be attained. This is the

reason why ~0 is attainable when any vector x is, and why ~0 plays a major role in the theory

of attainability. However, condition B1 alone is not sufficient for the attainability of other

vectors.

Condition B3 states that for every q ∈ ∆(A2) there is a strategy for Player 1 such that

the payoff u(p, q) is x multiplied by a scalar δ, which is bounded away from 0. Condition

B4 states that ~0 is attainable in some game whose payoff is a translation of the original

payoff function by δx.

The following theorem deals with the case where all the vectors are attainable.

Theorem 3 The following statements are equivalent:

C1 Every vector x ∈ Rm is attainable by Player 1;

C2 vλ > 0 for every λ ∈ Rm \~0.

Remark 3 If condition C2 is satisfied, then for every open half space H of Rm, there is

a mixed action p ∈ ∆(A1) such that D1(p) ⊆ H. Standard continuity and compactness

arguments imply that in this case there is δ1 > 0 such that for every half space H there is

p ∈ ∆(A1) satisfying d(D1(p), H) ≥ δ1. Stated differently, there is δ2 > 0 such that for

every vector λ whose `1-norm is 1, 〈λ, u(p, q)〉 > δ2 for every q ∈ ∆(A2).

Note the difference between condition B2 of Theorem 1 and condition C2 of Theorem 3.

In the former, the value of the scalar-payoff game with payoffs 〈λ, u(p, q)〉 is non-negative for

every direction λ ∈ Rm \~0, while in the latter it is strictly positive. The former guarantees

attainability of the vector ~0, while the latter guarantees that every vector is asymptotically

attainable.
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5 Discussion

The problem setting and the results illustrated above give rise to a number of additional

questions such as: Is Theorem 1 still valid if the repeated game is in discrete time? Can we

derive a different notion of attainability that captures the model’s behavior when the time

of convergence to a given set is unbounded from above? What if the updating times are

not pre-determined and can be selected as a function of the information available up to the

previous updating time? We next elaborate on the above issues one by one and highlight a

few other open problems which we leave for future research.

5.1 Continuous time versus discrete time.

The characterization presented in Theorem 1 depends crucially on the continuous time

setting. The following example shows that this result is invalid when time is discrete.

Example 1 Consider a game in discrete time where payoffs are one-dimensional and each

player has two actions. Payoffs are given by the following matrix:

B

U

L R

2− 1

−2− 1

2 + 1

−2 + 1
=

B

U

L R

1

−3

3

−1

Figure 3: The payoff function in Example 1.

The payoffs in this game are the sum of two numbers, one determined by Player 1 (-2 if

he plays U , 2 if he plays B), and the other by Player 2 (-1 if she plays L, 1 if she plays R).

Condition B2 is satisfied, and therefore 0 is attainable by Player 1. The following

strategy guarantees that the cumulative payoff is3 within 9 · 2η from 0 at any t > 2; the

details of the proof can be found in the proof of Theorem 1. Divide the time line into

countably many blocks, where the length of the k-th block is η
k . In the k-th block Player 1

plays U if the cumulative payoff at the beginning of the block is positive, and he plays B

otherwise.

We show that 0 is not attainable by Player 1 in the game in discrete time. When time

is discrete, a behavior strategy for a player is a function that assigns a mixed action to each

past history. For every ` ∈ N let p` be the mixed action played by Player 1 at stage `. The

mixed action p` depends on past play. Let σ2 be the strategy that at each stage ` plays L

if p`(U) ≥ 1
2 , and R otherwise. The stage payoff is then at least 2 whenever Player 2 plays

3The extra 9 appears because in this example the payoffs are not bounded by 1, and 32 = 9.
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R, and at most −2 whenever Player 2 plays L. In particular, if the total payoff up to stage

` is in the interval [−1
2 ,

1
2 ], then the payoff up to stage `+ 1 lies outside this interval. Thus,

the cumulative payoff does not converge to 0.

Example 1 suggests that the characterization of the set of attainable vectors in games

in discrete time is more challenging that the characterization in continuous time.

5.2 Alternative definitions of attainability

We here provide two alternative definitions of the concept of attainability, which we term

asymptotic attainability and weak asymptotic attainability. We then explore some relations

between the three definitions.

For every set Y ⊆ Rm we denote by B(Y, ε) the set of all points whose distance from at

least one point in Y is less than ε, that is,

B(Y, ε) := {x ∈ Rm : d(x, Y ) < ε}.

When Y is a single point x, we write B(x, ε) instead of B({x}, ε).

Definition 3 (i) The set Y ⊆ Rm is asymptotically attainable by Player 1 if there is a

strategy σ1 for Player 1 such that for every strategy σ2 of Player 2,

lim
T→∞

d(γT (σ1, σ2), Y ) = 0. (2)

(ii) The set Y is weakly asymptotically attainable by Player 1, if the set B(Y, ε) is asymp-

totically attainable by Player 1 for every ε > 0.

Asymptotic attainability requires that a set is asymptotically reached by the cumulative

payoff without putting any bound on the time it takes to reach the set. Attainability, on the

other hand, requires that a set is approximately reached in a bounded time, independent of

the degree of approximation. Weak asymptotic attainability relaxes both time boundedness

and the level of the approximation precision. A set Y is weakly asymptotically attainable

if any neighborhood B(Y, ε) around Y can be asymptotically attained, without having a

universal bound on the time at which this neighborhood is reached.

Any attainable set is also weakly asymptotically attainable and any asymptotically

attainable set is weakly asymptotically attainable as well. Analogously to Proposition 1,

the set of asymptotically attainable vectors and the set of weakly asymptotically attainable

14



vectors are convex cones. The definition implies that the set of weakly attainable vectors

is also closed.

Using Theorem 1 we now show that attainability of a vector does not imply its asymp-

totic attainability. This implies in particular that these two concepts are not identical.

Example 2 We provide an example where the vector ~0 is attainable but not asymptotically

attainable. Consider the following game where payoffs are 2-dimensional, each player has 2

actions, and the payoffs are scalar and given by:

B

U

L R

0

1

−1

0

Figure 4: The payoff function in Example 2.

In this game vλ = 0 for every λ ∈ R. Thus, for every λ ∈ R2 one has vλ ≥ 0, and

therefore Theorem 1 implies that the vector ~0 is attainable by Player 1. We argue that ~0 is

not asymptotically attainable by Player 1. Assume that Player 1 implements a strategy σ1.

In an initial time interval the strategy σ1 plays one of the rows with a positive probability.

Consider the strategy σ2 of Player 2 that plays constantly a column that generates a non-

zero vector in that initial interval. For instance, if σ1 plays the action U with positive

probability in the initial time interval, then σ2 play the action B always. The initial period

produces a non-zero payoff and this payoff is not diminishing to zero because Player 2

keeps playing the same column forever. This example shows that ~0 is attainable but not

asymptotically attainable by Player 1.

We point out that the argument mentioned above shows in fact that ~0 is not attainable

in the corresponding game in discrete time as well.

The following example shows that a weakly attainable vector need not be attainable.

Example 3 Consider a two-player game where payoffs are 2-dimensional, Player 1 has 3

actions, Player 2 has 2 actions, and the payoff function is given by the left-hand side matrix

in Figure 5.
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B

M

U

L R

(0, 0)

(0, 0)

(1, 1)

(0, 0)

(1, 1)

(0, 1)

The game G

B

M

U

L R

(−δ,−δ)

(−δ,−δ)

(1− δ, 1− δ)

(−δ,−δ)

(1− δ, 1− δ)

(−δ, 1− δ)

The game G− δ(1, 1)

Figure 5: The payoff functions of the games G and G− δ(1, 1) in Example 3.

The vector (0, 0) is attainable by Player 1, using the strategy that always plays B. The

vector x := (1, 1) is weakly asymptotically attainable according to Definition 3. Indeed,

given ε > 0 consider the strategy σε1, with updating times (τk1 )k∈N defined by τk1 = kε for

k ∈ N, that is defined as follows.

• If the total payoff up to time τk1 is not in the set B((1, 1), ε), during the time interval

[τk1 , τ
k+1
1 ) play the mixed action [ε(U), (1− ε)(M)].

• If the total payoff up to time τk1 is in the set B((1, 1), ε), during the time interval

[τk1 , τ
k+1
1 ) play the action B.

For every t ≥ 1
ε one has d(γt(σε1, σ2), (1, 1)) < ε, so that the vector x is indeed weakly

asymptotically attainable by Player 1.

The vector x, however, is not attainable by Player 1 (according to Definition 2). To

show that x is not attainable by Player 1 we use Theorem 2 and show that condition B3

does not hold for x. Indeed, fix δ0 > 0, and set q := [(1 − δ0
2 )(L), δ02 (R)]. Let p ∈ ∆(A1)

be arbitrary. If u(p, q) = δx = (δ, δ) for δ > 0 then necessarily pU = 0. One can verify that

u(p, q) cannot be equal to δx for δ > δ0, and therefore condition B3 does not hold for x.

Remark 4 The proof of Theorem 3 shows that every vector x ∈ Rm is attainable by Player

1 if and only if every vector x ∈ Rm is asymptotically attainable by Player 1. Example

2 shows that attainability does not imply asymptotic attainability. We are unable to tell

whether or not asymptotic attainability implies attainability.

5.3 Alternative strategies in continuous time.

The strategies we use here are non-anticipating strategies with delay. In these strategies

the times (τki )k∈N at which a player observes past play are independent of the play of the

other player. One could consider a broader class of strategies in which (τki )k∈N are stopping
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times. In other words, τk+1
i is a time that depends on (that is, it is measurable with respect

to) the information available to player i at time τki , for each k ∈ N. In this type of strategies

the updating times (τki )k∈N, are not pre-determined real numbers, as in Definition 1. Our

results remain valid even if Player 2 is allowed to use a strategy from this broader class of

strategies.

5.4 Remaining open problems

In the applications that we provided, both in control theory and in banking, the target

sets are often not singletons. All the results above refer to attainability of singletons, and

did not discuss attainability, asymptotic attainability or weak asymptotic attainability of

sets. Characterizing when a set of payoffs is attainable (according to these three definitions)

remains open. We also leave attainability in discrete time and attainability when payoffs

are discounted for future investigation.

6 Proofs

6.1 Proof of Proposition 1

The following two lemmas prove the proposition.

Lemma 1 The set W is a cone.

Lemma 2 The set W is convex.

Proof of Lemma 1. Suppose that x ∈W , and fix β > 0. We will show that 1
βx ∈W

as well.

For every strategy σi of player i, let σβi be the strategy σi accelerated by a factor β.

That is, (σβi (a−i))(t) := (σi(â−i))(βt), where â−i(t) = a−i(βt).

By the definition of attainability, there is T > 0 such that for every ε > 0 there is a

strategy σε1 of Player 1 such that

d(x, γt(σ1, σ2)) ≤ ε, ∀t ≥ T, ∀σ2.

For every strategy σ2 of Player 2 one has

γt(σβ1 , σ2) =

∫ t

0
u(as(σβ1 , σ2))ds

=
1

β

∫ βt

0
u(as(σ1, σ

1/β
2 ))ds (3)

= (1/β)γβt(σ1, σ
1/β
2 ).

17



We deduce that

d(
x

β
, γT (σβ1 , σ2)) ≤

ε

β
, ∀t ≥ βT, ∀σ2,

and therefore 1
βx is attainable by Player 1, as desired.

Proof of Lemma 2. Let x, y ∈W and let 0 < β < 1. We show that βx+(1−β)y ∈W .

From Lemma 1, βx and (1− β)y are attainable by Player 1.

By the definition of attainability there are Tx, Ty > 0 such that for every ε > 0 there

are strategies σx1 and σy1 of Player 1 such that

d(γt(σx1 , σ2), βx) < ε, ∀t ≥ Tx,∀σ2, (4)

d(γt(σy1 , σ2), βy) < ε, ∀t ≥ Ty, ∀σ2. (5)

Partition the time line [0,∞) into two sets, T1 and T2 as follows:

• T1 = ∪∞`=0[`, `+ β);

• T2 = ∪∞`=0[`+ β, `+ 1).

Thus, each integer interval [`, ` + 1) is partitioned into two sets: one set with Lebesgue

measure β is included in T1, and the other set with Lebesgue measure 1− β is included in

T2. We construct a strategy σ1 of Player 1 that uses σx1 on T1 and σy1 on T2, and show that

this strategy attains βx+ (1− β)y up to ε. Formally, for each j ∈ {1, 2} define ϕj(t) to be

the Lebesgue measure of the set [0, t) ∩ Tj . Given a control a−i ∈ C−i define two auxiliary

controls â1−i and â2−i by

âj−i(t) := a−i(ϕ
−1
j (t)) for every t ≥ 0, j ∈ {1, 2}.

The control âj−i consists of that part of a−i that corresponds to times in Tj . The strategy

σ1 is defined by

σ1(a−i)(t) :=

{
(σx1 (â1−i))(t), t ∈ T1,

(σy1(â2−i))(t), t ∈ T2.

Fix a strategy σ2 of Player 2.

γT (σ1, σ2) =

∫ T

0
u(at(σ1, σ2))dt

=

∫
[0,T )∩T1

u(aϕ
−1
1 (t)(σx, σ2,x))dt+

∫
[0,T )∩T2

u(aϕ
−1
2 (t)(σy, σ2,y))dt,

where σ2,x and σ2,y are the strategies of Player 2 induced on T1 and T2. The right-hand

side converges to βx+ (1− β)y up to ε, which completes the proof.
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6.2 Proof of Theorem 1

To see that condition B1 implies condition B2, assume to the contrary that B1 holds but

condition B2 does not. Then, there is λ such that vλ < 0. That is, there is q ∈ ∆(A2)

and δ > 0 such that 〈λ, u(p, q)〉 < δ < 0 for every p ∈ ∆(A1). Denote by σ2 the stationary

strategy of Player 2 that plays constantly the mixed action q. This strategy guarantees that

for every strategy σ1 of Player 1,

〈λ, γT (σ)〉 =

∫ T

0
〈λ, ui((at(σ))〉dt < Tδ.

In particular, the distance between
∫ T
0 ui(a

t(σ))dt and ~0 does not go to 0, and therefore the

vector ~0 is not attainable by Player 1, which contradicts condition B1.

Suppose now that condition B2 is satisfied. The argument used in the proof of Lemma

1 of accelerating the time shows that, given T > 0, if for every ε there is a strategy σ1 of

Player 1 such that d(γt(σ1, σ2),~0) < ε for every t ≥ T then for every ε there is a strategy

σ̂1 of Player 1 such that d(γt(σ̂1, σ2),~0) < ε for every t ≥ T
2 . It follows that to prove that

condition B1 is satisfied it is sufficient to prove that condition B2 implies that for every

ε > 0 there is T > 0 and a strategy σ1 of Player 1 such that d(γt(σ1, σ2),~0) < ε for every

t ≥ T .

Consider then the following strategy σ1 of Player 1 that depends on a parameter η > 0.

The updating times of the strategy σ1, (τk1 )k∈N, are defined by

τk1 :=
k∑
`=1

η

`
. (6)

Denote the payoff up to time τk1 by Sk. For τk1 ≤ t < τk+1
1 we set σ1(t) to be an optimal

strategy for Player 1 in the game 〈−Sk, G〉. That is, σ1 is constant in the interval [τk1 , τ
k+1
1 );

in this interval σ1(t) is equal to a mixed action that guarantees that the payoff and Sk lie on

different sides of the hyperplane perpendicular to Sk. This means that if σ2 is the strategy

played by Player 2, then 〈Sk, u(at(σ))〉 ≤ 0, for every t ∈ [τk1 , τ
k+1
1 ).

By definition, Sk = γτ
k
1 (σ1, σ2). Thus,

Sk = Sk−1 +

∫ τk1

τk−1
1

u(σ(t))dt.
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Consequently,

‖Sk‖2 = ‖Sk−1‖2 + 2

〈
Sk,

∫ τk1

τk−1
1

u(σ1(t), σ2(t))dt

〉
+

∥∥∥∥∥
∫ τk1

τk−1
1

u(σ1(t), σ2(t))dt

∥∥∥∥∥
2

(7)

= ‖Sk−1‖2 + 2

∫ τk1

τk−1
1

〈Sk, u(σ1(t), σ2(t))〉dt+

∥∥∥∥∥
∫ τk1

τk−1
1

u(σ1(t), σ2(t))dt

∥∥∥∥∥
2

(8)

≤ ‖Sk−1‖2 +

(∫ τk1

τk−1
1

‖u(σ1(t), σ2(t))‖dt

)2

(9)

≤ ‖Sk−1‖2 +
(η
k

)2
. (10)

Continuing this way, one obtains, ‖Sk‖2 ≤ η2
∑k

`=1
1
`2
< 4η2. Thus, the distance between

Sk and ~0 does not exceed 2η for any k.

Note that when k ≥ e
1
η , then τk1 :=

∑k
`=1

η
` ≥ η log(k) ≥ 1. It means that the cumulative

payoff at any time τk1 that exceeds 1 is within 2η from ~0. Finally, since the length of the

time segments [τk1 , τ
k+1
1 ) is η

k , the cumulative payoff up to t > 1 + η is within 2η+ η

e
1
η

from

~0. Since η is arbitrary, it follows that the vector ~0 is indeed attainable, with4 T = 2, by

Player 1. Condition B1 is therefore established. �

6.3 Proof of Theorem 2

Part 1: If the vector x is attainable by Player 1 then ~0 is attainable by Player 1.

Assume to the contrary that the vector x is attainable by Player 1 but ~0 is not attainable

by Player 1. Let T0 > 0 be arbitrary. Since the vector ~0 is not attainable by Player 1, there

is ε0 > 0 such that for every strategy σ1 of Player 1 there is a strategy σ2 of Player 2 and

t ≥ T0 such that d(γt(σ1, σ2),~0) > ε0.

Let σ1 be a strategy for Player 1 that attains x. In particular, there is T > 0 and a

strategy σ1 of Player 1 such that

d(γt(σ1, σ2), x) ≤ ε0
2
, ∀σ2,∀t ≥ T. (11)

Let σ̂1 be the strategy σ1 from time T and on. Formally, let k be the minimal integer such

that τk1 > T . The updating times of σ̂1 are (τ `1)∞`=1, and σ̂1(a2) = σ1(a
∗
2 ◦ a2) for every

a2 ∈ C2, where a∗2 is the play of Player 2 according to σ2 up to time T (when Player 1 plays

4Recall that in the definition of attainability, see Definition 2, there should be a uniform time T at which

the cumulative payoff is with ε to ~0. Here we set T = 2 because it is greater than 1 + η and it does depends

nor on η either on the strategy employed by Player 1.
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σ1), and a∗2 ◦ a2 is the concatenation of a∗2 and a2 into a log history that starts with a∗2 and

continues with a2.

Let σ̂2 be a strategy for Player 2 and t ≥ T0 be a positive real such that d(γt(σ̂1, σ̂2),~0) >

ε0. Consider now the strategy of Player 2 that plays arbitrarily up to time T , and from

time T is follows σ̂2. Then d(γt(σ1, σ̂2),~0) > ε0
2 , which contradicts (11).

Part 2: If the vector x is attainable by Player 1, then condition B3 is satisfied.

Suppose to the contrary that condition B3 is not satisfied. That is, for every δ0 > 0

there is q ∈ ∆(A2) such that for every p ∈ ∆(A1) one has u(p, q) 6= δx for every δ > δ0. We

divide the argument into two cases.

Case A: There is q ∈ ∆(A2) such that for every p ∈ ∆(A1), and every δ > 0, u(p, q) 6= δx.

We show that by playing constantly q (a strategy that we denote by q∗) Player 2 can prevent

Player 2 from attaining x. Let σ1 be a strategy for Player 1. Denote by pt the average mixed

action played by Player 1 up to time t; that is, pt = 1
t

∫ t
0 σ1(s)ds. We obtain, γt(σ1, q

∗) =

tu(pt, q). Thus, γt(σ1, q
∗) is in the cone generated by R1(q) := {u(p, q); p ∈ ∆(A1)}. This

cone is closed and by assumption, does not contain x. Thus, there is a positive distance

between x and this cone, implying that γt(σ1, q
∗) cannot get arbitrarily close to x. This

contradicts the fact that x is attainable.

Case B: For every q ∈ ∆(A2) there is p ∈ ∆(A1) such that u(p, q) = δx, but the δ’s

are not bounded away from zero. Thus, for every δ > 0, there is qδ ∈ ∆(A2) such that

δ ≥ max{δ′; ∃p s.t. u(p, q) = δ′x}. We show that for every δ > 0, if Player 2 plays qδ

all the time (a strategy that we denote by q∗δ ), then there is ε > 0 such that for every σ1,

‖γT (σ1, q
∗
δ )− x‖ < ε implies T > 1/(4δ).

Fix δ > 0. Denote

δ0 := max{δ′ : ∃p s.t. u(p, qδ) = δ′x} < δ.

In particular, δ0x ∈ R1(qδ), and δ′x 6∈ R1(qδ) for every δ′ > δ0. Let E be the convex hull

of R1(qδ) and ~0. That is, E = conv
(
R1(qδ) ∪ {~0}

)
. The set E is convex, compact and it

does not contain δ′x for every δ′ > δ0. In particular, 2δ0x 6∈ E. Thus, there is an open

ball F = B(2δ0x, η) which is disjoint of E. By the hyperplane separation theorem there is

a non-zero vector α ∈ Rm (without loss of generality we may assume that ‖α‖ = 1) such

that 〈e, α〉 ≤ 〈f, α〉 for every e ∈ E and f ∈ F . It implies that 0 = 〈~0, α〉 ≤ 〈f, α〉 for every

f ∈ F .

We claim that 0 < 〈x, α〉. Indeed, if 0 = 〈x, α〉, then every f ∈ F can be expressed

as f = 2δ0x + v, where v = v(f) ∈ B(~0, η). In particular, 0 ≤ 〈f, α〉 = 〈v, α〉. It follows
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that 〈v, α〉 = 0 for every v ∈ B(~0, η), which implies that α = 0, contradicting the fact that

‖α‖ = 1.

Suppose that e ∈ R1(qδ) and T · e ∈ B(x, ε), with ε = 〈x, α〉/2. Then, T · e = x + z,

where ‖z‖ ≤ ε. Thus, 〈T · e, α〉 = 〈x+ z, α〉. Since e ∈ E and 2δ0x ∈ F ,

〈e, α〉 ≤ 〈2δ0x, α〉 ≤ 〈2δx, α〉.

Hence,

T =
〈x+ z, α〉
〈e, α〉

≥ 〈x, α〉+ 〈z, α〉
2〈δx, α〉

≥ 〈x, α〉 − ε
2〈δx, α〉

=
1

4δ
. (12)

Recall that q∗δ denotes the strategy of Player 2 that plays qδ all the time. To show that

condition B1 holds, that is, that x is not attainable, we need to show that for every T

there is ε > 0 such that for every strategy σ1 of Player 1 there is a strategy σ2 of Player 2

and t ≤ T satisfying d(γt(σ1, σ2), x) > ε. Fix a strategy σ1 of Player 1, and suppose that

the cumulative payoff up to T is within ε from x. In other words, ‖γT (σ1, q
∗
δ ) − x‖ ≤ ε.

Let pT := 1
T

∫ T
0 σ1(s)ds be the average mixed action played by σ1 until time T . Thus,

Tu(pT , qδ) = x + z, where ‖z‖ ≤ ε. Letting e = u(pT , qδ), we obtain by Eq. (12) that

T > 1
4δ . In words, the time it takes to reach B(x, ε) is at least 1

4δ . This shows that there

is no uniform bound on the time at which the total payoff gets close to x. Thus, x is not

attainable, which contradicts the assumption.

Part 3: If conditions B1 and B3 hold, then condition B4 holds.

Let 〈λ, (G − δx)〉 be an auxiliary two-player zero-sum one-shot game where the sets of

actions of the two players are A1 and A2, and the payoff function is r(a1, a2) = 〈λ, u(a1, a2)−
δx〉 for every (a1, a2) ∈ A1 ×A2

We prove that there is δ > 0 such that for every vector λ ∈ Rm one has val(〈λ, (G −
δx)〉) > 0. Theorem 1 would then imply that the vector ~0 is attainable in the game

〈λ, (G− δx)〉, so that condition B4 would hold.

To this end we show that there is δ > 0 such that for every λ ∈ Rm there is p ∈ ∆(A1)

such that for every q ∈ ∆(A2), 〈λ, u(p, q)− δx〉 ≥ 0, or equivalently, 〈λ, u(p, q)〉 ≥ 〈λ, δx〉.
Fix λ ∈ Rm. Assume first that 〈λ, x〉 < 0. By condition B1 we have that vλ ≥ 0,

and therefore there is p ∈ ∆(A1) such that for every q ∈ ∆(A2), 〈λ, u(p, q)〉 ≥ 0. Hence,

〈λ, u(p, q)〉 ≥ δ〈λ, x〉 = 〈λ, δx〉 for every δ > 0, as desired. We can therefore assume that

〈λ, x〉 ≥ 0. From condition B3 we know that for every q ∈ ∆(A2) there is p ∈ ∆(A1)

such that u(p, q) = δx with δ bounded away form 0. Therefore, there is δ0 such that for

every q ∈ ∆(A2) there is p ∈ ∆(A1), such that 〈λ, u(p, q)〉 = 〈λ, δqx〉 ≥ 〈λ, δ0x〉. By the
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minmax theorem, there is p ∈ ∆(A1) such that for every q ∈ ∆(A2), 〈λ, u(p, q)〉 ≥ 〈λ, δ0x〉,
as desired.

Part 4: If conditions B1 and B4 hold then the vector x is attainable by Player 1.

Let η > 0 and let ε > 0 satisfy ε
δT < η. By condition B4 the vector ~0 is attainable by

Player 1 in the game (G − δx), so that there is T > 0 such that for every ε > 0 there is a

strategy σ1 of Player 1 satisfying

d(γt(G−δx)(σ1, σ2),
~0) ≤ ε, ∀σ2,∀t ≥ T. (13)

By Eq. (3), for every β > 0 one has

d(
1

β
γβt(G−δx)(σ

1/β
1 , σ2),~0) ≤ ε, ∀σ2,∀t ≥ T. (14)

It follows that

d(γβt(G−δx)(σ
1/β
1 , σ2),~0) ≤ βε, ∀σ2, ∀t ≥ T, (15)

so that

d(γt(G−δx)(σ
1/β
1 , σ2),~0) ≤ βε, ∀σ2, ∀t ≥ βT, (16)

Setting β = 1
δT we deduce that

d(γt(G−δx)(σ
δT
1 , σ2),~0) ≤ ε

δT
, ∀σ2,∀t ≥

1

δ
, (17)

Setting t = 1
δ in (17) it follows in particular that

d(γtG(σδT1 , σ2), x) ≤ ε

δT
< η, ∀σ2. (18)

The strategy σδT1 ensures that the payoff at time 1
δ is close to x. It follows that the strategy

of Player 1 that follows σδT1 up to time 1
δ , and follows a strategy that attains ~0 in the game

G thereafter, is a strategy that attains x in G. �

6.4 Proof of Theorem 3

We first prove that condition C2 implies condition C1. If condition C2 holds then condition

B2 holds as well. By Theorem 1 the vector ~0 is attainable by Player 1. By Theorem 2, to

prove that condition C1 holds, it is sufficient to prove that condition B4 holds for every

x ∈ Rm.

Assume then to the contrary that condition B4 does not hold for some x ∈ Rm. Then,

for every δ > 0 the vector ~0 is not attainable by Player 1 in the game (G−δx). By Theorem
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1 this implies that there is λδ ∈ Rm such that vλδ(G− δx) < 0. Since this inequality does

not hold for v~0(G− δx) = 0 for every δ > 0, we can assume w.l.o.g. that ‖λδ‖ = 1 for every

δ > 0. Since vλδ(G− δx) < 0, there exists qδ ∈ ∆(A2) such that

〈u(p, qδ)− δx, λδ〉 < 0, ∀p ∈ ∆(A1).

Take a subsequence (δk)k∈N that converges to 0 such that the sequence (qδk)k∈N converges

to a limit q∗ ∈ ∆(A2) and the sequence (λδk)k∈N converges to a limit λ∗ ∈ Rm. Note that

‖λ∗‖ = 1, so that λ∗ 6= ~0. Then

〈u(p, q∗), λ∗〉 ≤ 0, ∀p ∈ ∆(A1).

Ii implies that vλ∗ ≤ 0, contradicting C2.

It remains to show that condition C1 implies C2. Assume that the payoff function u

does not satisfy condition C2. Then, there is λ ∈ Rm such that vλ ≤ 0. It follows that there

is q ∈ ∆(A2) such that D2(q) := {u(p, q) : p ∈ ∆(A1)} ⊆ H := {x : 〈λ, x〉 ≤ 0}. Therefore,

if Player 2 employs the strategy that always plays q, the total payoff is in H. Thus, every

payoff vector in the complement of H is not attainable by Player 1. �
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