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Abstract

In this paper new load balancing techniques are proposed based on
IP-like routing, where the forwarding mechanism is only driven by the
destination address. The aim of this work is to consider the applicability
of this approach in the context of optical networks.

The proposed algorithm (RSNE — Reverse Subtree Neighborhood Ex-
ploration) implements a local search technique where the basic step is the
modification of a single entry in the routing table of a node. A randomized
method with reduced computational complexity (fRSNE — fast RSNE) is
also presented and analyzed. Both schemes allow an incremental imple-
mentation where local search steps are continuously performed as traffic
conditions change.

Experiments under static and dynamic (time varying) traffic scenar-
ios show a rapid reduction of the congestion. The performance of the
incremental scheme while tracking a changing traffic matrix is compara-
ble to that obtainable through the complete re-optimization of the traffic,
while the randomized implementation is particularly efficient when scaling
properties are considered.

1 Introduction

In present days we experience an increasing bandwidth demand caused by the
exponential Internet growth and the introduction of communication-intensive
applications. In this framework, techniques such as optical Wavelength Divi-
sion Multiplexing (WDM) and routing schemes such as Generalized Multi Pro-
tocol Label Switching (G-MPLS) have been proposed. In WDM networks, each
fiber carries multiple independent data streams on different carriers in order
to achieve complete spectrum utilization. Relevant efforts are being spent to
assign a wavelength to each data stream in such a way that all traffic is handled
in the optical domain, without any electrical processing on transmission [4].

Current advances in optical communication technology are rapidly leading
to flexible, highly configurable optical networks. The near future will see a
migration from the current static wavelength-based control and operation to
more dynamic IP-oriented routing and resource management schemes. Future
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optical networks designs should probably be based on fast circuit switching, in
which end-to-end optical pipes are dynamically created and torn down by means
of signaling protocols and fast resource allocation algorithms.

IP modifications are being proposed to take QoS requirements into account
and to integrate the IP protocol within the optical layer. At the same time, a
generalized version of Multi-protocol Label Switching (G-MPLS) is being devel-
oped to enable fast switching of various type of connections, including IP based
lightpaths. As soon as protocol modifications can ensure different QoS levels
at the IP level, more and more statically allocated traffic can be transmitted
on the dynamic portion of the network leading to an all optical and fully dy-
namic G-MPLS controlled optical cloud [21]. In this scenario it is necessary to
study the impact of routing mechanisms typical of the IP world, by analyzing
the possible integration of label switching techniques (MPLS) with the current
optical switching architectures. In addition, it is important to study criteria and
algorithms to decide when and how lightpath allocation and release requests are
generated in the presence of data traffic.

The optimization in the usage of scarce resources in optical networks with
WDM technology leads to the problems of packet routing (in packet networks)
and of creating virtual connections by considering both routing and wavelength
assignment. Some seminal papers are [6, 19, 17, 1, 24]. A review of algo-
rithms for designing virtual topologies directly on the optical layer is presented
in [10]. The network evolution in terms of traffic amount and flexibility re-
quirements indicates that mesh networks must be considered instead of typical
SDH/SONET-like ring topologies, thus opening a more complex scenario. A
novel heuristic approach for the design of WDM networks under static traffic
demands is described in [13]. The work [2] considers the physical topology as
completely assigned and exploits the resources of the optical layer for the design
of the virtual topology. Heuristics for the design of virtual topologies, based on
greedy principles [18] or on linear programming [8] have been recently discussed.

Routing that takes into account the combined topology and resource usage
information at the IP and optical layers [7], with constraints on the maximum
delay or number of hops, is an area that deserves additional exploration. Paper
[23] investigates distributed control mechanisms for establishing all-optical con-
nections in a wavelength routed WDM network: an approach based on link-state
routing, and one based on distance-vector routing. A novel algorithm for inte-
grated dynamic routing of bandwidth guaranteed paths in MPλS networks is
developed in [7]. Another fundamental issue when designing network algorithms
is their ability to function with the limitations of a distributed environment, i.e.
local and delayed information. Work [11] considers the case in which nodes ex-
plore a limited portion of the search space by considering only a certain number
of links along a path.

The technological context of our proposal is summarized in Section 2, then
the Reverse Subtree Neighborhood Exploration (RSNE) algorithm is introduced
in Section 3. In Section 4 a randomized implementation and an incremental
implementation are motivated and described. In Section 5 an ILP formulation of
the problem is given in order to compare the proposed algorithms with the actual
optimum values, at least for small networks. Finally, in Section 6 simulation
results are analyzed by considering both the static and the dynamic traffic cases.
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2 Adaptive routing and load balancing

The purpose of Load Balancing in WDM based networks is to reduce the con-
gestion in the network. The congestion is related to delays in packet switching
networks, and therefore reducing congestion implies better quality of service
guarantees. In networks based on circuit switching (see for example the G-
MPLS protocol), reducing congestion implies that a certain number of spare
wavelengths are available on every link to accommodate future connection re-
quests or to maintain the capability to react to faults in restoration schemes. In
addition, reducing congestion means reducing the maximum traffic load on the
electronic routers connected to the fibers.

Load balancing in WDM networks consists of two subproblems: the lightpath
connectivity and the traffic routing problem. The routing problem has its origin
at the beginning of the networking research, see [16] for a review of previous
approaches to the problem. In particular, adaptive routing, that incorporates
network state information into the routing decision is considered in [15] in the
context of all-optical networks, while previous work on state-dependent routing
with trunk reservation in traditional telecommunications networks is considered
in [14]. It is also known that flow deviation methods [5], although computa-
tionally demanding, can be used to find the optimal routing that minimizes the
maximum link load for a given network topology.

Because global changes of the logical topology and/or routing scheme can
be disruptive to the network, algorithms that are based on a sequence of small
steps (i.e., on local search from a given configuration) are considered. In [9]
“branch exchange” sequences are considered in order to reach an optimal logical
configuration in small steps, upper and lower bounds for minimum congestion
routing are studied in [22] that also proposes variable depth local search and
simulated annealing strategies. Strategies based on small changes at regular
intervals are proposed in [16].

Our technological context is that of dynamic lightpath establishment in
wavelength-routed networks reviewed in [23]. We therefore assume a mecha-
nism to assign resources to connection requests, that must be able to select
routes, assign wavelengths and configure the appropriate logical switches, see
also [7] for integrated IP and wavelength routing and [12] for a blocking analysis
in the context of destination initiated reservation.

This paper describes an investigation on protocols that consider IP-like rout-
ing strategies, where the next hop at a given node is decided only by the des-
tination of the communication. In particular, we consider a basic change in
the network that affects a single entry in a single routing table. In the context
of all-optical networks this is relevant for optical packet switching networks,
or for circuit switching networks (e.g. based on G-MPLS) where the optical
cross-connects allow arbitrary wavelength conversion.

In this article we build on our previous work [3]. New contributions include
the introduction and experimentation of a randomized version of the algorithm,
a comparison with an ILP formulation and a largely extended experimental
section.

Let us define the context and the notation. By physical topology we mean
the actual network composed of passive or configurable optical nodes and their
fiber connections. The logical topology is given by the lightpaths between the
electronic routers, determined by the configuration of the OADMs and trans-
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mitters and receivers on each node. The traffic pattern is available as an N ×N

matrix (N being the number of nodes in the network) T = (tij) where tij de-
notes the number of lightpaths (or the number of traffic load units) required
from node i to node j. We assume that the entries tij are non-negative integers
and tij = 0 if i = j. A routing table is an array, associated to each node of
the network, containing the next-hop information required for routing. In the
following we shall consider IP-like routing, where the next hop is maintained
for each possible destination, regardless of the index of the source node. For a
given traffic pattern and routing tables associated to the nodes, the sum of the
number of lightpaths passing through each link is called the load of the link.
Finally, the maximum load on each link of a path is called the congestion of this
path. The maximum load on each link of a network is called the congestion of
the network.

The Load Balancing problem can be defined as follows.

Load Balancing — Given a physical network with the link costs
and the traffic requirements between every pair of source-destination
(number of lightpaths required), find a routing of the lightpaths for
the network with the least congestion.

3 Local Search for the Load Balancing Problem

The basic idea of the new Load Balancing scheme is as follows: start from the
shortest path routing and then try to minimize the congestion of the network by
performing a sequence of local modifications. For each tentative move, the most
congested link is located, and part of its load is re-routed along an alternate
path.

We shall begin with some definitions and explanations of the functions and
variables. We maintain the set candidatePathSet containing paths that are
candidate to replace those passing through the most congested links of the
network. This set is emptied at each iteration of the algorithm.

Given all routing tables, every node d identifies a spanning tree of the net-
work, namely the tree composed of all links that carry lightpaths addressed to
d (it is a tree because of the destination based routing). We are interested in
identifying a subtree of this tree, and we use the function routingTree(d,r) re-
turning the subtree rooted in node r of the routing tree having destination node
d. The shaded tree shown in Figure 2 is actually routingTree(dest,cFrom), and
it contains all nodes whose lightpaths directed to destination dest pass through
node cFrom. The function shortestPathRouting(network) calculates the shortest
path tree for each destination node and returns the corresponding set of routing
tables as a matrix. rTable[n] is the routing table of node n, whose i-th entry
rTable[n][i ] is the next-hop node index for lightpaths passing through node n
and with destination i.

Finally, function calculateLoad(network,traffic,rTable) returns the network
congestion given the network topology, the traffic pattern and the current rout-
ing scheme. The function also returns the set of links having maximum loads.

Figure 1 shows a description of our Local Search algorithm used for the
Load Balancing problem. In the rest of the paper we shall refer to it as Reverse
Subtree Neighborhood Exploration (RSNE).
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1. rTable ← shortestPathRouting(network)
2. <congestion,congestedLinkSet> ← calculateLoad(network,traffic,rTable)
3. repeat

4. bestCandidateLoad ← +∞
5. candidatePathSet ← ∅
6. for each link <cFrom,cTo> ∈ congestedLinkSet

7. for each destination node dest such that rTable[cFrom][dest]=cTo

8. for each source node src ∈ routingTree(dest,cFrom)
9. removePartialLoad (src, dest)
10. for each neighbor node nb ∈ neighborhood(src)
11. vl ← load on the candidate path from src to dest through nb

12. if (vl = bestCandidateLoad)
13. candidatePathSet ← candidatePathSet ∪ {<src,dest,nb>}

14. else if (vl < bestCandidateLoad)
15. bestCandidateLoad ← vl

16. candidatePathSet ← {<src,dest,nb>}

17. restorePartialLoad (src, dest)
18. if ( candidatePathSet 6= ∅ )
19. <src,dest,nb> ← pickRandomElement ( candidatePathSet )
20. rTable[src][dest] ← nb

21. <congestion,congestedLinkSet> ← calculateLoad(network,traffic,rTable)
22. else exit

23. until MAXITER iterations have been performed

Figure 1: the Local Search RSNE algorithm.

The initialization section (lines 1–2) starts by generating the routing tables
by the application of the Shortest Path Routing algorithm to the specific net-
work (the costs of all the edges are considered as uniform). Using the function
calculateLoad we initially calculate the load on each link of the network, the
initial value of congestion (from which the local search algorithm starts its re-
search of the minimum) and the set of congested links congestedLinkSet. Then
candidatePathSet is empty at the beginning of each iteration.

Every iteration of the local search algorithm (lines 3–23) consists of two
distinct parts. First, a set of alternate paths for part of the traffic passing
through the most congested links is found (lines 6–17): then, once the most
promising candidate move is selected, the routing tables of the network (lines 18–
22) are corrected accordingly, then the iteration starts by considering the new
congested links.

The first part includes the core of RSNE algorithm. Refer to Figure 2 for a
visual reference. We consider each congested link in congestedLinkSet (loop at
lines 6-17). Let us identify this link with its endpoints (cFrom,cTo). Then the
procedure iterates through all lightpaths that use that link. Two nested loops
are present: the first (line 7) scans the routing table of node cFrom looking for
all destination nodes dest using that link. The second (line 8) scans all nodes
src whose lightpaths directed to dest run through cFrom. These nodes identify
the subtree rooted in cFrom of the routing tree having destination dest.

For every (src,dest) pair whose lightpath goes through the link (cFrom,cTo),
we try to reroute such lightpath by altering the routing table in src. To do this,
we temporarily remove the load of the lightpath from the current route (function
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Figure 2: search space for a move of the RSNE algorithm.

removePartialLoad at line 9) and iterate through all downstream neighbors nb
of src calculating the maximum load that would be caused by re-routing the
lightpath, provided that the new route does not end up in a cycle and that
the congested edge is avoided. The best alternate paths, in terms of maximum
load, are collected into the candidate set candidatePathSet. In particular, the
current minimum is stored in bestCandidateLoad. If the load obtained after this
traffic re-route is equal to bestCandidateLoad, then the re-route is added to the
candidate set (lines 12-13), if it is smaller, the candidate set is re-initialized to
the current re-route and its load is stored as the new best (lines 14-16). At
the end of the alternate paths research, the partial load associated to the path
originating in src and terminating in dest is reallocated (line 17), in order to
allow the search of new paths with different source nodes src (line 8).

In the second part of the RSNE algorithm, if the resulting set candidatePath-
Set is not empty then one random solution is selected from it (line 19), and the
routing table of the network is updated (line 20). Finally, a new value of con-
gestion and the relative set of most loaded links congestedLinkSet is calculated
again in order to start a new search of alternate paths through the network.

Note that the local search algorithm continues looking for better values
of congestion until the set of candidate re-routes candidatePathSet is empty
(line 22), or until a given number of iterations has been performed (line 23).

4 Algorithm properties and modifications

As an estimate of the CPU time required by the algorithm, let us consider its
computational complexity of an iteration (lines 4–22) in terms of node visits,

6



i.e. operations on nodes of the network. In detail, a counter is incremented for
each node considered in the candidate path at line 11. The proposed algorithm
is composed of nested cycles. Let n be the number of nodes in the network;
if d is the largest node degree, the number of edges is O(nd). The number of
iterations for the loop at line 6 is only bounded by the number of links in the
network. Each of the two nested loops at lines 7 and 8 may scan almost all
nodes in the worst case. Function removePartialLoad may need to operate
on a long path (the diameter of the network is potentially equal to n). Loop
at line 10 is executed d times at most, and the path check at line 11 is again
bounded by the number of nodes. Then the complexity of one RSNE iteration
is O(n4d2). So in the worst case, when d grows linearly1 with n, the overall
complexity of an iteration is O(n6).

However, this is a pessimistic, worst-case bound: experiments on networks
modeled by Euler disk graphs (see Section 6.2) suggest that the number of node
visits (while the algorithm is exploring the routing subtree and checking the new
path) has O(nα) empirical complexity with α slightly higher than 2. However,
simplifications of the algorithm shall be introduced in the next subsections in
order to lower the worst-case complexity of the algorithm to a reasonable power
of n and d.

4.1 Randomized version (fRSNE)

Computational complexity and scalability are two major issues in current net-
work algorithm research: algorithms are required to adapt to different network
sizes without excessive slowdown. In the present case, a drastic reduction of the
computational complexity can be obtained by reducing some of the loops to a
fixed, small number of random choices. A fixed-size subset of the congested links
can be explored by the loop at line 6, and a fixed number of random destinations
can be covered by the loop at line 7. The loop at line 8 is basically a subtree
exploration. By limiting the degree of the descent through this tree, the number
of source nodes that are explored can be reduced. When all these reductions
are performed together, the complexity of an iteration becomes O(n2d) in the
worst case (O(n3) for unbounded degree). Experiments on the same Euler disk
graphs have reported an O(nβ) empirical complexity (in terms of node visits),
with β ≈ 1.67.

In the following, the randomized version will be called fRSNE(e,d,s) (fast
RSNE on e edges, d destinations per edge and degree s of source subtree explo-
ration). As shown in Section 6, when compared to RSNE, performance degrada-
tion of fRSNE(1,1,1) (the randomized version where one edge, one destination
and just one source subtree path are considered) is almost negligible in terms
of congestion, while average hop length and average edge load are only slightly
increased.

4.2 Incremental version (I-RSNE)

Local search heuristics can be seen as stepwise refinements of an initial solution
by slight modifications of the system configuration. In our case, the RSNE algo-

1this happens in many real-world contexts: in Internet autonomous systems there is evi-
dence [20] of a strong correlation between the logarithms of n and d with a coefficient near to
0.95, so that d = O(n.95).
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rithm starts from a shortest path routing scheme and changes at every step a
routing table entry of a single node in the matrix. By performing many such
changes, the system stabilizes to a low congestion configuration.

This iterative scheme is appropriate for a dynamic environment where traffic
requirements evolve with time. In particular, if changes in the traffic matrix
are reasonably smooth2 even a small number of steps of the RSNE algorithm
in Figure 1 are sufficient to keep the system in a suitable state as the traffic
matrix changes. Of course, only lines 2-23 must be executed, because we don’t
want to restart from scratch by calculating the shortest path routing tables.
Moreover, a very low number of iterations of the outer loop (lines 3-23) must be
performed at each step, i.e. MAXITER must be very small to avoid excessive
traffic disruption. In the following, we refer to the incremental algorithm as
Incremental RSNE with k outer iterations per step: I-RSNE(k).

Simulations discussed in Section 6 show that even a single iteration of the
algorithm yields good results under a fairly generic traffic model. The number
of iterations of the algorithm is equivalent to the number of routing table entry
modifications in the systems. Thus, a very limited number of routing table
entries must be modified as traffic evolves in order to keep congestion at low
levels. Moreover, I-RSNE is fully compatible with the fRSNE randomized scheme
discussed above, and experiments show that the performance of the combination
which shall be called I-fRSNE does not degrade.

A similar approach has been proposed in [19], where branch-exchange meth-
ods are proposed for a local search heuristic. However, the type of local modi-
fication is different from our proposal.

4.3 Restricted Neighborhood Exploration (RNE)

A simplified version of the algorithm was also tested, which can be called RNE

(Restricted Neighborhood Exploration); it only considers node cFrom as a can-
didate for re-routing, with no exploration of its routingTree (consider the algo-
rithm in Figure 1 where the loop at lines 8–17 is executed only once with src
equal to cFrom). This would be equivalent to remove as much load as possible
from the congested link with a single routing table change. However, as simula-
tions in Section 6 show, such policy does not compare well with RSNE and fRSNE,
probably because too large amounts of load are moved at each step, while finer
modifications are more appropriate.

5 ILP formulation

In order to compare the results of the proposed techniques with the actual
optimum, the following Integer Linear Programming (ILP) formulation can be
used.

Let us consider the n-node oriented graph G = (V, E) where V = {1, . . . , n}
and E ⊆ V × V . For each couple of nodes s, d ∈ V , s 6= d, let us define the
requested traffic as Tsd.

2The assumption is reasonable even though IP traffic is known to be bursty: in fact, traffic
requirements are given as an average over a certain amount of time, with some marginal
capacity left to accommodate traffic peaks.
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For each i, j, s, d ∈ V such that (i, j) ∈ E and s 6= d, the binary flow variable
F

ij
sd ∈ {0, 1} is introduced; its value is 1 if and only if data from source s to

destination d is routed through edge (i, j). The usual set of flow conservation
(solenoidal) constraints can be imposed (each family of constraints is identified
by an indexed label on the right):

∑

i
(i,j)∈E

F
ij
sd −

∑

i
(j,i)∈E

F
ji
sd =











−1 s = j

1 d = j

0 otherwise,

(FLOWj
sd)

one equation for each combination of j, s, d ∈ V with s 6= d. These constraints
avoid imbalances between the incoming and outgoing flow at all nodes with the
exception of the source s and the destination d.

IP routing is destination-driven, so a new family of binary variables is intro-
duced in order to consider only the flow destination. For each d, i, j ∈ V such
that (i, j) ∈ E, let R

ij
d ∈ {0, 1} equal to 1 if and only if edge (i, j) carries traffic

towards destination d. This information can be extracted from the F
ij
sd variables

by imposing R
ij
d = 1 as soon as there is at least one source s such that F

ij
sd = 1.

This can be obtained by the following linear constraints:

R
ij
d ≥ F

ij
sd, (ROUTEij

sd)

one equation for every combination of indices s, d, i, j ∈ V where s 6= d and
(i, j) ∈ E.

IP routing is achieved when for every node and every destination there is at
most one outgoing edge carrying flow for that destination, regardless from the
source. The following constraints impose that limit:

∑

i
(i,j)∈E

R
ij
d ≤ 1, (IPi

d)

one equation for every i, d ∈ V .
After imposing IP routing on the graph, congestion must be minimized by

introducing a new variable Fmax, constrained in order to be larger than every
link load:

Fmax ≥
∑

s,d
s6=d

TsdF
ij
sd, (LOADij)

for every (i, j) ∈ E.
The problem can be stated as follows:

Minimize Fmax

Subject to



















FLOWj
sd ∀s, d, j ∈ V, s 6= d

ROUTEij
sd ∀s, d, i, j ∈ V, s 6= d, (i, j) ∈ E

IPi
d ∀d, i ∈ V

LOADij ∀i, j ∈ V, (i, j) ∈ E.

(ILP)

This formulation will be used in the following section in order to test the
RSNE heuristic against the optimal value on small networks, and against lower
bounds determined by the CPLEX optimizer if the optimum search could not
be completed because of time limits.
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6 Simulation results

Several experiments have been performed in order to test the RSNE heuristic on
different network sizes and topologies, both computer generated and real, with
static and dynamic traffic conditions.

6.1 Experimental setting

Shortest path and the proposed heuristics were simulated by a C++ program,
with some classes devoted to generate network and traffic instances according
to various models. The following network models were considered:

• random graphs, parameterized by the number of nodes and edge density,
i.e. the probability of an edge to exist for every couple of nodes;

• Euler disk graphs, parameterized by the number of nodes and by a radius
r, where nodes are scattered in a unit square, and two nodes are connected
if and only if their distance is less than r;

• real-world networks, with connection matrices read from a file.

Traffic models are of the following types:

• static uniform matrices, where all non-diagonal entries have the same
value;

• static random matrices, where all non-diagonal entries are taken by a
uniform random distribution between a given minimum and maximum;

• dynamic random matrices, generated as follows (see [16] for a similar
model): given two positive integers N and ∆, consider a sequence of
N∆ + 1 traffic matrices (T 0, T 1, . . . , T N∆) where matrices T k∆, k =
0, 1, . . . , N are random and independently generated, by choosing a ran-
dom maximum value between 10 and 100 and calculating every entry as a
random number between 10 and this maximum; all other matrices are lin-
ear interpolations of the immediately adjacent random matrices; in other
words, given h = 0, . . . , ∆−1 and k = 0, . . . , N−1, entry T k∆+h

ij of matrix

T k∆+h is computed as follows:

T k∆+h
ij = round

[(

1 −
h

∆

)

T k∆
ij +

h

∆
T

(k+1)∆
ij

]

;

• real-world traffic matrices, read from a file.

To generate pseudo-random sequences, a Mersenne Twister algorithm of pe-
riod 219937 − 1 was used3. Every random-sensitive object (the graph generator,
the traffic generator and the heuristic routing algorithms) was endowed with a
different instance of the generator, in order to ensure independence and repro-
ducibility of initial conditions for different algorithms.

The C++ program was also used to output problem instances to files in
MPS format in order to solve them via a linear problem optimizer. CPLEX 7.1
was used to solve these instances.

3The code, written by Makoto Matsumoto (Keio University, Japan) and Takuji Nishimura
(Yamagata University, Japan), is available at:
http://www.math.keio.ac.jp/matumoto/emt.html.
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Figure 3: number of node visits in one iteration of RSNE and fRSNE for Euler
disk graphs with radius .3 on a unit square.

6.2 Empirical complexity tests

The RSNE and fRSNE algorithms have been tested on random Euler disk graphs
in order to obtain a measure of the growth of computational time (in terms
of node visits per iteration) as the network size increases. Euler disk graphs
were selected because they show some properties similar to real-world networks,
such as local connection schemes and a larger number of multi-hop paths when
compared with completely random graphs. Moreover, by letting the number of
nodes n increase while keeping the radius constant, the degree is proportional
to n, thus unbound.

Figure 3 plots the number of node visits against the size (in nodes) of the
network: 10 samples for each network size have been generated, and both RSNE

and fRSNE have been tested. Least-squares linear regression has been calculated
on the logarithmic transforms of the data to estimate the highest exponent in the
dependence formula. If v is the number of node visits, the resulting dependencies
are v ≈ 0.14 · n2.04 for the RSNE algorithm and v ≈ 0.02 · n1.67 for fRSNE. Thus,
even though experimental data show a large variability, the fRSNE algorithm has
a lower asymptotic complexity in the case considered as well as a much lower
constant multiplier.

6.3 Tests on static traffic

The first tests of the RSNE algorithm aim at assessing its capacity to outperform
the simple shortest path scheme in a static traffic context.

The 24-node regional network presented in [24] and the traffic pattern pre-
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Figure 4: distribution of edge loads for Shortest Path routing, RSNE and fRSNE.

sented in the same work have been chosen for the first static simulation. We
executed 1000 steps of the RSNE and fRSNE schemes and compared the results
with the initial shortest path configuration.

Figure 4 shows how edge loads distribute under the three policies for a
random traffic matrix. Load values have been grouped in classes of 20, and the
histogram represents the population of each class. The maximum load for the
shortest path routing was 242, RSNE and fRSNE both reduced it to 157 (RSNE
found it at the 26th iteration), obtaining a 36% reduction. The overall shape
of the load distribution is not much different in the three cases, apart from the
longer tail in the shortest path distribution. In particular, the number of light-
loaded edges remains similar4, and the average edge load is increased by 6.8%,
from 30.37 to 32.42.

Another important verification concerned the distribution of hop lengths. In
this case, the maximum hop length of 7 hops was left unchanged by both RSNE

and fRSNE algorithms, while a 1.8% increase in the average hop length (from
2.77 to 2.82 with RSNE) was verified. This is unavoidable, because the shortest
path routing minimizes hop length by definition, so it necessarily outperforms
all other schemes. However, the imbalance is very small.

Figure 5 plots the best congestion value against the number of steps for
one run of the RNE and RSNE algorithms; here the NSFNET topology was used
with a random traffic pattern from 10 to 100 for each couple of nodes. It
turns out that the more complete RSNE algorithm outperforms its simplest RNE
version, although the latter seems to have a better result in its earlier phase:

4Indeed, a scheme which reduces congestion but substantially increases the load of many
other edges would be unacceptable.
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Figure 5: behavior of heuristics during a single run.

this behavior shows up in many cases, probably because the algorithm is forced
to move larger portions of load from edge to edge, achieving temporary better
results but ending up with a complex, non-improvable routing scheme. For
clarity, only the first 50 iterations are shown. However, the fRSNE scheme,
showing an intermediate behavior due to the smallest move space at each step,
eventually finds the same values shown by the complete heuristic. The above
simulation gave a maximum hop length equal to 7 (i.e. a lightpath needs to
travel 7 links from source to destination) at each iteration. This is the minimum,
because it also results from the shortest path routing assignment that initiates
all algorithms.

Table 1 shows the results of a comparison between the shortest path algo-

Table 1: comparison between algorithms on small random networks with 60%
density. Average figures on 10 experiments per size, intervals are shown where
ILP could not find solution in scheduled time.

Nodes Shortest Path RSNE ILP
5 333.83 312.41 312.24
6 379.05 348.91 340.12
7 345.86 263.98 [257.16, 254.51]
8 416.03 325.24 [345.77, 305.92]
10 374.87 254.88 [374.87, 228.45]
12 463.10 249.99 [495.73, 249.13]
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Figure 6: congestion on random networks of different node size, 50% edge den-
sity. Random bars represent the 95% confidence interval, the two lower plots,
representing RSNE and fRSNE, are almost equal.

rithm, the RSNE technique and the solutions provided by the CPLEX optimizer
when the same instances were put in the ILP form. Every line reports the
average of 10 experiments; a time limit of 10 minutes for each instance was
imposed to CPLEX (running on a 1.5GHz PIII Linux machine with no other
CPU-consuming tasks), and if the optimum was not found then the current
feasible solution and the lower bound were reported as the interval where the
optimum lies. Note that the RSNE algorithm always outperforms the shortest
path routing, and when relatively large networks are considered the CPLEX
integer solver needs much more than 10 minutes in order to find the optimum
(we let a 12-node test run for three days without improving the estimate before
the branch-and-bound tree caused a memory overflow).

To allow a better comparison among heuristics, a series of experiments were
performed on random networks (Figures 6 and 7) and on Euclidean disk net-
works (Figure 8).

Figures 6, 7 and 8 have been obtained by averaging 50 runs of the algorithms
for each plotted bar, representing the 95% confidence interval of the true mean
congestion value. In Figure 6 node size was varied from 10 to 50 in steps of 10,
with a constant 50% edge density, and disconnected networks were discarded.
Figure 7 compares algorithms on random networks with a constant size of 20
nodes and different densities from 40% to 95%. Figure 8 has been obtained from
the same experiments on Euler disk networks with radius equal to .3 (remember
that points are randomly scattered throughout a unit square). All graphs plot
mean congestion values. In all cases, the two lower lines, representing RSNE and
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Figure 7: congestion on random networks of different densities, 20 nodes.

fRSNE, are almost equal, and this motivates support of the randomized version.
On the other hand, the simplified RNE scheme does not show a significant per-
formance improvement over shortest path routing in the random network case.
Its use, however, may be motivated in the Euler disk case, where an average
43% congestion reduction is obtained in the 50-nodes case.

Figure 6 plots an interesting behavior: while edge congestion obtained by
RSNE (or equivalently fRSNE) is almost constant, the shortest path result is
linearly increasing. The same can be seen in Table 1. This can be explained by
considering that both the overall traffic requirement and the number of edges
increase as the square of the number of nodes. Techniques aiming at congestion
reduction are able to exploit this fact, while shortest path policies, which do
not aim at congestion reduction as their primary target, tend to crowd paths
along eventual shortcuts. While congestion can be drastically decreased (up to
5.5 times on 50 nodes), the average hop length increases up to 4% for RSNE and
5.7% for fRSNE. Likewise, increase in average edge load has been detected up to
3.6%.

In Figure 7, the congestion reduction operated by RSNE and fRSNE reaches its
maximum (67%) at 70% edge density, then it becomes less and less significant,
and the different plots tend to the same congestion value as density approaches
100%. This is obvious, as all policies will use one-hop routing on a clique. For
the same reason, all average hop lengths tend to 1 as density approaches 100%.
The highest increase (3.6% for RSNE, 6% for fRSNE) has been detected for the
lowest considered density, 40%.

Figure 8 depicts a more realistic situation in which connection depends on
distance. In this case confidence intervals are much larger because topology
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Figure 8: congestion on Euler disk networks of different node sizes, radius .3 on
a unit square uniform scattering.

is more variable. Clusters of nodes with few congested inter-cluster links can
appear with significant probability, as well as uniformly distributed networks
with balanced loads. Also in this case the highest congestion reduction operated
by RSNE and fRSNE (56%) is detected for 50 nodes. The average hop length is
increased in the worst case by 12% (from 2.6 to 2.92 for 50 nodes), while the
average load is 11% higher.

In all cases considered in this section, a large improvement on congestion
reduction has been obtained at the expense of a slight degradation of the other
performance indices that had been considered, average hop length and average
load.

6.4 Tests on dynamic traffic

The 24-nodes network already considered for static traffic has been tested with
traffic evolving in time. The traffic evolution pattern is that discussed earlier.
The complete time span is of 1000 time steps, with a new independent matrix
every 20 steps and linear interpolation on intermediate matrices.

Figure 9 reports the results of the simulation for the first 100 steps. As the
shortest path outcome is highly variable, we chose to calculate 50 shortest path
routings with random tie-breaking per time step. All runs were executed over the
same traffic pattern. Error bars represent the span from the lowest to the highest
congestion value obtained. The other lines represent one run of RSNE with full
restart and 100 iterations at each time step, one run of I-RSNE(1) with just one
optimizing iteration per time step and one run of I-fRSNE with one optimizing
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Figure 9: congestion in an online setting.

iteration per time step and all parameters set to 1. As expected from static tests,
results achieved with the proposed techniques are always below the shortest path
range. The fact that incremental implementations occasionally outperform the
static RSNE depends from the low number of iterations per step. An initial
transient can be seen for the first 10 steps, while the incremental algorithms
descend from their initial shortest path configurations to lower congestions.

These results suggest that modifying a single entry in the routing table of
a single node at each step is enough to adequately follow the traffic pattern, at
least with this traffic model, even with a restricted random exploration of the
move space.

While congestion is significantly reduced, a slight increase in the average
path length has to be expected. Figure 10 represents the behavior of average hop
length in the same experiment described above on the complete 1000-step time
span. It can be observed that, while all shortest path computations result in the
same value (lower horizontal line), and the increase of the static RSNE algorithm
remains around the same level (about 5%), the incremental policies tend to
suffer from a higher degradation (up to 17.3%) due to progressive abandon of the
shortest path configuration. However, this problem can be fixed by triggering a
shortest-path restart whenever the average hop length reaches a given threshold,
or periodically.

7 Conclusions

We proposed new Load Balancing algorithms for Optical Networks based on
IP-like routing and Local Search, where every move modifies a single entry in
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Figure 10: average hop length in a dynamic setting.

the routing table of a node. The comparisons between the new scheme and the
optimum solutions found via an ILP solver show both calculation time savings
and comparable results of network congestion and of average length of the re-
sulting routes. The incremental scheme I-RSNE produces congestion values that
are almost undistinguishable from those of the RSNE algorithm. The randomized
scheme called fRSNE has a substantially reduced complexity in comparison with
RSNE and, again, very similar final congestion results.

Many extensions can be envisioned, in particular when considering specific
properties of the optical medium. At the moment these schemes could work
properly on Optical Packet Switching networks where IP-like routing is assumed
or in wavelength routed networks where wavelength conversion at each node is
considered. The context of networks having links with different capacities should
also be considered in future extensions, as well as more general routing mecha-
nisms (e.g. G-MPLS). Further investigation will determine how the randomized
version could be exploited in a distributed environment, where complete infor-
mation is not available at each node, in order to have a fast implementation on
an asynchronous network.
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