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Chapter 1

Introduction

Superfluids differ from normal fluids in their behavior under rotation [1] (chapter 6 and 14).
Prominent examples are the reduction of the momentum of inertia and the occurrence of
quantized vortices. Since the achievement of Bose-Einstein condensation in trapped ultra-cold
dilute atomic gases in 1995 [2, 3, 4], exploring the superfluid properties of these systems has
been the primary motivation for setting up rotating traps.

One of the experimental methods [5, 6, 7, 8, 9, 10, 11] consists in shining a laser beam
along the axis of a cylindrically symmetric magnetic trap
m
B [wz (a:2 + y2> + wgzﬂ . (1.1)
The laser beam axis is moved back and forth very rapidly between two positions symmetric
with respect to the z-axis. The atoms feel a time averaged dipole potential which is anisotropic
in the zy plane

Vmag =

oV(r) = %mw? (exx2 + eyy2) , (1.2)

where €, and ¢, depend on the intensity, the beam waist and on the spacing between the
extreme positions of the beam with respect to the z-axis. In addition to the fast movement
of the beam the xy axes can be rotated at an angular velocity €. In the lab frame the total
potential V' = Vinae + 0V is given by

Viab = % [wi (332 + y2) + wgzﬂ + %swi [(xQ - y2> cos (2Qt) + 2zy sin (291&)} . (1.3)

Here, ¢ describes the ellipsoidal deformation of the trapping potential in the rotating zy plane

2 2
Wy — w
e= (1.4)
wz +wy
where w%y = w2(1 £ €;y), and w, is an average transverse oscillator frequency
2 2
wr tw
wi=2_Y (1.5)
2
In a corotating coordinate system the potential takes the form
m
Viot(r) = B [(1 +e)wiz? + (1 —e)wiy? +w??| . (1.6)
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Using the same experimental scheme a strong anharmonic rotating deformation of the atomic
cloud has been used by [12, 11]. Experiments with a potential of the form (1.6) have also
been reported in [13, 14]. In these cases the rotation of the trap is achieved by rotating the
magnetic trap itself.

This chapter focuses on Bose-Einstein condensates loaded into a trap of the form (1.6).
The discussion can be generalized to describe systems in set-ups of the kind used in [12, 11].

Many properties of low temperature dilute-gas Bose-Einstein condensates can be understood
assuming zero temperature and working within the framework of Gross-Pitaevskii (GP) theory
[1, 15]. Within this framework all atoms are condensed into a single mode ¢(r, t) often denoted
as the condensate wavefunction. The quantity ¥(r,t) = /Niot(r,t) constitutes an order
parameter. lts modulus and phase S are closely related to the density distribution and the
velocity field respectively

n(r,t) = |U(r,t)*, (1.7)

an:%Vﬂno. (1.8)

The order parameter’s temporal evolution in the external potential Vot (r,t) obeys the Gross-
Pitaevskii equation (GPE)

ng;’ ) _ <—h—2V2 + Vext(r,1) + g ]\Il(r,t)\2> (r,t). (1.9)

2m

th

Two-body interaction between atoms is accounted for by the nonlinear term which is governed

by the coupling constant
B 47h%a

1.10
g o (1.10)

where a is the s-wave scattering length.

To describe a condensate in the rotating trap (1.3) we set Voyt = Viap in (1.9). The GPE
for the order parameter ¥ = exp(iQ2L,t/h)V in the reference frame rotating with angular
velocity ) around the z-axis takes the form

ma\pR(r, t)

ot

h2 ~
_ <—%v2 £ Vioa(£) + 9 [ (e, 1) — %) Up(r,t), (1)

where L, is the z-component of the angular momentum operator and Vit(r) is the time-
independent potential (1.6). Stationary solutions of (1.11) satisfy the equation ihOW /0t =

uUp.

A first class of stationary solutions is associated with an irrotational velocity field
Vxv=0. (1.12)

A condensate in such a state can carry angular momentum. Yet, the circulation of the velocity
field is zero everywhere, i.e.

fﬂLv:o, (1.13)

for any closed contour. Such states have been studied theoretically in [16, 17, 18] and inves-
tigated experimentally in [10, 14].



The second class of stationary solutions comprises configurations containing vortex lines
around which the circulation takes non-zero quantized values

2
?(dl'V:K,Lh, K=41,42,. .. (1.14)
m

The corresponding velocity field is irrotational except on the vortex line, where it is singular.
The density on the vortex line is zero, and the radius of the vortex core is of the order of the
healing length ¢ = (Sman)~'/2 [19] (chapter I1), where a is the scattering length characterizing
2-body interaction, and n is the density of the condensate in absence of the vortex. The
quantization of the circulation is a general property of superfluids. It is the consequence of
the existence of a single-valued order parameter [20, 21]. States with x > 1 are unstable and
fragment into k vortices each with a unit quantum circulation (see [19], chapter Ill). In a
stationary condensate, a single vortex line passes through the center of the trap while several
vortex lines form a regular vortex lattice free of any major distortions, even near the boundary.
Such “Abrikosov" lattices were first predicted for superconductors [22]. Tkachenko showed
that their lowest energy structure should be triangular for an infinite system [23]. Stationary
vortex lattice configurations in dilute-gas Bose-Einstein condensates have for example been
studied theoretically in [24, 25, 26] (see also [27] and references therein). The experimental
generation of vortex states has been described in [28, 6, 7, 8, 9, 10, 12, 11, 29, 30, 13].
Vortex lattices containing up to ~ 130 vortices have been reported [12]. Their life time
can extend up to the one of the condensate itself [13]. In most experiments vortices have
been identified by detecting the vortex cores in the density distribution after expansion (see
[31, 25, 32] for related theoretical calculations). A visibility of the density reduction of up
to 95% [13] has been reported. An alternative technique consists in the measurement of the
angular momentum [7, 10, 9]. This method exploits the fact that the quadrupole surface
modes with angular momentum +2% are not degenerate in the presence of vortices [64]. In
this way it is possible to observe the jump of the angular momentum from 0 to & per particle
when a vortex line moves from the edge of the cloud to its stable position at the center of the
trap [7]. The angular momentum associated with a single vortex line has also been measured
by exciting the scissors mode [33]. Moreover, phase singularities due to vortex excitations have
been observed as dislocations in the interference fringes formed by the stirred condensate and
a second unterperturbed condensate [34].

In the past years, issues of primary experimental interest have been the nucleation and
stabilization of vortices and vortex lattices (see next chapter), the properties of vortex lattices
made up of a large number of vortex lines [8, 12, 9, 11, 37, 35], the decay of vortex configura-
tions [6, 8, 12, 37, 13], the bending of vortex lines [11, 36], excitations of vortex lines [38, 29]
and of vortex lattices [39] and the behavior of vortex lattices under rapid rotation [40, 41, 42].
The theory of vortices in trapped dilute Bose-Einstein condensates has been reviewed in [27]
(see also [1, 15]).

A condensate which is initially in the groundstate of the non-rotating trap will evolve
according to (1.9) with Vi given by (1.3). To understand for what value of € the system
will start responding to the rotation, it is useful to study small perturbations §¥(r,t) of the
groundstate ¥y = |¥q|exp(—ipot/h) in a static axi-symmetric trap (2 =0, ¢ = 0)

U(r,t) = Uo + 60(r, t). (1.15)

Linearizing the GPE in the small perturbation §U(r, t) we can study the conditions under which
the system becomes unstable when the rotating trap is switched on. This analysis is done by



8 Introduction

looking for solutions of the form
SW(r,t) = e WM (1 (p, 2)e ™t 4 vy (p, 2)e T (1.16)

corresponding to the collective modes of the initial axi-symmetric state. The modes are labeled
by the number of nodes n of the amplitudes u,;, v,; and the angular momentum Al. For

/dr (Unitntr = Vi 1) = OO (1.17)

they have energy hw,,; in the lab frame. In the rotating frame the excitation energy associated
with the mode n! is instead given by

enl(Q) = hwnl — Qhl . (1.18)
The initial state is energetically unstable if for some nl
€ (2) <0. (1.19)

This yields a critical angular velocity for the excitation of the mode nl

Wni

wer(n,l) = l

(1.20)
corresponding to the Landau criterion for the creation of excitations nl in the rotating trap
It can most easily be satisfied for n = 0. The respective excitations are called surface
modes since they are associated with a perturbation which is concentrated at the surface of
the condensate. They have been investigated experimentally in [5]. In the Thomas-Fermi (TF)
limit [1] the critical angular velocities we, ,,; for the surface modes take the simple form [43]

w
Wer,ol = 7? (1.21)

In chapter 2 we will discuss the connection between the energetic instability towards the
creation of surface modes and the nucleation of a single quantized vortex.



Chapter 2

Vortex nucleation

The problem of the nucleation of quantized vortices in Bose superfluids has been the object of
intensive experimental work with dilute gases in rotating traps [6, 7, 8, 12, 10, 11, 9, 13]. It
has emerged clearly that the mechanism of nucleation depends crucially on the actual shape
of the trap as well as on how the rotation is switched on. A first approach consists of a
sudden switch-on of the deformation and rotation of the external potential which generates
a non-equilibrium configuration [6, 7, 8, 12, 10, 11, 9]. For sufficiently large values of the
angular velocity of the rotating potential one observes the nucleation of one or more vortices.
In a second approach either the rotation or the deformation of the trap are switched on slowly
[10, 13]. In the case of a sudden switch-on of a small deformation € and rotation of the trap
(1.3), the observed critical angular velocity turns out to be [6, 7, 8, 10, 9] 1

Qe ~0.7Tw, , (2.1)

which is close to the value w /v/2 of the critical angular velocity (1.21) for the [ = 2 surface
mode in a TF-condensate.

The purpose of this chapter is to gain further insight into the mechanism underlying the
nucleation of a single vortex line in this setting. Using a simple semi-analytic model, we
investigate the relevance of the quadrupole deformation of the condensate for the nucleation
of the quantized vortex in the trap (1.3). In a non-deformed condensate the nucleation process
is inhibited by the occurrence of a barrier located near the surface of the condensate. Using
the TF-approximation to zero temperature GP-theory we show that this barrier is lowered by
the explicit inclusion of ellipsoidal shape deformations and eventually disappears at sufficiently
high angular velocities, making it possible for the vortex to nucleate and move to its stable
position at the trap center.

This chapter is based on the results presented in:
Vortex nucleation and quadrupole deformation of a rotating Bose-Einstein condensate

M. Kramer, L. Pitaevskii, S. Stringari, and F. Zambelli,
Laser Physics 12, 113 (2002).

'Note that in [6, 8] the rotating trap is actually switched on during the process of evaporative cooling above
or around the condensation point. This does not change the results obtained for €2..
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2.1 Single vortex line configuration

A quantized vortex is characterized by the appearance of a velocity field associated with a
non-vanishing, quantized circulation (see Eq.(1.14)). If we assume that the vortex with k =1
is straight and oriented along the z-axis the quantization of circulation takes the simple form

V X Vyortex = @ 5( )(

—d)z (2.2)
for a vortex located at distance d = |d| from the axis. The general solution of (2.2) can be
written in the form

Vyortex = V (Sod + S) (23)

where g4 is the azimuthal angle around the vortex line at position d and S is a single-valued
function which gives rise to an irrotational component of the velocity field. The irrotational
component may be important in the case of a vortex displaced from the symmetry axis and its
inclusion permits to optimize the energy cost associated with the vortex line 2. Considering a
straight vortex line is a first important assumption that we introduce in our description 3

Vortex energy

The energy cost associated with a straight vortex line at the center of the trap is given by [31]

4rng h? 671 h
Ey(d=0,¢,p) = 7m0—Z1 <067§4RL) Nhw ﬁﬂ\/l—s?log(mzlzh—)

3 0
(2.4)
Here, Z is the TF-radius in z-direction, &y is the healing length calculated with the central
density ng, p is the TF-chemical potential and ¢ is the deformation of the trap introduced above
(see Eq.(1.6)). The factor 4nyZ/3 in (2.4) corresponds to the column density [dzn(d =0, z)
evaluated within the TF-approximation at the trap center. Noting that the column density at
distance d from the center along the x-axis is given by

/dz n(d,z) = 4n§)Z [1 - (%)21 v , (2.5)

we introduce the following simple description of the energy of a vortex located at distance d
from the center on the z-axis *

g\ 2732
Eu(d/Ro,e, 1) = Eo(d = 0,¢, 1) [1 . (R—> ] , (2.6)

X
where E,(d = 0,¢, 1) is given by Eq.(2.4). This expression is expected to be correct within
logarithmic accuracy (see [27] and references therein). It could be improved by including an

2For a uniform superfluid confined in a cylinder, this extra irrotational velocity field is crucial in order to
satisfy the proper boundary conditions and its effects can be exactly accounted for by the inclusion of an image
vortex located outside the cylinder. See for example [45].

3The inclusion of curvature effects in the description of quantized vortices in trapped condensates has been
the subject of recent theoretical studies. See, for example, [46, 47, 48]. See also [27] and references therein.

*Qur results do not change if d/R, is replaced by d/R,. We expect that predicting the preferable direction
for a vortex to enter the condensate demands the calculation of the vortex energy beyond logarithmic accuracy.
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explicit d-dependence of the healing length inside the logarithm, in order to account for the
density dependence of the size of the vortex core.

Eq.(2.6) shows that no excitation energy is carried by the system when d = R . Of course
this estimate, being derived using the TF-approximation, is not accurate if we go too close
to the border. If the surface of the condensate is described by a more realistic density profile
the energy is nevertheless expected to vanish when the vortex line is sufficiently far outside
the bulk region. Within the simplifying assumptions made above we can conclude that the
configuration with d = R corresponds to the absence of a vortex, while the transition from
d = R, to d = 0 describes the nucleation path of the vortex.

Angular momentum of the vortex configuration

The inclusion of vorticity is not only accompanied by an energy cost but also by the appearance
of angular momentum. The simplest way to calculate the angular momentum associated with
a displaced vortex is to assume axi-symmetric trapping (¢ = 0) and to work with the TF-
approximation. In this limit the size of the vortex core is small compared to the radius of the
condensate so that one can use the vortex-free expression n(r) = u[l—(r. /R1)*—(2/Z)?]/g
for the density profile of the condensate, where ri =z224+y?and g = 47rah2/m is the coupling
constant, fixed by the positive scattering length a. Then, one can write the angular momentum
in the form

Lz = m/dz/dTLan(TL, Z) fvvortex . dl, (2'7)

where the line integral is taken along a circle of radius ;. Use of Stokes' theorem gives the

result [49]
5/2

L.(d/R.) = NF [1 _ (}%)2] , (2.8)

where d is the distance of the vortex line from the symmetry axis. Eq. (2.8) shows that the
angular momentum per particle is reduced from the value & as soon as the vortex is displaced
from the center and becomes zero for d = R .

Vortex energy in the rotating frame

Eq.(2.6) makes evident that a macroscopic energy is required to achieve a transition to a
vortex-state. In a rotating trap of the form (1.3) the system may nevertheless like to acquire
the vortex configuration. This happens if there is a total energy gain in the rotating frame
where the system has energy

EQ)=F—-QL,. (2.9)

Here E is the energy in the laboratory frame, L. is the angular momentum, and € is the
angular velocity of the trap around the z-axis.

In an axi-symmetric trap (¢ = 0) Eq.(2.9) yields the energy [49, 27]

()]

3/2 5/2

Nk [1— (Riﬂ . (2.10)

1

Ey(d/R., Q1) = Ey(d=0,e =0, )




12 Vortex nucleation

Here, we have used expression (2.6) with & = 0 for the energy in the laboratory frame and
(2.8) for the angular momentum in an axi-symmetric trap.

Some interesting features emerge from Eq. (2.10). First we observe that the occurrence of
a vortex at d = 0 is energetically favorable for angular velocities satisfying the condition

Ey(d=0,e=0,pu)

. (2.11)

This is the well known criterion for the so called thermodynamic stability of the vortex. If
it is satisfied the energy E,(d/R,,$, ) exhibits a global minimum at d = 0 where the
vortex states carries angular momentum % per particle. In contrast the vortex solution at
d = 0 is energetically unstable if Q@ < 3Q,(u)/5, while it is metastable (local minimum) if
30 (p)/5 < Q< Qy(p) [49, 27].

It is worth noticing that in the TF-limit one should have Q,(u)/w, << 1. In fact, using
w=gng and pu = mwiRi/Q for the chemical potential we can write

Q 5 (a L )2 ( RJ_)
== log(0.671—= ), 2.12
wi  2\Rp & o (212)

which tends to zero when R > a, . Here, ay = \/h/mw, is the radial oscillator length. In
the actual experiments the ratio (2.12) is not very small. For example, in the case of Ref. [6]

Q, ~0.35w, . (2.13)

The angular velocity (2.12) is significantly lower than the minimum value (2.1) needed in the
experiments [6, 7, 8, 10, 9] to observe a vortex at small .

The fact that the criterion (2.11) is not sufficient to explain vortex nucleation can be
understood by further analyzing (2.10): An important feature of (2.10) is the appearance of
a barrier. Even if Q > Q,(u) and hence if E,(d/R1,2, 1) is negative at d = 0, the curve
(2.10) exhibits a maximum at intermediate values of d between 0 and R, (see Fig. 2.1). The
position dg and height E'g of the barrier are given by the equations

2
and
57 3/2 3/2
Ep = 2B,(d=0,p) [1 - (%) ] = ZE(d=0,p) @Qé”’)> L (218)

showing that the height of the barrier becomes smaller and smaller as €2 increases, but never
disappears. Since crossing the barrier costs a macroscopic amount of energy, the system will
never be able to overcome it and the vortex cannot be nucleated.

The energy (2.10) can be rewritten as a function of angular momentum rather than of the
vortex displacement. This yields the expression

3/5
Eo(L.,Q, ) = Nh [QU(,,L) (ffﬁ) - sth] . (2.16)



2.2 Role of Quadrupole deformations 13

021 Sa=s0w A

Ev(d/RLa Q, M)/Ev<d = 07 :u)

_04 1

0 0.2 0.4 0.6 0.8 1
d/R,

Figure 2.1: Vortex excitation energy in the rotating frame (2.10) for an axisymmetric config-
uration as a function of the reduced vortex displacement d/R, from the center. The curves
refer to two different choices for the angular velocity of the trap: ©Q = Q,(u) (solid line), and
Q2 =3Q,(u)/2 (dotted line), where Q,(u) = Ey(d = 0,1)/Nh. The initial vortex-free state
corresponds to d/R; = 1. For Q > Q,(u), the state with a vortex at the center (d/R; = 0)
is preferable. However, in this configuration the nucleation of the vortex is inhibited by a
barrier separating the vortex-free state (d/R = 1) from the energetically favored vortex state
(d/R. =0).

Equation (2.16) emphasizes the fact that the nucleation of the vortex is associated with
an increase of angular momentum from zero (no vortex) to Nioth (one centered vortex),
accompanied by an initial energy increase (barrier) and a subsequent monotonous energy
decrease. In this form the TF-result (2.10) can be compared with alternative approaches
based on microscopic calculations of the vortex energy.

2.2 Role of Quadrupole deformations

In the previous section we have shown that in order to enter a vortex-state the system has
to overcome a barrier associated with a macroscopic energy cost. This barrier exists at any
angular velocity © > Q,,, with €, given by (2.11), if the position d of the vortex line is the only
degree of freedom of the system. We need to go beyond this description in order to explain
vortex nucleation.

Hints as to what are the crucial degrees of freedom involved are close at hand: The critical
angular velocity (2.1) observed in the experiments [6, 7, 8, 10, 9] for small € turns out to be
close to the value associated with the energetic instability of the vortex-free state towards the
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excitation of the [ = 2 quadrupolar surface mode. For a weakly deformed trap this instability
sets in at an angular velocity (see Eq.(1.20) with n = 0,] = 2)

wo,i=2

we(n=0,1=2)= 5

(2.17)

where wq;—2 is the frequency of the surface oscillation with angular momentum [ = 27. In
the Thomas-Fermi limit the critical angular velocity takes the simple form (see Eq.(1.21) with
[ =2)

Wl
V2
The experimental evidence that Eq. (2.17) provides a good estimate for the critical angular
velocity for the nucleation of quantized vortices indicates that the quadrupolar shape defor-
mation of the condensate plays a crucial role, in agreement with the theoretical considerations
developed in [50, 51, 17, 52, 53, 54]. This is further supported by the observation of strong el-
lipsoidal deformations observed temporarily during the process of nucleation in the experiments
[10, 9, 11, 13] and in simulations (see for example [54, 55, 56]). These observations indicate
that the evolution of the shape deformation serves as a mechanism for vortex nucleation.

Wer =

~ 0.707w, . (2.18)

A quadruplar deformation of the density distribution can be described by the parameter

2 2
g =) (2.19)

(y* + 22)
The expression (2.6) for the vortex energy regards a condensate whose deformation mirrors
the one of the trap (1.3). In this case § = ¢ and hence 0 is fixed by the external conditions.
When the system becomes unstable towards the creation of quadrupolar surface oscillations
it is appropriate to release this constraint and to let the condensate deformation § be a free
parameter. In this way, we allow the system to take deformations different from the trap

deformation

0Fe. (2.20)

In this section we will derive expressions for the energy and the angular momentum valid for
arbitrary condensate deformation §. This allows us to show that at sufficiently large angular
velocities ) the system can bypass the energy barrier by strongly deforming itself.

Quadrupolar velocity field

In order to describe properly the effects of the quadrupole deformation we introduce, in addition
to the vortical field (2.2), an irrotational quadrupolar velocity field given by

vg = aV(zy), (2.21)

where « is a parameter. Note that v is the velocity field in the laboratory frame expressed in
terms of the coordinates of the rotating frame. The form (2.21) is suggested by the quadrupolar
class of irrotational solutions exhibited by the time-dependent Gross-Pitaevskii equation in
the rotating frame [16]. In Ref.[16] it has been shown that these solutions are associated
with a quadrupole deformation of the density described by the deformation parameter § (see
Eq.(2.19)). The parameters ¢ and « characterize the quadrupole degrees of freedom that we
are including in our picture. In order to provide a simplified description, we fix a relationship
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between these two parameters by requiring that the quadrupole velocity field satisfies the
condition
V. [n(r)(vg -2 xr) =0, (2.22)

where € = Q2. As a consequence of the equation of continuity, this condition implies that in
the rotating frame the density of the gas is stationary except for the motion of the vortex core
which involves a change of the density at small length scales. Eq.(2.22) yields the relationship
[16]

a=—00 (2.23)

which selects a natural class of paths that will be considered in the present investigation.
In the presence of the quadrupole velocity field (2.21), the energy of the condensate in the
rotating frame can then be expressed in terms of the deformation parameter § only. Using the
formalism of [16] we find the expression

2 1—¢e6— Q% L3
ivi—evi—e  1)°

Here, Q = Q/w, and we have neglected the change of the central density caused by the
velocity field (2.21). This assumption will be used throughout the paper®. Keep in mind that
(2.24) is the energy in the rotating frame and hence already includes the angular momentum
term —m Q- [drn(r)[r x vg].

EQ((S, Q,E, ,u) =N

(2.24)

It is useful to expand Eq. (2.24) as a function of d in the case of axisymmetric trapping
(e = 0). We find the result

Eg(5,Q,e =0,u) ~ Ny E + 52 (;(1 - 292)> + 0(53)] . (2.25)

which explicitly shows that for Q > w, /v/2 the symmetric configuration (6 = 0) is energetically
unstable against the occurrence of quadrupole deformations.

A quadrupolar deformed vortex state

In order to explore the role of quadrupolar shape deformations for vortex nucleation we assume
the presence of a velocity field
V = Vyortex T VQ (226)

where vyoriex is the velocity field (2.3) associated with a straight vortex line at distance d on
the x-axis while v is given by (2.21) (with a chosen according to (2.23)) and gives rise to a
quadrupolar shape deformation. The total energy of the condensate in the rotating frame in
the presence of the velocity field (2.26) reads

Eiot(d/ Ry, 8,96, 1) = Ey(d/Ra, e, 1) + Eg(8,9Q, e, 1) + E3(d/ Ry, 6,) (2.27)

where E,(d/ Ry, ¢, 1) is the energy (2.4) of the vortex in the lab frame and Eg is the energy
in the rotating frame (2.24) due to the presence of the irrotational velocity field v. The third

®Imposing that the energy (2.24) be stationary with respect to § yields the solutions derived in [16] apart
from small corrections due to the changes of the central density not accounted for in the present formalism.
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term in (2.27) is the sum of the kinetic energy contribution m [dr [Vyortex - V@] n2(r) and the
angular momentum term —m €2 - [dr [r X Vyortex) n(r) due to the vortex

Es(d/Ry,5,Q) = m /dr Vvortex - [V — @ X 1] n(r) . (2.28)

It turns out that this contribution can be calculated in a straightforward way. We find

5/2

2
E3(d/R.,0,Q) = m/dr Vyortex - [VQ — Q X r]n(r) = —Nhw Q1 —§2 ll — (Ri> ] ,

X
(2.29)
which is consistent with (2.8) in the case of an axi-symmetric condensate (6 = 0). In deriving
result (2.29) we have used the condition (2.22) for the quadrupole velocity field and we have
integrated by parts using the expression (2.3) for vyortex. Note that the irrotational component
VS of Vyortex does not contribute to (2.29). The result (2.27) generalizes the one given in
Ref. [49], which holds in the limit of small  where § ~ ¢.

2.3 Critical angular velocity for vortex nucleation

Within our model, the total energy of a quadrupolar deformed condensate in the presence
of a vortex is given by (2.27). The values of the angular velocity 2, the trap anisotropy ¢,
the average transverse oscillator frequency w,, and the chemical potential p are fixed by the
experimental conditions. Hence the degrees of freedom of the system with which one can play
in order to identify the optimal path for vortex nucleation are the vortex displacement d and
the condensate deformation . Note that each of the three energy contributions in (2.27) has
a different dependence on the chemical potential resulting in a non-trivial dependence of the
critical angular velocity on the relevant parameters of the system (see Eq. (2.31) below).

We assume that the system is initially in the state d/R; = 1, § = 0. This assumption
adequately describes an experiment in which {2 and ¢ are switched on suddenly. In this case,
the condensate is initially axisymmetric (§ = 0) and vortex-free (d/R; = 1). Of course this
configuration is not stationary and will evolve in time. In the following we will make use of
energetic considerations in order to explore the possible paths followed by the system towards
the nucleation of the vortex line. These paths should be associated with a monotonous decrease
of the energy. In Figs. 2.2 and 2.3 we have plotted the energy surface Fio for two different
values of the angular velocity 2 and fixed ¢ and u/fiw,. In both cases the angular velocity
is chosen high enough to make the vortex state a global energy minimum. This minimum
is surrounded by an energy ridge which, for § = 0, forms a barrier between the initial state
(d/R; = 1) and the vortex state (d = 0), as discussed in section 2.1. Moreover, the energy
ridge exhibits a saddle point at non-zero deformation §. The height of this saddle depends on
Q, ¢, and p/hw, . In Fig. 2.2 the energy at the saddle point is higher than the energy of the
initial state and the ridge can not be surpassed. However, at higher angular velocities ) the
situation changes. In Fig. 2.3 the saddle lies lower than the initial state. Hence in this case
the system can bypass the barrier by crossing the saddle. The corresponding path is always
associated with the occurrence of a strong intermediate deformation of the condensate.

The critical angular velocity for the nucleation of vortices naturally emerges as the angular
velocity €. at which the energy on the saddle point ((d/R.)sp, dsp) is the same as the energy
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Figure 2.2: Below the critical angular velocity of vortex nucleation the plot shows the de-
pendence of the total energy (2.27) minus the energy of the initial non-deformed vortex-
free state F(d/R, = 1,6 = 0) on the quadrupolar shape deformation d and on the vor-
tex displacement d/R, from the center. Energy is given in units of Nhw,. The dashed
line corresponds to Eix — E(d/R, = 1,6 = 0) = 0, while the solid curve refers to
Eiot — E(d/R; = 1,0 =0) = 0.0156Nhw, . This plot has been obtained by setting ¢ = 0.04,
= 10hw, and 2 = 0.64w . The initial state is indicated with &, while ® corresponds
to the energetically preferable centered vortex state. The barrier @ inhibits vortex nucleation
in a non-deforming condensate (§ = 0). The saddle point © lies lower than the barrier ©.
However, at the chosen €2 the energy on the saddle is still higher than the one of the initial
state @. Note that the preferable vortex state is associated with a shape deformation § > ¢
(see section 2.4). Note also the existence of a favorable deformed and vortex-free state labeled

by v [16].

of the initial state (d/R; =1, = 0):
E((d/Ry)sps Osps Qer €, 1) = B(d/Ry = 1,8 = 0, Q0 6, 1) - (2.30)

It is worth mentioning that crossing the saddle point is not the only possibility for the system
to lower its energy. In fact Figs. 2.2 and 2.3 show the existence of stationary deformed
vortex-free states which can be reached starting from the initial state. These are the states
predicted in [16] and experimentally studied in [10, 13] through an adiabatic increase of either
Q) or ¢ instead of doing a rapid switch-on. The energy ridge separates these configurations
from the vortex state. Still, under certain conditions this stationary vortex-free state becomes
dynamically unstable and a vortex can be nucleated starting out from it [10, 13, 17]. The
study of this type of vortex nucleation is beyond the scope of the present discussion.

The actual value of the critical angular velocity . for vortex nucleation depends on the
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Figure 2.3: Above the critical angular velocity of vortex nucleation: the plot shows the de-
pendence of the total energy (2.27) minus the energy of the initial non-deformed vortex-
free state F(d/R, = 1,6 = 0) on the quadrupolar shape deformation d and on the vor-
tex displacement d/R, from the center. Energy is given in units of Nhw,. The dashed
line corresponds to Eix — E(d/R, = 1,6 = 0) = 0, while the solid curve refers to
Eiot — E(d/R; = 1,6 = 0) = 0.015NAw,. In this plot ¢ = 0.04, ¢ = 10hw,, as in
Fig. 2.2, and = 0.7w,. Important states are indicated as in Fig. 2.2. At the chosen 2,
the saddle © lies lower than the initial state & allowing the system to bypass the barrier @
by taking a quadrupolar deformation ¢ and reach the preferable vortex state ®. Note also the
existence of a favorable deformed and vortex-free state labeled by 57 [16].

parameters ¢ and p/hw, . Fig. 2.4 shows the dependence of (2. on ¢ for different choices of
pu/hw, . To lowest order in & and hw, /i the dependence is given by

_ 1 1 [ (An)'/? £
Qufe) - —= ~ — - : 231
@7 = | (231
where 5/2 72
n:[log(1.342hL> <ﬂ> ,
w1 K

and A = 275/421/3. This formula shows that the relevant parameters of the expansion are
n'/2 and e/n'/*. Fig. 2.4 demonstrates that it is applicable also at rather small values of the
chemical potential.

At ¢ = 0 the vortex nucleation, according to the present scenario, is possible only at
angular velocities slightly higher than the value w, /v/2. For non-vanishing ¢ the preferable
configuration will be always deformed even for small values of () where § depends linearly on
. At higher Q the condensate gains energy by increasing its deformation in a nonlinear way



2.3 Critical angular velocity for vortex nucleation 19

0.8 I I I I I
1
o — 7 i
0.6 T s
S
~ 04 ]
Q
C
0.2 _
| = 9hw, analytic |
n = QHwJ_ —————
n = 18th_ ------
0.0 | | |
0.00 0.05 c 0.10 0.15

Figure 2.4: Critical angular velocity of vortex nucleation in units of w, as a function of the
trap deformation €. The long dashed and short dashed curves correspond to the numerical
calculation satisfying condition (2.30) for u = 9hw, and p = 18w, respectively, while the
solid line is the analytic prediction (2.31) evaluated with ;1 = 9hw, . The arrow indicates the
angular velocity at which the quadrupole surface mode becomes unstable in the case ¢ = 0.
The value = 9 hw, is close to the experimental setting of [6].

(see [16]). Eq. (2.31) and Fig. 2.4 show that for non-vanishing ¢ the saddle point on the
energy ridge can be surpassed at angular velocities smaller than w, /v/2. The critical angular
velocity can be lowered further by increasing the value of u/hw .

The above exemplified scenario is in reasonable agreement with the experiments. For
example, for ¢ = 0.045, 1 = 8.71hw % a critical angular velocity . = 0.64w, is obtained
from the measurement of the angular momentum (see data reported in Fig. 2 of [7]). For this
value of £ and 1 = 9hw, we find Q. = 0.68w, (see Fig.2.4). Further on, increasing the value
of ¢ is found to lower the critical angular velocity: In [9] a decrease of ~ 6% of (2. is observed
when increasing ¢ from 0.01 to 0.019. For this setting we find a decrease of 2%. Several
papers note that the nucleation range extends to lower (2 for larger € or longer stirring times
[12, 10, 11, 9]. The experiment [11] demonstrates particularly clearly that a strong stirrer with
[ = 2-symmetry corresponding to a large ¢ shifts €. to angular velocities significantly (=~ 30%)
below w, /v/2.

The data reported in the experimental papers is not sufficient to verify our prediction for the
dependence of 2. on pu/hw, . For the small values of € used in the experiments [6, 7, 8, 10, 9]
the calculated dependence on u/hw, is in fact very weak. This seems in agreement with

®Note that in this experiment the static magnetic trap has an anisotropy of € & 0.01 which is not taken into
account in our comparison.
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a comment made in [7] saying that a change of the total particle number by a factor of 2
(corresponding to a change of p by about 32% if all other quantities are fixed) brings about
a 5% change in Q. only. A more systematic comparison with the expected dependence of ().
on the trap deformation ¢ and on the chemical potential i would be crucial in order to assess
the validity of the model.

The energy diagram we employed to calculate the critical angular velocity is based on the
Thomas-Fermi approximation to the vortex energy. This approximation is expected to become
worse as the vortex line approaches the surface region [57, 31]. Since the main mechanism of
nucleation takes place near the surface, we expect that the quantitative predictions concerning
the dependence of the critical angular velocity on the trap deformation and on the chemical
potential would be improved by using a microscopic evaluation of the vortex energy, beyond
the Thomas-Fermi approximation. This should include, in particular, the density dependence
of the size of the vortex core. Moreover, the expression for the energy (2.6) can be improved
by including image vortex effects on the velocity field associated with a vortex displaced from
the center. This amounts to optimizing the choice for the function S in Eq.(2.3). Note that in
[55] the critical value of € at a given angular velocity €2 is obtained by numerically solving the
GP-equation. The authors find reasonable agreement between their data and our analytical
result (2.31).

Our treatment is based on zero temperature GP-theory and hence does not take account of
modes other than the condensate mode. Yet clearly, some dissipative mechanism is required
to remove the energy liberated when the vortex state is formed. Finite temperature theories
including such processes have been presented in [58, 59]. Others [56] have argued that a zero
temperature theory suffices to explain the irreversible transfer of energy from the vortex state
to other modes of the system.

We emphasize that the discussion of vortex nucleation presented in this chapter concerns
the particular nucleation mechanism relevant when using a rotating trap of the form (1.3)
characterized by a | = 2-symmetry. The model developed here could be modified to describe
systems in rotating traps with [ = 3 or | = 4-symmetry as used in the experiment [11]. In these
cases vortex nucleation is connected with the instability of the [ = 3 and [ = 4 surface modes
respectively and the critical angular velocity is therefore shifted to lower values. Generally, the
use of rotating traps with specific symmetries leads to distinct resonance frequencies for vortex
nucleation reflecting the existence of the discrete spectrum of surface modes [11]. Strongly
deformed traps excite a broad range of surface modes [12]. In this case, vortices are first
observed at an angular velocity which approximately corresponds to the minimal critical angular
velocity (1.21) for the range of [ excited (I &~ 18 in the experiment [12]). A very different
behavior has been observed when letting a laser beam of a size smaller than the cloud’s radius
rotate around the condensate [11]: In this case vortices are already detected at the angular
velocity 2, at which a vortex configuration becomes energetically favourable (see Eq.(2.11)).
The number of vortices is a monotonically increasing function of {2 and does not exhibit any
resonances associated with the excitation of surface modes. In this experiment, the nucleation
of vortices is attributed to the creation of local turbulence by the stirring beam rather than
to the excitation of surface modes. A further, very different, way of nucleating vortices is
offered by the phase imprinting method proposed by [60] and successfully implemented in the
experiment [28] (see also [61, 62] for further imprinting methods). Moreover, vortex lattices
have been generated by evaporatively cooling a rotating vapor of cold atoms [30]. Vortices
have also been generated by slicing through the cloud with a perturbation above the critical
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velocity of the condensate [12, 34]. Finally, vortex rings have been observed as a decay product
of dark solitons [63].

2.4 Stability of a vortex-configuration against quadrupole defor-
mation

Once the energy barrier is bypassed, the vortex moves to the center of the trap (d/R, = 0)
where the energy has a minimum. In an axisymmetric trap (¢ = 0) this configuration will be
in general stable against the formation of quadrupole deformations of the condensate unless
the angular velocity ) of the trap becomes too large. The criterion for instability is easily
obtained by studying the d-dependence of the energy of the system in the presence of a single
quantized vortex located at d/R, = 0. Considering the total energy (2.27) we find

Et0t<d/R.I - 0757975 = 07,“’) = Etot(d/R:E - 075 - 07 , €= Ouu)

+ 0?Nu (;(1 —202) + 2) +0(5%) . (2.32)

Comparing Egs. (2.32) with the analog expression (2.25) holding in the absence of the vor-
tex line one observes that in the presence of the vortex the instability against quadrupole
deformation occurs at a higher angular velocity given by
1 7 hw
f=wy (\/5 e 1 > '
If the angular velocity is smaller than (2.33) the vortex is stable in the axisymmetric con-
figuration while at higher angular velocities the system prefers to deform, giving rise to new
stationary configurations. The critical angular velocity (2.33) can also be obtained by apply-
ing the Landau criterion (2.17) to the quadrupole collective frequencies in the presence of a
quantized vortex. These frequencies were calculated in [64] using a sum rule approach. For
the [ = +2 quadrupole frequencies the result reads

(2.33)

A

Wig :wlﬂig, (2.34)
where -
wi
A = - 2.
L <2 % ) (2.35)

is the frequency splitting between the two modes. Applying the condition (2.17) to the [ = +2
mode one can immediately reproduce result (2.33) for the onset of the quadrupole instability
in the presence of the quantized vortex.

In an anisotropic trap (¢ # 0), the stable vortex state will generally be associated with a
non-zero deformation § of the condensate. It is interesting to note that § increases with the
angular velocity of the trap and easily exceeds ¢ (see Figs. 2.2 and 2.3). This behaviour is
analogous to the properties of the deformed stationary states in the absence of vortices [16].
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Chapter 3

Introduction

Since the achievement of Bose-Einstein condensation in trapped ultra-cold dilute atomic gases
in 1995 [2, 3, 4], condensates have proven to be extraordinarily robust samples for the study
of a wide class of phenomena [1, 15]. A great advantage of these systems is provided by
the fact that they are very well isolated and can be controlled and manipulated with high
precision by means of electromagnetic fields. This opens up the possibility to design external
potentials which change the statics and the dynamics of the gas in a well-defined manner and
offer new ways of controlling its properties. Regular lattice potentials produced by light fields
provide a prominent example. They allow for the external control of the effect of interactions,
the transport properties and the dimensionality of the sample. Situations well known from
solid state and condensed matter physics can be mimicked and new types of systems can be
engineered.

The tailoring of optical potentials of various forms in space and time is based on the
efficient exploitation of the interaction of atoms with laser fields. In the dipole approximation,
the interaction Hamiltonian is given by

V(r,t) =—d E(r,t), (3.1)
where d is the electric dipole operator of an atom and
E(r,t) = E(r)e ™" + c.c. (3.2)

is a classical time-dependent electric field oscillating with frequency w. The energy change
of each atom associated with the dipolar polarization can be accounted for by the effective

potential
1

V(r) = —Sa(@)(E(, ), (33)

where «a(w) is the dipole dynamic polarizability of an atom and the brackets (. ..) indicate a

time average. Here, the response of the atom is assumed to be linear and energy absorption is

excluded implying that «(w) is real. This can be ensured by detuning the laser sufficiently far

away from the atomic resonance frequencies. The time averaging of the potential in (3.3) is

justified because the time variation of the laser field is much faster than the typical frequencies

of the atomic motion. If the response is dominated by a single resonance state |R) the
polarizability behaves like

R|dg|0)[?
() [(BldIO) -

hwr —w)
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where |0) denotes the unperturbed state of the atom, dg is the dipole operator component in
the direction of the electric field and hwp, is the energy difference between |0) and |R). Hence,
a blue (w > wg) and red detuned field (w < wr) lead to repulsion and attraction of the atom
respectively.

By illuminating an atom with a standing wave field
E(r,t) = Esin(gz)e ™! + c.c., (3.5)

an effective potential (3.3) of the form

V(z) = sEpsin® <%Z) , (3.6)
is created, corresponding to a potential of period d = 7/q along the z-direction. Here and in
the following, s is the lattice depth —a(w)E? in units of the recoil energy Er = h%n?/2md?,
which corresponds to the energy an atom gains by absorbing a photon from the standing wave
field (3.5). The standing wave can be produced by two laser beams of the same intensity
with zero relative detuning and wavevector difference ¢ oriented along the z-direction. For
counterpropagating beams, the lattice period is given by half the laser wavelength. The lattice
potential can be set into motion by choosing a nonzero relative detuning w, corresponding to
the potential

V(z) = 1SER cos (27TZ - wt) . (3.7)

2 d

A constant w makes the lattice move at constant velocity. It is accelerated by increasing w,
while it shakes if w oscillates. With additional laser beams, two- and three-dimensional lattices
can be generated. In the simplest case, the resulting structures have cubic symmetry, but also
more complicated patterns can be attained.

The most important tunable parameter is the lattice depth s which is proportional to the
laser intensity. In addition, the lattice period can be tuned by changing the angle between the
beams, while the motion of the lattice can be controlled through the detuning of the lasers.

In most current experiments, the lattice period d is of the order of 0.5um associated with a
recoil energy of several kHz for 8Rb and 23Na. The lattice potential is usually superimposed
to the harmonic potential of a magnetic trap. Typically, the size of the condensate without
lattice is much larger than the lattice period d. As a consequence, the atoms are distributed
over many sites of the added optical potential.

Many properties of low temperature dilute-gas Bose-Einstein condensates can be understood
assuming zero temperature and working within the framework of Gross-Pitaevskii (GP) theory
[1, 15]. Within this framework all atoms are condensed into a single mode ¢(r, t) often denoted
as the condensate wavefunction. The quantity ¥(r,t) = /Niot(r,t) constitutes an order
parameter, where Nit is the total number of particles. Modulus and phase S of the order
parameter are closely related to the density distribution and the velocity field respectively

n(r,t) = |U(r,t)*, (3.8)
v(r,t) = %VS(r,t). (3.9)
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The order parameter’s temporal evolution in the external potential V (r,t) obeys the Gross-
Pitaevskii equation (GPE)

OV (r,t h?
ih# = < o — V2 +V(r, )—l—g]\I/(r,t)\z) U(r,t). (3.10)
Two-body interaction between atoms is accounted for by the nonlinear term which is governed
by the coupling constant
4mh?
g=—1 (3.11)

m

where a is the s-wave scattering length. Throughout this thesis, we will focus on repulsively
interacting atoms (a > 0). The criterion for the diluteness of the gas reads

na® < 1, (3.12)

with n the density.

With the external potential V(r,¢) given by an optical lattice, the GP-equation differs
from the Schrédinger equation of a particle in a crystal structure by the nonlinear mean field
term, opening up the possibility to explore analogies and differences with respect to solid state
physics.

A dilute-gas condensate in a lattice at very low temperatures is well described by GP-theory
only if the potential is not too deep. An increase of the lattice depth is in fact accompanied
by a drop of the condensate fraction and a loss of coherence. This is due to the enhanced role
played by correlations between the particles. The gas can even loose its superfluid properties:
At a critical value of the lattice depth at zero temperature the gas undergoes a quantum phase
transition to an insulating phase. Complete insulation is achieved provided the number of
particles is a multiple of the number of sites.

The different physical regimes experienced by a cold atomic gas in an optical lattice can
be described using a Bose-Hubbard Hamiltonian (for a review see [65]). This Hamiltonian is
obtained by expanding the atomic field operators of the many-body Hamiltonian in the single
particle Wannier basis. Terms due to higher bands are omitted. From the lowest band, only
on-site and nearest-neighbour contributions are retained. In this framework, the state of the
system is expressed in the Fock basis {|N1,...,Ni,...)} where [ labels the Wannier functions,
or equivalently, the lattice sites and the numbers N give the number of atoms at site . With
bl as the creation operator for an atom at site [ and 7n; the associated number operator, the
Bose-Hubbard Hamiltonian reads

H=-6 Y blboy+ 2 an g —1). (3.13)

LU'=Ii£1

The parameters U and § govern the on-site interaction and the tunneling of particles to neigh-
bouring sites respectively. They are associated with two competing tendencies of the system:
On one side, the atoms try to reduce their interaction energy by localizing at different lattice
sites thereby reducing occupation number fluctuations. On the other side, they tend to spread
over many sites in order to minimize the kinetic energy. The physical characteristics of the zero
temperature groundstate depends on the ratio U/é between tunneling and on-site interaction:
For U/§ < 1, the particles are delocalized over all sites. In this case, all particles occupy the
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same condensate wavefunction given by the groundstate solution of the GP-equation in the
tight binding regime and the state of the system can approximately be written as a coherent
state in the Fock basis |Ny,..., Nj,...) associated with Poissonian fluctuations of the occu-
pation numbers. In this limit, the gas exhibits superfluidity, the excitation spectrum is gapless
and is characterized by a phononic excitations at low energies. In the opposite limit U/§ — oo,
most particles are localized at certain sites. For comensurate filling, the groundstate can be
written as a Fockstate [Ny, ..., Nj,...) and exhibits zero occupation number fluctuations. The
excitation spectrum is then characterized by a gap of magnitude U. The gas is an insulator and
is incompressible On/du = 0. For non-commensurate filling, some particles are still delocal-
ized. This portion of the gas remains superfluid and gives rise to a finite compressibility. When
moving between the two limits, a quantum phase transition between the superfluid phase and
the insulating phase is encountered at a critical value of U/d. In the case of cold atoms in
an optical lattice, the parameters U and § can be tuned by changing the lattice depth s: The
ratio U/0 increases in fact as a function of s since J decays exponentially with increasing s
and U features a power law increase.

The Bose-Hubbard Hamiltonian offers an adequate description if the motion of the atoms is
confined to the lowest band and if the lattice is deep enough to permit only nearest neighbour
hopping. This implies that the U/§ < 1-limit as described by the Bose-Hubbard Hamiltonian
coincides with the tight binding regime of GP-theory in the presence of a lattice. Hence,
a complete description of the zero temperature behavior is obtained by using GP-theory at
relatively low lattice depth and the Bose-Hubbard Hamiltonian at larger lattice depth when
effects going beyond GP theory become crucial. This is the case even when the system is still
superfluid. Note that if the number of particles at each site is large an alternative way to go
beyond the GP-regime is offered by the use of a suitable Quantum Josephson Hamiltonian.

In order for GP-theory to be valid, the depletion of the condensate, due to quantum or
thermal fluctuations, must be small. There is in fact a large range of lattice depths for which
almost all particles are in the condensate provided the number of particles per site is large. In
practise, this implies that in the case of three-dimensional lattices the range of lattice depth
at which GP-theory is valid is very small since the occupation of each site is of order one.

The first experimental investigation of a condensate in an optical lattice was done by
Anderson and Kasevich [66]. These authors observed the coherent tunneling of atoms from
individual lattice sites into the continuum where they accelerate due to gravity, giving rise
to visible interference patterns. Subsequently, many further experiments were devoted to the
study of these systems in the regime where the atomic cloud is coherent: In an accelerated
lattice, Bloch oscillations [67] and Landau-Zener tunneling out of the lowest Bloch band
[67, 68, 69] were observed. The screening effect of mean field interaction was explored in [67].
The interference pattern in the density distribution after a time of free flight was studied in [70],
demonstrating that in the groundstate coherence is maintained across the whole system. In
[71] the density distribution after free expansion was analyzed to determine the increase of the
chemical potential and the radial size due to the lattice. A further experiment demonstrated
the slow-down of the expansion if the optical lattice is kept on and only the harmonic trap is
switched off [72]. The realization of an array of Josephson Junction was reported in [73]. Also
the changes in the frequencies of collective excitations due to the combined presence of lattice
and harmonic trap have been observed [74, 73, 75]. Due the presence of interactions, the
motion of the cloud through the lattice can lead to the occurrence of instability phenomena
[74, 76, 77]. The coherent transfer of population within the band structure and methods for
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band spectroscopy were described in [79]. In [72, 79, 80] effects related to the non-adiabatic
loading of the sample into the lattice were explored. The motion of the lattice was used
to do dispersion management of matter wave packets [81]. It was found to have a lensing
effect on the condensate [82] and was applied recently to generate bright solitons [83, 84].
Finite temperature effects were studied in [85, 86]. In particular, a change of the critical
temperature of Bose-Einstein condensation was observed reflecting the two-dimensional nature
of the cloud in each well of a deep potential [85], while in [86] the temperature-dependent
transport properties of the system were demonstrated. The phase coherence of a condensate
loaded into a two-dimensional lattice was investigated in [87]. Recently, a two-dimensional
lattice was used successfully to prepare a one-dimensional Bose gas [88].

Remarkable progress has been made also in the study of regimes where the GP-description
breaks down: A first advance in this direction was the observation of number squeezing in a
superfluid ultracold atomic gas in a one-dimensional lattice [89]. Further on, the superfluid-
insulator transition of cold atoms in a three-dimensional lattice was observed [90, 91]. The
transition to the insulating phase has been used to demonstrate the collapse and revival of the
matter wave field of a Bose-Einstein condensate [92]. Atoms in the insulating phase promise
to be a precious resource for quantum computing: Their spin-dependent coherent transport
between lattice sites and the controlled creation of entanglement have already been achieved
[93, 94, 95].

This thesis deals with repulsively interacting three-dimensional dilute-gas Bose-Einstein
condensates in optical lattices at zero temperature. We concentrate on the range of lattice
depths where GP-theory is valid, i.e. the gas is almost completely condensed and exhibits full
coherence. We deal with one-dimensional lattices in the first place. The generalization of many
of the results to cubic two-dimensional lattices is straightforward and will be commented on. As
a general strategy, we first exclude harmonic trapping from our considerations. Since typically,
the particles are distributed over many lattice sites in the presence of harmonic trapping, its
effects can be included in a second step, as will be shown in detail. In so far as we neglect
harmonic trapping effects and concentrate on one-dimensional optical lattices, we study the
properties of condensates as described by the Gross-Pitaevskii equation

L0V (z,t) h? 92 .o (T2 9
n2H2 <_%@+3Emm (Z) +olveol oo, @)

where the order parameter W fulfills the normalization condition

/dr (2, )% = Nios , (3.15)

with Niot the total number of particles. Because we assume the system to be confined in a
box of length L along x,y and we exclude dynamics involving these transverse directions, the
order parameter W depends only on z. The dependence of ¥ on x,y comes into play only once
we allow for the effects of harmonic trapping.

The linear response of the system and the depletion of the condensate are treated within
Bogoliubov theory (see [1]). In the latter case, also elementary excitations in the transverse
directions have to be taken into account.

Particular attention is paid to the analogies and differences with respect to the single
particle case and with respect to the case of a uniform or harmonically trapped condensate.
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We develop simple theoretic frameworks for the description of statical and dynamical properties
and discuss quantities which are crucial for their characterization. We also evaluate the validity
of GP-theory in order to demonstrate the applicability of our results.

In particular, after a short review of some standard results concerning a single particle in a
one-dimensional periodic potential, we will discuss

e the groundstate with and without harmonic trap (chapter 5)

e stationary states of Bloch form (chapter 6)

e the Bogoliubov excitations of the groundstate (chapter 7)

e the linear response to a density perturbation (chapter 8)

e the macroscopic dynamics with and without harmonic trap (chapter 9)

e the description of the system as an array of Josephson junctions (chapter 10)
e the propagation of sound signals (chapter 11)

e the quantum depletion (chapter 12)

Here is a more detailed overview of the thesis:

Chapter 5 discusses the groundstate of a condensate confined in a one-dimensional optical
lattice. We first consider a system without harmonic trapping which is uniform in the direction
transverse to the lattice. We study the chemical potential, the energy, the density profile and
the compressibility as a function of lattice depth s and the interaction parameter gn, where
g is the two-body coupling constant (3.11) and n is the average density. In a second step,
we allow for the additional presence of radial and axial harmonic trapping. We use the results
obtained for the purely periodic potential as an input to calculate the groundstate properties
in the combined trap.

In chapter 6, we extend the discussion of stationary condensates in a one-dimensional
lattice to non-groundstate solutions of the GP-equation. We focus on solutions which take
the form of Bloch states and investigate the associated band spectra for the energy and the
chemical potential in dependence on lattice depth and interaction strength carrying out a
detailed comparison both with the non-interacting and the uniform cases. The energy Bloch
band spectrum determines the current and therefore the group velocity and the effective mass.
In the tight binding regime, the energy and chemical potential bands take a simple analytic
form. From the expression for the Bloch energy bands we find equations for the current and
the group velocity. Exploiting the tight binding formalism, we also derive simple expressions
for the compressibility of the groundstate.

Chapter 7 deals with small perturbations of a stationary Bloch state condensate in the
periodic potential. We study in detail the Bogoliubv band spectrum of the groundstate both
numerically for all lattice depths and analytically in the tight binding regime. Special attention
is paid to the behavior of the sound velocity both for the groundstate and for a condensate
moving with non-zero group velocity.

The Bogoliubov band structure can be probed by studying the linear response of the con-
densate to a weak external perturbation. In chapter 8 we consider the particular case in which
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the external probe generates a density perturbation in the system. We present results for
the dynamic structure factor and the static structure factor of a condensate loaded into a
one-dimensional lattice pointing out the striking effect of the periodic potential.

In chapter 9, we show how to describe the long length scale GP-dynamics of a condensate
in a one-dimensional optical lattice by means of a set of hydrodynamic equations for the
density and the velocity field. Within this formalism, we can account for the presence of
additional external fields, as for example a harmonic trap, provided they vary on length scales
large compared to the lattice spacing d. As an application we derive an analytic expression for
the sound velocity in a Bloch state condensate. In the combined presence of optical lattice
and harmonic trap, the hydrodynamic equations can be solved for the frequencies of small
amplitude collective oscillations. The results are compared with recent experimental data. We
also discuss the large amplitude center-of-mass motion.

In chapter 10 we describe the dynamics of the system in terms of the dynamics of the
number of particles and the condensate phase at each lattice site. From this point of view,
the system constitutes a realization of an array of Josephson junctions.

The effect of a one-dimensional optical lattice on the propagation of sound signals is dis-
cussed in chapter 11. We devote special attention to the propagation in the nonlinear regime
and distinguish different nonlinear effects in dependence on lattice depth.

Finally, in chapter 12 we discuss the effect of the lattice on the condensate fraction within the
framework of Bogoliubov theory. We provide estimates for the depletion, discuss the effective
change of geometry induced by the lattice and set the limit of validity of our methods.

This part of the thesis is essentially based on the following papers:

e Macroscopic dynamics of a trapped Bose-Einstein condensate in the presence of 1D and
2D optical lattices
M. Kramer, L. Pitaevskii and S. Stringari,
Phys. Rev. Lett. 88, 180404 (2002).

e Dynamic structure factor of a Bose-Einstein condensate in a 1D optical lattice
C. Menotti, M. Kramer, L. Pitaevskii, and S. Stringari:
Phys. Rev. A 67, 053609 (2003).

e Bose-Einstein condensates in 1D optical lattices: Compressibility, Bloch bands and ele-
mentary excitations
M. Kramer, C. Menotti, L. Pitaevskii and S. Stringari,
Eur. Phys. J. D 27, 247 (2003).

e Sound propagation in presence of a one-dimensional optical lattice
in preparation, with C. Menotti, A. Smerzi, L. Pitaevskii and S. Stringari
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Chapter 4
Single particle in a periodic potential

This chapter reviews some standard results (see for example [19, 96]) concerning a single
particle in one dimension subject to an external potential V' (z) which is periodic in space with
period d

Viz)=V(z+d). (4.1)

The aim of this chapter is to provide some basic concepts such as quasi-momentum, band
structure, Brillouin zone, Bloch functions and Wannier functions. Starting from the single
particle case we can then conveniently extend and generalize these notions to the case of a
Bose-Einstein condensate in the following chapters.

4.1 Solution of the Schrodinger equation

Bloch states and Bloch bands

The one-dimensional motion of a particle in the periodic potential (4.1) is described by the

Schrodinger equation
L 0p(x) h? 0?

Due to the periodicity of the potential this equation is invariant under any tranformation
x — x+1d where [ is any integer. Thus, if ¢(x) is the wavefunction of a stationary state, then
@(x + 1d) is also a solution of the Schrodinger equation. This means that the two functions
must be the same apart from a constant factor: ¢(x + ld) = constant X ¢(x). It is evident
that the constant must have unit modulus; otherwise, the wave function would tend to infinity
when the displacement through Id was repeated infinitely. The general form of a function
having this property is

pik(x) = e* @1 () (4.3)
where 1k is the quasi-momentum and @;(x) is a periodic function
Gik(x) = Gjk(x +d). (4.4)

33
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To satisfy periodic boundary conditions, o(—L/2) = ¢(L/2), where L is the length of the
system, k must be restricted to the spectrum

P
k:%u, v=0,41,42,... . (4.5)

Solutions of the form (4.3) are called Bloch functions. The functions @;i(x) are referred to
as Bloch waves.

From the translational properties of the wavefunction
ojk(z + d) = e*pjp(x), (4.6)

it follows that values k + [ 27/d with [ integer label the same physical state of the particle.
We can say that the Bloch functions ;i () and their energy are periodic with respect to k

ik(T) = Qjpti2m/a(T) (4.7)
ei(k) = &5k + z%”). (4.8)

In order to find all physically different states of the particle it is thus sufficient to consider
values of k in the range —m/d, ... w/d, i.e. in the so called first Brillouin zone. In the following
we will refer to the momentum
I 4.9)
B = — (4.
corresponding to the boundary of the first Brillouin zone as the Bragg momentum. The
associated energy scale is provided by the recoil energy Er = h2w2/2md2.

For a given value of k, the Schrodinger equation has an infinite set of discrete solutions
€j(k) labeled by the index j. For fixed j, the energy as a function of k takes values in a certain
finite range called an energy band. For this reason, the label j is referred to as the band index.

The Bloch functions ¢;; with & belonging to the first Brillouin zone form an orthonormal
set. Since the Bloch waves ¢}, are periodic it is common to impose the normalization condition

over one period
/2

7d/2dl‘ (ﬁ;k@j/k = 5jj/ . (410)

Note that that to get orthogonality of Bloch functions with different quasi-momenta the
integration over all space and the correct boundary conditions are required. Accordingly, the
energy is calculated by integrating over one lattice period

d/2 h2 (:)2
gj(k) = _d/de ©ir(T) <_%W + V(:r)) wir(z). (4.11)

Each energy level is doubly degenerate with respect to the sign of k
Ej(k) = z’:‘j(—k) . (4.12)

This property is a consequence of the symmetry under time reversal: Because of this symmetry,
if ;i is the wave function of a stationary state, the complex conjugate function ¢%; describes
a state with the same energy and quasi-momentum —hk. It is worth noting that in one-
dimensional motion no degree of degeneracy higher than (4.12) is possible. As a consequence,
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different bands are always separated by energy gaps. Moreover, in the one-dimensional case,
the minimum and maximum values of each band ¢;(k) are found at £ =0 and k = 7/d.

If the potential V' (z) is weak, one can apply first order perturbation theory to calculate the
energy bands ¢;(k). For this purpose, it is useful to expand the function V' in a Fourier series
Vi(z) =32V e?™/d QOne finds that all bands are shifted by the constant Vj and that
the energy gap between the band j and the band j + 1 equals to 2|Vj}|. In the particular case
of an optical lattice V = sEgsin®(n2/d), only Vy and V; are nonzero. Hence, the energy
gaps are found to be zero except for the one between the lowest and the first excited band.
Higher order perturbation theory is needed to resolve the gaps between the higher bands. The
opposite extreme of a deep potential is discussed below in section 4.2.

In Fig. 4.1, we plot the first three energy bands for a single particle in the optical lattice
potential V = sEgsin?(rx/d) for s = 0,1,5 as obtained from the numerical solution of
the Schrodinger equation. For s = 0 we are dealing with a free particle with energy spectrum
(k) = h?k?/2m. The corresponding “band spectrum” is obtained by mapping to the jth band
energies with wave numbers k belonging to the jth Brillouin zone ((j — 1)gp < |k| < jgB).
Fig. 4.1 illustrates that energy gaps become larger while the heights of the bands decrease as
the lattice is made deeper. These effects become most clearly visible by looking at the lowest
band: In fact, the energy gap between first and second band is already large at a lattice depth
of s = 1, while the gaps between higher bands are hardly visible. Also, the height of the lowest
band decreases much more rapidly as a function of s than the ones of the higher bands.

hk/QB

Figure 4.1: Lowest three Bloch bands (4.11) in the first Brillouin zone of a particle in the
optical lattice potential V = sEgsin®(rx/d) fora) s =0, b) s =1 and c) s = 5.
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In Fig. 4.2, we plot the quantity |p,|? for different values of the quantum numbers j and k
in the case of the optical lattice potential V = sEgsin?(rz/d) with s = 5. In the lowest band
the particle tends to be concentrated close to the potential minima. The higher the band index
the more probable it becomes to find the particle in high potential regions. This is because
the particle is less affected by the presence of the lattice and its wavefunction resembles more
the free particle delocalized plane wave solution. Moreover, the flatter a band the less the
distribution changes when varying k.

dlojkl?

Figure 4.2: Modulus squared of the Bloch function ¢;;, (4.3) at £ = 0 (solid line), 7k = 0.5¢p
(dashed line) and hk = gp (dash-dotted line) with a) j = 1, b) j = 2 and c) j = 3 of a
particle in the optical lattice potential V = sEgsin?(nz/d) for s = 5.

Momentum and Quasi-momentum

The Bloch functions (4.3), being characterized by a certain constant wave number k, have
a certain similarity with the plane wave states of a free particle of momentum p = hk. For
this reason, the quantity hk is often called quasi-momentum. It is however important to point
out that due to the presence of the external potential, which has only a discrete translational
invariance, there is no conserved momentum. In fact, in a stationary state with a given quasi-
momentum Ak, the momentum can have values hi(k+1 27 /d) with [ integer. The corresponding
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probabilities are obtained from the Fourier expansion of the periodic function @;;(z)
(ﬁ]k(l‘) = Z ajkl €il2ﬂx/d . (4.13)
!

Inserting this expression into (4.3) yields the expansion of the Bloch function in plane waves
@jk(x) — Zajkl ei(l27r/d+k)x ) (414)
]

Hence the probability for the particle to have momentum 7%i(k 41 27/d) is given by d|a/|*. In
the case of the groundstate (j = 1,k = 0), the more the function ¢;i(x) is modulated by the
presence of the external potential, the more momentum components p = hl 2w /d with [ # 0
are important.

In Figs.4.3 and 4.4, we plot the probabilities |a;|* with j = 1 and ik = 0, 0.5¢p, qp for a
particle in the optical lattice potential V = sEgsin?(rz/d) for s = 1 and s = 5 respectively.
Note that non-zero values of [ become more important as s is increased. When tuning k to
non-zero values, the distribution |ajkl|2 becomes asymmetric with respect to [ = 0 because ¢,
can not be written as a real function, indicating the presence of a nonzero velocity distribution
within each well.

0.9F {1 o09r i 09f .
08f {1 os8f i o08f .
07f {1 o07f i 07f .
06f {1 o0s6f i o06f .
C\‘_
< osf {1 05f i 05F .
=
S
04f {1 o04r i 04f .
03f {1 03f i 03f .
0.2f {1 o02f i 02f .
0.1f {1 oif i oif .
0 0 0
-3 12 3 -3 1 2 3 -3 2 3

Figure 4.3: Probabilities |aj;|> of momentum components p = hk + [ 27/d in the state with
band index j = 1 and quasi-momentum hk = 0 (left), hk = 0.5¢p (middle), and hk = gp
(right) for a particle in the optical lattice potential V' = sEgsin?(7z/d) with s = 1.
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Group velocity, current and effective mass

A further analogy between quasi-momentum and actual momentum is revealed by calculating
the mean velocity ©;(k) of a particle in the Bloch state ¢;;(x). One finds

v;(k) = (@jrl®lejn) = a;jé(:) : (4.15)

This quantity is referred to as the group velocity. According to relation (4.15) the particle
remains at rest on average when k = [m/d since at these values of the quasi-momentum
the energy bands exhibit local minima or maxima. Furthermore, the particle mean velocity
decreases as the potential is made deeper due the flattening of the bands. The dependence of
the group velocity on the quasi-momentum for different potential depths is illustrated in Fig.
4.5 for a particle in the optical lattice potential V = sEgsin®(nz/d).

A closely related quantity is the current density associated with a certain Bloch state

ih o . .0
(0 = 5o (e gm i = Singmon ) - (4.16)

- 2m
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3

Figure 4.4: Probabilities |a;|> of momentum components p = [ 27/d in the state with band
index j = 1 and quasi-momentum hk = 0 (left), ik = 0.5gp (middle), and hk = gp (right)
for a particle in the optical lattice potential V' = sEgsin?(nz/d) with s = 5.
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Figure 4.5: Group velocity (4.15) as function of quasi-momentum #k of a particle in the optical
lattice potential V = sEgsin?(nz/d) with a) s = 1 and b) s = 5. Solid lines: Exact numerical
results. Dashed lines: Tight binding result (4.31) with ¢ as obtained from (4.33) using the
numerical data for m* (4.18).

The current density does not depend on the spatial coordinate x since we are dealing with a
stationary state solution of the Schrodinger equation. Hence, each Bloch state is characterized
by a certain value of the current density I;(k). One can show easily (see discussion in chapter
6.1) that

i(k) = %L%(:) 7
where L is the length of the system. It is interesting to note that Eq.(4.17) implies the result
(4.15) since the group velocity must fulfill the equation v;(k) = IL.

(4.17)

For small quasi-momenta k& — 0, the lowest energy band depends quadratically on &, its
curvature defining the effective mass

1 2ei(k
m h=0k* |, _,
With this defintion, current and group velocity for k — 0 are given by
1 hk
hk
vj=1(k) — —; (4.20)

m*
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Hence, at small quasi-momenta, the change in current and average velocity brought about
by the periodic potential can be understood in terms of the change in the effective mass. In
Fig.4.6 we plot the effective mass (4.18) as a function of potential depth in the case of the
optical lattice potential V = sEgsin?(rx/d). The increase of m* as a function of lattice depth
s reflects the slow-down of the particle by the potential barriers. In fact, in a sufficiently deep
lattice, the particle has to tunnel through the barriers. The exponential increase of the effective
mass encountered in this regime can be understood in terms of the tunneling properties of the
system, as is shown in the next section.

200
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Figure 4.6: Effective mass (4.18) as a function of potential depth in the case of the optical
lattice potential V = sEgsin?(nz/d).

It is common to generalize the definition of the effective mass (4.18) to any band and

quasi-momentum
1 0% (k
= (k) . (4.21)

mi(k) "~ hPok?

The k-dependent effective mass and the group velocity (4.15) are useful concepts to describe
Bloch-oscillations experiments with cold (non-interacting) atoms in which the atoms are ex-
posed to a constant small acceleration a [97, 98]. This can for example be achieved by
accelerating the potential or by exploiting gravity in a vertical set up. The state of the system
can be described by ¢;1,+) where the quasi-momentum 7k(t) increases linearly in time. As a
consequence, the instantaneous group velocity v(k(t)) (4.15) clearly oscillates in time with a
period 2qp/ma determined by the time needed to cross a Brillouin zone. Regions of positive



4.1 Solution of the Schrédinger equation 41

and negative acceleration mu correspond to regions of positive and negative effective mass
respectively.

Wannier functions

Due to their periodicity in k-space, the Bloch functions ;i (2) can be expanded in the Fourier
series

pir(x) =D fiala)e™, (4.22)
l

where [ labels the sites of the periodic potential. The quantities f;;(x) are the Fourier coeffi-
cients of the expansion at x fixed. The inverse expansion reads

fii(x) = NL > ey (), (4.23)
Wk

where the quasi-momenta k belong to the first Brillouin zone and N,, = L/d is the number of
wells. Calculating the coefficients f;;(x) for 2 varying across the whole length of the system,
allows the construction of the so called Wannier functions f;;(z). In contrast to the Bloch
functions, the Wannier functions do not depend on quasi-momentum, but are instead labeled
by the band index j and the site index [ where they are centered. They are orthonormal

L/2
/ dx f7 (@) firu(x) = 054011 (4.24)
—L)2

and form a complete set. Eq.(4.22) the expansion of the Bloch function ¢jj, in the Wannier
basis with coefficients e?*!¢.

An important property of the Wannier functions consists in the fact that they can be
obtained from each other by a simple displacement

frj(x) = fi(x —1d), (4.25)

where here and in the following f; denotes the Wannier function with [ = 0. As a consequence
of (4.25), a single function f; suffices in characterizing band j, since all other Wannier functions
are obtained by simply displacing f; by ld.

Wannier functions are a useful basis because they tend to be localized in the vicinity of the
site [ by which they are labelled. This makes them especially suited for describing a particle
in a potential with deep wells where the tunneling probability is small. When the tunneling
probability becomes zero, the Wannier functions coincide with the wavefunction of particles
confined in single wells. In the particular case of an electron in a crystal, the respective solutions
are given by the atomic orbitals. Yet, Wannier functions are well defined at arbitrary depth
and might spread out over several wells, their orthogonality being ensured by oscillating tails.

An interesting connection can be found between the spatial extent of the Wannier functions
and the form of the respective energy band: The matrix elements of the Hamiltonian in the
Wannier basis read

(fl,j’ﬁ’fl’,j/> = /dx fj(a: —ld)H fy(x — I'd)
= 0, & ("= 1)d), (4.26)
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where the quantities £;((I' — 1)d) fulfill the condition
(1d) = £(~1d). (4.27)

as a consequence of Eq.(4.12). Note that the matrix elements involving Wannier functions of
different bands are zero. The matrix elements £;((I’ — 1)d) have a straight forward meaning:
They are the coefficients of the Fourier expansion of the energy band ¢;(k)

gj(k) = e™Mig;(id). (4.28)
l

This is an interesting point: A Fourier analysis of the energy bands allows us to extract the
matrix elements £;(ld) and hence tells us something about the spatial extent of the Wannier
functions. If the Wannier functions extend only over nearest neighbouring sites, the coefficients
E;(ld) are zero for |l| > 1 and hence the band ¢;(k) has the k-dependence cos(kd).

In the scope of this thesis, the Wannier basis mainly serves to derive analytic results in the
tight binding regime (see next section and applications to Bose-Einstein condensate in sections
6.2 and 7.3).

4.2 Tight binding regime

A particle subject to a strong periodic potential concentrates in the potential wells. The
periodic part ¢;;, of the Bloch function (4.3) is strongly modulated and the Wannier functions
fj(x — Id) are highly localized at the sites [. One can say that the particle is tightly bound
to the sites created by the potential. For a given depth of the potential, the particle is less
localized in higher bands.

Bloch states and Bloch bands

In a sufficiently deep potential, the Wannier functions exhibit only nearest-neighbour contact,
implying that f; extends only over the sites [ and [ +1 with its main contributions arising from
the site [. Throughout this thesis, we will use the term tight binding to denote such a situation.
The range of potential strength for which only nearest-neighbour contact is present will be
referred to as the tight binding regime. In this regime, a simple analytical expression can be
found for the energy bands which can be understood in terms of the tunneling properties of
the system.

In order to find the expression for the energy band €;(k), we note that the matrix elements
(4.26) are zero except for £;((I' —1)d) with I’ —1 = 0,£1. Hence, the Fourier expansion (4.28)
of the energy band takes the form

e(k) = &;(0) — 9 cos(kd) , (4.29)
where we have introduced the tunneling parameter §; := —2&;(d)

. 2 2
5, = —2 /d:r (@) (-2%7”8‘12 +V(x)> iz —d), (4.30)
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describing the capability of a particle to tunnel through the barriers of the potential. As the
potential is made deeper, the smaller becomes the tunneling parameter §; and hence the flatter
becomes the band (4.29).

For exactly zero tunneling (6; = 0), i.e. when the Wannier function does not extend over
neighbouring wells, all Bloch states of a band are degenerate and the Wannier functions are
also eigenstates of the Schrodinger equation. In the case of an electron in a crystal, they
coincide with the atomic orbitals in this limit.

When tunneling is possible, the degeneracy between the Bloch states is lifted and the
particle can gain energy J; by spreading over the wells of the potential. This is analogous to
the case of a particle in a double-well: When tunneling contact is established the two, initially
degenerate, energy levels split by 20. The new groundstate corresponds to the symmetric
combination of the single-well solutions and its energy is lowered by §.

The value of §; can be calculated using the semi-classical form of the single-well wavefunc-
tion in the region of the barrier (see [99], §50). The exponential decay of the semi-classical
wavefunction as a function of the height of the potential barrier gives rise to an exponential
decay of §; in s (see also section 4.2 below).

Group velocity, current and effective mass

The knowledge of the form of the energy band (4.29) considered in the tight binding regime,
immediately permits to write down explicit expressions for the group velocity (4.15), the current
density (4.17) and the effective mass (4.18).

The group velocity (4.15) takes the simple form

vj(k) = d—gj sin(kd) , (4.31)

and correspondingly, the current density reads

Ii(k) = % sin(kd) . (4.32)

The two quantities (4.31) and (4.32) are proportional to the tunneling parameter J;. Hence
they decrease in the same manner as §; when the potential depth is increased.

The effective mass (4.18) turns out to be inversely proportional to the tunneling parameter
of the lowest band
1 d%
— = —. 4.33
m* K2 ( )

Thus, the exponential increase of m* as a function of s in an optical lattice (see Fig.4.6)
reflects the exponential decrease of the tunneling parameter.

The generalized k-dependent effective mass (4.21) takes the form

1 26,
= dh—gj cos(kd) . (4.34)

k
m;
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In Figs. 4.5 and 4.7 we compare the tight binding expressions for the lowest energy band
and the associated group velocity with the respective numerical solution in the case of an
optical lattice. To evaluate the tight binding expressions we use the tunneling parameter
(4.33) obtained from the numerical results for m*. For this reason the curvature of the tight
binding and the numerical result match automatically.

hk/QB

Figure 4.7: Comparison of the tight binding expression (4.29) for the lowest energy band of a
single particle (dashed lines) with the respective numerical solution (solid lines) in the case of
an optical lattice for a) s =1, b) s =5 and c) s = 10.

Tunneling parameter of the 1D Mathieu problem

The tunneling parameter (4.30) plays a crucial role in the tight binding regime and it is
hence desirable to know its dependence on the experimental parameters of the problem. This
depends, of course, on the particular form of the periodic potential. In the case of an optical
lattice V = sEgsin?(mx/d), the potential depth sEg is proportional to the intensity of the
lasers and thus can be tuned freely.

The problem of a particle in a periodic potential of the form V = Vjsin?(7x/d) is known
as the 1D Mathieu problem. Analytic solutions for the respective Wannier functions were
investigated in [100]. An approximate analytic expression can be derived for the tunneling
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parameter (4.30) (see for example [101]). The result reads

1 N 1/2 g\ G-1)/243/4 [ 9A(j~1)+5
C AR AV el hd 27 7 ) o2vs
0j = Erg (1) (ﬂ) <4) Goor ) (4.35)

where j = 1,2, ... is the index of the band for which the tight binding regime is considered. In
order for expression (4.35) to be valid, the considered energy band must be a slowly varying
function of the quasi-momentum. Hence, the potential depth s must be sufficiently large.

Fig. 4.8 depicts (4.35) as a function of potential depth for the bands j = 1,2. The
tunneling parameter §,—; of the lowest band is much smaller than ;5. This reflects the fact
that the Wannier functions of the lowest band concentrate at one site more easily than those
of higher bands.

In Fig.4.9 we also plot the ratio between the approximative § (4.35) for j = 1 and the exact
J as obtained from Eq.(4.33) using the numerical data for m*. We find that for s > 30 (4.35)
differs from the numeric result by less than 10%.
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Figure 4.8: Tunneling parameter (4.35) of the 1D Mathieu problem as a function of potential
depth for the bands j = 1 (solid line) and j = 2 (dashed line).
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Figure 4.9: Ratio between the approximative ¢ (4.35) for j = 1 and the exact § as obtained
from Eq.(4.33) using the numerical data for m* in the case of the lattice potential V' =
sEgsin?(mz/d).



Chapter 5

Groundstate of a BEC in an optical
lattice

We explore the groundstate of a condensate confined in a one-dimensional optical lattice within
GP-theory.

First, we consider a system which is uniform in the transverse direction (section 5.1,5.2 and
5.3). In this case, there are two tunable parameters: the lattice depth sEr and the interaction
parameter gn where n is the average density. In the lattice direction the density profile is
strongly modulated by the periodic potential reflecting the concentration of the atoms at the
bottom of the potential wells. Energy and chemical potential are significantly increased with
respect to the uniform case, while the combined presence of lattice and repulsive interactions
between atoms leads to a decrease in the compressibility. The inverse compressibility has a
nonlinear dependence on average density since interactions counteract the compression of the
atoms by the external potential. In a deep lattice however, the equation of state of the system
takes the same linear dependence on density as in the uniform case and is charcterized by an
effective coupling constant g which grows as a function of lattice depth.

The presence of repulsive interactions produces a screening effect since the particles resist
more to being squeezed in the potential wells than in the absence of interaction. We find
that increasing the interaction parameter gn corresponds to an effective decrease of the lattice
depth s.

In a second step, we allow for the additional presence of radial and axial harmonic trapping
(section 5.4). We use the results obtained for the purely periodic potential as an input to
calculate the groundstate properties in the combined trap. The scheme we develop adequately
describes current experimental settings in which the optical potential is superimposed to a
harmonically trapped TF-condensate leading to a distribution of atoms over many lattice sites.
We derive simple analytic expressions for the chemical potential and the density profile averaged
over each lattice period by using the effective coupling constant description. These expressions
allow us to explicitly calculate the occupation of each site and the radius of the cloud. We
discuss the dependence on lattice depth of the chemical potential, the condensate size and the
density at the center of the harmonic trap averaged over one lattice period.

Our results for the groundstate energy, chemical potential, compressibility and regarding
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the effects of harmonic trapping have been presented in [102]. In this thesis, also results for the
density profile are included and the dependence on lattice depth of the density at the center
of the harmonic trap averaged over one lattice period is described. We briefly comment on
the generalization to 2D lattices. Based on an ansatz for the order parameter valid in deep
lattices, the effective coupling constant g and its effect on the harmonically trapped system
have been previously discussed in [70].

5.1 Density profile, energy and chemical potential
When looking for stationary solutions, the GP-equation (3.14) takes the form
2 52
<_2F3n@azz + sFEp sin’ <7;Z) +g |‘11(z)|2> U(z) = p¥(z). (5.1)

The groundstate is given by the solution of this equation with the lowest energy.

Let us rewrite Eq.(5.1) in a more convenient form. First, we introduce the rescaled order

parameter
p(z) = \/%\I](Z)v (5.2)

with L the transverse size of the system and N the number of particles per lattice site such
that

/2 )
[ dale(a? =1. (53)
—d/2
The GPE (5.1) then reads
L2 92 .o (T2 2
<_%@+5Emm (%) + dn e ) o2) = pole). (5.4)

where we have introduced the average density

(5.5)

Casting Eq. (5.4) in dimensionless form, in dimensionless form it is possible to identify the
governing parameters of the problem. We shall measure length in units of d/7, momentum
in units of the Bragg-momentum ¢gp = hn/d and energy in units of the recoil energy Er =
h%72 /2md?. In this way, we obtain the dimensionless GPE

2 mn
(‘% +ssin (2) + |<P(Z)!2> o(z) = £(2). (5.6)

In contrast to the case of a single particle discussed in chapter 4, there are now two governing
parameters: the lattice depth s and the interaction parameter gn/FER. The latter quantity can
be changed by varying the average density or the scattering length by means of a Feshbach
resonance.
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Typical values of gn/FER in current experiments can be estimated by taking the density at
the center of the harmonic trap in absence of the lattice and evaluating Er = 7‘127r2/2mal2 for
the lattice period d used in the respective experiment. In this way, one finds values ranging
from gn = 0.02ER to gn = 1.1ER in the experiments [79, 73, 71, 87, 66].

For each choice of parameter s and gn/ERr, we obtain a different groundstate wave function
©(z) and chemical potential

d/2 hQ 82
— /d/2 9952 + sEpgsin® ( p > + gnd|p(2)]? | p(2)dz (5.7)
and groundstate energy per particle
d/2 h2 82 gnd
— > Tz | |
€= /d/2 ( 9m 022 + sEgsin (d) (= )’ o(z)dz (5.8)

Calculating these quantities for different choices of s and gn/ER allows us to elucidate the
role played by mean field interaction: Under what conditions does it play an important role ?
How does it alter the effects produced by the lattice?

Let us first discuss some solutions for the groundstate wavefunction ¢(z) or, equivalently,
the density nd |p(z)|*. In Fig. 5.1, we report the results obtained at different values of lattice
depth and interaction parameter. When s is increased for fixed gn/ER, the density becomes
more and more modulated by the optical potential. Instead, when s is kept fixed while gn/ERr
is increased, the modulation of the density is reduced. Repulsive interactions screen off the
lattice as mentioned above. In fact, at low lattice depth explicit formulas for the effective
potential can be derived [103] and are found to be in agreement with experimental results
[67].

Let us now proceed to the results obtained for the chemical potential and the energy per
particle. In Fig. 5.2, we report the results obtained as a function of lattice depth s for different
values of the interaction parameter gn/FER.

Chemical potential and energy per particle coincide only in the absence of interactions. In
general, they are linked by the relation

~Od(ne) Oe
p=— —E—l—gna(gn). (5.9)

The second term is necessarily positive for repulsive interactions and hence the chemical po-
tential is always larger than the energy per particle (see Fig.5.2).

When plotting the relative difference (11—¢) /e as a function of gn at fixed high s, we observe
that the curve is proportional to gn for sufficiently small gn (see Fig.5.3). The deviation from
the linear behavior (see dotted line) for larger gn is due to the density dependence of ¢. For
gn small enough, the derivative 0c/0 (gn) is essentially given by its gn = O-limit

de d (/2 4
— o~ = e dz, 1
Tlom) ~ 3.y P02 (5.10)

where p,,—0(2) is the groundstate solution in absence of interactions (gn = 0). In the next
section, we will show that the quantity (5.10) is closely related to the compressibility of the
system.
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dle(2)[?

Figure 5.1: Groundstate density d|(2)|? as obtained from (5.4) at a) s =1, b) s =5 and c)
s =10 with gn = 0 (solid line) and gn = 1ER (dashed line).
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Figure 5.2: Results obtained for the chemical potential (5.7) (dash-dotted line) and the energy
per particle (5.8) (dashed line) as a function of lattice depth s for gn/Er = 0.5. The solid
line is the single particle energy (gn/Er = 0).
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Figure 5.3: Relative difference (i — ¢)/c as a function of gn/ER at s = 20 (solid line). The
dotted line extrapolates the linear behavior at small gn.
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5.2 Compressibility and effective coupling constant

From the solutions p(s, gn) for the chemical potential, the compressibility x of the system can
be immediately calculated using the relation

L om

on
It is useful to evaluate this quantity in order to understand better the combined effects of
lattice and interactions. In particular, analyzing the behavior of the compressibility helps to
study in more detail the dependence of the chemical potential on density in a lattice of fixed
depth. Knowing the form of this density-dependence is crucial to determine for example the
frequencies of collective oscillations, the density profile and the chemical potential obtained
when adding a harmonic trap to the optical lattice (see sections 5.4 and 9). In the uniform
system, the chemical potential is simply linear in the density u = gn leading to an increase of
the inverse compressibility that is proportional to the density K~ = gn. In the presence of the
lattice, we expect deviations from this behaviour due to the localization of the particles near
the bottom of the well centers.

K (5.11)

In Fig.5.4, the inverse compressibility ™! is plotted as a function of gn for different potential
depths s. As a general rule, the condensate becomes more rigid as gn/ERr or s is increased.
Yet, in contrast to the uniform case, the monotonic growth of x~! is linear only at small
densities. At larger values of gn/ER, the slope of the curve tends to decrease and develop a
non-linear functional dependence.

At small values of gn where the inverse compressibility is approximately linear in gn, let us
denote the proportionality constant by g such that

K= g(s)n. (5.12)
corresponding to the chemical potential

1= pgn=0 + g(s)n, (5.13)

where f15,—0 depends on the lattice depth, but not on density. Since the condensate is more
rigid in the lattice relative to the uniform case, we have § > g. Actually, § is a monotonically
increasing function of s (see increase of the slopes at gn = 0 for increasing s in Fig. 5.4).

The quantity g can be considered as an effective coupling constant: In a situation in which
Eq.(5.12) is valid, the compressibility of the condensate in the lattice with coupling constant
g is the same as the compressibility of a uniform condensate with coupling constant g. So, as
far as the compressibility is concerned we can deal with the problem as if there was no lattice
by simply replacing ¢ — g. Below, we will see that this is a useful approach when describing
macroscopic properties, both static (see section 5.4) and dynamic (see section 9), which do
not require a detailed knowledge of the behavior on length scales of the order of the lattice
spacing d. In fact, the properties of the compressibility discussed in this section will prove
useful in devising a hydrodynamic formalism for condensates in a lattice.

The concept of an effective coupling constant g is applicable when the influence of 2-body
interaction on the wavefunction (z) is negligible in the calculation of the chemical potential
(5.7). Provided this condition is fulfilled, we obtain using Eq.(5.7)

ou

d/2
1= =" = gnd / e 44 14
K na, = In s logn=0(2)|"dz, (5.14)
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where pg,—0(2) is the groundstate solution in absence of interactions (gn = 0). Comparison
with Eq.(5.12) yields

i /2 A
g= gd/ logn=0(2)|*dz . (5.15)
—d/2

This explicit formula makes again visible that the decrease of the compressibility described
by g is due to the concentration of the particles close to the well centers.

In Fig.5.5 we compare the exact results for k=1 with the approximate formula (5.12) as a
function of s for different values of gn/Eg. This plot allows to determine how deep the lattice
has to be made for a given value of gn/Ep in order to be able to use the effective coupling
constant description. Given, for example, gn = 0.5ER we find that at s = 10 and s = 20 the
expression (5.12) is valid within &~ 10% and ~ 7% respectively. A larger value of gn requires
larger values of s to achieve the same accuracy.
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Figure 5.4: The inverse compressibility (5.11) as a function of gn/Eg for s = 0 (solid line),
s = b (dashed line) and s = 10 (dash-dotted line).
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Figure 5.5: Comparison of £~1/gn as obtained from Eq.(5.11) for gn = 0.1ER (dashed line)
and gn = 0.5ER (dash-dotted line) with the approximate formula (5.12) (solid line) evaluated
using (5.15) as a function of s.

5.3 Momentum distribution

Since the groundstate solution of the GPE (5.4) is periodic with period d, it can be expanded
in the Fourier series

p(z) =D ay P, (5.16)
l

showing that the contributing momenta are multiples of 2¢p just as for a single particle in
a periodic potential (see discussion section 4.1). The values of the coefficients a; involve
interaction effects: The contribution of momenta with [ # 0 is slightly reduced in the presence
of repulsive interactions, due to the screening effect on the lattice.

The fact that the momentum distribution in the direction of the lattice is characterized by
several momentum components is an interesting difference with respect to the uniform system
where the presence of a BEC is associated with a single peak in the momentum distribution.
This feature governs the expansion of atoms released from an optical lattice: During the time
of flight the different momentum components are separated spatially resulting in a density
distribution featuring several peaks (see Fig. 5.6). Due to the large kinetic energy contained
in (5.8) the role of interactions can be neglected after the potential has been switched off, in
contrast to a situation without lattice where the expansion is governed by mean-field effects.
This issue has been discussed in [70] with regard to both theory and experiment.
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Figure 5.6: Density distribution after a time of free flight in the experiment [70]: Separation
of momentum components p = 0 (central peak) and p & 2¢p (lateral peaks). Figure taken
from [70].

5.4 Effects of harmonic trapping

The results obtained in the previous section can be used to describe the groundstate of a
condensate in the combined potential of optical lattice and harmonic trap

V = sEpsin® (%) + % (w?zQ + wirﬁ_) , (5.17)

where we have assumed radial symmetry of the harmonic trap w; = w, = w, in order to
simplify notation. The generalization of the results to anisotropic traps is immediate. For
convenience, we will denote the lattice site at the trap center by [ = 0. The combined
potential (5.17) is depicted in Fig.5.7.

In the presence of the potential (5.17), the GPE for the groundstate takes the form

n* 9 .2 (T2 m 2 2 2 2 2
<—%@ + SERSIU (?) + E (WZZ +CUJ_TJ_) +g |\II(TJ_,Z)‘ \I’(TJ_,Z) = ,U,\II(’I”J_,Z) .
(5.18)

The groundstate density profile
n(ry,z) =¥y, 2) (5.19)

varies rapidly on the length-scale d in the z-direction as discussed in the previous section. Yet,
due to the harmonic trap an additional length scale can come into play: If the axial size of the
condensate Z is much larger than the lattice period d, then the density profile (5.19) varies
on the scales d and Z. Provided the condensate is well described by the TF-approximation in
the absence of the lattice, then we have

d<< 7, (5.20)



56 Groundstate of a BEC in an optical lattice

0
25 -20 -15 -10 -5 0 5 10 15 20 25
z/d

Figure 5.7: The z-dependence of the combined potential of optical lattice and harmonic trap
(5.17) with a lattice depth of s =5 and hw, = 0.02FR.

and the variation on the scale Z is slow. Situation (5.20) is typical of current experiments. It
implies that many sites of the lattice are occupied and that the site occupation numbers vary
slowly as a function of the site index. For example, in the experiment [70] atoms are loaded
into ~ 200 sites.

Local Density Approximation

Given (5.20), one can generalize the local density approximation (LDA) to describe harmoni-
cally trapped condensates in a lattice. This procedure avoids the solution of the full problem
(5.18).

Let us consider the average density at site [

1 ld+d/2

ny(ry) n(ry,z)dz , (5.21)

T d ld—d/2

where n(r,z) = |W(r_, z)|* is the density obtained by solving the GP-equation (5.18). With
[ replacing the continous variable z, expression (5.21) defines an average density profile of the
condensate in the trap. It is a smooth function of | and varies slowly as a function of the
index [ since many sites are occupied as a consequence of condition (5.20). Basically, the idea
is now to apply a LDA to the average profile n;(r ).
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Within this generalized LDA, the chemical potential at site [ is given by

m
= popt (m(r 1)) + 5 (W2Pd* +wird), (5.22)

where fiopt(n(71)) is the chemical potential calculated at the average density n;(r 1) in the
presence of the optical lattice potential only. The effect of axial trapping is accounted for
by the term mw?1%d?/2 since the harmonic potential varies slowly on the scale d. Eq.(5.22)
fixes the radial density profile n;(r ) at the [-th site once the value of y; or, equivalently, the
number of atoms at well

Ry
Nl = 27Td/ TJ_dT'J_TLl(T'J_) N (5.23)
0

is known. In Eq.(5.23), R, is the radial size of the condensate at the [-th site, which is fixed
by the value of 7, where the density n;(r ) vanishes.

When equilibrium is established across the whole sample we have p; = p for all [. Making
use of this fact and employing that ) ; NV; = Niot, we can find the dependence of 1 on the
total number of particles Nio. This procedure also yields the single well occupation numbers
N and the number of sites occupied in the groundstate.

In the simple case in which the chemical potential without harmonic trap exhibits the linear
dependence on density fiopt = fign—=0+J(s)n (see Eq.(5.13)), one obtains for the radial density
profile

1 m m
n(ry) = g (M — Hgn=0 — §w§l2d2 — EuﬁﬁL) ) (5.24)
The well occupation numbers and transverse radii are given by
2\’
N; = Ny (1 — 7) , (5.25)
lm
2 1/2
R, = Ry (1 — 7) , (5.26)
lm
where
2(p — Mgn=0)
lm=\——55 5.27
" mw2d? ( )

is the outer most occupied site and fixes the total number 2[,,, + 1 of occupied sites, and

2(p — phgn=
Ry = ('umggo) (5.28)
1

is the radial size at the trap center. To obtain an explicit expression for the chemical potential
1 and the occupation Ny of the central site, we apply the continuum approximation >, —
1/d [ dz to the normalization condition Y; N; = Nio. This yields

ho a §\2/°
=y (15]\7tot . 5) + fign—o (5.29)
10)
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and

ENtot
16 1y

No = (5.30)

with @ = (w,w? )3, ap, = /R/mw. The profile (5.24) has the usual parabolic TF-form. The

presence of the lattice is accounted for by the dependence of the effective coupling constant g
on s.

The increase of (1 — f1gn—o (see Eq.(5.29)) due to the optical lattice (recall § > g) implies an
increase of the radii R; (see Egs.(5.26) and (5.28)) with respect to the absence of the lattice.
It is worth pointing out that the axial size increases in the same manner as the radial size, so
that the aspect ratio R/Z is not affected by the optical lattice: The outermost occupied sites
lm, as given by Eq. (5.27), depend on i — fign—0 in the same way as the radius R at the
central well (see Eq.(5.28)). The increase in size of the condensate is illustrated in Fig. 5.8
where we plot the radius Ry as a function of s. By tuning the lattice depth to s = 20, the
condensate grows by about 20%. Hence, the effect is not dramatic. In chapter 6.2 we will
show that g/g ~ sY4 in a deep lattice, implying that Ry and Z increase like ~ s1/20,
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Figure 5.8: The condensate radius Ry (5.28) divided by Ry(s = 0) as a function of lattice
depth s.

As a consequence of the increasing size of the condensate, the average density at the trap
center drops as a function of lattice depth: To evaluate to what degree this happens, recall
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that the density at the center of a TF-condensate without lattice is given by p/g, where the
chemical potential is given by Eq.(5.29) with §/g = 1 and pign—0 = 0. Hence, at the center
of the trap the ratio between the average density with lattice (5.24) and the density without
lattice is given by

m—o(rL =0;s) (9)_3/5 _ (5.31)

n(ry =0,z2=0;s=0) g

In Fig.5.9, we display this ratio as a function of lattice depth. Again, the effect is not very
dramatic, since the dependence of §/g on s is weak. The estimate §/g ~ s'/4 valid in a deep

lattice (see chapter 6.2 below) implies that the average density at the trap center drops like
—3/20
~S :

The decrease of the average density at the trap center (5.31) is to be contrasted with an
increase of the non-averaged density (5.19) at r; = 0,z = 0 (peak density). This increase
arises due to the modulation of the density on the scale d which overcompensates the drop of
the average density (5.31). This effect will be evaluated quantitatively in chapter 6.2. It turns
out that the peak density grows like (§/9)%/® corresponding to an increase ~ s'/10.
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Figure 5.9: The average density at the central site [ = 0 divided by its value at s = 0 as a
function of lattice depth (see Eq.(5.31)).

It is interesting to note that the integration (5.23) over the radial profile is crucial to obtain
the correct distribution (5.25). In a 1D system with the linear equation of state fiop =
fgn=0 + G(s)n, one would instead obtain the expression N; = Ny (1 —1?/12,). This difference
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is related to the fact that in a 1D system one has p oc N;. In contrast, for a 3D system with
radial trapping one obtains p o< v/N; from Eq.(5.23).

As mentioned above, the average density profile n;(r ) varies slowly as a function of the
site index [. We obtain a smooth macroscopic density profile n;(r,,2) by replacing the
discrete index [ by the continous variable z = Id This is convenient in devising a hydrodynamic
formalism (see section 9): The particular profile (5.24) becomes

1

m
TLM(M,Z) = 5 (M — Hgn=0 — w322 - Ewiri) ) (5-32)

with p given by Eq.(5.29). The extension of the condensate along z is given by

2(p — Ngn=0)
mw?

Z = . (5.33)
Obviously, the profile (5.32) mimics a TF-profile of a condensate without lattice. This confirms
the statement made in section 5.2 that if popy = gn + pgn—o the system can be described as
if there was no lattice as long as g is replaced by g.

Before concluding this section, we would like to emphasize that it is important to do the
average (5.21) before applying the LDA. The strong modulation of the wavefunction generated
by the lattice contributes a large kinetic energy which would be, mistakenly, discarded within
a LDA. The situation is different in a system made up of only very few wells (produced for
example by raising a few barriers in a TF-condensate). In this case, the condensate in each
well might be well described by the TF-approximation (see for example [57]). In the LDA
proposed in this section, the large kinetic energy caused by the lattice, is contained in the
chemical potential fiopt(1i(71))-

The effects described in this section, in particular the dependence of 1 (5.29) and Ry (5.28)
on s, have been investigated by [71]. In this experiment, the chemical potential and the radius
of the groundstate in the combined potential of harmonic trap and one-dimensional optical
lattice is determined from the measurement of the radial size of the cloud after a time of
free flight. The results for the chemical potential are depicted in Fig.5.10 together with the
theoretical prediction (5.29).

The generalization of the results presented in this section to two-dimensional cubic lattices is
straightforward. For a two-dimensional lattice in the x, y-directions, the smoothed macroscopic
density profile is given by

1 m m
ny(ri,z) == (u — Pgn=0 — —w22* — —wiri) ) (5.34)
g 2 2
with the effective coupling constant
~ o [2 4
g=gd / o | pgn=o(x, y)[*dzdy, (5.35)

and

M:

| &

<\ 2/5
(15Ntota g> + Mgn:[) N (536)
Gho 9
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Figure 5.10: The density-dependent contribution to the chemical potential 1 — jign—o of a
condensate in the combined potential of harmonic trap and one-dimensional optical lattice
divided by its value in the absence of the lattice as a function of lattice depth Uy = s.
Experimental data from [71] together with the theoretical prediction (5.29) (solid line). Figure
taken from [71].

in complete analogy to the case of a one-dimensional lattice. Yet, note that the 2D effective
coupling constant (5.35) increases more strongly with s since the condensate is compressed in
two directions.

These predictions have proved useful in the preparation of a one-dimensional Bose gas [88]:
They allow to estimate the 1D density in the tubes produced by a two-dimensional lattice
which is superimposed to a harmonically trapped condensate. Moreover, the calculation of the
chemical potential allows to determine the lattice depth needed to satisfy the condition

<L hao, (5.37)

for the one-dimensionality of the gas in the tubes, where @, is the characteristic radial trapping
frequency in each tube.
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Chapter 6

Stationary states of a BEC in an
optical lattice

In this chapter, we extend the discussion of stationary condensates in a one-dimensional lattice
to non-groundstate solutions of the GP-equation without harmonic trapping. All such states
are characterized by a spatially uniform, time-independent current

I = constant (6.1)

of atoms through the lattice. In the following, we will be dealing with states in which the
current is not generally constrained to the value zero, in contrast to the particular case of the
groundstate discussed in the previous section.

We concentrate on states associated with a condensate wavefunction of Bloch form labeled
by the band index j and the condensate quasi-momentum %k. Such states form the class
of solutions associated with a density profile of the same periodicity as the lattice. They are
associated with two types of band spectra: the energy per particle Bloch band spectrum and the
chemical potential Bloch band spectrum (see section 6.1) which depend on lattice depth sERr
and the interaction parameter gn. The two spectra coincide only in the absence of interactions
(gn = 0; see discussion of the single particle case chapter 4 above). We show that it is the
energy Bloch band spectrum which determines the current and therefore the group velocity
and the effective mass. We analyze the dependence of the group velocity and the effective
mass on the lattice depth s and the interaction parameter gn. At a given lattice depth, the
group velocity of a certain Bloch state increases with increasing gn. Correspondingly, the
effective mass is lowered by interactions. Yet, it remains an exponentially growing function of
potential depth as in the single particle case. The effect of interactions on the group velocity
and the effective mass can be understood in terms of the screening of the lattice by repulsive
interactions.

In the tight binding regime (see section 6.2), the energy and chemical potential bands
take a simple analytic form. They are characterized by different density-dependent tunneling
parameters § and J,. The effective mass is inversely proportional to the density-dependent
tunneling parameter of the lowest energy Bloch band. From the expression for the Bloch
energy bands we also find equations for the current and the group velocity. We compare the
tight binding predictions with the respective results obtained from the numerical solution of
the GP-equation.

63
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Exploiting the tight binding formalism, we also derive simple expressions for the compress-
ibility of the groundstate and the effective coupling constant introduced in chapter 5. Explicit
formulars for the groundstate energy, chemical potential and compressibility in a very deep
lattice are obtained based on a gaussian ansatz for the Wannier function of the lowest band.
Using this ansatz, we also estimate the dependence on lattice depth of the peak density at the
center of a harmonic trap added to the optical lattice.

In [102], we have reported our numerical results for the Bloch band spectra, the group
velocity, the effective mass and their analytical tight binding expressions, as well as the tight
binding expressions for the groundstate compressibility. In this thesis, results for the Bloch
state density profiles and the gap between first and second energy and chemical potential
Bloch band are included. Also, the proof of the relation between the current of a Bloch state
and the energy Bloch bands is added, as well as the discussion of the peak density and the on-
site energy and chemical potential within the gaussian approximation to the Wannier function
of the lowest Bloch band.

6.1 Bloch states and Bloch bands

As discussed in chapter (4), the stationary state of a single particle in a periodic potential
is described by a Bloch function (see Eq.(4.3)). Within GP-theory, the difference between a
single particle and an interacting condensate is accounted for by the nonlinear term in the GPE
(5.4). Now, suppose we are dealing with a solution whose density has period d. Under this
condition, the GPE is invariant under any transformation z — z 4+ [d and we can use the same
arguments as in section (4.1) to show that the respective solution has the form of a Bloch
function

oik(z) = eikz@k(z) , (6.2)

with the periodic Bloch wave ¢, (2) = @;i(2+1d). Stationary states can be of this kind, but,
due to the presence of the nonlinear term, they do not have to: Other classes of solutions are
associated with density profiles of periodicity 2d, 4d, .... Such solutions have recently been
found in [104, 105]. The groundstate discussed above in chapter 5 is of the form (6.2) with
j =1, k=0. In the following we explore condensates in Bloch states (6.2).

It is convenient to solve the GPE (5.4) for the periodic Bloch waves ¢y,

1 . . Z - . -
o (~i10- 4 1?5 B sin? (7)o gndgin(2)? | n(2) =m0 (). (63)

m

From the solution of Eq.(6.3) one gets the functions ®;;(2) and the corresponding chemical
potentials 11;(k). This section is devoted to such solutions.

Density profile

Let us first discuss some solutions for the density \gojk(z)IQ. In Figs. 6.1 and 6.2, we report
results obtained at s = 5,gn = 0.5ERr and s = 10,gn = 0.5FER respectively for different
bands and quasi-momenta (j = 1,2,3, ik = 0, 0.5¢p, 1gg). Density profiles of higher bands
are more modulated and tend to allow for larger particle densities in high potential regions.
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Note also the qualitative resemblance of the profiles with the probability amplitude of a single
particle in a harmonic oscillator potential. When the lattice is made deeper, density profiles
of states within a certain band become more and more similar. This effect is more obvious
the lower the band index. Overall, the behavior of the density profile for varying j and k is
analogous to the single particle case. Fig.6.3 compares the density profiles at £ = 0.5qp for
gn =0 and gn = 1ER. This shows that a change in gn/ER has the same screening effect as
in the case of the groundstate (k = 0).

Figure 6.1: Density profiles d|p;x(2)|* obtained from (6.3) at s = 5, gn = 0.5Eg for band
index a) j =1, b) j=2and c) j =3 at hk = 0 (solid lines), ik = 0.5¢gp (dashed lines) and
hk = gp (dash-dotted lines)).
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Figure 6.2: Density profiles d|p;x(2)|? obtained from (6.3) at s = 10, gn = 0.5ER for band
index a) j =1, b) j=2and c) j =3 at hk = 0 (solid lines), hk = 0.5¢p (dashed lines) and
hk = qp (dash-dotted lines)).

dlpjr(2)[?
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Figure 6.3: Density profiles d|o;x(2)|? obtained from (6.3) at s = 5, gn = 0ER (solid lines)
and s = 5, gn = 1ER (dashed lines) for band index a) j = 1, b) j =2 and ¢) j = 3 at
hk = 0.5¢p.
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Chemical potential and energy band spectra

Given a solution @), of the GPE (6.3), the energy per particle ¢;(k) can be calculated using
the expression

42 1 ) ) 1 N -
W= [, # o (B0 4 TE)? 5 Epsind (2) + Sgnd25u(2) | @3u(2)2(6.9)

and differs from the chemical potential 11;(k)

a2 I . s 5
(k) = /_ e [% (—ihd. + hk)? + s Bg sin? () + gnd\gojk(z)ﬂ 50(2)d=.(6.5)

by the term (gnd/2) f%% |@;k(2)|*. The chemical potential coincides with the energy per
particle only in absence of the interaction term. In general, 11; and ¢; are linked to each other

by the relation
Ilne; (k)]
(k) = —1—2. 6.6
i) = S5 (6.6)
In the uniform interacting system, a condensate in a stationary state is characterized by an
energy per particle and by a chemical potential. These two quantities differ from each other

due to interaction. Stationary states are plane waves and the GPE yields

h2k2

e(k;s=0) = %—F%, (6.7)
h2k2

u(k;s :0) = gn—i—%, (68)

showing that both energy and chemical potential have the same free-particle k-dependence.
Going from k = 0 to k # 0 changes the wavefunction by just the phase factor exp(ikz),
which physically corresponds to imparting a constant velocity 7k /m to the condensate. The
“excitation” to a state with k # 0 corresponds to a simple Galileo transformation which adds
energy h2k2/2m to each particle and thus to the chemical potential. Hence, in the absence
of a lattice the two spectra £(k) and (k) differ from each other only by an off-set due to the
groundstate interaction energy and don't exhibit a different k-dependence.

In the presence of a lattice, analogously to the uniform case one can associate to each
stationary state ¢;;, an energy per particle and a chemical potential which form two different
band spectra. However, in the presence of a lattice, the situation is very different from the
uniform case: Going from k = 0 to k # 0 does not just correspond to a simple change
of reference frame since the barriers of the potential remain fixed. The consequence is a
dependence of the Bloch wave ¢, on k which gives rise in general also to a difference between
the k-dependence of energy and chemical potential.

In Fig.6.4 we plot the band spectra (6.4,6.5) for gn = 0.5ER at different lattice depth s.
For any j, k the value of the chemical potential is always larger than the energy per particle.
In analogy to the properties of the single particle Bloch band spectrum, increasing s has three
major effects: The energy per particle and the chemical potential are shifted to larger values.
The gaps between the bands become larger while each band becomes flatter.

In Figs.6.5, we plot the band spectra (6.4,6.5) at depth s =5 for gn = 0 and gn = 1ER.
Fig. 6.5 a) shows again the upward shift of the energy (6.4) and even more of the chemical
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potential (6.5) due to interactions. In order to have a look at the change of the k-dependence
brought about by interactions, we plot in Fig. 6.5 b) the same data as in Fig. 6.5 a), but
from each data set we subtract the respective groundstate value. We observe that interactions
most affect the k-dependence of the lowest bands, especially in a deep lattice where higher
bands are almost identical to the single particle case.

16

6/E}ﬁ /J’/ER
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Figure 6.4: Bloch band spectra ¢;(k) (6.4) (solid lines) and (k) (6.5) (dashed lines) for
gn = 0.5FER at lattice depth a) s =5 and b) s = 10.

Gap in the band spectra

The opening up of gaps between the bands is a feature that physically characterizes a system
in presence of a periodic potential. Fig.6.6 displays this gap between first and second band
as a function of lattice depth for different values of gn/ER for both the energy per particle
(6.4) and the chemical potential (6.5). At fixed s, the gap becomes smaller when gn/Eg is
increased which again can be understood as a screening effect. Yet, quantitatively the effect
is not very large. For large s the gap very slowly approaches the value 2\/sER given by the
harmonic approximation of the potential well. Note that in Fig. 6.6 we do not include the
range of small potential depths where swallow tails exist (see comments at the end of this
section).

The gap in the energy spectrum has been studied experimentally in [67, 68, 69]
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Figure 6.5: Bloch band spectra (k) (6.4) (dashed lines) and 1;(k) (6.5) (dash-dotted lines)
at s = 5 for gn = 1ER. Solid lines: Single particle Bloch band spectrum at s =5 (gn = 0
where €;(k) = pj(k)). In b) the groundstate value has been subtracted for each data set.

Current, group velocity and effective mass

A stationary state is characterized by a spatially uniform, time-independent current. In the
following, we will show that the current density
ih 0 0
I(k) = nd -1 -—*.—*—) 6.9
i (k) o (‘P]kax‘p]k ik ik (6.9)
associated with a certain condensate Bloch state is determined by the energy band structure
in the same way as in the single particle case. Let us consider the modified GP-equation

—h—2(£+m>2+v<)+ U2 ) U = pu¥ (6.10)
2m \ 0z T B '

which is obtained by replacing the momentum operator —ihd/0z by —ihd/0z + hA, where
A is a constant. The presence of A does not violate periodicity so we can look for solutions
of Bloch form

(2, A) = e* W5 (2, A), (6.11)
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Figure 6.6: Gap between first and second Bloch band of the spectra (6.4) and (6.5) at ik = g
as a function of lattice depth s for gn = 0 (solid line) and gn = 1Eg (dashed and dash-
dotted lines respectively). The dotted line indicates the value 2\/sEr given by the harmonic
approximation of the potential well.

where Rk is the quasimomentum and j the band index. The corresponding energy functional
yields the “energy per particle”

d/2 . 1 ' ) 1
gj(k,A) = /d/2 ©5(2) {% (—ihd, + hA)® + s Eg sin? (z) + §gnd]<pjk(z)|2] ik(z)dz.
(6.12)
Differentiation with respect to A gives
1 [0¢j(k, A) ih  [4/2
— | —= = — d 1005 — P00k | - 6.13

It is important that ¢;; need not be differentiated because de/dp = 0. The integrand is
I;(k)/nd where I;(k) is the current density (6.9). Hence, we have

1 [asj(k,A)} _ Lk (6.14)
A=0

h 0A n

However, the dependence of € on A is completely fictional. Due to the gauge invariance of
the GP-equation, A can be excluded from the equation by the substitution

bk = eiAchjk(z, A) = ei(‘“k)z@k(z,A) . (6.15)

The function ¢;;, satisfies the usual GP-equation. This means that the energy Bloch bands
for the modified GP-equation (6.10) are the same as for the usual one. However, the function
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¢ji, according to (6.15) corresponds to a Bloch state with quasi-momentum 7% (k + A)! This
implies that
gj(k,A) =¢j(k+ A), (6.16)

where ¢;(k) are the usual energy Bloch bands. Comparing with (6.14) we find finally that

e, (k)

Ij(k) =n ok

(6.17)

in analogy with the single particle case (see section 4.15). Hence, the group velocity v;(k) is
given by

. e (k)
(k) = . 1
bilh) = 20 (6.18)
The effective mass m™* is defined by
1 2ej1(k
= 8557*1() 7 (6.19)
m* h=0k?2 i

and characterizes current and group velocity at small quasi-momenta in the lowest band

hk
hk
T)jzl(k) — —. (621)

m*

Ijzl(k) — N

(6.20)

The generalization of the definition of the effective mass (6.19) to any value of band index
and quasi-momentum reads the same as in the single particle case
1 82€j(k)

= . 6.22
mi(k) " hPok? (6.22)

The fact that the expressions (6.17,6.18,6.19) are the same as for a single particle is not
trivial: It shows that it is the energy band spectrum which determines these quantities and not
the chemical potential band spectrum! Formally, we can of course define an effective mass
associated with the lowest chemical potential at small &

1 Pp(k)

mh T hPok?

; (6.23)
k=0

in analogy to definition (6.19). In fact, in section 7 we will find that the k-dependence of
the chemical potential and in particular the effective mass (6.23) play a role in the description
of the spectrum of the Bogoliubov excitations of the condensate in a stationary state of the
Bloch-form (6.2). The energy and chemical potential effective mass are linked by the relation

NEENEAY 634

m* on \m*
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which follows from (k) = 9(ne(k))/On. The two effective masses are in general different
from each other reflecting the difference in the Bloch band spectra. To give an example, for
s =10, gn = 0.5ER one finds that m* is about 28% larger than my,.

Even though the expressions (6.17,6.18,6.19) are the same as for a single particle, the
results obtained are generally different since the energy Bloch bands do change in the presence
of interactions. Consequently, current, group velocity and effective mass not only depend on
lattice depth, but also on density.

0.6 T T T T T T T T T

2mv/qp

-0.2

-0.4

hk/QB

Figure 6.7: Group velocity (6.18) in the lowest band as a function of condensate quasi-
momentum k at s = 5 for gn = 0 (solid line), gn = 0.1ER (dashed line) and gn = 0.5ER
(dash-dotted line).

The effect of interactions on the group velocity (6.18) is most evident in the lowest band:
Its dependence on the condensate quasi-momentum k for different densities in the lowest band
is illustrated in Fig. 6.7 for s = 5. The larger gn/ER the larger are the group velocities
the condensate can achieve at fixed lattice depth. For example, a change from gn = 0 to
gn = 0.5FER increases the maximal group velocity by about 30%. Again, the underlying
physical reason is the effective lowering of the potential achieved by an increase of gn/ERr
(screening): In a shallower lattice the lowest energy Bloch band is broader implying larger
values of the group velocity (6.18).

At small quasi-momenta, the change in current and group velocity brought about by the
optical lattice can be understood in terms of the change in the effective mass. In Fig.6.8,
we plot the effective mass (6.19) as a function of potential depth for different values of
gn/EpR. As in the single particle case, the exponential increase of m* as a function of lattice
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depth s reflects the slow-down of the particles by the tunneling through the potential barriers.
Qualitatively, this effect is unaltered in the presence of interactions: The effective mass still
features an exponential increase, yet this increase is weaker than for a single particle. At a given
potential depth, the effective mass is lowered by increasing gn/Eg due to the screening effect
of interactions. This is illustrated in Fig.6.9 where we depict the ratio between condensate and
single particle effective mass at different densities. At gn = 0.5FR, the condensate effective
mass is about 30% smaller than the one of a single particle at s = 15. It is interesting to
note that the ratio between m*(gn) and the single particle effective mass plotted in Fig. 6.9
saturates when s is tuned to large values. This property of the effective mass will become clear
in the next section once we relate m* with the tunneling parameter 4.

Figure 6.8: Effective mass (6.19) as a function of lattice depth s for gn = 0 (solid line),
gn = 0.1FR (dashed line) and gn = 0.5ER (dash-dotted line) ( a) s < 30, b) s < 10).
Wannier functions

In analogy to the case of a single particle (see section 4.1), we can introduce the Wannier
functions

1 .
fii(x) = N Z € Zkld%‘k(x)a (6.25)
Wk
where ¢y, is a Bloch function solution of the stationary GPE (5.4). The inverse relation reads

k() = Z fﬂ(z)eikld. (6.26)
l
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Figure 6.9: Ratio between the effective mass m*(gn) and the single particle effective mass for
gn = 0.5ER (solid line) and gn = 0.1ER (dashed line) as a function of lattice depth s.

‘The condensate Wannier functions (6.25) form a complete orthonormal set and fulfill the
relation

fii(x) = fi(xz —1d). (6.27)

As in the single particle case, the Wannier function f;; of a condensate is localized at site [
and spreads less and less over other sites the deeper the lattice. For convenience, we choose
the Wannier functions to be real in the following.

Momentum and quasi-momentum

The momentum distribution of a Bloch state is obtained in complete analogy to the single
particle case (see chapter 4.1). In fact, we find that apart from a slight screening effect
interactions do not have a strong effect for typical values of gn.

Swallow tails

For gn > s one encounters Bloch state solutions which lead to loops (“swallow tails") at the
edge of the lowest energy Bloch band [107, 106, 108, 109, 110, 111]. The appearance of these
states goes along with a non-zero group velocity of the Bloch state at £ = hgpg, in sharp
contrast with the typical behavior of a single particle. For smaller values of gn > 0 such loops
can also be found at the center of the first excited band [107]. For the values of gn we have
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considered, these swallow tails exist only for very small values of the lattice depth s and we
will not discuss them in the following.

Stability of condensate Bloch states

It is important to note that Bloch states can be energetically or dynamically unstable. The
stability can be analyzed by calculating the Bogoliubov excitation spectrum of a given ¢j,
(see [1] chapter 5.6 and comments in section 7.1 below). Two types of instabilities can be
encountered: An energetic instability is present if a small perturbation of the stationary solution
;i leads to a decrease of the energy. Hence in the presence of dissipative terms the system is
driven to configurations with lower energy. In contrast, a dynamic instability is associated with
the exponential growth in time of a small perturbation which does not require the inclusion of
dissipation.

As a general rule, for a given s and nonzero gn, Bloch states in the lowest band are stable
for sufficiently small k. Then, there is a range of k < hgp in which they are energetically
unstable, but dynamically stable. For further increasing k, the states also become dynamically
unstable. This issue has been the subject of extensive theoretical work (see for example [112,
113, 114, 115, 107, 116, 117, 118]) and has important experimental consequences [74, 76, 77].
The onset of dynamical instabilities leads to a breakdown of the center-of-mass oscillations
of a condensate in the combined potential of optical lattice and harmonic trap [115, 76] (see
also discussion at the end of chapter 9.6). Recently [104], a connection has been established
between the quasi-momentum %k at which dynamical instabilities are first encountered and
the appearance of period doubled stationary state solutions of the GP-equation in the band
spectrum. The stability of a condensate in the vicinity of the Brillouin zone edge has recently
been investigated by controlling the the quasi-momentum through an acceleration of the lattice
[77]. The presence of instabilities at the zone edge is confirmed. The growth rates are found
to be in agreement with theoretical predictions.

6.2 Tight binding regime

In a sufficiently deep potential, the Wannier functions of a band exhibit only nearest-neighbour
contact, as in the single particle case. This means that f; extends only over the sites [ and
I + 1 with its main contributions arising from the site [. This fact can be exploited to derive
simple analytic expressions for the energy and chemical potential Bloch bands, and hence for
the current, the group velocity and the effective mass, allowing to link these quantities with
the tunneling properties of the system.

Bloch states and Bloch bands

Let us write down the energy of the condensate in the Bloch state ¢;;(2) with only next-
neighbour contact Wannier functions of the respective band. We neglect next-neighbour terms
of the form fOL dzflszﬂ which are much smaller than contributions involving fOL dzflgflil.
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As a consequence of the displacement property of the Wannier functions (6.27), we have
Lj2 L/2 \
[ pentEdd= [ peeEdd, (6.28)
—L/2 —L/2
and we obtain the result

L2 2 52 n
ej(k) = / fj(z)< 2hm 6822 + sEgsin? (d> 9 df2( )) fi(z)dz

—LJ2

2
+ 2cos(kd) /L/2 fj(z)< B2 0 s Bpsin? <%> +2gndfj2(z)> iz — d)dz

—L/2 2m 922
= egj — 05 cos(kd), (6.29)

where in the last step we have defined the quantities

= /L/2 < B2 92 ¢ s Bysin? (d) gndfz( )> f(2)dz.  (6.30)

L/2 2m 922

L/2 2 92
§; = —2/ fi(2) < 2hm882 + s Epsin® (?) + andff(z)> fi(z —d)dz

(6.31)

Comparison of Eq.(6.29) with Eq.(4.29) reveals that in the tight binding regime, the energy
bands of a condensate have the same form as in the single particle case. The first term ey
is an off-set, while the second describes the formation of a band of height 26; and a cos(kd)-
dependence on the quasi-momentum. In particular, expression (6.31) generalizes the definition
of the tunneling parameter (4.30) to a condensate in presence of interactions.

In contrast to the single particle case, the off-set €y; and the tunneling parameter §; do not
only depend on lattice depth, but also on density. This density-dependence shows up in two
ways: implicitly through the density-dependence of the Wannier function f;, which can often
be neglected, and explicitly through the interaction term.

We can apply the same considerations to the calculation of the chemical potential in the
tight binding regime. In this way, we obtain

/2 n? o2 T2
pik) = [ d/zwz)( oo 5o+ sBwsin® (75 )+ gndlepn (9P | ()i

= Hoj; — 5N7j COS(k‘d) 5 (632)

where we have defined the quantities

L)2 2 92
woi = [ (@) (—ha+sERsin2 <7T;)+gndff(z)> fi(2)dz, (6.33)

—L/2 2m 022

—L)2

/ 2 92
Opj = —2 / o fi(2) (—hi + sEpgsin® (”j) —|—4gndfj2(z)> fi(z —d)dz. (6.34)
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Comparison of Egs.(6.30,6.33) and Eqs.(6.31,6.34) shows that

gnd L/2 A
Hoj =20 = o | fi(2) (6.35)
L/2
O —0j = —4gnd / £ () fi(z — d)dz . (6.36)
—L/2

Using this result and the general relation p = 0(ne)/0n, we identify

deo M L/2 4

Ton T 2 Jup 15 (2), (6.37)
A6 Ly
woe = tgnd || - iz, (6:38)

We recall that in the single particle case the [-th Fourier component of the energy band
(coefficient of e?*!? in the Fourier expansion) is given by the matrix element of the Hamilto-
nian between Wannier functions at distance [d. In the tight binding regime this immediatly
yields the cos-dependence on the quasi-momentum. The situation is different in the pres-
ence of interactions. For instance, also next-neighbour overlap can lead to higher frequency
contributions to the energy band since the term fdszffﬂ, neglected here, would yield a
cos(2kd)-dependence.

Group velocity, current and effective mass

Exactly as in the single particle case, the knowledge of the form of the considered energy band
(6.29) in the tight binding regime, immediately permits to write down explicit expressions for
the group velocity (6.18), the current density (6.17) and the effective mass (6.19).

The group velocity (6.18) takes the simple form
do;
5;(k) = =L sin(kd) (6.39)

and correspondingly, the current density reads

doj .
Ii(k) = Y sin(kd) . (6.40)
Both quantities are proportional to the tunneling parameter 0.

The effective mass (6.19) turns out to be inversely proportional to the tunneling parameter

L
m*ihQ'

(6.41)

Thus, the exponential increase of m* as a function of s in an optical lattice (see Fig.6.8)
reflects the exponential decrease of the tunneling parameter. We can now discuss why the
effect of interaction on m* can not be neglected, not even at very large s (see Fig. 6.9): This is
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mainly due to the explicit dependence of the tunneling parameter on gn in (6.31) and secondly
to the dependence of the Wannier function f on the density. In Fig. 6.9 one can see that the
deviation of m*(gn) from the single particle effective mass is approximately proportional to
gn. The departure from this linear law in gn is due to the density dependence of the Wannier
function f. For the considered interaction gn = 0.5ER it has a small effect of about 5% on
the effective mass, to be compared with the 30% shift due to the explicit dependence on gn.

The generalized k-dependent effective mass (6.22) takes the form

25
Lo dh—g]cos(kd). (6.42)

In Figs. 6.10 and 6.11 we compare the tight binding expressions for the lowest energy band
and the associated group velocity with the respective numerical solution. To evaluate (6.29)
and (6.39), the tunneling parameter (6.31) is obtained by inserting the numerical results for
m* in Eq.(6.41). We find that the tight binding results provide a good description already at
s =10 for gn = 0.5ER. To obtain the same degree of agreement at a higher value of gn/Eg
one has to go to larger s.

!

hk/CIB

Figure 6.10: Comparison of the tight binding expression (6.29) for the lowest energy band with
the respective numerical solution for gn = 0.5Eg ata) s =1, b) s =5 and c) s = 10.
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Figure 6.11: Comparison of the tight binding expression (6.39) for the group velocity in the
lowest band with the respective numerical solution for gn = 0.5ER at a) s =5, b) s = 10.

Compressibility and effective coupling

The compressibility x in the tight binding regime can be calculated by inserting the tight
binding expression for the chemical potential (6.32) with j = 1, kK = 0 into the definition
k! =ndu/On. Taking into account result (6.38) and (6.36), we find

L2 L)2
K= gnd/ )+ 8gnd/ 2(2)f(z — d)dz, (6.43)

where po was defined in Eq.(6.33). The first term is the leading order on-site contribution,
while the second contribution is due to the small overlap of neighbouring Wannier functions
and can be often neglected. In deriving (6.43) we also discarded terms involving the derivating
0f(z;n)/0On. This presupposes the lattice to be deep enough to ensure that the effect of
interactions on the wavefunction is negligible. Expression (6.43) then takes the form

L)2
K~ —gnd/ gn oz (6.44)

where f,,—¢ is the single particle Wannier function for the lowest band. This expression is
expected to give a good account of the compressibility in a sufficiently deep lattice. It follows
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that the effective coupling constant (5.15) in the tight binding regime reads

~ L/2 4
g=gd /—L gn:O(Z) : (645)

A quantitative estimate of the validity of this expression will be given in the following section
using a gaussian ansatz for the Wannier function.

Gaussian approximation to the Wannier function of the lowest band

In the limit of zero tunneling (s — oo), Wannier functions become eigenstates. In particular,
a single particle in the groundstate can be described by the corresponding harmonic oscillator
wavefunction. If s > 1 and as long as the single-well condensate is far from being correctly
described by the TF-approximation inside each well, it is reasonable to approximate the Wannier
function by a gaussian

o(z) = f(2) exp(—2%/20?). (6.46)

1
= VN

The gaussian (6.46) is a useful variational ansatz for the calculation of on-site quantities
as the compressibility, but fails to describe properties which crucially depend on the overlap
between neighbouring Wannier functions, as the effective mass. In fact, when tunneling is
possible, but its effects only small, we expect the Wannier function of the lowest band to be
still similar to the gaussian (6.46) inside a well, but to have oscillating tails in the barrier region
in order to ensure orthogonality.

At a given lattice depth s and interaction gn/FER, the value of the gaussian width o is fixed
by requiring the ansatz (6.46) to minimize the energy of the system. Since contributions due
to tunneling go beyond the accuracy of this description, it is consistent to consider only the
on-site energy o (see Eq.(6.30)). Moreover, we expand the lattice potential (3.6) around its

minima ) 4
Tz s (mz
V(z)/Ep~s(—) —2 (= 6.47
Gee~s () -5 (%) (6.47)
where the first term corresponds to a harmonic potential of oscillator frequency
o =2v/sEgr/h, (6.48)

while the second term allows for anharmonicity effects of O(z%). The solution o has to satisfy
the equation
d3 1 T ™ 4 lgn [md*1
4 sto—s—ot— - 22— 0. 6.49
7r303+8d0 B 2FER\V 27202 ( )

Since in we are interested in the large-s limit, we neglect the interaction term. Using s >
1, om/d << 1 we obtain the explicit expression

1 1 d
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The leading contribution yields the single particle harmonic oscillator groundstate where o =
s~1/4d/m = \/h/m& for the harmonic well with frequency & = 2\/sEg/h, while the second
term is a small correction arising from the anharmonicity which slightly increases the width o
of the groundstate.

Inserting the gaussian ansatz into the expressions (6.30) and (6.33) for the on-site contri-
bution to the energy and the chemical potential, we obtain

€0 d? 1 2 5, 1rt 1 gndl
B = 2ol S(W"@" * JenEnro’ (6:51)

Mo €0 1 gndl

—_—t 6.52
EFr FEr S8t Egrmo (6.52)

Within the gaussian approximation, the inverse compressibility (6.44) can be rewritten as

d
" gn

= 6.53
2o ( )
and the tight binding effective coupling constant (6.45) takes the form
d
i=—2 (6.54)
2o

with o given by (6.50). For s = 10, gn = 0.5ER the approximation x~! = gn with § given by
Eq.(6.54) differs from the exact value of k=1 by less than 1%.

In section 5.4, we have found that the average density at the central site of a condensate
loaded in the combined potential of optical lattice and harmonic trap decreases like nj—g ~
(3/9)73/% ~ s73/29 _ As already mentioned there, the decrease of the average density at
the trap center (5.31) is to be contrasted with the increase of the non-averaged peak density
n(ry = 0,z = 0) ~ (§/9)%° ~ s'/19 We can now prove the latter statement using the
gaussian ansatz (6.46) with o given by (6.49): The peak density then reads

n(ry =0,2=0)= f(z=0)n—(r. =0;s) = 1}2 (e = %gn:o) , (6.55)
/20 g

where we have used the approximative solution (i — ftgn—0)/g for the average density profile
(see Eq.(5.31)) with 1 — p1gn—o and § given by Eqgs.(5.29) and (6.54) respectively. At s =0,
the density at the center is given by n(r, = 0,z = 0) = u/g where p is the usual TF-value
of the chemical potential (see Eq.(5.29) with § = g and jg,—0 = 0). It follows that the ratio
between the peak densities at large s and at s = 0 equals /2 (g/g)2/5. For s = 20 and s = 50,
this amounts to a 32% and 46% increase respectively.
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Chapter 7

Bogoliubov excitations of Bloch state
condensates

Small perturbations of a stationary Bloch state condensate can be analyzed in terms of its
Bogoliubov excitations. We show that these excitations have Bloch symmetry and hence are
labeled by their band index j and their quasi-momentum hq (see section 7.2). Accordingly,
the Bogoliubov dispersion takes the form of a band spectrum (“Bogoliubov band spectrum”)
which depends on the stationary condensate Bloch state whose excitations are considered.

The physical meaning underlying the Bogoliubov band spectrum is very different from the
one of the energy Bloch bands discussed in the previous chapter: The Bloch bands refer to
states which involve a motion of the whole condensate through the lattice. In contrast, the
Bogoliubov bands describe small perturbations which involve only a small portion of atoms.
The non-perturbed condensate acts as a carrier or, in other words, as a medium through which
the perturbed portion is moving. This physical picture explains why interaction effects on the
Bogoliubov spectrum are more significant than on the Bloch energies.

We calculate the Bogoliubov bands of the groundstate condensate (see section 7.2). The
lowest band exhibits a phononic regime at small quasi-momenta while higher Bogoliubov bands
are found to be little affected by interactions. An analysis of the Bogoliubov amplitudes of the
lowest band shows that the v-amplitude becomes comparable to the u-amplitude in the whole
Brillouin zone as the lattice is made deeper. Hence, all excitations of the lowest band acquire
quasi-particle character, even in the range of quasi-momenta where the dispersion is not linear
and excitations are not phonons.

We develop a formalism which is suitable to describe the lowest Bogoliubov band in the
tight binding regime (see section 7.3). Analytic formulas for the lowest Bogoliubov band
and the respective Bogoliubov amplitudes are found. They involve the tunneling parameter ¢
describing the lowest energy Bloch band in the tight binding regime (see chapter 6.2 above)
and the compressibility x of the groundstate. When the lattice is made very deep, the band
takes the form of the modulus of a sin-function. The band height is given by 2v/6x and
decreases much more slowly as a function of the lattice depth as the height 2§ of the lowest
energy Bloch band (see chapter 6.2 above). The relative difference between Bogoliubov u
and v-amplitude at the boundary of the Brillouin zone goes to zero like v/28x, indicating the
quasi-particle character of excitations.

83
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The sound velocity in the groundstate condensate drops strongly as a function of lattice
depth (see section 7.4). This behavior is directly linked to the increase of the effective mass
which overcompensates the decrease of the compressibility. We also discuss the sound velocity
in a condensate with non-zero group velocity. In contrast to a moving uniform system, the
sound velocity in a condensate moving in a lattice is not simply given by the sum of the sound
velocity in a condensate at rest and the group velocity of the condensate with respect to the
lattice.

In [102], we have reported the numerical results for the Bogoliubov band spectra and the
sound velocity of the groundstate, as well as the analytical tight binding expressions for the
lowest Bogoliubov band and the respective Bogoliubov amplitudes. There, we also discussed
the hydrodynamic results for the sound velocity in a slowly moving condensate. This thesis
adds the discussion of the numerical Bogoliubov amplitudes, their comparison with the tight
binding expressions and the analysis of the ratio between the u and v-amplitude in the limit of
a very deep lattice, as well as the discussion of the gap between first and second Bogoliubov
band and the comparison of the heights of the lowest Bogoliubov and energy Bloch band.

7.1 Bogoliubov equations

The dynamics of a coherent zero-temperature condensate in a 1D optical lattice is described
by the time-dependent GPE (TDGPE)

e

h? 0?
5 = ( + sFpsin® (%) +g |\Il(z,t)|2> U(z,t), (7.1)

" 2m 022

where we have excluded dynamics involving the transverse direction and ffﬁz dr|U|? = Nigt.

Stationary state solutions of Bloch form are given by

N .
Uip(z,t) = \/;e ity (W)/h
N . .
— \/;e Z#](k)t/helkZ@jk, (7.2)

where L is the transverse size of the system, NN is the number of particles per well and
wj(k), jk is a solution of the form (6.2) of the stationary GPE (5.4) (Recall that in sections
5 and 6 we have already made use of the rescaled order parameter (5.2)). To explore small
time-dependent deviations from such stationary states, we write

U(z,t) = et (R)t/hikz |:1 / %@jk(z) +0W(z,t)

where §U is a small perturbation of the Bloch state W;;(z,t). We linearize the TDGPE (7.1)
in U(z,t) and obtain

; (7.3)

2 2
000 (z 1) :< )

. mZ ~ ~ *
5 ~5—53 +5En sin’ (d) +2d gn |jx(2,t))* — Mj(@) 0U(z,t) + gndgs, 00" . (7.4)
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Using the expansion

0U(z,t) = 3 (Uo(2)e ™™ + vj(2)e) (7.5)

(e

where o labels the elementary excitations of this stationary state, we find the set of equations

h? 92 ) Tz . -
<_2m822 + sFpsin® <d) +2d gn |g0jk(z)\2 — M(k)) ug(z) + gndcp?k(z)vg(z) = hwsus(z) (7.6)

h? 02 ) mz - .
<_2m@7;2 + sFpsin® <d) +2d gn |g0jk(z)\2 — M(k)) ve(z) + gndgpji(z)uo(z) = —hwyve(z) (7.7)

for the Bogoliubov amplitudes u,(z), vs(z) and the excitation energies hw,-.

We require

/dz (Juol? — oo ?) = 1. (7.8)

Moreover, the Bogoliubov amplitudes must satisfy the orthogonality relations
/dz (Uitigr — Vvgr) = 0, (7.9)
/dz (Upvgr — Vo) =0, (7.10)

for o # o'.

The normalization condition (7.8) implies that for an energetically stable state ¢j; the
spectrum hw, is positive, while negative values fiw, signify that the stationary state ;i is
energetically unstable (see [1], chapter 5.6). The occurrence of complex frequencies w, with
a negative imaginary part reveals the dynamical instability of the stationary state ¢;;. The
stability analysis of condensate Bloch states commented on in the previous chapter is thus
based on the solution of the Bogoliubov equations (7.6,7.7).

The presence of a harmonic trap can changes significantly the low energy excitations of the
system. In fact, in chapter 9 we will show that small amplitude collective oscillations occurring
on a length scale of the system size are strongly affected both by the harmonic trap and the
lattice. The excitation spectrum obtained from (7.6,7.7) does not account for the presence of
a harmonic trap. Still, the solution of (7.6,7.7) is relevant also for trapped systems: It yields
a local Bogoliubov band spectrum given by hw,(nas(r)) where nps(r) is the macroscopic
density profile introduced above in chapter 5.4. This approach is valid for excitations whose
characteristic length scale is small compared to the size of the system.

7.2 Bogoliubov bands and Bogoliubov Bloch amplitudes

Since @;(2) is periodic, we can apply the Bloch theorem as in section 4.1 and write the
Bogoliubov amplitudes in the form

1 1qz ~

wjrg(z) = e Pj4(2) (7.11)
1 1q2 ~

vjrg(2) = N " jiq(2) (7.12)
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where @;14(2), Uj14(2) are periodic with period d and the index ¢ in Eqs.(7.6,7.7) is replaced by
the band index j' and the quasi-momentum ¢ of the excitation. Because the Egs.(7.6,7.7) are
linear, the set of Bogoliubov Bloch amplitudes (7.11,7.12) represents all possible solutions, in
contrast to the case of the nonlinear equation (5.4), where states of Bloch form constitute only
the class of solutions which are associated with a density profile of period d. The set of solutions
(7.11,7.12) is associated with a band spectrum hw;/ (q) of the energies of elementary excitations
(“Bogoliubov band spectrum™). In order to conform with periodic boundary conditions, the
quasi-momentum ¢ must belong to the spectrum
27

Tv,  v=0ELE2.. (7.13)

q =

The solutions (7.11,7.12) and the corresponding Bogoliubov band spectrum Aw;/(q) depend

on the particular stationary condensate ¢;;. In the following, we will restrict ourselves to

discussing small perturbations of the groundstate ¢. The Bogoliubov equations (7.6,7.7) for
this case read

h2 92 . Tz N .
(—%@ + sEpsin? (€> +2d gn ]cp(z)\2 — u) ujq(z) + gndgpQ(z)vjq(z) = hw;(q)ujq(z)  (7.14)

K2 92 . TZ ~ o
<—%@ +skgr sin? <F> +2d gn |%0(Z)|2 - N) qu(z) + gndp Q(Z)qu(z) = _hwj(Q)qu(z) (7.15)

where we have replaced the index o by the band index j and the quasi-momentum ¢ of the
excitation. Evidently, the Bogoliubov band spectrum takes only positive values in this case.
The numerical solution of Eqs.(7.14,7.15) is conveniently obtained by expanding the periodic
functions w4, Ujq, @ in a Fourier series.

The Bogoliubov equations (7.14,7.15) have been solved for example by [119, 120]. Numeric
solution for the bands hw;(q) of (7.6,7.7) with values of the condensate quasi-momentum & # 0
has been reported in [118]. The damping of Bogoliubov excitations in optical lattices at finite
temperatures has been studied by [121].

Bogoliubov band spectrum

Similarities and differences with respect to the well-known Bogoliubov spectrum in the uniform
case (s = 0) are immediate. As in the uniform case, interactions make the compressibility
finite, giving rise to a phononic regime for long wavelength excitations (¢ — 0) in the lowest
band. In high bands the spectrum of excitations instead resembles the Bloch dispersion (see
Eq.(6.4)), as it resembles the free particle dispersion in the uniform case. The differences
are that in the presence of the optical lattice the lattice period d and the Bragg momentum
gp = hm/d emerge as an additional physical length and momentum scale respectively and
that the Bogoliubov spectrum develops a band structure. As a consequence, the dispersion
is periodic as a function of quasi-momentum and different bands are separated by an energy
gap. In particular, the phononic regime present in the lowest band at ¢ = 0 is repeated at
every even multiple of the Bragg momentum ¢p.

In Fig.7.1 we compare the Bologoliubov bands at s = 1 for gn = 0 and gn = 0.5ER. In
the interacting case, one notices the appearance of the phononic regime in the lowest band,
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hw/ER

Figure 7.1: Bogoliubov bands hw;(g) obtained from the solution of (7.14,7.15) in the first
Brillouin zone for s = 1, gn = 0 (solid line) and gn = 0.5ER (dash-dotted line). Note that
for such a small potential, the gap between second and third band is still very small.

while high bands differ from the non-interacting ones mainly by an energy shift gn. This is a
general feature: For a given gn and s, sufficiently high bands are not affected by the lattice,
but are governed by the behavior of the Bogoliubov spectrum of the uniform gas at momenta
much larger than the inverse healing length h/¢

hwani(q) = \/a2/2m(q2/2m + 2gn) = hg®/2m + gn, (7.16)

where momenta lying in the j-th Brillouin zone are mapped to the j-th band.

In Fig.7.2 we compare the lowest Bogoliubov and Bloch bands with the single particle
energy. Clearly, the lowest Bloch band is less affected by the presence of interactions than the
Bogoliubov band. Similarly, in the uniform case the Bogoliubov dispersion is strongly affected
by interactions while the Bloch dispersion, obtained simply from a Galilei transformation, does
not involve interaction effects at all. The enhanced effect of interaction on the Bogoliubov
bands can be understood by recalling that the Bogoliubov band gives the energy of a small
perturbation propagating in a large background condensate while the Bloch band gives the
energy per particle related to the motion of the condensate as a whole.
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hw/ER

Figure 7.2: Lowest Bloch band (dashed line) and lowest Bogoliubov band (dash-dotted line)
for s =1 and gn = 0.5ERr compared with the single particle Bloch band (solid line). In the
case of the Bloch bands (solid and dashed line) the groundstate energy has been subtracted .

The solid lines in Fig.7.3 show how the lowest Bogoliubov band changes when the lattice
depth is increased at fixed interaction. At s = 1 (Fig.7.3a), apart from the formation of the
energy gap close to ¢ = gp, the curve still resembles the dispersion in the uniform case: both
the phononic linear regime at small ¢ and the quadratic regime at larger ¢ are visible. When the
potential is made deeper (s = 5, 10; Fig.7.3b,c), the band becomes flatter. As a consequence,
the quadratic regime disappears and the slope of the phononic regime decreases. This reflects
the strong decrease of the velocity of sound as the lattice is made deeper (see discussion below
in section 7.4).

In Fig.7.4, we plot the energy gap between lowest and first excited band as a function of
lattice depth for gn/Er = 1. For comparison, we display the corresponding curve for the
energy gap in the Bloch band spectrum of a single particle (see Fig.6.6). In addition, we
plot the gap 2,/sER between the vibrational levels obtained when approximating the bottom
of a lattice well by a harmonic potential (see Eq.(6.48)). It turns out that the gap in the
Bogoliubov band spectrum approaches the one in the single particle spectrum as s is tuned to
large values. This is the case because in a very deep lattice the first excited band is almost not
affected by interactions and is hence essentially given by the single particle Bloch band while
the lowest Bogoliubov band becomes so flat that the excitation energy at the zone boundary
is negligibly small compared to the energies of the second band. Note that the convergence to
the gap 2y/sER of the harmonic approximation is very slow, reflecting mainly the role of the
anharmonicity of the potential wells.
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hw/ER

hq/qB

Figure 7.3: Lowest Bogoliubov band at gn = 0.5 ER for different values of the potential depths:
s=1(a), s=5(b) and s =10 (c). The solid lines are obtained from the numerical solution
of Eqgs.(7.14,7.15) while the dashed lines refer to the tight-binding expression (7.38).
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Figure 7.4: Energy gap at the zone boundary between lowest and first excited Bogoliubov
band as a function of lattice depth for gn = 0 (solid line) and gn = 1Eg (dashed line).
For comparison, we also plot the gap 2/sER between the vibrational levels obtained when
approximating the bottom of a lattice well by a harmonic potential (dash-dotted line).



90 Bogoliubov excitations of Bloch state condensates

Bogoliubov amplitudes

The functions @jq(2z) and v;4(2) in (7.11,7.12) are periodic with period d. Their Fourier
expansion reads

27z

ﬂjq(z) = Z qul eil d (717)
l

27z

Vjq(z) = Z cig e (7.18)
l

The normalization condition requires
dz (b;qlbj’ql — C;qlcj'ql) = (5]-]-/ . (7.19)
l

With ¢ satisfying periodic boundary conditions this is sufficient to ensure the orthonormalization
conditions (7.8,7.9) where the index o is replaced by the band index j and the quasi-momentum
q of the excitations.

In Figs. 7.5 and 7.6 we plot the square modulus of the Fourier coefficients b and cjq at
different values of ¢ in the first and the second Bogoliubov band for gn = 0.5FER at a lattice
depth of s =1, s =5 and s = 10 respectively.

At all considered lattice depth, the relative importance of the Bogoliubov v;,-amplitude
with respect to the wu;,~amplitude diminishes in the transition from the lowest to the first
excited band. In fact, the contribution of the v;,-amplitude is negligible in all considered cases
in the second band. Hence, for gn = 0.5ER, apart from an energy offset, essentially only the
lowest Bogoliubov band differs from the Bloch bands of a single particle. This can be explained
by the fact that for this choice of the parameter gn/FER, the healing length of the system is
comparable to the lattice period d, a setting which is typical of current experiments. As a
consequence, when the lattice is off the v;,-amplitude is relevant only at momenta hg << ¢p
and thus is negligible in higher bands. Switching on the lattice can change this situation only
in the lowest band.

Figs. 7.5 and 7.6 show that within the lowest Bogoliubov band, the relative magnitude of
the Bogoliubov v -amplitude with respect to the u,-amplitude is most relevant at small values
of the quasi-momentum g, associated with small excitation energies hw(q) and a phonon-
character of the excitations hw(q) ~ g. At low lattice depth the Bogoliubov v,-amplitude
becomes in fact completely irrelevant as ¢ is tuned towards ¢p, i.e. to values outside the
phononic regime. Yet, the deeper the lattice the larger becomes the relative magnitude of the
Bogoliubov vg-amplitude also at values of ¢ close to gp. In particular, Fig. 7.6 demonstrates
that at s = 10 the vg-amplitude takes values comparable to those of the ug,-amplitude even
at ¢ = 0.9¢p where the band spectrum does not have a linear dependence on q. We conclude
that in a sufficiently deep lattice, the elementary excitations of the lowest Bogoliubov band
have quasi-particle character even though they are phonons only for very small ¢.

The comparison of Figs. 7.5 and 7.6 also illustrates that the Bogoliubov amplitudes are
more strongly modulated s the potential depth s is increased giving rise to an increase in
the number of relevant fourier coefficients in the sums (7.17,7.18). Besides, they become
larger in the lowest band. In fact, as we will discuss in more detail in the following section, the
Bogoliubov amplitudes of the lowest band become proportional to the condensate wavefunction
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as s — 00. The normalization (7.8) can then only be ensured if ug4 and v, grow to infinity in

this limit.
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Jj=1,nhq=01gp
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l

Figure 7.5: Square modulus of the Fourier coefficients bj, (white bars) and c;jy (black bars)
of Ujq(z) and Dj4(z) respectively as defined in (7.17,7.18) for the lowest Bogoliubov band

(

0.5ER and lattice depth s = 5.

1, left column) and the first excited Bogoliubov band (j = 2, right column) at ¢
0.1gp, 0.5¢B, 0.9¢p as obtained from the numerical solution of Eqgs.(7.14,7.15) with gn
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Figure 7.6: Square modulus of the Fourier coefficients bj, (white bars) and c;jy (black bars)
of Ujq(z) and Dj4(z) respectively as defined in (7.17,7.18) for the lowest Bogoliubov band
(j = 1, left column) and the first excited Bogoliubov band (j = 2, right column) at ¢ =
0.1¢gp, 0.5¢B, 0.9¢p as obtained from the numerical solution of Eqgs.(7.14,7.15) with gn =
0.5ER and lattice depth s = 10.

7.3 Tight binding regime of the lowest Bogoliubov band

Since the Bogoliubov amplitudes have Bloch form (see Eqs.(7.11,7.12)), we can find Wannier

functions f, j(2) and f; 5)(2) for the u;, and the v;4-amplitudes respectively. In their respective
Wannier basis, the Bogoliubov amplitudes read

1

ujq(2) = N Z fl(g)(z — ld)eltd (7.20)
woq

v3a(2) = \/jlvz 9 — )it (7.21)
woq

The Wannier functions fl(f;) and fl%) are in general different from each other and from the
Wannier functions f; (see Eq.(6.25)) of the condensate in a Bloch state. Yet, in the tight
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binding regime, the situation is simpler in the case of the lowest band: Since the excitation
energies go to zero as s is increased, the Bogoliubov amplitudes are approximately proportional
to the condensate wavefunction of the groundstate. So we set

1

ug(z) = \/T—quSOq(Z) (7.22)
1

vg(2) = \/T—qu@q(z)a (7.23)

where U, and V, are numbers that depend on the quasi-momentum ¢. The normalization
condition (7.8) implies that

|Ugl? — 1Vgl* = 1. (7.24)
Expanding the condensate wavefunction in its Wannier basis we can write
1 iqld
ug(z) = —=Uy Y fil)e (7.25)
vV Ny ;
1 iqld
vg(2) = —qu fi(x)er e, (7.26)
vV Ny ;

Our discussion of elementary excitations in the tight binding regime of the lowest Bogoliubov
band will be based on these expressions for the Bogoliubov amplitudes. We presuppose the
lowest Bloch band to be within the tight binding regime so that only next-neighbour overlap
has to be considered.

Lowest Bogoliubov band

To solve for the lowest Bogoliubov band hw(q), we first add and subtract the two equations
(7.14,7.15) yielding two coupled equations for ug + vy and ug — vg

Li(ug +vg) = hw(q)(ug — vy), (7.27)
L3(ug — vg) = hw(q)(uqg + vg), (7.28)
where
K2 92 T2
Ly = ———— + sEpsin® [ — 2 2
1 2m822+8 & sin <d)—|—dgn|<p(z)| I, (7.29)
h? 52 .o (T2 2
Ly = ~ 9 952 + sERsin (7) +3dgne(z)|” — p. (7.30)
Eliminating ug + v4 or uy — vy from (7.27,7.28), we obtain
L3 Ly (ug + vg) = h2w(q)2(uq + ), (7.31)
Ly Ly(uq — vg) = hw(q)* (ug — vg) - (7.32)
The matrix elements of L1 and L3 take the form
0
(flLilfi) = 6, {(filLalfizn) = =5 (7.33)

(flLs|fi) = 30 — 20, + 2gnd /dzf4(z)7 (filL3| fix1) = g — Oy (7.34)
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As in the previous chapter 6.2, we have neglected next-neighbour terms of the kind [ dz f? f7;
and we have used the definitions of the tunneling parameters ¢ and §,, (see Eqs.(6.31,6.34)).
Eqgs.(7.27,7.28) become

(U, — V)26 sin? (%) = hw(q)(Uy + Vy), (7.35)

with

hw(q) = \/2(5$in2 (qjd) (2 (26, —0) sin%%) + 2dgn /dzf4(z) +4(6 — (5“)> (7.36)

Comparison of the tight binding expression for the compressibility (6.43) with 6 — 6, (6.36)
and ndd/0n (6.38) allows us to rewrite (7.36) in the form

hw(q) = \/25sin2 (q2d> <2 <5 + 2n§i> sin? <q2d> + 251) : (7.37)

The density dependence of this spectrum shows up in three different ways:

e in the density dependence of § discussed in section 6.2 and shown in Fig.6.8 (where the
quantity m* oc 1/9 (see relation (6.41)) is plotted);

e in the density dependence of k™! which in the tight binding regime can be usually
approximated by the linear law gn (see Fig.5.5);

e a contribution due to the density derivative of & appears. However its effect in the
Bogoliubov band (7.37) is always small: for small interactions one has ndd/0n < d;
instead, for larger interactions the inverse compressibility x~! dominates both J and
ndd/On. Hence, we rewrite (7.37) neglecting this term

hw(q) = \/25sin2 (q2d> (25 sin? <q2d> + 2111) (7.38)

Note that, as is discussed below in section 7.4 and shown in [116, 118] contributions
due to ndd/On can significantly affect the excitation frequency calculated on top of a
moving condensate.

Fig.7.3 compares the numerical data with the approximate expression (7.38), evaluated
using the quantity = ! calculated in section 5.2 and the tunneling parameter § calculated in
section 6.1. As already found for the lowest Bloch band, for this value of gn, the agreement
with the tight binding expression is already good for s = 10.

It is possible to identify two regimes, where the lowest Bogoliubov band (7.38) can be
described by further simplified expressions:

e for very large potential depth, the spectrum is dominated by the compressibility term. In
fact, § — 0 while x~! becomes larger and larger as s increases. Hence, for large enough
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s with fixed gn, we can neglect the term of O(62) under the squareroot in Eq.(7.38)
and the spectrum takes the form
: (qd>
sin | —
2h

hw(q) =2V ok~1
Of course for large gn, the proper density-dependence of § and x~! has to be taken
into account in evaluating (7.39). Note that the Bogoliubov band becomes very flat
since ¢ decreases exponentially for large lattice depth s. Yet, its height decreases more
slowly than the one of the lowest Bloch band (6.29) whose width decreases linearly in
0. To illustrate this characteristic difference in the behaviour of the lowest Bogoliubov
and Bloch bands, we compare in Fig.7.7 the numerically obtained band heights.

, (7.39)

e for small enough gn, one can neglect the density dependence of § and use the approx-
imation k=1 = gn for the compressibility, where § takes the form (6.45) in the tight
binding regime. This yields

heo(q) = \/2 gosin (22 28 siu? (22) +2qm). (7.40)

which was first obtained in [122] (see also [115, 123, 124]). Eq.(7.40) has a form similar
to the well-known Bogoliubov spectrum of uniform gases, the energy 28gsin? (qd/2h)
replacing the free particle energy ¢%/2m.

hw/ER

Figure 7.7: Height of the lowest Bogoliubov band hw(q) (solid line) and the lowest Bloch
energy band (6.4) (dashed line) for gn = 1ER as a function of lattice depth s.
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Bogoliubov Bloch amplitudes of the lowest band

Using the normalization conditon for the Bogoliubov amplitudes (7.24), Eq.(7.35) yields

€q + hw
U, = 1 —2% 7.41
T 2w, (7.41)
v, = S (7.42)

N

where g, = 2§sin” (¢d/2) is the lowest energy Bloch band (6.29) from which the groundstate
energy has been subtracted.

According to (7.22,7.23) the coefficients of the Fourier expansion of the Bogoliubov Bloch
waves u, U read

bql = Uqaql ) (7'43)
cq = Vyag (7.44)

where ay; are the coefficients of the Fourier expansion of the condensate Bloch wave ¢,. In Fig.
7.8 we compare the square moduli |by|?, |cu|? obtained from the approximation (7.43,7.44)
with those obtained from the exact Fourier expansion (7.17,7.18) of the numerical solutions of
the Bogoliubov equations (7.14,7.15). As previously, we evaluate the expressions (7.41,7.42)
for Uy, Vy using the numerical results for £ and m*. We find that the agreement between the
full numerical and the tight binding results is very good.

The large-s limit of the ratio of U,/V, for non-zero interaction gn/Eg reads

% ~ — (1+ V20r|sin (4d/2)]) - (7.45)

The second term is small and decreases rapidly as a function of s implying that in the tight
binding regime U, and V, are of the same order of magnitude in the whole Brillouin zone.
This shows that all excitations of the lowest Bogoliubov band acquire quasi-particle character.
For large gn/ER (small k) this behavior is enhanced. Note that the second term decreases
with increasing s like the band height of the lowest Bogoliubov band in the large-s limit (see
Eq.(7.39) and Fig. 7.7).
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Figure 7.8: Fourier coefficients by, ¢, of the Bogoliubov Bloch waves 1, and 9, respectively:
Comparison of the tight binding approximation (7.43,7.44) (black bars) with the restults ob-
tained from the numerical solutions of the Bogoliubov equations (7.14,7.15) (white bars) at
lattice depth s = 10 for gn = 0.5ER. Left column: |by|*. Right column: |cy/?.

7.4 \Velocity of sound

The low energy excitations of a stable stationary Bloch state (j; are sound waves. The
corresponding dispersion law is linear in the quasi-momentum #Agq of the excitation. In general,
the spectrum hw(q) is not symmetric with respect to ¢ = 0 giving rise to two sound velocities
c4 and c_

hw(q) — cyhgq, for ¢ — 07", (7.46)
hw(q) — c_hq, forq — 0" . (7.47)

For a carrier condensate with quasi-momentum hk > 0, the velocities ¢4 and c_ refer to sound
waves propagating in the same and in the opposite direction as stationary current respectively.
Their values depend on the quantum numbers j, k of the stationary condensate, on lattice
depth s and interaction strength gn. They can be determined from the slope of the lowest
Bogoliubov band at ¢ = 0. We first address in detail the case £k = 0 and then discuss k£ # 0.
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Sound in a condensate at rest

In section 7.2, we have presented the results for the Bogoliubov bands of a condensate in the
groundstate. By determining the slope of the lowest Bogoliubov band at ¢ = 0, we obtain the
sound velocity as a function of s and gn/Eg. The results are presented in Fig.7.9 where we
plot the ratio ¢(s)/c(s = 0) for different values of gn/ER. The presence of the lattice leads
to a slow-down of sound. For gn = 0.5FR the decrease of the sound velocity amounts to
about 34% and 71% at s = 10 and s = 20 respectively. In fact, the hydrodynamic formalism
developed below in section 9 allows us to derive the relation

1

m*K

(7.48)

CcC =

Hence, the decrease of the sound velocity is a consequence of the exponential increase of the
effective mass m*. which overcompensates the decrease of the compressibility . It is not the
enhanced rigidity which governs the sound velocity, but the fact that the atoms are slowed
down by the potential barriers. To underline this point we also display in Fig. 7.9 the function
/m/m* obtained for gn = 0.5ER. Clearly, this quantity reproduces the characteristic features
of the ratio ¢(s)/c(s = 0).

Fig.7.9 shows that the density-dependencies of m* and x~! lead to a slight increase of
the ratio ¢(s)/c(s = 0) with gn/ER for fixed s which can be understood in terms of the
screening effect of interactions. This effect is due to the decrease of m* with increasing
density which overcompensates the decrease of 1/gnk (see Figs. 5.5 and 6.8). For small but
nonzero interaction gn one obtains the law ¢(s)/c(s = 0) = \/(m/m*)(g/g) with the effective
coupling constant g as defined in Eq.(5.15).

Note that in the tight binding regime the sound velocity (7.48) can also be obtained from
the low-¢ limit of the expression for the lowest Bogoliubov band (7.38).

The results for the sound velocity presented in this section concern sound waves of small
amplitude. Such sound waves exist as long as the system is superfluid and hence at all lattice
depths for which GP-theory can be applied. Yet, it remains a question whether sound waves
of finite amplitude can propagate at a certain s. This problem will be discussed in chapter 11.

Sound in a moving condensate

The energy of a sound wave excitation in a moving uniform condensate observed from the lab
frame is related to its energy in the rest frame by the Galilei transformation

hlk|
hiw(q) = chlql + = =hlql . (7.49)
Here, ¢ is the sound velocity in the rest frame, hk is the momentum associated with the relative
motion of the two frames and ¢ is the wave number of the sound wave in the rest frame. The
plus- and minus-sign hold when the sound wave propagates in the same and in the opposite
direction as the condensate respectively. Hence, the sound velocities observed in the lab frame

are obtained by simply adding or subtracting ¢ to/from the velocity h|k|/m of the moving
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Figure 7.9: Ratio between the sound velocity c(s) at lattice depth s and the sound velocity
c(s = 0) for gn = 0.02ER (solid line), gn = 0.1Eg (dashed line) and gn = 0.5ER as a
function of lattice depth s. The dotted line depicts the quantity /m/m* for gn = 0.5FR.

condensate
c,=c=k hlkl . (7.50)
m
To generalize this result to account for the presence of a lattice, we first consider a condensate
in a Bloch state of the lowest band moving with a small group velocity v with respect to the
lab frame (see discussion section 6.1)

hk

V= (7.51)
where hk is the quasi-momentum of the condensate and m™* is its effective mass in the lowest
band at k£ = 0 for a given lattice depth s. As mentioned above, the sound velocity in such a
condensate can be obtained by solving the Bogoliubov equations (7.6,7.7) with j = 1 and small
k and by extracting the slopes of the resulting lowest Bogoliubov band fw(q) for ¢ — +0. As
in the case s = 0 (see Eq.(7.50)), the Bogoliubov bands are asymmetric with respect to ¢ = 0
if k£ # 0 and the sound velocity depends on the sign of ¢.

An alternative to the numeric solution of (7.6,7.7) is offered by the hydrodynamic formalism
developed below in chapter 9. Its application allows us to derive the analytic result

Ik
hw(q) = chlq| + n!h\q!, (7.52)

I
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where c is the sound velocity (7.48) in the condensate at rest and mj, is the effective mass
obtained from the chemical potential band spectrum (see Eq.(6.23)). Hence, in the lab frame

the sound velocity is given by
hlk

n

cp,=c=+ (7.53)
The plus- and minus-sign hold when the sound wave propagates in the same and in the opposite
direction as the condensate respectively. Since the quantity hik/m}, is generally different from
the group velocity v = hk/m®*, the sound velocity is not generally obtained by adding v
and c in the case of copropagating sound waves, or by subtracting v from c in the case of
counterpropagation. This is the case only for s = 0 where m* = mj, = m. It is interesting to
note that the result (7.53) gives a physical meaning to the quantity my,.

In the tight binding regime, we can write ¢ = ¢ £ (0 + (0, — §)d*k/h), where §, — § =
ndd/on (see Eqgs.(6.38,6.36)), in order to show that the density-derivative of § plays an
important role. We remind that, in contrast, contributions arising from this quantity are
negligible as far as excitations of groundstate condensate are concerned (see discussion in
section 7.3).

Expression (7.53) has been derived assuming a small value of the condensate quasi-
momentum k. The hydrodynamic formalism can also be employed to calculate the sound
velocity for any value of k. The result reads [107, 125] (see also section 9 below)

n_ Ou(k)
m*(k) On

(k)
Ok

r = + ‘ : (7.54)

where m* (k) is the generalized effective mass (6.22) with ;7 = 1. Expanding this expression
up to O(k) at k =0, we recover result (7.53).



Chapter 8

Linear response - Probing the
Bogoliubov band structure

The Bogoliubov band structure can be probed by exposing the condensate to a weak exter-
nal perturbation: The linear response of the system involves transitions between the initial
groundstate and the excited states of the Bogoliubov spectrum. The spectrum of excita-
tions is determined by scanning both transferred energy and momentum and by recording the
encountered resonances.

In this chapter we will consider the particular case in which the external probe generates
a density perturbation in the system. This can be achieved experimentally by doing Bragg
spectroscopy where the system is illuminated with two laser beams. The absorption of a
photon from one beam initiates the stimulated emission of a photon into the second beam. The
difference between the wavevectors of the two beams and their detuning fixes the momentum
and the energy transferred to sample. So far, this technique has been used successfully to
investigate condensates without lattice [126, 127, 128, 129, 130, 131]. A method equivalent
to Bragg spectroscopy is offered by the possibility to manipulate the lattice itself in a time-
dependent way [132, 79, 91]: A modulation of the lattice depth transfers momentum 0, +2¢p
and energy hw, where w is the frequency of the modulation.

The presence of the lattice brings about significant changes with respect to the linear re-
sponse of the uniform system: Not only does the spectrum of excitations change (see previous
chapter 7) and therefore the resonance conditon for a probe to transfer momentum and en-
ergy, but also the excitation strengths for a particular momentum transfer feature a strong
dependence on lattice depth and density.

In section 8.1 we present results for the dynamic structure factor of a condensate loaded
into a one-dimensional lattice: We show that when keeping the momentum transfer fixed
while scanning the energy transfer a resonance is encountered for each Bogoliubov band. This
implies that the j-th band can be excited even if the transferred momentum does not lie
in the j-th Brillouin zone. Due to phononic correlations the excitation strength towards the
lowest Bogoliubov band develops a typical oscillating behaviour as a function of the momentum
transfer, and vanishes at even multiples of the Bragg momentum. Even though the excitation
energies hw;(p) are periodic as a function of p, this is not true for the excitation strength to
the j-th band.

101
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The effects of interactions on the static structure factor are found to be significantly am-
plified by the presence of the optical potential (see section 8.2). Using a sum rule approach,
we prove that the static structure factor vanishes like p/2m*c for p — 0, where m* and ¢ are
the effective mass and the sound velocity at a given lattice depth respectively.

In [133], we have reported the numerical and analytical results for the excitation strengths
of the lowest band and for the static structure factor. The discussion of the excitation strengths
of higher bands is added here.

8.1 Dynamic structure factor

The capability of the system to respond to an external density probe transferring momentum
p and energy hw is described by the dynamic structure factor

Sp.w) = - |(eloahlo)] 6 (w — ) (61)
Here, o labels low energy excitations, |0) is the groundstate and 0, is defined as
6pp = Pp — (Pp)eq (8.2)
where py, is the Fourier transform of the density operator 7(r)
fp = / dre=®*/Pq(r) (8.3)

and (...)¢q denotes the expectation value at equilibrium. For a weakly interacting Bose gas,
the matrix elements involved in (8.1) take the form ([1], chapter 5.7 and 7.2)

(olos}10)| = ’ / dr [P/ (w3 (x) + 05 () T (r)] | (8.4)

where [dr (u},us —v}vs) = 65, and ¥ is the condensate wavefunction normalized such
that [ dr|¥|? = Nyo. The modulus squared of this quantity yields the excitation strength for
the state |o). The response of a harmonically trapped condensate to a density probe has been
theoretically studied in [134, 135, 136, 137].

To study the excitation of the system in presence of an optical lattice, we will assume p
to be oriented along the z-axis. Rescaling the condensate wavefunction according to (5.2)
and using the solutions of the Bogoliubov equations (7.14,7.15) with the orthonormalization
relations (7.8,7.9,7.10) the matrix element (8.4) takes the form

[(ologbl0)| = VIV ’ [z [e7 0" (15,(2) +25,(2)) ()] ’ . (8.5)

Inserting the Bloch forms (7.11,7.12) for the Bogoliubov amplitudes and noting that
(ﬂ;fq(z) +17;-‘q(z)> ©(z) is periodic with period d, we find that the expression (8.5) is non-
zero only for

2
g=p+l—, (8.6)
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with ¢ lying in the first Brillouin zone and [ integer. In fact, since excitations with the same
j and q differing by a multiple of 27/d are physically equivalent, the quasi-momenta of one
Brillouin zone exhaust all possible excitations. Yet, note that p can not be restricted to one
zone, being the momentum transferred by the external probe.

Inserting (8.5) into (8.1) the dynamic structure factor (8.1) takes the form
S(p,w) =Y Zj(p)d(w — wj(p)). (8.7)
J

The quantity Z;(p) is the excitation strength to the j-th band for a given momentum transfer

Pp-
2

Z(p) = N 7 (8.8)

/dz [eipz/h (u}‘q(z) + v%(z)) go(z)}

where ¢ lies in the first Brillouin zone and is fixed by the relation ¢ = p + [27/d.

The expression (8.7) reveals some interesting properties of the dynamic structure factor in
the presence of an optical lattice:

e When scanning w for fixed momentum transfer p a resonance is encountered for each
Bogoliubov band. In contrast, when the lattice is switched off only one resonance exists
for a given p. An important consequence is that on one hand it is possible to excite high
energy states with small values of p, and on the other hand one can excite low energy
states, belonging to the lowest band, also with high momenta p outside the first Brillouin
zone. This difference with respect to the uniform case can be understood by noting that
the excitations created by the external probe have well-defined quasi-momentum %q and
accordingly many momentum components hq + [27/d. The external probe couples to
the component which corresponds to the momentum transfer.

e While the excitation energies hw;(p) are periodic as a function of p, this is not true
for the excitation strengths Z;(p) (see Eq.(8.8)). This reflects the difference between
quasi-momentum and momentum:

To illustrate these two characteristic features of the excitation strengths in the presence of an
optical lattice we plot in Fig.8.1 the three lowest Bogoliubov bands in the first three Brillouin
zones for s = 10, gn = 0.5FER and indicate the values of the excitation strengths Z;(p) at
specific values of p.

For comparison we plot in Fig. 8.2 the strengths Z1(p), Za2(p), Z3(p) for the uniform system
(s = 0) where the Bogoliubov dispersion does not form a band structure. Yet, in order to
facilitate the comparison with s # 0 we can formally map excitations for momenta lying in the
j-th Brillouin zone onto the j-th band. The corresponding excitation strengths are given by
(see [1] chapter 7.6) ,
p°/2m
Zj (p) = Ntotm )

with p lying in the jth Brillouin zone and

hwuni(p) = \/ P (ﬁ + 2gn) (8.10)

2m \2m

(8.9)

the Bogoliubov dispersion of the uniform system. For p lying outside the jth Brillouin zone
the strength Z;(p) is zero.
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Figure 8.1: Bogoliubov bands for s = 10 and gn = 0.5EFR in the first three Brillouin zones.
Excitation strengths Z; /Nt (8.8) towards the states in the first three bands for p = —1.2¢p,
p = 0.8¢p and p = 2.8¢p.
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Figure 8.2: Excitation strength (8.9) to the first (; = 1; solid line), second (j = 2; dashed
line) and third Bogoliubov band (j = 3; dotted line) without lattice (s = 0) for gn = 0.5ER.
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The excitation strength to the lowest Bogoliubov band - Numerical results

The study of the excitation strength to the lowest Bogoliubov band Z;(p) requires the eval-
uation of (8.8) with the solutions wu4(2), vig(2) and ¢(z) for a given lattice depth s and
interaction parameter gn/Egr. Numeric results are depicted in Figs.8.3 and 8.4 for s = 5, 10
and gn = 0ER,0.02ER and gn = 0.5ER.

In general, we find the following characteristics:

e 7Zi(p) features an overall decay for increasing |p|. This is due to the fact that the
momentum components of the created excitations are smaller at large momenta.

e Provided that gn/Egr # 0, Z1(p) exhibits characteristic oscillations: Z;(p) is suppressed
in the vicinities of p = [27/d where the excitations contributing to the strength have
phonon character and is exactly zero at p = [27/d (I integer) where the energy of the
contributing excitation vanishes.

e Increasing gn/EpR at fixed s or increasing s at fixed gn/Egr # 0 leads to an overall
decrease of Z;(p).

09f / | |
08t

0.7

0.5

Zl(P)/Ntot

0.3

0.1r-

p/aB

Figure 8.3: Excitation strength to the lowest Bogoliubov band Z;(p) (8.8) at lattice depth
s =5 for gn = 0.5ER (solid line), gn = 0.02ER (dashed line) and gn = 0 (dash-dotted line).
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Figure 8.4: Excitation strength to the lowest Bogoliubov band Z;(p) (8.8) at lattice depth
s = 10 for gn = 0.5ER (solid line), gn = 0.02ERr (dashed line) and gn = 0 (dash-dotted
line).

The excitation strength to the lowest Bogoliubov band - Analytic results

The characteristic behaviour described above can be understood by considering the lowest
Bogoliubov band in the tight binding regime where an analytic expression can be derived for
Z1(p): Using the expression (6.26) with j = 1,k = 0 for the condensate and the tight binding
ansatz (7.25,7.26) for the Bogoliubov amplitudes, the expression for the strength Z;(p) (8.8)
takes the form

(5 per=m)|

where we have neglected contributions due to the overlap of neighbouring Wannier functions.
In chapter 7.3 we have found that

Z1(p) = (8.11)

26 sin? (pd/2)

U, +V, 8.12
U+ Vit = 25 (812)
Thus, expression (8.11) takes the form
20 sin” (pd/2h)
210) = Nio S LU [ g (e (5.13)
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The integral mainly depends on the properties of the Wannier function near the center of the
well and can hence be evaluated within the gaussian approximation discussed in section 6.2.
Replacing the integral limits by —oo and 400, we obtain

26 sin2 (pd/2 1 5 p?
Zl(p) = Ntot# exp <—§O'2%> . (8.14)

This expression for the excitation strength to the lowest band in a deep lattice exhibits all the
characteristics mentioned above with respect to the numeric results:

e The gaussian dependence on the momentum transfer p describes the overall decay of the
excitation strength at large p. This behavior is also present in the absence of interactions
(gn = 0). Note that o is smaller in a deeper lattice, yielding a broader envelope of the
strength (8.14). This reflects that at larger s the excitations have more momentum
components.

e Provided that gn/ER # 0, the ratio between the Bloch and the Bogoliubov dispersion
gives rise to the characteristic oscillations of Z;(p) in the vicinities of p = [2gp where
the excitations contributing to the strength have phonon character: Near the points
p = [2qp, we have

d 1 ,(2lgg)?
Z1(p) = NtV 51fﬁ|p —12qp| eXp(—§JZ( 2 )

and hence the strength (8.14) vanishes approximately linearly.

), (8.15)

If gn/ERr = 0, Bloch and Bogoliubov dispersion coincide and we are left with the non-
oscillating behavior Z;(p) = exp (—%0'2]?/%2). Note that o — 0 for s — oo and hence
Zl(p) — 1.

e Increasing gn/EpR at fixed s or increasing s at fixed gn/Er # 0 leads to an overall
decrease of Zi(p): This behavior can be explained by considering the ratio between
Bloch and Bogoliubov dispersion appearing in (8.14). Using Eq.(7.38) for the Bogoliubov
dispersion, we can write

20 sin? (pd/2) \/0rsin® (pd/2h) (8.16)

Ro) it 20msin? (pdj2h)

Increasing gn/ER at fixed s leads to a decrease of x which dominates the slight increase
of 0. So, dx — 0 and hence the ratio (8.16) and accordingly the strength (8.14)
diminuish. Moreover, increasing s at fixed gn/Er # 0 both § and x diminish, éx — 0,
and thus brings about an overall decrease of Z;(p). Hence, from (8.16) it follows that
for increasing gn/ER or increasing s the excitation strength to the lowest band (8.14)
is reduced according to the law

Zy ~ oK. (8.17)

Looking at expression (8.11), we note that in the presence of interactions the strength is
suppressed whenever U, ~ —V},. This must always be the case in the vicinity of p = [27/d
where the excitations are phonons. Yet, also the overall suppression of Z; is a consequence of
such a behavior of the Bogoliubov amplitudes since U, ~ —V), can be achieved for all p if the
lattice is made sufficiently deep.
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The excitation strength to the lowest Bogoliubov band - Conclusions

In the presence of an optical lattice, it is possible to excite the lowest band hw(q) with a
momentum transfer p = ¢ 4+ [ 27/d lying outside the first Brillouin zone since the excitation
has many momentum components. This is in contrast to the behaviour of a uniform system
where the excitation hiw(q) can only be created provided p exactly equals q.

Furthermore, we find dramatic effects due to the combined presence of lattice and inter-
action: First of all, the excitation strength to the lowest band is not only suppressed when
the external perturbation couples to excitations of phononic type close to p = 0, as in the
uniform case, but vanishes whenever p = [ 27/ /d. This repeated suppression can be explained
by the periodicity of the Bogoliubov excitations featuring a phononic regime in the vicinity of
q=12n/d.

Apart from the periodic suppression of Z;(p) close to p = 127 /d, the strength diminishes
rapidly for all values of p as s is increased and goes to zero in the limits s — oco. For a
larger gn/ER this reduction is enhanced. This effect is a consequence of the excitations in
the lowest band acquiring quasi-particle character associated with |uy| ~ |v,] at all values of
g, even beyond the phononic regime. If i/¢ < gp, this implies that the presence of the lattice
extends the role of correlations in the system to length scales below the healing length.

The suppression of Z1(p) goes along with a suppression of the imaginary part of the response
function and hence of the energy transfer between system and external probe. Hence, we can
say that due to the lattice it becomes difficult to transfer energy to the system by means of a
weak external probe in the range of energies below the second Bogoliubov band, in particular
for momentum transfer p ~ [ 27 /d.

In a recent experiment [91], the amplitude of a one-dimensional optical lattice was mod-
ulated to transfer momenta 4+2¢qp to an ultracold Bose gas confined in the tubes of a two-
dimensional lattice. A strong response of the system was observed for energy transfers lying
in the range of the lowest Bogoliubov band and within the gap between lowest and second
band, in disagreement with our prediction. There are two reasons for this discrepancy: The
one-dimensional lattice along the tubes was deep enough to enter a regime of strong coupling
between the atoms, rendering a Bogoliubov theory approach for weakly interacing systems
invalid. Furthermore, the excitation was strong enough to produce a nonlinear response of the
system.

The excitation strength to the higher Bogoliubov bands

To study the excitation strength to the higher Bogoliubov bands we evaluate (8.8) with j > 1
and the solutions wjs14(2), vj>1,4(2) of (7.14,7.15) for a given choice of the lattice depth
s and the interaction parameter gn/Egr. Numeric results for the excitation strength to the
second band Z,(p) are depicted in Figs.8.5 for s = 5 and gn = 0.5ER while Figs.8.6 display
the strength to the third band Z3(p) for the same lattice depth and interaction parameter.

These examples illustrate again that the j-th band can be excited by means of a momentum
lying outside the j-th Brillouin zone, in contrast with the case s = 0 (see Fig. 8.2): Even
though Z; still has its peak values in the j-th Brillouin zone, it takes non-zero values outside
that zone with local maxima forming in the zones j + 2I. At s = 5 the curves in the j-th
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Brillouin zone still resembles the curve in the case s = 0. Yet, they are smoothed out. This
is more evident in the third band which is less affected by the presence of the optical lattice
than the second band.

The strengths Z;-1 decrease in the j-th Brillouin zone when s is increased, while increasing
outside. This reflects the growth of momentum components of the excitations in the j-th
band outside the respective Brillouin zone. Very differently from the case of the lowest band,
there is no qualitative difference between the curves for gn = 0 and gn # 0. Also, an increase
in gn/ER brings along only minor changes in the strengths: The values of the strength Z;
outside the j-th Brillouin zone is reduced which corresponds to the screening of the lattice by
interactions. These observations confirm the statement made in section 7 that interactions
have a small effect on the higher Bogoliubov bands.
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Figure 8.5: Excitation strength to the second Bogoliubov band Z(p) (8.8) for gn = 0.5ER
at lattice depth s = 5 (solid line) and s = 0 (dashed line).

8.2 Static structure factor and sum rules

The integral of the dynamic structure factor provides the static structure factor

1

S(p) = N

/S(p,w)dw. (8.18)

The static structure factor is a quantity of primary importance in many-body theory since it is
closely related to the Fourier transform of the two-body correlation function (see [1] chapter
7.2). Eq.(8.18) is also referred to as non-energy weighted sum-rule of the dynamic structure
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Figure 8.6: Excitation strength to the third Bogoliubov band Z3(p) (8.8) for gn = 0.5ER at
lattice depth s = 5 (solid line) and s = 0 (dashed line).

factor. Notice that in the absence of two-body interactions (gn = 0), S(p) = 1 for any value
of p (see dash-dotted lines in Figs.8.7 and 8.8). As we will see, S(p) is strongly affected by
the combined presence of two-body interactions and optical lattice.

A second important sum-rule obeyed by the dynamic structure factor is the model indepen-
dent f-sum rule

p2

/th(p,w)dw = Ntot%- (8.19)
Another important sum-rule is the compressibility sum-rule corresponding to the low-p limit of

the inverse-energy weighted sum-rule

/S(p’w)dw

K
= Niot =, 8.20
hw fot'y ( )

p—0

where k is the compressibility (5.11) (see section 5.2). As discussed above in section (7.4)
the compressibility of a condensate loaded in an optical lattice is naturally expressed in terms
of the sound velocity ¢, characterizing the low-¢ phononic behaviour of the dispersion law
(hw(q) = chq), through the relation (see Eq.(7.48))

(8.21)
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Static structure factor of the uniform system

In the uniform system, the sum (8.7) is exhausted by a single mode with the energy Tiwyni(p)
(8.10). In this case the static structure factor obeys the Feynman relation

p2

Suni(p) = %ﬁ(p)a (822)

which can be derived using the f-sum rule (8.19) (see [1] chapter 7.6). For p — 0 the static
structure factor (8.22) behaves like

Ip|

Suni 5 8.23
) = e (8.23)
while the compressibility sum-rule (8.20) becomes
S(p,w) Niot
——=d, = 8.24
/ ho Y o0 2mci] (8.24)

where cypi = \/gn/m is the sound velocity of the uniform system. The suppression of Syyi(p)
at small momenta is a direct consequence of phononic correlations between particles. For
large momenta, instead, the static structure factor (8.22) approaches unity (see dotted lines
in Figs.8.7 and 8.8).

Static structure factor of the system in a lattice
The structure factor (8.18) is obtained by summing up the excitation strengths Z;(p) (8.8) of
all bands

S(0) = 5 3 Zi(0). (8.25)
ot j

Results are presented in Figs.8.7 and 8.8 for gn = 0, 0.02ERg, 0.5FR at lattice depth s = 5 and
s = 10 respectively. For weak interactions (dashed lines) the static structure factor exhibits
characteristic oscillations, reflecting the contribution Z(p) from the first band. This effect is
less pronounced for larger values of gn (solid lines) due to the suppression of Zi(p). In both
cases one observes a big difference with respect to the behaviour of S(p) in the uniform gas
(8.22) (dotted lines) and with respect to the non-interacting system (dash-dotted lines).
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p/aB

Figure 8.7: Static structure factor (8.25) at lattice depth s = 5 for gn = 0.5ER (solid line),
gn = 0.02ER (dashed line), gn = 0 (dash-dotted line) and at lattice depth s = 0 for gn = 0.5
(dotted line; see also Eq.(8.22).

Figure 8.8: Static structure factor (8.25) at lattice depth s = 10 for gn = 0.5ER (solid line),
gn = 0.02ER (dashed line), gn = 0 (dash-dotted line) and at lattice depth s = 0 for gn = 0.5
(dotted line; see also Eq.(8.22).
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The behaviour of S(p) at small momenta can be described exactly using sum-rule argu-
ments. Inserting (8.8) into (8.19) and (8.20) we can write

2

> Zi(p)hw;(p) = Niovy— (8.26)
DL R (8.27)
< Tuoj(p) 2 |
J p—0

In lowest order in p the Bogoliubov bands fiw;(p) behave like

hwl(p)‘pﬂo = Cp7 (828)
hwjs1(p)], o = const. (8.29)

Hence, the f-sum rule (8.26) can only be ensured at small p if

Zi(p) ~ p, (8.30)
Zj1(p) ~ p*. (8.31)

Inserting this result and (8.28,8.29) into (8.18,8.27) we find that both the non-energy weighted
sum rule (8.18) and the compressibility sum rule (8.20) are exhausted by the contribution from
the first band when p — 0, high energy bands giving rise to contributions of O(p?). Thus, we
can rewrite (8.18,8.20) in the form

S(p> ’p~>0 = Ntot Zl(p) ~p, (832)
Z1(p) K

= Niot 7 - 8.33

o),y 2 (8.33)

Combining these two equations and using x = 1/m*c? we obtain

4
SB) ;=0 po (334)

This shows that in the presence of 2-body interactions the low-p behaviour of the static
structure factor is entirely determined by phonon correlations. This result holds for any value
of s as long as gn # 0. In the absence of the optical lattice m* = m and ¢ coincides with
the Bogoliubov sound velocity cyni = /gn/m of the uniform system. Since we can write
m*c = vVm*k—1 and both m* and k! increase with s, we find that the presence of the lattice
results in an enhanced suppression of the static structure factor at low values of p, as clearly
shown in Figs.8.7 and 8.8.
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Chapter 9

Macroscopic Dynamics

In this chapter, we show how to describe the long length scale GP-dynamics of a condensate
in a one-dimensional optical lattice by means of a set of hydrodynamic equations for the
macroscopic density and the macroscopic superfluid velocity (see sections 9.2 and 9.3). Within
this formalism, we can account for the presence of additional external fields, as for example
a harmonic trap, provided they vary on length scales large compared to the lattice spacing
d. As an input the equations require the energy and chemical potential Bloch band spectra
calculated in presence of the optical lattice only (see chapter 6.1 above). In the case of a
groundstate condensate in the presence of harmonic trapping, the hydrodynamic equations
reproduce the results obtained in chapter 5.4 for the smoothed density profile.

As an application we derive an analytic expression for the sound velocity in a Bloch state
condensate (see section 9.4, see also discussion in chapter 7.4 above). The sound velocity in
the groundstate condensate is determined by the effective mass and the compressibility. In a
moving condensate the sound velocity also involves information about the chemical potential
band spectrum discussed above in chapter 6.1.

In the combined presence of optical lattice and harmonic trap, the hydrodynamic equations
can be solved for the frequencies of small amplitude collective oscillations (see section 9.5).
Our treatment relies on the assumption that the effective mass is density-independent and that
the change in the compressibility brought about by the lattice can be accounted for by the
effective coupling constant g (see chapter 5). It turns out that in a trap with axial frequency w
superimposed to the lattice, the condensate oscillates as if it was confined in a harmonic trap
of axial trapping frequency /m/m*w, with the lattice off. The slow-down of the collective
oscillations observed in the experiment [75] for increasing lattice depth has confirmed our
prediction.

The frequency w = /m/m*w, for the small amplitude center-of-mass motion is indepen-
dent of the equation of state (see section 9.6), i.e. it can be derived without knowing how the
chemical potential depends on density. The large amplitude center-of-mass motion is described
by a set of equations which does not involve the equation of state and is valid at any lattice
depth. As an input it requires the single particle Bloch band spectrum calculated with the
lattice potential only. Using these equations of motion we show that the deeper the lattice
the harder it is to fulfill the condition on the initial trap displacement for the observation of
harmonic dipole oscillations. In the tight binding regime, these equations also have a simple
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analytical solution in the limit of a large initial displacement of the center-of-mass from the
trap center. We comment on the instability of the center-of-mass motion which has been the
subject of recent experimental and theoretical work.

In [138] we have presented the hydrodynamic description of large current dynamics in
the tight binding regime assuming that the effective mass is density-independent and that
the change in the compressibility brought about by the lattice can be accounted for by the
effective coupling constant g. In [102] we reported the hydrodynamic equations for small
currents which are valid at all lattice depths and allow for a density-dependent effective mass
and a chemical potential which has a nonlinear dependence on density. Here, we generalize
these hydrodynamic equations to account for large currents. They coincide with the ones
we presented in [138] in the limit considered there and which, previously to [102], have been
reported in [107].

Our result for the sound velocity in a condensate at rest is derived in [138] within the hydro-
dynamic framework developed there. The generalization to all lattice depth, general effective
mass and compressibility, and to a condensate in slow motion is included in [102] (see also
[107]). Our results for small amplitude collective oscillations were derived in [138] for the tight
binding regime. In this thesis, their discussion is generalized to all lattice depths maintaining
the assumptions made in [138] concerning the effective mass and the equation of state. The
demonstration of the irrelevance of the equation of state for the dipole mode frequency and
the derivation of the equations describing large amplitude center-of-mass oscillations at any
lattice depth is added.

9.1 Macroscopic density and macroscopic superfluid velocity

Our guiding idea is to retain from time-dependent GP-theory only the information necessary
to describe the dynamics occurring on length scales much larger than the lattice spacing d.
More precisely, we will assume that the state of the system in a window of size D >> d
resembles a stationary state solution of the system without any external potential in addition
to the optical lattice. Note that in order to describe non-stationary dynamics, D has to be
much smaller than the size of the system. Accordingly, the dynamics we will be able to capture
has non-stationary character only on length scales much larger than D.

We set out by generalizing definition (5.21) of the average density at site [ to the case of
a time-dependent density

1 [ld+d/2

ny(rp,t) n(ry,zt)dz , (9.1)

d Jid—d/2
where n(ry,z) = |¥(ry,2)|* is the density obtained by solving the time-dependent GP-
equation in the presence of optical lattice and an additional slowly varying external potential
as for example a harmonic trap. With [ replacing the continous variable z, expression (5.21)
defines an average density profile of the condensate in the trap, as pointed out in section 5.4
for the static case. It is a smooth function of | and varies slowly as a function of the index
. We obtain a smooth macroscopic density profile nys(r 1, z) by replacing the discrete index
[ by the continous variable z = Id

l—z=1d = ny(rp,t) = na(re, z,t). (9.2)
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In accordance with the basic idea introduced above, we assume nj; to be approximately
constant on the length scale D in the z-direction at any given time ¢.

In analogy to the definition of the average density n;(r ), we introduce the average z-
component of the superfluid velocity field at site [

1 rld+d/2 h
vy(ry,t) = y s dz [%@S(rbz,t)}
1
= LS df20) — St 1d - dj2.0) (9.3)

where S(r),z,t) is the phase of the order parameter and (h/m)0,S(ryi,z,t) is the z-
component of the superfluid velocity field obtained by solving the time-dependent GP-equation
in the presence of optical lattice and an additional slowly varying external potential as for ex-
ample a harmonic trap. The quantity (9.3) is required to be approximately constant over a
distance D. Hence, we can rewrite (9.3) in the form
h 1

’Uzl(TJ_,t) = EE [S(TJ_, ld + D/Q,t) — S(T'J_, ld — D/Q,t)] . (94)
Now, we go a step further and require the approximate stationary state in the window of size
D around the site [ to be of the Bloch form ¢, = exp(ik;z)@r (6.2) with quasi-momentum
ki(ry,t). Note that k;(r,t) must be a slowly varying function of the index [ and the variable
r). The phase S in the window of size D around the site [ is then approximately given by

S(ri,z,t) =ki(t)z + Sp(ri, z,t), (9.5)

vyhere the second contribution Sk is the phase of the Bloch wave ¢ and thus Sk(rb z,t) =
Si(r1,z+1d,t). Inserting (9.5) into (9.4) we find

hky (t) LR Sik(ry,ld+ D/2,t) — Sj(ry,ld — D/2,t)

m m D

vy(ry,t) = (9.6)

Since S'jk is periodic in z with periodicity d, the second contribution becomes small for D >> d.
It can consequently be neglected for sufficiently large D and we are left with

. hkl(rl,t)

va(ry,t) = — (9.7)

We smooth (9.7) in the z-direction in the same way as the average density profile
l—z=1d = vy (re,t) — one(ry, 2, t), (9.8)

where the z-component of the macroscopic superfluid velocity field v, is given by

hk(TLa 2 t)

m

pz(TL, 2,t) = (9.9)

The x, y-components vz, vary are given by the usual expressions (i/m)0;.,S (71, 2,t).

It is important to note that vy, = hk/m does not coincide with the group velocity vy
of a Bloch state condensate with quasi-momentum #k. This is a very peculiar feature of a
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condensate in a lattice. Note that group velocity and superfluid velocity are related to the
superfluid current I by the relations I = nv and I = nsv)s respectively, where n is the total
density and ng is the superfluid density. The decrease of the superfluid current I due to the
lattice brings about a decrease of the group velocity and of the superfluid density rather than
of the superfluid velocity. It is this effect which underlies the difference between the expression
(9.7) and the group velocity.

We can also define a macroscopic phase Sj; through the relation

h
vy(ry,z) = EVSM(m_,z) (9.10)

This fixes the quantity Sjs up to an irrelevant constant.

The introduction of the quantities n; and Sj; allows us to speak of an effective macroscopic
order parameter

Wy = /nag €M (9.11)

whose evolution in time we are interested in.

9.2 Hydrodynamic equations for small currents

Using the notions of macroscopic density and macroscopic superfluid velocity we devise a
hydrodynamic formalism which is valid to the dynamics involving only small currents. This
restriction signifies that only small quasimomenta %k are involved in the dynamics which are
associated with currents npshk/2m*. The generalization to large currents is done in the
subsequent section.

Macroscopic energy functional

The energy change per particle due to the presence of a small constant current in z-direction
is h?k?/2m* = m%v3,,/2m*, where we have used the expression (9.9) for the macroscopic
superfluid velocity. Using this fact, the total energy of the system can be written in terms of
the macroscopic density n; and superfluid velocity field v

m m
2 m*(nyr)

for the total energy of the system. Here, Vit is an external potential supposed to vary on
length scales much larger than D and £(nys) and m*(nys) are, respectively, the groundstate
energy and the effective mass calculated at the average density n,s in absence of the external
potential (see sections 5.1 and 6.1). We can rewrite the integrand of (9.12) in terms of the
density nys and the phase Sy defined in (9.10). This yields

oS n? [0S
- (52 ot ()

m m
E = /dr {EnMU?\M + EnMUJQWy + navis, + nare(mar) + narVes| 5 (9.12)

h? (aSM
*nM_ .

2m \ 0z

2
) + nye(nar) + nMV:ext‘| .

(9.13)
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Even though this expression is written in terms of macroscopic variables, the energy change
brought about by the lattice is implicitly accounted for by the effective mass m*(njys) and
by the function £(nys), which have been calculated microscopically solving the stationary
GP-equation in presence of the optical lattice.

Action principle

Our derivation of the equations of motion for the macroscopic density n3; and the macroscopic
velocity field v,y is based on the requirement that the action

A—/Otldt [E—m<%>] (9.14)

is stationary and hence satisfies the condition

JA=0. (9.15)
The integrand in (9.14) contains the quantity
d
< > fa Ma ]
10 .0
= /dr {QEnM ‘f‘ZnMaSM] . (9.16)

The first term does not contribute to A since the variation at ¢ = 0 and ¢ = ' is zero by
assumption.

Imposing (9.15) on the variation of the action with respect to Sy; and using (9.10) for
the relation between Sj; and the macroscopic superfluid velocity, we find the equation of
continuity

ot

On the other hand, upon variation of the action with respect to ny; and imposing (9.15), we
obtain an Euler equation for the macroscopic density

o
9 at + u(vrtana) + By (vrrynar) + 0 (%Wzn@ _9. (9.17)

0 m m 0 m m
mavM 4+ V [ Vext + uopt(nM) + 51)12\/[35 + 51)]2\/“/ + % ((m* nM> EUJQWZ)] =0, (9.18)
where piopt(nar) = 0 [nare(nar)] /Onar denotes the groundstate chemical potential for Vey =
0 (see Eq.(5.9)).

It is interesting to note that in (9.17), the current in the lattice direction is modified by the
factor m/m*. Since the respective current component can be written as the product of the
superfluid velocity component and the superfluid density

I =ngsvp,, (9.19)
the superfluid density results to be
m
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The appearance of this quantity in the Euler equation (9.18), confirms this statement: There,
the quantity 8/9nys ((m/m*)np(m/2)v?) replaces the term 8/0n s (nar(m/2)v?) we would
obtain without lattice where ny; = ng.

The hydrodynamic equations (9.17,9.18) can be further generalized to account for larger
condensate velocities. This is the topic of the subsequent section.

9.3 Hydrodynamic equations for large currents

In order to derive the hydrodynamic equations (9.17,9.18) for larger condensate velocities,
we need to generalize the energy functional (9.12). This is done by modifying the energy
contribution due to the current in lattice direction: The contribution (m/2)(m/m*(nar))v?,,+
e(nar) is replaced by the more general expression e(v,yr = hk/m;nar), the latter being the
energy of a Bloch state condensate (6.4) at average density n)s, quasi-momentum hk and
macroscopic superfluid velocity vy, = hk/m. Note that, for convenience, we include the
groundstate energy €(nyy) in the term e(v,pr = hk/m;nyr). In this way, we obtain the energy
functional

E = /dr [%nMUJQ\M + %nMv]QV[y + nare(var, = hk/m;nar) + nM\/gxt} ,  (9.21)

which in terms of the phase defined in (9.10) can be rewritten in the form

S\ 2 S\ 2
E= /dr [%nM (a—;”> + %nM (a—yM> + npe(0:80 = kynar) + nMvextl (9.22)

In writing this expression we have used the fact that according to (9.7,9.10)
8.8y = k. (9.23)

Using this identity and the action principle employed above, we find the following hydrodynamic
equations

0 1
EnM + Oz (vpramnar) + 8y(UMynM) + 0, (ﬁak&:(k}; nM)nM) =0. (9.24)
0
mavar +V | Vet + %vﬁh + %vﬁm + propt (K nM)] —0. (9.25)

The second equation involves the chemical potential (6.5) of a Bloch states condensate with
quasi-momentum Rk at average density njys for Vext = 0. When using the hydrodynamic
equations (9.24,9.25) it is important to keep in mind that k is a function of r and essentially
represents the z-component of the macroscopic velocity field vy, = hk/m.

The generalized hydrodynamic equations (9.24,9.25) have been reported in [138] for the
tight binding regime with the density-dependent effective mass and the equation of state
Hopt = gnar and in [107] for a general equation of state popt(nas) and general dispersion
e(k;nar), hence for any lattice potential depth.
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9.4 Sound Waves

For Vext = 0, the small-current hydrodynamic equations (9.17,9.18) have sound wave solutions.
These correspond to small amplitude plane wave perturbations An(r,t), Av(r,t) of a Bloch
state associated with constant macroscopic density 723, and macroscopic velocity v,. Here,
we restrict ourselves to sound waves moving in the lattice direction in a Bloch state condensate
with quasi-momentum hk and velocity vy; = hk/m oriented in the same direction. In this
case, the perturbation takes the form

An(z,t) o« An(z)e?z=<@") (9.26)
Av(z,t) o Av(z) ez« @?) (9.27)
To find the dispersion w(q), we linearize Eqs.(9.17,9.18) in An(z,t), Av(z,t) with Vex, = 0.

The resulting equations read

gAn(z, t) + l_ﬁazAU(Z, t)+

ot m () () A =0 (9:26)
8 1 aMop‘c k .
aAv(z,t) + p— <—3n )ﬁ@zAn(z,t) + —mZ(ﬁ) 0:Av(z,t) =0, (9.29)

where m* and my, are the effective masses obtained from the lowest energy and chemical

potential Bloch band respectively (see Eqgs.(6.19,6.23)) and we have neglected terms of order
higher than O(k). Inserting (9.26,9.27) into (9.28,9.29), we find

h|k| 1
w = + ’
(9) mz(ﬁM)lql WICJI
where & is the groundstate compressibility (see Eq.(5.11)). According to this result, sound
waves in a groundstate condensate (k = 0) travel at velocity
1

rm*

(9.30)

CcC =

(9.31)

This expression and in particular the implied dependence of the sound velocity on average
density and on lattice depth has been discussed above in section 7.4. On the other hand, if
the condensate carrying the sound wave has non-zero quasi-momentum hk, Eq.(9.30) yields
the sound velocity

hik|

%

m
where the plus- and minus-sign hold for k parallel and anti-parallel ¢ respectively. This expres-
sion has been discussed above in chapter 7.4 (see Eq.(7.53)).

c,=c*t (9.32)

The result (9.30) describes the excitation energy spectrum associated with small perturba-
tions of a Bloch state condensate at any lattice depth in the limit of small ¢ and k. Using the
set of hydrodynamic equations (9.24,9.25) valid also for large currents, the spectrum for small
q and any k has been obtained in [107]. The result reads [107, 125]

n_ ou(k)
m*(k) oOn

op(k)
ok

= n ‘ , (9.33)

where m*(k) is the generalized effective mass (6.22) with j = 1.
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9.5 Small amplitude collective oscillations in the presence of har-
monic trapping

In current experiments, the external potential Vo is provided by a harmonic trap

Vit = % (w2a? + w2y +w22?) (9.34)
to which the optical lattice is superimposed. In the following, we will assume the groundstate
to be adequately described by the LDA developed in section 5.4, implying that the size of
the condensate is much larger than the lattice spacing d (see Eq.(5.20)). In accordance with
the discussion above, this is a necessary condition for the use of (9.17,9.18). Moreover, we
presuppose the chemical potential in absence of the harmonic confinement to exhibit the linear
dependence on average density (see Eq.(5.13))

Popt = GN + fign—0 - (9.35)

The validity of this approximation has been discussed in section 5.2. Within LDA, the ground-
state macroscopic density profile 7y is then defined by the relation (see discussion in section
5.4)

p= gnnp(r) + pgn=o + Vext - (9.36)

The dynamic equations (9.17,9.18) do not only require the equation of state popt(nar)
as an input, but also the effective mass m*(nys). As a simplification, we will consider the
effective mass to be density-independent and thus to be given by the single particle effective
mass

m* =m*(gn/Er =0). (9.37)

The applicability of this approximation has been discussed in section 6.1.

With Ve given by the harmonic potential (9.34) and the approximations (9.35,9.37), the
hydrodynamic equations (9.17,9.18) take the form

0 m
EnM + 8:17(UMng) + ﬁy(vMynM) + Waz (UMZTLM) =0, (9.38)

0 . m m m m
maVM +V ‘/ext + anay + Hgn=0 + 3@%4:0 + gv?wy + %n]\/[gvﬁh =0. (939)

These equations are expected to give a correct description of the dynamics occurring on a
length scale of the order of the system size. In particular, we will explore here the limit of
small amplitude collective oscillations which comply with this condition.

Hydrodynamic equations for small amplitude oscillations

Small amplitude collective oscillations are associated with an oscillating perturbation in the
groundstate density n.3; and a small oscillating velocity field

An(r,t) o< An(r)e ™t (9.40)
Av(r,t) oc Av(r)e ®t, (9.41)
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To find the frequencies w, we linearize Eqs.(9.38,9.39) in An(r,t), Av(r,t)

%An + 0p(AvRpg) + Oy (Avig) + %az (Avsigg) = 0. (9.42)
m%Av +gVAn =0, (9.43)

where we have made use of (9.36). After differentiating (9.42) with respect to time and
inserting (9.43), we obtain

2 ~_ ~_ ~
%An — 0, (g%MaxAn) — 9, (g%MayA@ - %az (%@An) =0. (9.44)

Using (9.36) this equation can be rewritten in the form

An — 81’ <:u — Hgn=0 — ‘/extaxAn) _ 8y (M — Hgn=0 — ‘/extayAn> _ ﬁ*az (H — Hgn=0 — ‘/extazAn
m m

m m

Its form is affected by the lattice only through the appearance of the factor m/m™* and the
irrelevant constant jig,—o. This formal difference can be eliminated by replacing the trap
frequency w,, the z-coordinate and the chemical potential i by

m
~z =1/ Z 9.46

m*
Z = A7
z p— (9.47)
o= = Hgn=0- (9.48)

Using these new quantities we can rewrite Eq.(9.45) in the form

) - o -
a—QAn — 9, (H;VE”“@ATJ — 9, (”—VemayAn> — 9 (LVGM@An) =0, (9.49)
ot m m m

where Veyt is a harmonic potential with frequency @, along the Z-direction

~ m - o
Vext = 5 ( 2+ wiy? +w322) . (9.50)
At this stage, the differential equation (9.49) is formally identical with the one describing small
amplitude collective oscillations of a condensate with chemical potential /i in a harmonic trap
with frequencies w,, wy, @, without a lattice being superimposed to it.

Frequencies of small amplitude collective oscillations

The above derivation has shown that the condensate in the combined potential of harmonic
trap and lattice oscillates as if there was no lattice and as if the harmonic trap frequency along
the z-direction was @, = \/m/m*w, instead of w, and the chemical potential i = p1 — pgn—o
instead of u. This conclusion allows us to apply results obtained for a purely harmonically
trapped condensate to the case when a lattice is added (see [1] chapter 12.2-12.3 and references
therein): We obtain the correct frequency by replacing w, by @, and u by fi.

)-o.

(9.45)
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Let us consider the example of a cylindrically symmetric trap with w, = wy = w,: For
w] > @, the system behaves like an elongated cigar shaped condensate for which the lowest
frequency solutions are given by the center-of-mass motion (“dipole mode™)

wp = | —w, (9.51)
m

and by the axial breathing mode (“quadrupole mode")

5 [m

These frequencies do not depend on the chemical potential, and therefore on the coupling
constant. Still, the occurrence of the factor /5/2 in the quadrupole frequency wg is a non-
trivial consequence of the mean-field interaction [43]. In addition to the low frequency axial
motion the system exhibits radial oscillations at high frequency, of the order of w;. The most
important ones are the transverse breathing and quadrupole oscillations occuring at w = 2w |
and w = 2w, respectively. For elongated traps with w| >> &, we predict the frequencies
of these modes not to be affected by the optical lattice. Note that the result for the dipole
frequency (9.51) was obtained for the tight binding regime in [73].

A different scenario is obtained for @, > w,. In such a setting the system moves like a
disk shaped condensate: While the dipole mode, of course, still has the frequency (9.51), the

breathing mode oscillates at
m
=V3/—w, 9.53
wQ \f\/m*w (9.53)

instead of (9.52). The low frequency modes involving the radial direction are, apart from the
dipole mode w = w, given by w = 1/10/3w, and w = v/2w respectively.

Effective change of geometry

In chapter 5.4 we have found that the aspect ratio of a static harmonically trapped condensate
does not change when a lattice is superimposed, i.e. its shape of the condensate remains
the same. Yet, the above discussion shows that the dynamics of the system is governed
by an effective change of geometry: The condensate oscillates as if it was a condensate
without lattice in a trap with the frequencies @, = /m/m*w,. Accordingly, an elongated
condensate (w, << w ) oscillates like an even more elongated sample, while a disc-shaped
condensate (w, >> w; ) can behave as an effectively spherical (y/m/m*w, = w,) or even
cigar-shaped system (\/m/m*w, >> w,). In the latter example, the effective change of
geometry manifests itself in a change of the axial breathing mode frequency from v/3\/m/m*w,

to /5/2vm/m*w,.
The results obtained in this section can easily be generalized to cubic two-dimensional
lattices. The frequencies of the low energy collective modes are then obtained from those in
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the absence of the lattice [43] by simply replacing

Wy — \/m/m*w, (9.54)
wy — \/m/m*w,, (9.55)

where we have assumed the lattice two be set up in the z,y plane and w,, w, are the harmonic
trapping frequencies in these directions. If w, >> wy\/m/m*, wy/m/m*, the lowest energy
solutions involve the motion in the x — y plane. The oscillations in the z-direction are instead
fixed by the value w, of the harmonic trap. These include the center-of-mass motion (w = w,)
and the lowest compression mode (w = v/3w.). The frequency w = v/3w. coincides with the
value obtained by directly applying the hydrodynamic theory to 1D systems [139, 140] and
reveals the 1D nature of the tubes generated by the 2D lattice. If the radial trapping generated
by the lattice becomes too strong the motion along the tubes can no longer be described by
the mean field equations and one enters into more correlated 1D regimes associated with a
modification of the equation of state which affects the frequencies of the collective oscillations
[141]. It is interesting to note that the study of the macroscopic behavior of a Bose-Einstein
condensate in a two-dimensional lattice and the investigation of one-dimensional Bose gases can
be merged: The equation of state entering the hydrodynamic equations for a two-dimensional
lattice can be chosen such as to reflect the one-dimensional nature of the gas strongly confined
in the tubes of the lattice. This allows to identify signatures of strong correlations in the
macroscopic 3D properties (density profile, collective modes) of the sample [142].

Comparison with experiment

The predictions (9.51) and (9.52) for the center-of-mass oscillation and the axial breathing
mode in an elongated condensate have been confirmed experimentally in [73, 75]. In these
experiments gn = 0.2FEr at the center of the harmonic trap at s = 0. For this relatively low
value of the parameter gn/FEpr it is reasonable to work with the approximations (9.35,9.37)
neglecting the density dependence of m* and supposing the chemical potential to be linear in
the density.

Fig. 9.1 displays both the experimental data reported in [73] and the theoretical curve
(9.51) for the dipole frequency as a function of lattice depth. Note that experimentally it is
difficult to measure this frequency in a very deep lattice since the system enters a regime of
nonlinear oscillations (see discussion below in section 9.6). For this reason, oscillations with
the frequency (9.51) can be observed only if the oscillations amplitude is kept very small. In
fact, it has turned out to be difficult to excite measurable harmonic center-of-mass oscillations
at lattice depths s > 9.

In [75] experimental data for the frequencies of the axial breathing mode and the dipole
mode have been compared with each other. By plotting wg as a function of wp (see Fig. 9.2)
the ratio of the two frequencies is determined to be 1.57 + 0.01 in good agreement with the
value 1/5/2 predicted based on the results (9.51,9.52). Furthermore, assuming the theoretical
prediction to be true, the value of the effective mass m* at a given lattice depth s can be
extracted and compared to the calculated value. The results are depicted in Fig. 9.3 which
also includes data obtained from the GP-simulation reported in [143] for the two types of
oscillations. In contrast with the s-dependence of wp and wg, the frequency of the transverse
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breathing mode is found to be 2w, independent of the lattice depth. This is in agreement
with the theory described above. The respective experimental data is presented in Fig. 9.4.
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Figure 9.1: Frequency of the small amplitude center-of-mass oscillation as a function of lattice
depth s for the experimental setting [73]. The circles display the experimental data reported
in [73]. The solid line refers to the theoretical prediction (9.51).
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Figure 9.2: Frequency of the axial quadrupole mode of an elongated condensate trapped in the
combined potential of harmonic magnetic trap and 1D optical lattice as a function of the axial
dipole mode frequency measured for different values of the optical lattice depth from OFER to
4.1EpR in the experiment [75]. The line represents a linear fit with a slope of 1.57 + 0.01.
Figure taken from [75].
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Figure 9.3: Effective mass extracted from the axial dipole mode frequency (open circles) and
from the axial quadrupole mode frequency (closed circles) using Egs. (9.51,9.52) as a function
of lattice depth V,,; = s in the experiment [75]. The continuous line represents the theoretical
curve (9.51), while dashed and dotted lines correspond to the values obtained in [143] by
numerically solving the GPE and evaluating the effective mass from the quadrupole and the
dipole mode frequencies. Figure taken from [75].
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Figure 9.4: Frequency of the transverse breathing mode of the condensate measured in the
experiment [75] as a function of the optical lattice depth V,,,; = s. The dashed line corresponds
to the expected value 2v, . Figure taken from [75].
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9.6 Center-of-mass motion: Linear and nonlinear dynamics

The result

wp = W, (9.56)

m*
for the frequency of small amplitude dipole oscillations in the presence of the harmonic potential
(9.34) has been obtained in the previous section 9.5 under the condition that the chemical
potential without harmonic trap can be approximated by the linear law jiopt = gnas + fign—o.
Now, we will show that in the particular case of the dipole, no knowledge about the density
dependence of the chemical potential is required in order to derive the result (9.56). As
previously, we require the effective mass to be density-independent m* = m*(gn = 0).

The center-of-mass motion in the lattice direction is associated with a uniform macroscopic
superfluid velocity in the z-direction

vnpme = hk(t)/m, (9.57)

associated with a quasi-momentum which depends only on time, but not on postion. The
hydrodynamic equations for small currents (9.17,9.18) with this choice for var,, vz = Vary =
0, and Vi given by the harmonic potential (9.34) read

0 m hk
h%k +mw?z=0. (9.59)

These equations can be recast to describe the motion of the center-of-mass

1
Z(t) = — / dr (znar) (9.60)
N
yielding
0 m hk
5l mrm = (5.61)
h%k+mw§2 =0. (9.62)

These equation allow for a solution Z o ™Dt with

wp = | —w, , (9.63)
m

in agreement with (9.51). This result is independent of the equation of state of the system
since the equations (9.58,9.61) do not contain fiopt(12a7) at all. Actually, it is a general property
of the center-of-mass oscillation in a harmonic potential not to be affected by the interactions
between particles. This reflects the fact that this particular type of oscillation does not involve
a compression of the sample.



130 Macroscopic Dynamics

Large amplitude dipole oscillations

Large amplitude dipole oscillations can be described using the large-current hydrodynamic
equations (9.24,9.25). We consider the velocity field in z-direction to be given by (9.57) as in
the case of small amplitudes, while vyr, = vary = 0. The assumption of a density-independent
effective mass is replaced by the more general requirement that the energy (k) is independent
of density. This is equivalent to setting it equal to the single particle band

e(k,gn/ER) ~ e(k,gn/Er = 0). (9.64)

The hydrodynamic equations for large currents (9.24,9.25) for the center-of-mass as defined
in (9.60) then take the form

0 1
572~ 5 0he(k) =0, (9.65)
9 2
— Z=0. .
hatk + mw; 0 (9.66)

containing the dispersion £(k), or more precisely, the momentary group velocity v(t) =
Oke(k(t)) (see Eq.(6.18)) as a crucial ingredient. Small currents or, equivalently, small group
velocities are associated with small deviations of k from & = 0. In this case, the dispersion
is given by ¢ = h2k?/2m* and the equations (9.65,9.66) reduce to those for small amplitude
dipole oscillations (9.61,9.62).

In the tight binding regime, Oxe(k) = ddsin(kd) (see Eq.(4.29)). Thus, the center-of-mass
obeys the equations of motion [73]

0 od

hgk:+mw§Z =0. (9.68)
ot

They describe a nonlinear pendulum. Its small amplitude oscillation is harmonic with frequency

(9.63), as discussed previously (recall that § is related to the effective mass through (4.33)).

This regime is reached for

0
— .
wZ

A (9.69)

Hence, the deeper the lattice the smaller the initial displacement has to be in order to stay in
the regime of harmonic oscillations. For initial values of Z larger than /26 /mw? the solutions
of (9.67,9.68) correspond to a full rotation of k. If the initial value Z = Zj is much larger
than \/d/mw?2, one can treat the center-of-mass as constant and the solution takes the simple
form

k= —tZymw? /h, (9.70)
implying a constant increase of the quasi-momentum. This is analogous to the behavior of the

quasi-momentum during Bloch-oscillations driven by a constant force. The time evolution for
small displacement Z — Zy from is given by

1) dmw?Z,
Z =720+ —5= —=t] . 71
0+mw§Zo COS( n t> (9.71)

This solution corresponds to an oscillation of Z around Zy with amplitude much smaller than
Zy. Hence, the center-of-mass is always displaced from the center of the trap.
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Breakdown of large amplitude dipole oscillations

The above discussion of dipole oscillations associates the dynamics of the condensate quasi-
momentum k() with its dynamics in real space Z(t). Two limits have been considered
explicitly: We have found that a harmonic center-of-mass motion goes along with a small
amplitude oscillation of the condensate quasi-momentum around & = 0. In contrast, very
large initial displacements Zj lead to a monotonic increase of k with time while in real space
the condensate exhibits an off-centered oscillation. This latter case indicates that the stability
analysis of condensate Bloch states commented on at the end of chapter 6.1 is relevant to
understand the response of a condensate to the displacement of the harmonic trap in the
lattice direction: Once k(t) takes values corresponding to unstable Bloch states we can't be
sure any more whether the condensate will actually exhibit the dynamics exemplified above.
The breakdown of the superfluid current due to a dynamical instability has been predicted
in [115]. The role played by dynamical instabilities has also been investigated by numerically
solving the time-dependent Gross-Pitaevskii equation in the presence of both optical lattice
and harmonic trapping potential. This has been done in [118] for a one-dimensional system
and in [144, 145] including also the radial degrees of freedom, confirming that the occurence of
dynamical instabilities leads to a breakdown of the center-of-mass motion. On the experimental
side, it hs been found that beyond a critical displacement of the trap, which decreases as a
function of lattice depth, the condensate does not exhibit oscillations and stops at a position
displaced from the trap center [74, 76].
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Chapter 10

Array of Josephson junctions

In a deep lattice, the time-evolution of the system can be described in terms of the dynamics
of the number of particles and the condensate phase at each lattice site. This formulation
incorporates a particularly clear physical picture: The system is considered as an array of
weakly linked condensates, each of which contains a time-dependent number of particles and
is characterized by a time-dependent phase. The coupling between the condensates is provided
by the tunneling of atoms between neighbouring lattice wells. From this point of view, the
system constitutes a particular realization of an array of Josephson junctions. This approach
is particularly valuable because it allows for a link between the regime of validity of GP-theory
with a regime, described by a quantum Josephson Hamiltonian, where quantum fluctuations of
phases and site occupations are important. The link is established by quantizing the Josephson
Hamiltonian obtained from GP-theory.

Within the regime of validity of GP-theory, the occupation and phase of each site is well-
defined at any time. We derive the dynamical equations governing their time evolution in the
purely periodic potential (see section 10.1). In the most general case, they are characterized
by the appearance of time-dependent tunneling parameters.

We show how to reproduce the tight binding expression for the lowest Bogoliubov band
found in chapter 7.3 above (see section 10.2). The Josephson junction array description allows
for a particularly clear physical interpretation: Bogoliubov excitations are associated with the
exchange of a small amount of atoms between the lattice sites. The quasi-momentum fg of
the excitation is a measure of the number of lattice sites over which this exchange takes place.
At the maximal value ¢ = 7/d atoms move back and forth only between neighbouring sites.
We show that in the limit of very deep lattices, the spectrum can be determined neglecting
the difference in the occupation of neighbouring sites and retaining only the phase difference.

Under certain simplifying assumptions the dynamical equations for phases and site occu-
pations of the array can be recast in the form of Hamiltonian equations (see section 10.3).
We present the corresponding Josephson Hamiltonian and discuss the governing Josephson
parameters. The plasma oscillation frequency of a single Josephson junction is compared with
the corresponding Bogoliubov excitation in an array. The equations of motion governing a
single Josephson junction bear certain analogies with those for the center-of-mass motion in
the combined trap of lattice and harmonic trap in the tight binding regime (see chapter 9.6
above).

133
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The formalism developed in this chapter is useful in understanding the propagation of sound
signals in a condensate subject to a lattice potential (see the subsequent chapter 11).

In [102], we presented the dynamical equations for the occupations and phases of each
site, as well as the result for the lowest Bogoliubov band. The discussion of the Josephson
Hamiltonian is added here.

10.1 Current-phase dynamics in the tight binding regime

In section 6.1 we have discussed Bloch state solutions of the stationary GP-equation in the
periodic potential of the optical lattice. We have shown that the condensate Bloch functions
VU,,(2) can be written in terms of the condensate Wannier functions f;;(z) in the following
way

Uin(2) =Y Vndfj(z)e™. (10.1)
l

Note that W, is normalized to the total number of atoms N, and apart from the nor-
malization coincides with the Bloch function ¢j;, (see Eq.(5.2)). In this section we will use
an ansatz similar to (10.1) for the time-dependent condensate wavefunction ¥(z,t), allow-
ing for the time-dependence of site occupation and phase. In the tight binding regime the
time-dependent phases and populations of each lattice site emerge as the dynamical variables.

Let us consider a stationary Bloch state of the lowest band (7 = 1) in the tight binding
regime. For convenience, we will choose the corresponding Wannier functions f; to take only
real values. Since f; is well localized at site [ we can say that the condensate at site [ has
phase

Sy = kid — M%k)t. (10.2)

The density of particles at site [ is simply given by
n=n, (10.3)

where, as previously, n is the average density of the system. Hence, in this state the population
of each site is constant across the sample at any time ¢, while the phases S; vary with the site
index and have the simple time dependence u(k)t/h. Furthermore, recall that two Wannier
functions f;, fir can be obtained from each other by a simple displacement

fiz) = fr(z = (1= 1")d) (10.4)

and that the set {f;} is found for a given average density n

f1(z) = filz;n). (10.5)

Ansatz for the time-dependent wavefunction

We are interested in time-dependent solutions W(z,t) of (3.14). We focus on states whose
form is obtained by releasing the restriction of the phases S; and the average densities n; to
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the values (10.2,10.3) and allow them to undergo a general time-dependent evolution

Sy = kld — @t 5, (10.6)
ng = n— n(t). (10.7)

Furthermore, we require the shape of the wavefunction at site [ to be well approximated by the
Wannier function f; obtained for a Bloch state (10.1) with average density n = n;(t). This
presupposes an adiabatic adaptation of the shape of the wavefunction to the instantaneous
value of n;(t). Given these assumptions the time-dependent state W(z,t) is written in the

form
U(z,t) =D filzym(t)y/m(t)de™ ). (10.8)
l

This ansatz must ensure that the quantities n; indeed have the meaning of the average density
at site [. Thus, (10.8) must satisfy the equation

ld+d/2 )

/ 4z |0 (2, 0)[2 = nyd. (10.9)
ld—d/2

This is achieved by requring f;(z;n;) to be very well localized at the site | such that fj1;

have a negligible contribution to the population of site [ (j}fjj/; dzf?,, = 0). In addition, we

require the orthogonalization condition

/ dzfi(z (b)) fr (zsne (1)) = oL (10.10)

to be approximately satisfied. Exact orthogonality is guaranteed of course only for a stationary
state where n; = ny.

Dynamical equations phases and site occupations

The wavefunction U(z,t) evolves according to the time-dependent GP-equation (3.14). To
obtain dynamical equations for the phases S; and average densities n;, we insert (10.8) into
the GPE. Upon multiplication of (3.14) by ¥* and integration over the total volume, using
(10.10) we obtain

5l’l/
hl = Z T\/nml/ sin(Sl — Sl/) s (10.11)
U=i+1,1—1

. Ml 5L’Z, nl’
Si=-"+ > — cos(S; — Sy), (10.12)

2h V ny

U'=l4+1,1-1
where
h*o? 5

W= /fl o + V(z) + gnid|fil*| fidz, (10.13)

while the time-dependent tunneling parameters 6 and (5@7[/ are directly related to the overlap
between two neighbouring Wannier functions

) h292
ot = —2/dZ [fz (— sz +V> fir + grd fil fi o +gm/dfz|f1/2fl/] ,

oL = 8 — 4gmyd / AR frdz. (10.14)
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Note that at equilibrium 6% = § and 5/1;[/ = 0, where ¢ and J,, have been previously defined
in Eq.(6.31) and in Eq.(6.34). At equilibrium they do not depend on the sites [ and I’ since
the wavefunctions f; are related to each other through (10.4).

In deriving the dynamical equations (10.11,10.12) we have retained contributions from
the nonlinear term involving fffflildz, but discarded terms arising from fffffﬂdz, as in
previous chapters. It can be easily checked that the latter contributions are much smaller than
the former.

An approach equivalent to the Josephson formalism presented in this section, based on the
ansatz

U(r,t) =D i(t) filx; Ni(t)) (10.15)
l

has been developed in [116, 117]. Here, N; is the time-dependent occupation of the site [
and fi(r; N;(t)) is the corresponding Wannier function at site [. In practize, 1/; is a discrete
wavefunction which corresponds to our v/n;de™t. Replacing this nonlinear tight binding ansatz
into the time-dependent GP-equation and integrating out the spatial degrees of freedom, a
discrete nonlinear equation for the /;(t) is obtained. The authors find that it is justified to
approximate the Wannier functions in (10.15) by their solution at equilibrium. In our case,
this corresponds to setting 04" = ¢ and 5,2’[/ = ¢, in the dynamical equations (10.11,10.12).
Moreover, in this approximation the on-site chemical potential (10.13) depends linearly on the
time-dependent deviation n; — n from the average density.

Lowest chemical potential Bloch band

Let us assume the system to be in a Bloch state of the lowest band. This corresponds to
setting .S; and n; equal to (10.2,10.3) in the equations of motion (10.11,10.12). While the
equation for 1 is solved trivially, the equation for S yields

p(k) = po — 6, cos(kd), (10.16)

where i is obtained by evaluating (10.13) for n; = n. This is exactly the expression for the
lowest chemical potential Bloch band in the tight binding regime discussed in section 6.2 (see
Eq.(6.32)).

10.2 Lowest Bogoliubov band

In order to recover the tight binding expression (7.38) for the lowest Bogoliubov band in the
tight binding regime we consider small deviations of the phases S; and the average densities
n; from the groundstate

S = AS;, (10.17)
n; = n+ Ang, (10.18)

where we used that S; = 0 at equilibrium. We then linearize Egs.(10.11,10.12) in AS;, Any.
The result reads

Any = n% (2AS; — AS; 1 — AS; ) , (10.19)
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AS) = - [’;; + iﬂ
nj=n
10 0+ 2n% d— Qn%
_ [ﬁa—m]nln Anl —+ l/:lgl:ll [WAHZ/ — WATZ[ . (1020)

To obtain (10.19) we have taken the value of 5%/ at equilibrium since the dependence on AS;
is of first order. Instead, to get Eq.(10.20) one has to expand 521' to first order in the density
fluctuations Any

——Any 10.21
n ny, ( )

where in the last step we have neglected terms involving 0 f/dn, as done previously in sections
6.2 and 7.3. Taking the derivative of (10.20) with respect to time and and inserting (10.19)
we find

- 10wy nd
AS) = — | -—— — (2A8, — A —AS_
5=~ [pon) ' (GAS = ASi - A8
nd (8 +2n
+ﬁ (Tém) [(2AS141 — ASj10 — AS)) + (2A8,-1 — AS; — AS) )]
né (6 —2n
23 (7471 8”) (2A8 — ASpp1 — ASpq) (10.22)
This equation is solved by ‘
AS; o e'llad—w(a)t) (10.23)
with
_ agae (@ 05) gt (20) 2022 102
hw(q) = \/2(551n ( 5 > [2 <5+ Qné?n sin 5 + 2n o 4n8n . (10.24)

Recalling the tight binding expression for the inverse compressibility (see Eq.(6.43)) we can
rewrite (10.24) in the form

hw(q) = \/25 sin? (%) [2 (5 + 2n%) sin? (%) - 2/-;—1} , (10.25)

in agreement with the result (7.38) obtained from the solution of the Bogoliubov equations
(7.14,7.15).

It is interesting to note that if we initially set \/myny = n; in Eq.(10.11) we obtain the

result
hw(q) = 26k |sin (%)’ (10.26)

for the dispersion of small groundstate perturbations. This proves that the first term in
the brackets of Eq.(10.25) has its physical origin in the fluctuations of the site occupations
occurring on a few-sites length scale which are excluded when setting ,/n;n; = n;. Note that
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the expression (10.26) coincides with the large-s limit of (10.25) (see Eq.(7.39) and respective
discussion) indicating that short length scale fluctuations of the average density are suppressed
in a deep lattice.

The formalism based on the dynamical equations (10.11,10.12) assigns a simple physical
picture to small groundstate perturbations: They correspond to small amplitude plane wave
variations of the phases S; and the average densities n;

AS;  eillad=w(a)t) (10.27)
Any o ellad—w@)t) (10.28)

The phase difference of the perturbation at neighbouring sites equals gd. Since the wave-
length of such excitations can't be smaller than twice the lattice period d, the wavenumber
q corresponding to the quasi-momentum of the Bogoliubov amplitudes used in section 7, has
its maximal physically relevant value at 7w/d. For this maximal value the phase difference is
7 implying that the perturbation at neighbouring sites is exactly out of phase: One site takes
the minimal values of phase and population when the neighbouring sites reach the maxima.
This is just another way of saying that the perturbation has wavelength 2d and that a par-
ticle exchange takes place between neighbouring wells. In contrast, at the minimal value of
q = 2w /L the wavelength of the perturbation equals the size of the system and thus, particles
involved in the perturbation can be carried across half of the system length L.

10.3 Josephson Hamiltonian

Let us neglect the density dependence of 6" and 55;” appearing in the dynamical equations
(10.11,10.12). This corresponds to setting both quantities equal to the time-independent
single particle tunneling matrix element (4.30)
) : h? 0
sbl — 5525 = Sgn—o = —2 /dz fan=0(?) (—%@ + V(z)) fon=0(z — d), (10.29)

where fy,—0 is the single particle Wannier function of the lowest band. Consistently with this
step, we replace in 1 as defined in (10.13) the density-dependent Wannier function by fg,—o.
In this way, we get

[ = €osp + nugd / Fan—odz , (10.30)
where €, is the time-independent term
h?9?
E0sp = /fgn:O l— 2mz —I—V(z)] fogn=0dz , (10.31)

which we omit in the following. It is common to write the dynamical equations in terms of
the populations N; rather than the average densities n; and to replace the one-dimensional
Wannier function fg,—o(2) by the corresponding three-dimensional one f;,—o(r) = f(2)/L.
Note that the latter step affects only the g-dependent term in the equation for S;. We obtain

WNp = Y. Ggn=oV/NiNy sin(S; = Sp), (10.32)
U'=I+1,l-1
N EC 5971:0 Nl’
hSy = —Ni—- + > >\ W, cos(S; — Sp), (10.33)

U=l+1,1-1
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where we have introduced the charging or capacitative energy

Ec = 2g/fgn:o(r)4d3r. (10.34)
We note that E¢ is closely related to the compressibility of the system
E
Kl =gn = NTC : (10.35)

where g is the effective coupling constant introduced in section 5.2 and N, as previously, is
the number of particles per well at equilibrium.

The equations of motion (10.32,10.33)) can be rewritten in the Hamiltonian form

~ 0H
hRAN, = ——— 10.36
. OH,

where AN; = N; — N is the deviation of the population at site [ from its equilibrium value N

(Note that >°; AN; = 0). These equations are governed by the Josephson Hamiltonian (see

for example [1], chapter 16)
Ec

Hy===C3 (AN + 00 VN + AN (N + AN cos(Spe1 — 51) (10.38)
l l

This Hamiltonian describes an array of Josephson junctions with on-site charging energy E¢
arising from 2-body interaction and a next-neighbour tunneling parameter d,,—0 which does
not depend on the site index and is solely determined by the external lattice potential.

A double-well system with just two lattice sites is a physical realization of a single Josephson
junction. The respective Hamiltonian is given by (10.38) with (I = 1,2). It reads

Ec

Hj= —7m2 + dgn—0V N —m? cos @, (10.39)
where we have introduced the quantities
N1 — N
= % (10.40)
=5 -9;. (10.41)

In this case, the difference between populations suffices to describe the dynamics of the system
since ANy = —AN,. The equations of motion for m and ® can be obtained from this
Hamiltonian

) 0H
. OH;
e = ——. 10.43
I ( )
They read
hiin = dgn—oV N? —m? sin(®), (10.44)
hd = —FEcm — §gn—o e cos(®) . (10.45)

N2 —m
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For a typical double well system, the m-dependence in front of the cos ® of the Hamiltonian
(10.39) is not important. The gas must be very dilute for it to be relevant (see [1] chapter 15
for a discussion of this issue). Neglecting this contribution, the Hamiltonian and the equations
of motion read

H; = —%m%EJ cos®, (10.46)
him = Ej sin(®), (10.47)
he = —FEcm, (10.48)
with the Josephson tunneling energy
Ej= Négn—o- (10.49)

A characteristic property of such a Josephson junction is its possibility to exhibit plasma
oscillations of frequency

VEcE
wp = % . (10.50)
They correspond to harmonic small amplitude oscillations around m = 0, & = 0 of the

pendulum described by the equations (10.47,10.48). The existence of such oscillations was
first proposed by Josephson with respect to tunneling currents between superconductors [146].
Using (10.35,10.49) we can rewrite wp in the form

V2qn=ogn (10.51)

h

The junction described by the more complicated Hamiltonian (10.39) exhibits plasma oscilla-
tions with the frequency

. \/5gn:0(5gn20 + NEC’) \/6gn:0 (6gn=0 + 2.&”)
- A - h '

wp =

wp (10.52)

It is interesting to note that the lowest Bogoliubov band excitation with ¢ = 7/d is the
physical analogue for a lattice of the plasma oscillations for a single Josephson junction:
As discussed above, the excitation at this value of ¢ involves a particle exchange between
neighbouring sites. The corresponding frequency is given by (see Eq.(10.25))

fw(q = m/d) = /20400 [20gn—0 + 2gn] (10.53)

where consistenly with the discussion of the Josephson Hamiltonian we have set 6 = d,4,—0
and k=1 = gn. This frequency coincides with (10.52) apart from a factor v/2. This difference
is due the fact that each site of the lattice exchanges particles with two neighbouring wells
instead of with just one as in the double well case.

A further interesting connection between the lattice and the double well case emerges when
comparing the equations of motion (10.47,10.48) with those for the center-of-mass motion
in the tight binding regime given the combined presence of lattice and harmonic trap (see
Eqs.(9.67,9.68)): The two sets of equations are formally identical if one identifies

NZ
d o kd, (10.55)
2d2
Eo o %= (10.56)
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For both systems the second crucial parameter apart from E¢ is given by E; = Ndgu—o
setting an upper bound to the current that can flow through the lattice. Note that also
the analogies between m, Z and ®, kd go along with a physical resemblance. Yet, a clear
difference consists in the fact that the “charging energy” in the case of the center-of-mass
motion is not provided by interactions but by the external trapping potential. The plasma
frequency wp = /EcFE/h of the single Josephson junction (10.46) corresponds to the dipole
frequency wp = /720 /2ERw, of the harmonically confined lattice in the tight binding regime
(see section 9.6 Eq.(9.51) and use (6.41)).

Note that a double well system with a TF-condensate in each well is not well described
within the framework presented here. The Josephson Hamiltonian for such a system should
involve a density-dependent tunneling parameter and a compressibility which is non-linear in
the density. In fact, it is easy to see that if the condensate has a TF-profile in each well,
Ec = 20u/ON ~ N—3/5 indeed depends on N. Moreover, the tails of the wavefunction in
the region of the barrier are obtained by matching the TF-profile to an exponential decaying
function. This matching procedure makes § sensitive to N. Since for a larger N the TF-
profile becomes steeper at the barrier boundary, § can in fact decrease for increasing N [57], in
contrast to the behavior of § discussed in section 7.3 where the wavefunction of the condensate
at each site resembles the single particle wavefunction.

Within GP theory, the phases and occupation numbers are classical quantities. One can
go beyond this description by quantizing the appropriate Josephson Hamiltonian, replacing
the classical dynamical variables with operators (see discussion in [1] chapter 15.6). This
shows that the parameters E; = N§ and E¢ (10.34) play an important role in evaluating the
quantum fluctuations of phases and site occupations: The inequality Fc < Ej, corresponding
to strong tunneling, turns out to be the conditon for applying GP-theory. In this limit the
qunatum phase fluctuations are small while the occupation number fluctuations are large. In
the opposite case of weak tunneling Ec > E; the relative phases are distributed in a random
way, while fluctuations in the occupations numbers are small.

Discrete nonlinear Schrodinger equation

The dynamical equations (10.11,10.12) with the quantities 6", 521/, (i evaluated using fgn—o
are equivalent to the Discrete Nonlinear Schrédinger Equation (DNLS) for the discrete wave-
function

iy = 2 () + Ul (0), (1057)

which can be obtained using the ansatz (10.15) with the single particle Wannier functions.
Here, d,4,—0 governs the tunneling between neighbouring wells and U = gn describes on-site
interactions. The DNLS has been used for example in [147] to investigate nonlinear phenomena
like solitons and breathers. In the next chapter, we will use it to study sound propagation in
the presence of a lattice.
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Chapter 11

Sound propagation in presence of a
one-dimensional optical lattice

The propagation of sound in a harmonically trapped condensate without lattice, has been
observed in the experiment [148]. We study the effect of a one-dimensional optical lattice on
sound propagation in a set-up analogous to this experiment, yet without harmonic trap.

The spectrum of elementary excitations shows a linear behavior fiw = ch|q| in the lowest
Bogoliubov band at small quasi-momenta hg, indicating the existence of phonons (see chap-
ter 7.2 above). The sound velocity ¢ decreases for increasing lattice depth, due to reduced
tunneling or equivalently to increased effective mass (see chapter 7.4 above). In the regime of
validity of the linearized GP-equation, sound propagation is expected to be possible. We con-
firm numerically that for sufficiently small sound signal amplitude the sound velocity decreases
by increasing the lattice depth, as predicted by Bogoliubov theory.

However, it is not obvious a priori whether a sound signal of finite amplitude is able to
propagate also in deep lattices, where the tunneling rate is very small. For deep lattices,
nonlinear effects are very different from the uniform case: first of all, shock waves propagate
slower than sound waves (see section 11.3). This is due to the negative curvature of the
Bogoliubov dispersion relation in the lowest Bogoliubov band. The most striking effect is that
non-linearities can play a role also at very small density variations and induce a saturation
of the sound signal, which goes along with dephased currents in the back of the signal (see
section 11.3). This effect has no analogon in the uniform case.

In conclusion we find that sound signals propagate, but that the maximal attainable signal
amplitude (density variation) decreases very strongly with the optical lattice depth, making
it in practise observable only up to a certain lattice depth which depends on the interaction
strength. We show that there exists a range of optical potential depths where the signal is still
large enough and where the change in sound velocity induced by the lattice can be measured
(see section 11.4).

A paper containing the results presented in this chapter is in preparation.
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Figure 11.1: Wavepackets produced by a) a fast (7, = 1) and b) a slow (7}, = 10) external
perturbation of the type (11.1) in presence of an optical lattice. In a) the first, the second and
the third band is excited leading to the formation of two pairs of wavepackets. In b) only the
slow pair composed of phonons of the lowest band is created.

11.1 Generation of Sound Signals

For usual densities, scattering lengths and lattice spacings, the healing length is of the same
order of magnitude as the lattice spacing which implies that the center of the lowest Bogoliubov
band has phononic character, while higher bands describe excitations which are mainly particle-
like (see discussion in chapter 7).

One can address excitations with low quasi-momentum, by raising and/or lowering a suffi-
ciently large barrier at the center of the trap. Such a procedure generates a pair of wavepackets
propagating symmetrically outwards. If the width of the barrier is much larger than the lattice
spacing, only quasi-momenta much smaller than the Bragg momentum gp will be addressed.
Moreover, only Bogoliubov bands with energy lower than the inverse time scale 7}, of the
perturbation will be excited. In particular, since the gap between first and second Bogoliubov
band at the center of the Brillouin zone is order of 4Er , one has multiple band excitations if
T, < h/4ER, otherwise if T;, > h/4ER only the lowest band will be addressed. The result of
a fast perturbation (7}, = h/ER) at low lattice depth is shown in Fig.11.1(a). One finds two
pairs of wavepackets propagating at two different velocities. The velocity of the slower ones is
given by the sound velocity (7.48), while the velocity of the faster ones is given approximatively
by 2gp/m, which is close to the derivative of the second and third band of the spectrum at
small g. Those fast wave packets are not sound signals but are composed of single particle
excitations: they disappear in absence of the lattice, but if the lattice is present they are found
also in a non-interacting gas. At first sight, they seem to travel without changing shape, be-
cause the curvature of the spectrum is too small to observe their dispersion on the time scale
of our simulation. In order to avoid their excitation it is enough to use a slower perturbation,
as shown in Fig.11.1(b) where T}, = 10h/ER. In the following, we restrict ourselves to this
kind of situation and concentrate on the lowest band dynamics.

The details of the wave packets depend on the excitation scheme with which they are
produced. Yet, the main features are general. The observation of sound signals without lattice
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[148] was achieved by employing two different excitations methods: The first one consisted
in raising a barrier in the center of a harmonically trapped condensate. The second method
instead consisted in letting the condensate equilibrate in presence of a barrier, which was then
removed. The first method produces a density bump in the center of the trap, which splits
into two bright sound wavepackets; the second method on the contrary gives rise to a dip in
the density which splits into two dark sound wavepackets.

The excitation method we adopt is a combination of these two: The initial condensate
is at equilibrium in a one-dimensional optical lattice superimposed to a simple box potential.
We then switch on and off a gaussian potential barrier in the center. This procedure has the
advantage that the ground states of the initial and final potential are identical. For zero lattice
depth, we get two composed bright-dark sound signals propagating symmetrically outwards.

The potential creating the barrier is written as a product of its spatial and temporal depen-
dence

Vi(x,t) = Vi (2)Vai(t) (11.1)

where
Vie(z) = bER exp [—gﬂ/(wd)ﬂ : (11.2)
Vpy(t) = sin* (:;ETRt> : (11.3)

The tunable parameters are the width of the barrier w, its height b and the time scale T),.
They are subject to the constraints
w>1, (11.4)

in order to address only the quasi-momenta in the central part of the Brillouin zone,
wd > €, (11.5)
to ensure that the produced excitations are phonons, and
T,>1 (11.6)

in order to excite the lowest Bogoliubov band only. Note that for typical densities and lattice
spacings, w > 1 automatically implies wd > €.

11.2 Current-Phase dynamics

In order to study sound propagation in presence of the lattice, we use the GP-equation

h282
ZhSO = |~ me + V;fot(x7t) + gnd’(p(m7t)|2‘| 90(x7t) (117)

and the discrete nonlinear Schrodinger equation (DNLS)

ity = — (e + Vo) + [Vilt) + Ul (O] (o), (118)
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valid in the tight binding limit (see chapter 10). In the GPE, the external potential Viy(z,t) is
given by the sum of the lattice potential V' = sEgsin?(mz/d) and the time-dependent barrier
potential Vi (x,t) (11.1). In the DNLS (11.8) instead, the potential is just given by the barrier
Ve = Vp(ld,t), since the presence of the optical potential is included in the assumption that
space is discretized.

The GP-equation (11.7) is governed by two parameters: the optical lattice depth s and
the interaction strength gn (see chapter 5). These two quantities determine the parameters &
and U in the DNLS, describing respectively the tunneling coupling between two neighboring
wells (corresponding to the height of the lowest Bloch band, see chapter 6.2) and the on-site
interaction U (see chapter 10).

For future use, it is important to rewrite the equations (11.7,11.8) in terms of the density and
the phase of the condensate wavefunction. In continuous space, the condensate wavefunction
can be written as ¢(z,t) = \/n(z,t)/nexpliS(z,t)] and the GP-equation (11.7) becomes

A(z) = —0, [n(x)%@xS(x)} , (11.9)
. 1 h2 2 h2 2
S(z) = ~% [%m(l‘, t) + gn(x) — Zm\/ﬁaw\/ﬁ+ % (0:5(x))

In the discrete case, we write ¢y = \/ny(t)/nexp[iS¢(t)] and obtain

ng = Z %\/ng(t)ng/(t) sin[Se(t) — Ser(t)], (11.10)

U'=0£1

. e 5 [np(t)
S, = - + g/;ﬁﬂ AR cos[Se(t) — Sp(t)],

where py = Uny + V(£). Note that apart from the additional potential V'(¢), these are the
equations of motion (10.11,10.12) derived in chapter 10 with the density dependent Wannier
function replaced by the single particle solution. Already at this stage, an important difference
between the uniform case and the deep lattice case can be pointed out: The sin and cos-terms
in the DNLS correspond to the terms involving 8,5 and (8,5)? in the GPE for the uniform
case respectively. Hence, the presence of a deep lattice is associated with a dependence of the
current on the gradient of the phase analogous to the one in the absence of the lattice only if
Se(t) — Ser(t) < m. When this condition is not fulfilled nonlinear effects arise which have no
analogue in the uniform case.

11.3 Nonlinear propagation of sound signals

We solve numerically the GP-equation (11.7) and the DNLS (11.8) for various values of the
barrier height b, the barrier width w and the perturbation time 7},. We also vary the parameters
s and gn in the case of the GP-equation and the parameters § and U in the case of the DNLS
to explore different regimes of lattice depth and interaction strength. The effect produced by
the perturbation can be made visible by looking at the ratio between the density at a certain
time n(z,t) and the equilibrium density distribution n(x,t = 0). A sound signal emerges as a
wavepacket in the ratio n(z,t)/n(x,t = 0). It maintains a compact shape and, after an initial
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formation time, propagates with a constant speed which we “measure” and compare with the
prediction obtained from Bogoliubov theory. Nonlinearities can lead to a deformation of the
signal and modify the speed at which it propagates. Yet, as we will see below, this need not
be the case in the presence of a lattice, provided that 6 < U/3. Moreover, nonlinear effects
lead to the formation of dephased currents in the back of the signal. In correspondence to this
the signal's amplitude saturates while it keeps propagating at the Bogoliubov sound velocity.

Apart from the relative density, we also look at the evolution of the relative phase ¢ /o
between neighbouring wells. The quantity ¢,/ is defined as

bey1/2 = Se+1— Se (11.11)
in the case of the DNLS, while in the case of the GP-equation we define
G172 = S(x = (I+1)d) — S(x=1d) (11.12)

Note that in a deep lattice the phase distribution within each well is found to be flat to a
good degree. An example for n;(t)/n(t = 0) and ¢4,/ is plotted in Fig.11.2. We call An
the amplitude of the sound wave packet in the relative density and A¢ the amplitude of the
wavepacket in the relative phase, as shown in Fig.11.2.

Our first result is that sound signals of measurable amplitude can be observed also in deep
lattices where the sound velocity is considerably lower than in the uniform system. This is
illustrated in Fig. 11.3 which depicts the sound velocity obtained from the simulation (circles)
with the respective signal amplitudes An together with the Bogoliubov prediction (solid line).
Up to s = 20 relatively large signal amplitudes can be obtained at this value of g. Note that
the signal amplitudes obtained from the simulation at s = 20, 30 correspond to their saturated
values as discussed further below.

T An

TAY
x/d

Figure 11.2: Example for sound signals as obtained from the DNLS (11.8). The signals are
created in the center with a relatively weak external perturbation of the form (11.1). They
move outward to the left and to the right at the Bogoliubov sound velocity. Upper panel:
Ratio between the density at a long time ¢ after the perturbation and the equilibrium density.
Lower panel: Phase difference between neighbouring wells ¢, /5 as defined in (11.12). The
signal amplitude in the relative density and in the relative phase is denoted by An and A¢
respectively.
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Figure 11.3: Sound velocity as a function of lattice depth s. Bogoliubov prediction (solid line)
and results “measured” based on the simulation (circles) with respective signal amplitudes An
for gn = 0.5FER. The signal amplitude An is defined as indicated in Fig. 11.2.

In Fig. 11.4 we plot the relative density at the final stage of our GP-simulation for the lattice
depths s = 0, 10, 20 with gn = 0.5FR for a large perturbation. From these simulations we
extract the sound velocity included in Fig.11.3. These results show that the measured signals
already involve significant nonlinear effects, even in the uniform case. We will now discuss in
more detail what nonlinear effects can occur and how they affect the sound signal. By keeping
lattice depth and interaction fixed while increasing the strength of the external perturbation
the role of nonlinearities increases and we pass through three regimes:

1. linear regime, where the Bogoliubov description holds and the variations of density and
relative phases are small;

2. shock wave regime, where density variations induce mode—coupling among Bogoliubov
excitations, giving rise to the formation of shock waves. Depending on the curvature
of the Bogoliubov dispersion beyond the phononic regime, shock waves emerge in front
of the wavepacket (uniform system, shallow lattice), both in the front and in the back
(intermediate lattice depth) or only in the back (deep lattice with 6 < U/3). In the
case in which shock waves form only in the back, the signal maintains a compact shape
and propagates at the sound velocity predicted by Bogoliubov theory. In the other two
cases, the sound signal deforms and disperses.

3. saturation regime in a deep lattice, where there exists a non—trivial dependence of the
current on the relative phase. The sound signal amplitude saturates, leaves behind a
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Figure 11.4: Relative density at ¢t = 480h/ER in the GP-simulation with gn = 0.5ER at lattice
depths a) s =0, b) s =10 and c) s = 20 yielding the sound velocities included in Fig.11.3.

wake of noise, but still propagates at the sound velocity predicted by Bogoliubov theory.
This regime exists only in the presence of the lattice and requires § < U/3 to ensure
that shock waves form in the back of the signal as in regime (2).

The signal amplitudes attainable in each regime and the perturbation parameters b, w, Tp
needed to reach a certain regime depend on the lattice depth s and on the interaction strength
gn, or equivalently, on § and U. As a general trend, in the presence of a lattice a stronger
perturbation is needed to obtain the same signal amplitude as without lattice. This reflects
the fact that the condensate is less compressible in a lattice. As already mentioned, regime
(3) exists only in the presence of the lattice and provided that § < U/3, which for fixed gn or
U can be ensured by making the lattice sufficiently deep.

1. Linear Regime

In Figs.11.5 and 11.6 we present examples for sound signals produced with a weak external
perturbation of the form (11.1) in the uniform case and for a lattice with s = 10. The signal
amplitudes An and A¢ are small and do not change during the propagation. The shape of the
signals remains constant and it moves with the sound velocity obtained from Bogoliubov theory.
In fact, all points of the signal move with the same speed. For example, the sound velocity
can be extracted equally well by measuring the position of the signal maximum, minimum or
center of mass as a function of time.
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Figure 11.5: Sound propagation in the linear regime without lattice for gn = 0.5Fr. Upper
panel: Relative density n(z,t)/n(z,t = 0) at t = 480h/ER of the GP-simulation. Lower
panel: Relative phase as defined in (11.12) at ¢t = 480h/ER of the GP-simulation
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Figure 11.6: Sound propagation in the linear regime with a lattice of depth s = 10 for
gn = 0.5ER. Upper panel: Relative density n(z,t)/n(z,t = 0) at t = 480h/ER of the
GP-simulation. Lower panel: Relative phase as defined in (11.12) at ¢ = 480h/ER of the
GP-simulation
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2. Shock Wave Regime

The peculiarity of region (2) is the formation of shock waves. In the uniform case, a wave
front emits shock waves in the forward direction (see Fig.11.4). The stronger the external
perturbation, the more the sound signal deforms and spreads due to the shock waves. A
measurement of the position of the signal maximum or minimum yields a velocity which
deviates from the Bogoliubov prediction for the velocity of sound. To obtain the value of the
sound velocity included in Fig.11.3 we have done a convolution of the signal over a few lattice
sites, mimicking the limited resolution of a detection system. In this way the signal is less
distorted by the shock waves. We then determine the center-of-mass position of the signal
as a function of time. This method allows to extract the exact sound velocity thanks to our
specific excitation method. On the contrary, a similar measurement done with a bright (dark)
sound signal would lead to a higher (lower) value for the sound velocity. The formation of
shock waves in front of a bright sound wave packet (positive density variation) in a uniform
system is predicted analytically and numerically [149]. An analytic solution describing shock
waves in a uniform system has been found by [150]. Their formation has also been discussed
in [151].

In a shallow lattice, shock waves form in the front as in the uniform case. This is because
the formation of a gap in the Bogoliubov spectrum does affect only a small range of quasi-
momenta close to ¢p. Hence, the mode—coupling among Bogoliubov excitations leads to the
creation of excitations outside the phononic regime which travel at a speed larger than the
sound velocity.

In a deep lattice, in contrast, shock waves are formed behind the sound packet. (see Fig.
11.7). In fact the lowest band tight binding Bogoliubov dispersion law, given by (see chapter

7.3)
Ty ~ || 20sin? <ﬂ> {259 2 <ﬂ> +2U}, 11.13
wq \/ in S0n in 205 ( )

has a negative curvature for all ¢ as long as 6 /U < 1/3. If the ratio 6 /U is larger than 1/3 the
Bogoliubov dispersion has a positive curvature in a small range of quasimomenta and becomes
negative closer to the zone boundary. Only in deep lattices (where §/U < 1/3), wavepackets
composed by quasi-momenta out of the phononic regime will propagate slower than the sound
packets. In this case shock wave formation takes place both in the front and in the back of the
sound wavepacket. Note that for typical values of the density 0/U lies between zero and one.
In a deep lattice where shock waves are formed behind the sound packet, we observe that the
relative phase distribution can approach ¢y 1 /5 ~ 7/2, as shown in Fig. 11.8 which refers to an
early stage of the evolution shown in Fig. 11.7. Then, it becomes strongly deformed indicating
that higher orders of the sine—function in (11.10) are important. However this behaviour does
not become critical up to the point where the relative phase of two neighboring lattice sites
$e41/2 = T, which defines the onset of regime (3).
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1.2

Figure 11.7: Sound signals with shock waves in the back for a deep lattice with §/U <« 1/3.

Upper panel: Relative density ng(t)/n¢(t = 0) obtained from the DNLS-simulation.

panel: Relative phase (11.11) obtained from the DNLS-simulation
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3. Saturation Regime in deep lattices

Provided that the lattice is deep enough to satisfy 6 < U/3, shock waves form only in the back
of the signal, as discussed above. If under this condition we further increase the strength of the
external perturbation, the relative phase ¢,/ at some site reaches m (see Fig.11.9, upper
two panels) and there the current starts flowing in the opposite direction (see Eq.(11.10)).
As a consequence, a wake of noise is left behind the sound packets and saturation in the
amplitude of the propagating signal is found (see Fig.11.9, lower two panels). The interesting
feature is that the noise has average zero velocity, since the oscillations of population between
different wells are completely dephased. Hence it never overtakes the sound signal, which is
always able to “escape” from the noise. The system is in an interesting state, where the outer
part is phase coherent, while the part between the two sound signals has lost coherence. We
stress that in the uniform case, in presence of strong nonlinearities, we can observe a strong
deformation of the signal, but in the central region the system is always able to recover the
ground state after the sound wave has passed by (see Fig.11.4 a)).

To demonstrate the saturation of the signal, we let the system evolve for a long time
after the external perturbation and look at the amplitudes An and A¢ which are defined as
indicated in Fig. 11.2. We find an interesting scaling behavior that helps to distinguish the
three regimes mentioned above in the case of deep lattices and renders evident the saturation
of the signal amplitude. Both in the GPE simulations (for relatively deep lattices) and in the
DNLS simulations, we find a very interesting scaling law of the results, shown in Fig.11.10:
The effect of the barrier is universal when:

e the barrier parameters are combined in the form Tpb/w which reflects the capability of
the system to react to an external perturbation;

e the relative density variation is rescaled as An/U/d, while the amplitude of the relative
phase signal A¢ need not be rescaled.

The phenomenology of the system as summarized in Fig.11.10 shows that for small barrier
parameter T,,b/w, the perturbation produced in the system is small, and depends linearly on
Tpb/w. Increasing the barrier parameter Tp,b/w, the signal amplitude An saturates quite
suddenly. The three regions indicated in Fig.11.10 correspond to the three regimes (1-3) listed
above.

Based on the DNLS equation (11.10) one can give a quantitative estimate of the saturation
value for An. Assuming small density and relative phase variations, the first of Egs.(11.10)
becomes

. nor. ) nd 0¢
Ny ~ E [Sln(¢g+1/2) - Sln(gf)g,l/Q)} ~ Ed& (1114)

Now, we make the ansatz n = 14+ An[fy(ld—ct)+ f-(¢d+ct)] and ¢ = —AP[f4(bd —ct) +
f—(€d+ct)] for the density and relative phase variation, where f and f_ describe respectively
the packets moving to the left and to the right. Using that ¢ = (d/h)VoU ,we get

An = \/gmp. (11.15)




154 Sound propagation in presence of a one-dimensional optical lattice

12
ny /\U/\
0' | | |
=200 ~100 0 100 200
1
0.5 :
0/ Mg
0.5 ]
300 ~100 0 100 200
x/d
12
N 1\ | bttt N ——
0' | | |
=200 ~100 0 100 200
1
0.5 :
O/mol WMMM% rrrrrrrrrrrrrrrrrrrrr :
0.5 ]
300 ~100 0 100 200
x/d

Figure 11.9: Sound signals in the saturation regime at an early (¢t = 16/ Eg; upper two panels)
and a late stage (¢t = 200%/ ER; lower two panels) for a deep lattice with § /U < 1/3. First and
third panel from top: Relative density n/(t)/n¢(t = 0) obtained from the DNLS-simulation.
Second and forth panel from top: Relative phase (11.11) obtained from the DNLS-simulation.
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Figure 11.10: Results for the density and relative signal amplitudes An and A¢ obtained from
DNLS simulations for varying barrier parameters Tp, b, w (see Eq.(11.1)), tunnel coupling §
and on-site interaction U (see Eq.(11.8)) with § < U/3.

This is in agreement with the behavior we find for An in the first (linear) and even in the
second (shockwave) regime as summarized in Fig. 11.10. The first order approximation to
sin(pg+1/2) in @pi1/2 is valid for Agp < 0.27, which implies Anpyay = 0.27/6/U. This is in
agreement with our observation that nonlinear effects play a minor role for signal amplitudes
An < 0.2m/6/U (region (1) in Fig.11.10). In region (3) of Fig. 11.10 we find that a very
good estimate for the saturated signal amplitude is given by Anyax = 0.27/0/U

Saturation does not occur in the uniform system or at low lattice depth. To demonstrate
this we plot in Fig. 11.11 the signal amplitude An measured after different propagation times
for s = 0 (dashed lines) and s = 15 (solid lines) as a function of barrier height b for fixed
barrier width w and perturbation time 7},. For s = 15 the signal amplitude takes exactly
the same values at t = 100, 200, 300, 400%/ER (The corresponding four lines in Fig. 11.11
perfectly overlap!). The saturated value is reached around b = 200 in this setting. In contrast,
the signal amplitudes in the uniform system at different times (¢ = 100, 200h/ER) differ
from each other: At earlier times the signal amplitude increases as a function of the strength
of the external perturbation and does not saturate. The amplitude measured at later times
coincides with the one measured at earlier times only for small barrier heights b for which
the propagation dynamics is linear. When nonlinear effects are presented, An becomes lower
during the evolution as a consequence of the dispersion of the signal.

It is interesting to note that in the linear regime, the signal amplitudes An and A¢ in the
uniform case obey the relation (11.15) with § = 2Er/7% and U = gn. In Fig. 11.12 we
accordingly rescale the data of Fig. 11.11 and find that all curves coincide in the linear regime.

The applicability of the relation (11.15) also in the uniform case or in a shallow lattice is due
to the fact that in the linear limit the lattice induced effects on the macroscopic dynamics can
be accounted for by the replacement m — m* and gn — k! (see chapter 9.4, in particular
Eqgs.(9.28,9.29) with k& = 0). Apart from this modification, the linearized dynamical equations
take the same form at all lattice depths.
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Figure 11.11: The signal amplitude An as a function of the barrier parameter bTp/w at gn =
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Figure 11.12: Same data as in Fig. 11.11. The amplitudes are rescaled to demonstrate the
universal behavior in the linear regime.
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11.4 Experimental observability

In order to discuss the experimental observability of the discovered effects, a few things need
to be considered: first of all, an experimental set-up involves a trapping potential in the
longitudinal and radial directions. In our model, we have neglected completely the radial
degrees of freedom, which might play an important role in sound propagation. First of all,
even in the uniform case, a radial TF-density distribution can change the sound velocity to
¢ =+/gn/2m [152, 153, 154, 139]. Such effects can be simply taken into account by correctly
changing the density dependence of the interaction term in our equations [116]. The second
important thing to consider is the external harmonic potential along the direction of sound
propagation. One should require that the time needed by the sound packet to travel along an
observable distance L >> d is shorter than the oscillation period in the trap. For example
for 8 Rb atoms, for s = 10 + 20, gn = 0.5FEr and L = 50d, trapping frequencies smaller
than 27 x 25 + 80 Hz are required. Last but not least, one should of course require that the
signal is measurable. In order to mimic the experimental resolution of the detection system,
one has to perform a convolution over a few lattice sites of the GPE solution. This gives
a maximum observable amplitude for the density variation which is in good agreement with
our DNLS prediction Anyax = 0.274/6/U. For gn = 0.5ER, the density variations which
can be observed for a few different values of the optical potential depth are: for s = 10,
Anpax = 0.13; s = 15, Anpax = 0.08; s = 20, Anpax = 0.05. Finally, one should also
keep in mind, that the saturation effect is clearly evident only if the shock waves move with
a velocity much lower than the sound velocity, which requires §/U < 1/3. Obtaining a clear
saturation effect (small §/U) associated with a large signal amplitude An (large §/U) at fixed
lattice depth requires a compromise in the choice of lattice depth s and interaction strength

gn.



158 Sound propagation in presence of a one-dimensional optical lattice




Chapter 12

Condensate fraction

The presence of the optical potential may introduce phase fluctuations which reduce the degree
of coherence of the sample. This effect yields spectacular consequences such as number
squeezing [89] and the occurence of a quantum phase transition from the superfluid to the
Mott insulator phase [155, 90, 91]. In the presence of a one-dimensional optical lattice with
large N at relatively low lattice depth one can predict interesting effects on the condensate
fraction. The determination of the quantum depletion also serves as a check for the validity
of GP-theory.

In a shallow lattice, the quantum depletion of the condensate is slightly enhanced (see
section 12.3). It still has the form of the standard Bogoliubov result for the uniform system
(see review in section 12.2), with g replaced by the effective coupling constant § > g and the
mass by the effective mass m*.

In the tight binding regime, the situation is very different (see section 12.4): The deeper
the lattice the more the system acquires the character of an array of condensates. In the
thermodynamic limit coherence is maintained across the whole system and the quantum de-
pletion is only little enhanced with respect to the shallow lattice. However, its dependence
on the scattering length changes with respect to the case of a shallow lattice: Reflecting the
two-dimensional character of each condensate of the array, the expression for the quantum
depletion takes the same form as for a disc-shaped condensate whose motion is frozen in the
tightly confined axial direction. In this configuration, the increase of the quantum depletion
with respect to the shallow lattice is due to its larger value in each disc and fails to capture
the loss of coherence between the discs. The loss of overall coherence has to be demonstrated
in a different way: Considering a large, but finite system we single out the contribution to the
depletion without transverse excitations corresponding to the depletion in a one-dimensional
system. This contribution grows logarithmically with the number of lattice sites. Moreover,
it becomes larger with increasing effective mass and with decreasing number of particles per
site. As the lattice is made deeper this 1D contribution becomes dominant and indicates the
transition to a regime where the condensate fraction is small and the long range order behavior
is modified.

The results included in this chapter were published in [102].

159
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12.1 Quantum depletion within Bogoliubov theory

Let us consider the problem in a 3D box of size L in z,y-direction and an optical lattice
with N, sites oriented along z Note that the quantum depletion of the condensate has been
calculated in [123, 124] for different geometries. The quantum numbers of the elementary
excitations are the band index j and the quasi-momentum ¢ along the z direction and the
momenta p, and p, in the transverse directions.

Within the framework of Bogoliubov theory, the quantum depletion of the condensate is
given by

ANiot 1 / ,
- dz [dz [ dy |v; r)|%, 12.1
Niot Ntotz Z Y |05.q.p2.py (T)] ( )

J @,px,py,|p|F0

where Niot denotes the total number of atoms, ANy is the number of non-condensed parti-
cles, [p| = \/p? + p2 + h?q? and vj 4, p, (r) are the Bogliubov v-amplitudes of the elementary
excitations. The sum runs over all bands j, over the quasi-momenta ¢ in the first Brillouin
zone and the momenta of elementary excitations in the transverse directions p,, p, allowed by
the periodic boundary conditions

21 Ny
= — =0,+1, £2, ..., £— 12.2
q Nde’ v ) ’ ) ) 9 ( )
27
p:rvpy = hflj7 V= 07:l:17 j:27 DRI (]‘23)

The Bogoliubov amplitudes v; g, p, (r) in Eq. (12.1) solve the Bogoliubov equations

w4

d ) + 2d gn W’(z)’Q - N) Ujqpapy (r) + gndézvjqpxpy (r) = hwj(‘l)ujqpxpy (12.4)

h2
(—2—V2 + sEpsin? (
m
n? 2 .2 (T2 ~r N2 ~ %2
_%v + SER Sin F + 2dgn |SO(Z)| —H qupwpy (r) + gnd@ ujqupy (r) = _hwj(q)vjqupy (125)

They can be obtained from the three-dimensional time-dependent GPE

L 0¥(r,t) n? _, .o (T2 2
it = <2mv + sEpsin <d)+g|\11(r,t)| Ui t),  (126)

where the order parameter W fulfills the normalization condition
/dr ()2 = Nyt (12.7)
by considering small time-dependent perturbations §¥(r,¢) of the groundstate ¥(r)
U(r,t) = e MR W (r) + 60(r, t)] , (12.8)
where
SU(r,t) = uy(r)e ™! + vk (r)e™! (12.9)

as exemplified in section 7 for the case p, = p, = 0.
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The Bogoliubov amplitudes must comply with the normalization condition

[z [ ds [ dy (g0, @) = 0450, @) 7] = 1. (12.10)
Eq. (12.1) adquately describes the quantum depletion provided
A]Vtot
— < 1. 12.11
Ntot ( )

Otherwise it is necessary to go beyond Bogoliubov theory.

12.2 Uniform case

At lattice depth s = 0, Eq. (12.1) yields the quantum depletion of the weakly interacting
uniform Bose gas. In this case the sum >_; = with g belonging to the first Brillouin zone can
be replaced by >_, with

P
%y, v=0,41,42,.... (12.12)

The correctly normalized Bogoliubov amplitudes are given by

q:

ei(pzatpyy) /N i
Ugpspy (T) = quzmyT€q ) (12.13)
ci(Paz+pyy)/h is
Vg.pepy (T) = Vq,pz,PyTeq ) (12.14)
with
Z 4 hw
_ 2m uni
Ugpeipy = ;ﬁﬁ’ (12.15)
2
L
Vapewy = 22— (12.16)

b
2 p2 hwuni
V 2m

where p? = p? +p§ + h2¢? and w is the dispersion relation of the elementary excitations

2 2
Funi = \/p— (p— + 2gn> . (12.17)
2m

2m

We insert (12.13,12.14) into Eq.(12.1). To obtain the result in the thermodynamic limit
Niot, L — 00, n = const. we make use of the continuum approximation

L1
Pax,Py,q

This leads to

A Niot 1 L3 1 )
= 32 d x d d
Ntot Ntot (271-)3 hz / p / py / q|‘/;17pzypy|

2
- N / " syl | 1
Neot (27)° B* Jo

2 P 2 ( E)
[ 2N 212 ]
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This expression can be evaluated analytically. One obtains the well known result

ANy 8 1

N =3 (a®n)'/?. (12.20)

In view of the discussion of the case s # 0 below, it is important to point out that the integrand
in (12.19) contributes most at p ~ mc where the dispersion (12.17) passes from the phononic
regime w ~ p to the single particle regime hw ~ p?. Yet the convergence is very slow and
the integral is saturated by momenta much larger than mc [156], where elementary excitations
have single particle character.

Quantum depletion of the 2D uniform gas

Let us consider a uniform system of axial size d and transverse size L and let us assume that

the motion is frozen in the z-direction. We set ¥(r) = ﬁ@g(x,y). Under these conditions

the stationary GPE takes the form

PGy T1wo? ) Wy = p (12.21)
om " d 2 2 ‘
The 2D density is given by
ng = |Ug|? = Nioy /L. (12.22)

The 2D coupling constant emerges as
_9_
g2== dr—-—. (12.23)
The groundstate solution is given by

= gang . (12.24)

The calculation of the Bogoliubov spectrum is analogous to the 3D case. The result for
the depletion changes only because of the change in the dimensionality of the integral over
momenta. We rewrite the derivation here for clarity. The Bogoliubov equations for the system
in the groundstate read

2

<2p_m + 2go|Wo* — N) up + 92| 2?0, , = hw(p)uy (12.25)
P

(% + 2go| Wo* — N) vp + 92| WolPup = —hw(p)uy, (12.26)

where p? = p?2 +p§ and we have assumed that the Bogoliubov amplitudes take the form

11 .

up(z,y) = Upﬁ Eez(p”ﬂ’yy)/h? (12.27)
11,

vp(z,y) = Vy—=—eiPetpu)/h (12.28)

p\/EL
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The solution for the excitation spectrum is found to be

hw(p) = \/pQ (ﬁ + 2g2n2> : (12.29)

2m \2m

and the square of the Vj,-amplitude is given by
1

p?

V2= { 2 1]

p 2 p? p? ’
\/492n2m(4ggn2m + )

where we have used the fact that the amplitudes should be normalized to [ dr (|u,|?> — |v,|?) =
1.

(12.30)

We then find that in the thermodynamic limit the depletion of this 2D uniform gas is given
by

2
- / ™ 2mpdps g 12 1
Niot Niot (271)2 Jo 2 \/ p? ( P 1)

4gonom \4ganam

1 m
Eﬁ%

=2 12.31)
. (
where we have used (12.22) and (12.23). Note that the integral differs from (12.19) only due
to the replacement of 47p?dp by 27mpdp.

If the axial profile of the order parameter is given by a gaussian of width o which is
normalized to one in the z-direction, the 2D coupling constant is given by

g

= ) 12.32
92 V2o ( )
In this case, the result for the depletion reads
ANgot a
= , 12.33
Niot 2o ( )

Quantum depletion of the 1D uniform gas

In a one-dimensional uniform system the one-body density exhibits a power law decay at
large distances. This rules out Bose-Einstein condensation in an infinite, but not in large but
finite system. Considering the latter case and supposing that Bogoliubov theory is applicable
we calculate the quantum depletion in analogy with the calculations above. This requires
evaluating the expression

Softot V2, 12.34
Ntot tot ; a ( )

with

hQ 2
S+ g1an1d

1
7" 9 2,2 /12,2
\/hgrgl (527;11 + 2gldn1d)

—1|, (12.35)
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where

g
91d = ﬁ ) (1236)
nig =nlL?, (12.37)
are the effective 1D coupling constant and 1D density in a system with radial extension L and

3D density n whose motion is frozen in the radial direction. Supposing that the system is very
long, we make use of the continuum approximation in the z-direction. This yields

2.2

AN, 1 L[> 1 e
et TTQ/ das; g CIWMd ) (12.39)

T e 2 9 2

tot tot Gmin=27/L \/thL (FL q> + 291dn1d)
We rewrite this expression in the form
ANew - 1 L1 R IR S S (12.39)
Niot Niot 2 & Jore/L 2 | V/E2¢2 (242 +2) ’ '

with the healing length £ = \/2mg14n14. The integral can be solved analytically yielding

A Niot 1 NS £ 1 1
= Ar22- + 24 27> —|— arctanh — | .(12.40
Niot Ntot 2775 L2 V2 1+ 4%2% ( )

Using £ < L this expression can be recast in the form

ANt 1 L11 cont [ 1 42 2
= —=alctan
Niot Niot 27 € V2 412

1 L11 V2L
= M§Eﬁln (Tg) (12.41)

Using the formula ¢ = \/g14n14/m for the sound velocity and defining

mc

= ) 12.42
2777’m1d ( )

we rewrite this result in the form

Alior _ <WL> (12.43)

Ntot 7T£

This result is valid provided that the depletion is small which can be ensured by making v
sufficiently small. In this respect, it is interesting to note that the quantity v becomes smaller
when the 1D density n1q = Niot/L is made larger. The depletion diverges for L — oo. This
follows from the power law decay behavior of the 1-body density: The condensate depletion
measures to what extent the 1-body density drops on a distance of the system length.
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12.3 Shallow lattice

In chapter 5 and 9 we have seen that a condensate loaded in a lattice can be effectively
described as a uniform system of atoms whose motion in the z-direction occurs with effective
mass m* and whose interaction, at sufficiently low average density, is described by an effective
coupling constant g. We can then pose the question under what condition this holds also for
the calculation of the quantum depletion. According to the above discussion of the uniform
case, the dispersion of the relevant elementary excitations must be well approximated by

2 2 p2,2 2 2 502
hw(px,py,q):¢<p—x+p—y+ q)((p_x_i_p_y_i_ 1 >—|—2§n>. (12.44)

2m  2m  2m* 2m  2m  2m*

Note that this dispersion implies different sound velocities in the axial z and transverse x, y-
directions respectively:

an

CZ - w 9 (1245)
an
Coy = E . (1246)

As pointed out in section 12.2, the range of relevant momenta p,, p, and quasi-momenta ¢
reaches up to values much larger than mc;, and much larger than m*c, respectively. Hence,
a necessary condition for the applicability of the approximation (12.44) is that

m*c, << hqp, (12.47)

since near the zone boundary ¢ ~ ¢p the dispersion certainly deviates from (12.44). This
requirement can be rewritten in the form

m* g E

J < 2R (12.48)
mg gn
It can only be fulfilled for gn/ERr < 1 since the left hand side is always larger than one.
Moreover, for a given value of gn/ERr < 1 it can only be satisfied for sufficiently low lattice
depths s since both m*/m and g/g are monotonically increasing functions of s (see section

5.2 and 6.1).

Supposing that the approximation (12.44) is applicable, we can calculate the quantum
depletion as in the uniform case: The effective mass can be eliminated from |vgp, p, (r)[?
by introducing the rescaled quasi-momentum ¢ = /m/m*q. Accordingly, we write [dq =

vm*/m [ dg and obtain

ANiot 8 1 m*
N, j =317 E(agn)1/27 (12.49)
O

where we have defined the effective scattering length a through the relation g = 47Th251/m.
As pointed out above, this expression is valid only for low average densities and low lattice
depths. In this regime, the quantum depletion is expected to differ only little from the one in
the absence of the lattice. The situation becomes more interesting for larger optical potential
depth, where the lattice is expected to affect the coherence properties of the system more
strongly.



166 Condensate fraction

12.4 Tight binding regime

In the regime of deep optical lattices, one can neglect contributions to the depletion from
higher bands, because high energy excitations are particle-like (see discussion section 7.2) and
hence

or r
i#1.a.p2.py (T) ~0. (12.50)
uj?ﬂ:%pmpy (I')
We are then allowed to restrict the sum in (12.1) to j = 1.

In the tight binding limit, one can easily generalize expressions (7.25,7.26) for the Bogoli-
ubov amplitudes in the lowest band to account for transverse excitations

cilpratpy) /1 ],

Ugpy py (T) = 7 \/’@yZe“ﬂd/hf z—1d), (12.51)
i(pz+pyy)/h
Vg pa,py (L) = € 7 7pz7pyzequd/hf 1d), (12.52)

where f(z) is the condensate Wannier function (see Eq.(6.26) with j = 1). Starting from this
ansatz and for simplicity neglecting contributions arising from ndd/dn (see discussion section
7.2), Eq.(7.38) can be generalized to 3D in a straightforward way, yielding

hw(py,q) = \/a(m, a)(e(p1,q) +2671), (12.53)
where
e(pL,q) = ];% + 20 sin?(qd/2) (12.54)

and p? =p? +p§. For the amplitudes Uy, », and V., in (12.51,12.52) we find the result

€+ hw
U _ T 12.55
N ( )
€ — hw
V. — : 12.56
PPeby 9 hwe ( )
ensuring the 3D normalization condition (12.10).
Omitting the sum over j > 1 in (12.1) we are left with the expression
AN _ 1 [(Pes Pys @) — o Pz Py, @)
Ntot Ntot 4Pz ,Py 4hw(pxapy7 Q)g(pmv pya Q)
1 1 !
_ 1| e®apy @)+ (12.57)
Niot g5, 2| hw(pe, Py, q)

with e(pg, Py, q) and w(pg, py, q) given by (12.54) and (12.53) respectively. The spectrum of
values of ¢ and p,, py is given by (12.2) and (12.3 ) to satisfy the correct boundary conditions.
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3D thermodynamic limit

An analytic expression for (12.57) can be found in the thermodynamic limit employing the
continuum approximation

> L /d /d /ﬂ/dd (12.58)
e (271')3 72 Px Py o/ q . .

The quantum depletion in the tight binding regime then becomes

ANgow 1 L* 1 y
Niot Niot (27)3 B2

wjd oo | P4 1/2 4 S sin? ()
X/_ dQ/ 27er_dpJ_§ — K m - ;2 - y —1
wd o V (ot + o sin?(49) (gt + o sin?(4) + 1)
(12.59)

The integral can be solved analytically and the final result reads

ANtot T 1 H_l )
=-———G|— 12.60
Niot 4 nd® Er </‘6_1> ’ ( )
where the function G(b), given by
1 Vb b 1
Gb)=5——+5 - ;arctan(\/g)(l +b) (12.61)

is depicted in Fig.12.1.

From Eq.(12.60), one recovers the result (12.49) in the limit §/x~! — oo, reflecting the
fact that the case of a shallow lattice is approached by increasing §. Yet, this limit is only
of academic interest, since in the tight binding regime where (12.60) applies, the ratio §/x~!
becomes large only if interactions are vanishingly small. For example, for gn = 0.02FR and
s = 10 one still finds §/k~1 ~ 1. Thus, in the tight binding regime the ratio §/k ! is
usually small. It goes to zero as s — co. Moreover, the incompressibility x~! approaches the
expression k! = gn. Hence, in the large-s limit the depletion (12.60) converges to

A]Vtot

a
Ntot d ’

(12.62)

where, as previously, we have defined an effective scattering length & through the relation
g= 47rh26/m. Note that the dependence on the interaction strength is stronger in this case

than in a shallow lattice (see Eq.(12.49)), since the depletion scales like @ rather than /2.

The result (12.62) coincides with the thermodynamic limit quantum depletion (12.33) of a
disc shaped uniform system with strong axial harmonic confinement, freezing the wavefunction
to a gaussian of width o. The link between the result for the disc (12.33) and the lattice result
(12.62) is established by noting that within the gaussian approximation to the Wannier function
in a deep lattice we find @ = ad/v/2mo (see section 6.2, in particular Eq.(6.54)). Thus, the
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depletion (12.62) can be rewritten in the form ANy /Niot = a/+/27a in coincidence with the
expression for the depletion in a disc (12.33). This means that we are not dealing with an array
of separated two-dimensional condensates, but with one condensate only being distributed over
several sites. Equivalently, we can refer to the system as a coherent array of two-dimensional
condensates, each of them containing a non-condensed fraction

(A 2, 126

giving rise to a non-condensed fraction of the whole system
ANt 1 Z (AN)
Ntot Nw I N l

, (12.64)

Q|

where the fact that we can simply added up the number of non-condensed atoms at each site
is a non-trivial step presupposing the coherence of the system as a whole.

It is interesting to note that the depletion (12.62) is obtained by letting the tunneling
parameter go to zero (6 — 0). Still, the resulting depletion takes values much smaller than
one provided that the confinement within each well does not become infinitely large giving rise
to a diverging § and hence @ !. The reason for this is that before letting § — 0 we have taken
the limit Nyot, L — 00, n = const.. This forces the system as a whole to be coherent since
the ratio between the Josephson tunneling energy E'; and the Josephson charging energy E¢
(see Eqs.(10.34,10.49)) diverges

E;/Ec = Nk§/2 — oo (12.65)

for fixed k, 6 as N — oo, while the average density n is kept constant. This indicates that
coherence is maintained across the whole sample (see discussion in section 10.1).

In conclusion, we can say that the result (12.62) does not tell us what happens to the
condensate fraction when the system size and the total number of particles are kept fixed
while the lattice is made very deep. Surely, we expect the true result to differ from (12.62)
in this case: In connection with the occurence of number squeezing and the approach to the
superfluid-insulator transition the condensed fraction should become small as a signature of
the decoherence of the system breaking up into disconnected parts each one of them occupying
one lattice site.

1D thermodynamic limit

We have seen that in the thermodynamic limit, the quantum depletion is upper-bounded by
the usually very small quantity a/d. If the continuum approximation (12.58) in the radial

'If § — 0 is achieved by letting s — oo, also § — oo and thus @ — oo (see Eq.(6.54) with o given by
(6.50)). Yet, there are other ways of taking the limit 6 — 0 which do not affect g: For example, the tunneling
rate can be made zero by increasing d or by raising the barriers of the periodic potential while keeping the
potential unchanged close to its minima.
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direction is not applicable and it is crucial to take into account the discreteness of the sum
over the quantum numbers p, and p, in Eq.(12.57), the results are different. This is the case
if the number of particles in each well is sufficiently small, or if the longitudinal size of the
system, fixed by the number of wells N,,, is sufficiently large. The limiting case is obtained
when the contribution arising from the term with p, = p, = 0, ¢ # 0 is the dominant one in
Eq.(12.57) and we are thus left with

ANt 1 1 20sin?(§) + 5~ 1 (12.66)
Neot Mot 552 \/26sin2(‘12d) (20sin®(%)) + 257)

Supposing that the system is very long, we make use of the continuum approximation in the
z-direction. This yields

ANt 1 L /w/d 1 26 sin?(4) + !

- = o [T ~1|, (12.67)
Neot Niot 21 \/25 sin2(q7d) (25 sinz(%d) + 25*1>

2

Gmin

with ¢min = 27/L. Since we are interested in particular in what happens in a very deep lattice,
we expand the integrand to lowest order in the ratio 6/x~!. Replacing ¢ by

d
s =4, (12.68)

0.5

Figure 12.1: The function (12.61) involved in the result for the quantum depletion (12.60)
obtained by considering the thermodynamic limit of the tight binding expression (12.57).
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we obtain
A Niot 1 ! d 1 1
= —_— S———
Niot N Jsmin  4V0ksin(%)
11 2 T Smi
= —= arctanh [cos( mm)] . 12.69
N 4 7/6k 2 ( )

Because spin = 2/N,, < 1, we expand

— = —- tanh [ 1 — = :
Nk Nin \/&arc an 87r Shoin
1 1 4
= — 1 . 12.70
N 27V 0K " <773min> ( )
and inserting spin = 2/N,, we finally obtain
ANyt 1 1 (2Nw>
= — 1 . 12.71
Niot N 27\/ék "\ ( )

Using the relation between ¢ and the effective mass (6.41) and the relation between sound
velocity, compressibility and effective mass (7.48) this result can also be written in the form

ANiot <2Nw>
—— =vin|—), 12.72
Ntot ( )
with
m*ed
V= 5N (12.73)

Hence, the quantum depletion can be made larger by increasing the lattice depth s (thereby
increasing m*c), decreasing the number of particles per well N, or by increasing the number of
wells N,,. Yet, one can easily check that, unless N is of the order of unity or m* is extremely
large, the value of v always remains very small. To illustrate this point we plot in Fig.12.2 the
quantity Nv as a function of the lattice depth s as obtained for gn = 0.5FR, showing that
for a small number of particles per site the depletion (12.72) is large.

Note that in a deep lattice, we have ¢ = y/gn/m* and hence the depletion scales like al/2,
This should be compared with the @ and @/2 dependence in the coherent array of 2D discs
(12.62) and in the shallow lattice (12.49) respectively.

Result (12.72,12.73) has a form analogous to the quantum depletion (12.43) of 1D uniform
gas. Yet, recall that strictly speaking (12.73) was obtained in the tight binding regime and
assuming that 6/k~! < 1. An interesting difference is given by the fact that the healing
length £ entering as relevant length scale in the argument of the logarithmic function in the
case of the uniform system is replaced by the interwell spacing d in the case of a deep lattice.
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Quantum depletion and decoherence

Result (12.72,12.73) is linked to the coherence theory of 1D systems, where the off-diagonal
1-body density exhibits the power law decay

(1) o N\ TV
=) (=) (1270
n 3
at large distances. If the exponent v is much smaller than 1, the coherence survives at large
distances
(1) o Y RN 4 o
n (2 ZD—><|Z z|> Rﬁl—l/ln<|z z\)’ (12.75)
n £ £
and the application of Bogoliubov theory is justified
A]Vtot <L)
~vin|l—-|<1. 12.76
Ntot 5 ( )

For a superfluid, the value of v in (12.74) is fixed by the hydrodynamic fluctuations of the
phase and is given, at 7" = 0, by the expression (12.73) [1].

In terms of the Josephson parameters (10.34,10.49) we can also write

Ec
= —= 12.77
V=4 2, (12.77)

451 B
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Figure 12.2: The quantity Nv (see Eq. (12.73) with N the number of particles per well) as a
function of the lattice depth s with m*c as obtained for gn = 0.5FR.
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confirming that the system is coherent as long as E;/Ec < 1 (see section 10.1).

When the exponent of the power law takes the value v = 0.14, corresponding to E; =
1.62E¢, the 1D system is expected to exhibit the Bradley-Doniach phase transition to an
insulating phase where the 1-body density matrix decays exponentially [157]. Note however
that before this transition is reached the depletion (12.72) becomes large and hence Bogoliubov
theory is no longer applicable.

The transition from the regime where (12.62) is applicable to the regime where the 1D
character of the fluctuations prevail (see Eq.(12.72) can be estimated by calculating at what
lattice depth s the condition

QN“’) : (12.78)

a | (

—~vin|—

d T
is fulfilled. As an example, for gn = 0.2Eg, N, = 200 and N = 500, this transition is

predicted to occur around s = 30 where the left and right side of the inequality become equal
to ~ 4%.

Quantum depletion in current experiments

To give an example, we set gn = 0.2FEr, N = 200 and N,, = 500 describing a setting similar
to the experiment of [73]. Bogoliubov theory predicts a depletion of ~ 0.6% in the absence
of the lattice (s = 0). At a lattice depth of s = 10 the evaluation of Eq.(12.1), using the
tight binding result (12.57), and keeping the sum discrete yields a depletion of ~ 1.7%. On
the other hand, Eq.(12.60), obtained by replacing the sum in Eq.(12.57) by an integral, yields
a depletion of =~ 2%, in reasonable agreement with the full result ~ 1.7%. The 2D formula
(12.62) instead yields ~ 2.9% depletion, revealing that the system is not yet fully governed by
2D fluctuations. With the same choice of parameters, the power law exponent (12.73) has the
value v = 0.001 and the 1D depletion (12.72) is predicted to be ~ 0.6%, significantly smaller
than the full value ~ 1.7%. This reveals that the sum (12.57) is not exhausted by the terms
with p, = p, = 0. In conclusion, one finds that for this particular setting, the character of
fluctuations is intermediate between 3D and 2D, and still far from 1D. In particular, from the
above estimates it emerges that in order to reach the conditions for observing the Bradley-
Doniach transition one should work at much larger values of s.

A very different situation is encountered in the experiment [91]: There, a weak one-
dimensional optical lattice of depth s,, is set up along the tubes formed by a deep two-
dimensional lattice. In this setting, the number of particles per site is very small N ~ 3 — 4.
For sqr = 4 and interaction strength gn = 1ER one finds Nv = 0.42, yielding a large deple-
tion of 0.55 for N,, = 40 sites and N = 3 particles per site. Hence, this setting prepares the
gas in a regime of strong coupling beyond the validity of GP- and Bogoliubov theory. Note
that in determining the interaction parameter gn we have taken into account the non-uniform
confinement in the transverse directions.
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