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Abstract— In mobile computing scenarios, context-aware ap-
plications are more effective in relieving from the mobile user
the burden of introducing information that can be automatically
derived from the environment. In particular, the physical position
of the mobile system (and hence of the user) is fundamental for
many types of applications.

User position estimation methods based on strength of the
radio signals received from multiple wireless access points have
been recently proposed and implemented by several independent
research groups.

In this paper a new approach to wireless access point place-
ment is proposed. While previous proposals focus on optimal
coverage aimed at connectivity, the proposed method integrates
coverage requirements with the reduction of the error of the user
position estimate.

In particular, this paper proposes a mathematical model of
user localization error based on the variability of signal strength
measurements. This model has been designed to be independent
from the actual localization technique, therefore it is only based
on generic assumptions on the behavior of the localization
algorithm employed.

The proposed error model is used by local search heuristic
techniques, such as local search, a prohibition-based variation
and simulated annealing. Near-optimal access point placements
are computed for various kinds of optimization criteria: localiza-
tion error minimization, signal coverage maximization, a mixture
of the two.

The different criteria are not expected to be compatible:
maximizing signal coverage alone can lead to degradation of the
average positioning error, and vice versa. Some experiments have
been dedicated to quantify this phenomenon and to introduce
possible trade-offs.

I. INTRODUCTION

The area of context-aware computing is in constant devel-
opment. Context-aware services and applications gather infor-
mation about the context they operate in, in order to augment
the system’s knowledge about the user’s needs, and thus its
ability to meet them, while partially relieving the burden of
entering data (by means of traditional input devices) from the
user. This is particularly true for mobile systems, that can be
used in a wide variety of conditions. An application designed
to adapt its operating parameters to the environment could,
for example, provide traffic and weather information when
used outdoors, while automatically switching to more complex

activities such as email management when it recognizes a
suitable environment. An important parameter that can be used
to determine system behavior in this case is location.

Most wireless networks are based on the cellular paradigm,
where several radio access points (APs) are placed throughout
the networked area and act as relays between the radio network
and the fixed network.

User position estimation methods based on strength of the
radio signals received from multiple wireless access points
have been recently proposed and implemented by several
independent research groups [1], [2], [3], [4], [5], [6].

In this paper a new approach to wireless access point
placement techniques is proposed. While previous proposals
focus on optimal coverage aimed at connectivity in hotspots,
the proposed method integrates coverage requirements with
the reduction of the error of the user position estimate.

The rest of this paper is organized as follows: section II
contains a brief overview of related works, mostly in the field
of wireless LAN base station placement. Section III describes
the statistical framework for the analysis of position estimation
algorithms and introduces the error estimates that shall be
used by the optimization techniques. Section IV describes
the signal coverage area estimates. Section V explains the
basic principles of Local Search techniques and explains the
Reactive Search algorithm used in the experiments. Section VI
reports experimental results on a real-world setting.

II. RELATED WORKS

Recent scientific literature contains various proposals of
optimization-driven placement algorithms for WLAN access
points. Section II-A contains an overview of base station
placement techniques (mainly for coverage purposes), while
Section II-B is dedicated to research on localization of mobile
hosts.

To our knowledge, the only paper that relates signal strength
detection errors and localization errors, hence suggesting
localization-aware AP placement, is [7], where linear and
multiple regression methods to estimate the signal strength
model of an indoor wireless AP by experimental data are
presented. Some results are obtained by analyzing the rela-
tionship between signal strength error and localization error,
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and the relationship between the standard deviation of local-
ization error and signal strength error is analyzed for a few
AP configurations. However, the analysis assumes that the
localization system operates by triangulation based on a given
signal propagation model.

A. Access point placement methods

This section describes the related work about optimal
cellular and Wireless LAN base station placement. Many
techniques have been proposed in the recent literature to
analyze the indoor and outdoor signal coverage problem.

A wireless AP placement technique for optimal signal
coverage inside buildings is analyzed in [8]. The signal prop-
agation model used is the empirical Motley-Keenan indoor
wave propagation model where the path loss depends on the
type of walls, ceilings and floors. The cost function is the
ratio of the points on the floor with higher path loss than a
specific threshold; the function is minimized by using genetic
algorithms.

A method to deploy a 3-dimensional large-scale indoor
IEEE 802.11b WLAN or other micro-cellular networks is
proposed in [9], where placement is constrained so that there
are no coverage gaps, and no overlaps between APs operating
on the same channel are allowed. After placing the APs
for the first time by maximizing the signal coverage and
minimizing the gaps between the APs, a series of signal
strength measurements are collected to determine the average
coverage of the APs. By using these measurements, the signal
coverage of an AP is modeled as a cylinder into which the
coverage is optimal. Then, AP positions are adjusted on the
floor by using geometrical schemes to fill the area with the
cylinders without leaving gaps. Then other measurements are
taken to repeat the procedure until the solution is acceptable.
Finally, frequency assignment is done by minimizing co-
channel coverage overlap.

The DIRECT (DIviding RECTangles) search method is
proposed in [10] aimed at maximizing signal coverage. This
algorithm is a version of the Nelder-Mead simplex method,
and it implements a pattern search algorithm that considers the
minimization of the cost function (the ratio of covered points
in a mesh). In particular, this algorithm is useful when the cost
function is non-differentiable because the gradient cannot be
calculated.

The method described in [11] investigates how to deploy
a Wireless LAN to have a good transmission rate over a 2-
dimensional outdoors area (a campus environment with streets
and buildings). The purpose is to evaluate an objective function
that measures the capability of the AP configuration to give a
good signal coverage and uses a ray-tracing model for signal
propagation. It refers to maximization of the average signal
coverage and to the minimization of the position with the
lowest signal strength. The optimal AP configuration is found
by first applying a preprocessing technique called pruning,
then by neighborhood search and simulated annealing. Pruning
is used either alone or to calculate an initial AP configuration
for the other techniques. The pruning algorithm starts with a
number of APs equal to the possible AP positions. Iteratively,

the AP whose removal causes the smallest increase in the cost
function is removed, until the number of AP has been reduced
to the desired one.

A combination of a greedy preprocessing algorithm fol-
lowed by a genetic and a combinatorial scheme is described in
[12] to maximize coverage in outdoors cellular systems. The
Combination Algorithm for Total optimization (CAT) finds the
optimal combinations of a specific group of APs that can be
obtained given all the possible AP positions. Unfortunately
the number of combinations is too large and therefore they
are divided into small groups where the algorithm tries all
possible base station combinations by finding the best one
for every group. Then these partial solutions are put together
and the process is repeated until the number of solutions
cannot be reduced. If the final group cannot become smaller
and is not too large, the algorithm tries all the possible AP
combinations. If the final group is too large, a good solution is
randomly chosen for each group in order to reduce the number
of possible combinations.

Paper [13] considers the problem of placing multiple trans-
mitters in order to have a good transmission rate for a
given distribution of receivers in a 3-dimensional area. In this
case the estimate of the object function uses the Seidel and
Rappaport path loss model and is composed of a term for the
maximization of the average signal coverage and a term for the
minimization of the position with the lowest signal strength.
The algorithms used to minimize it are the Hooke and Jeeves’
method, quasi-Newton and conjugate gradient. In particular, a
procedure is proposed to establish a starting point to the search
techniques. The area of interest is initially divided into two 3D
rectangles by partitioning its longest dimension at the center of
gravity point with respect to the weights found by the squared
Euclidean distance minimization problem. This procedure is
repeated with the 3D rectangle that has the highest cumulative
weights. The APs are initially placed in the center of gravity
of the partitioned 3D rectangles. Furthermore, the grid used to
represent the receiver positions is changed during the search
to maintain a trade-off between the accuracy of the solution
and the computational complexity of the algorithm.

In [14] several aspects of mobile cellular network selection
and configuration are considered, such as area coverage, cost,
traffic, interference, capacity and handover capabilities. The
optimal cellular planning is found by minimizing the ad-hoc
cost functions for all of these aspects by using a simulated
annealing technique.

B. Localization Methods

Due to the blooming of wireless network technologies,
much work has been done on localization in mobile net-
works. Systems based on common radio communications
technologies such as Wi-Fi and cellular telephony are being
actively studied and developed by various research groups.
Unlike purpose-specific systems such as GPS, infrared tags or
ultrasounds, the proposed Wi-Fi-based localization methods
exploit the properties of the communications medium itself.

For instance, the RADAR location system by Microsoft
Research [1] calculates the position of a Wi-Fi device either by
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similarity with previous measurements, or by modeling signal
propagation. Bayesian inference models are employed both
in Wi-Fi [2], [3], [6] and for GSM telephone networks [15].
Previous work of our research group is focused on the use of
multi-layered perceptrons [4], on radio propagation estimates
and on various statistical models [16].

III. ERROR IN ESTIMATING USER POSITION

In this paper a planar environment is considered, with a
local two-coordinate system. Valid coordinates are constrained
inside a rectangular region A: x ≡ (x, y) ∈ A = [xmin, xmax]×
[ymin, ymax] ⊂ R

2.
If the user’s position is x̂, a positioning algorithm will

return an estimate x with a conditional probability distribution
P (x|x̂), which shall be considered normalized on A:

∀x̂ ∈ A

∫

A

P (x|x̂) dx = 1,

∀x̂, x ∈ A 0 ≤ P (x|x̂) ≤ 1.

This probability distribution depends on many factors, such
as radio propagation, interference with other ISM equipment,
signal strength discretization. After defining d(x, x̂) as a
convenient distance function between locations x and x̂

(e.g., Euclidean distance in space), the average error can be
calculated as

E(x̂) =

∫

A

d(x, x̂)P (x|x̂) dx. (1)

The overall expected error is obtained by averaging (1) on
the whole area A

E =
1

|A|

∫

A

E(x̂) dx̂. (2)

A more useful error estimate can be obtained by considering
a weighting factor w(x) that can be used whenever a higher
precision is desired at certain locations at the expense of other
less important places. For instance, a computer room — where
facilities such as printers and scanners must be located with
good precision — may be more important than a lesson room,
and deserve a lower localization error. Hence, this weighting
function can be obtained from a priori considerations.

If w(·) is determined by such preliminary considerations,
then (2) becomes, after substitution of (1) and renormalization:

E =

∫ ∫

A×A

d(x, x̂)P (x|x̂)w(x̂) dx dx̂

1

A

∫

A

w(x) dx

. (3)

While w(·) is given by preliminary considerations, a rea-
sonable estimation of the conditional probability P (x|x̂) is
more difficult, and shall be discussed in the following.

Suppose that n access points have been positioned. Let us
consider a possible signal propagation model, the logarithmic
loss model. Let dAPi

(x) be the distance of point x from the
i-th access point (i = 1, . . . , n), and let wAPi

(x) the sum of

the widths of all walls crossed by the segment joining the i-
th access point to point x. Then the average strength of the
signal received at point x from the i-th access point is

µi(x) = β0 + β1 log dAPi
(x) + β2wAPi

(x). (4)

Coefficients β0, β1 and β2 can be determined by a least-
squares fit on experimental data. Only systems where all
transmitters are identical will be considered, so that the same
coefficients can be applied to signal strength measures from
all access points.

Let S(s|µ) be the probability density of detecting signal
strength s when µ is expected as average. It shall be modeled
as a Gaussian, where standard deviation σ shall be determined
by empirical observations:

S(s|µ) =
1

σ
√

2π
e−

1

2
( s−µ

σ )2

. (5)

Consider now the probability that, while being located in
x̂, measured signals induce the system into believing that
it is located in x. This can happen if the received signal
from access point i is µi(x), and the density of probability
for this to happen is S[µi(x)|µi(x̂)]. The probability that all
measurements in x̂ are equal to the average value for position
x is the product of all such densities when i varies from 1
to n, because measurement errors from different access points
can be considered as roughly independent. By normalizing
the product, we get the following estimate for the conditional
probability:

P (x|x̂) ≈

n
∏

i=1

S[µi(x)|µi(x̂)]

∫

A

n
∏

i=1

S[µi(ξ)|µi(x̂)] dξ

. (6)

This may be substituted into (3) to calculate an estimate of
the average error, given the position of the access points and
the parameters of the model.

Given a signal strength n-tuple (s1, . . . , sn), equation (6)
will take it into account as a possible measurement outcome
if and only if its components are simultaneous expected values
for the same physical position:

∃x ∈ A ∀i = 1, . . . , n si = µi(x) (7)

All n-tuples that don’t obey constraint (7) are not considered
when computing the average error. However, these n-tuples are
handled in different ways by different algorithms, and taking
into consideration all n-tuples has an excessive computational
cost. Two hypotheses on the localization algorithm help handle
this problem:

1) Consistency: if an n-tuple that obeys constraint (7) is
fed to the algorithm, then the outcome is “near” x (in a
sense that will be clear in the following lines);

2) Continuity: small variations in the algorithm outcome
are caused by small variations in signal strength.

These hypotheses match many practical algorithms, such as
the k-nearest-neighbors technique, multi-layer perceptrons and
Bayesian techniques. Signal strength space (see Figure 1) can
be divided into “domains”, each containing points obeying (7).
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Fig. 1. Correspondence between radio space (coordinates given by received
radio strength from all APs) and 2-dimensional physical space. If the cor-
respondence is continuous, then neighborhoods in the physical space map
into neighborhoods in the radio space, and the expected signal strength n-
tuple at a physical point can be considered as a representative for the whole
neighborhood.

The above hypotheses ensure that signal strength domains
are mapped by the localization algorithm into physical space
neighborhoods, so that n-tuples obeying constraint (7) are
“representative” for all nearby tuples (i.e., belonging to the
same domain), and the normalized product (6) can be retained
as a reasonable approximation of the conditional probability
distribution.

Estimation (6) can be refined by also considering incomplete
measures. In the logarithmic loss model (4), signal strength
distribution is continuously distributed in all the real numbers
range, without lower or upper bounds. However, radio equip-
ment is limited both in resolution and in sensitivity. This means
that a wireless network cards usually returns signal strength
data in a discrete and limited range.

A. Signal strength discretization

A wireless network card returns signal strength data either
in an arbitrary (e.g. 0 ÷ 100) scale or in dBm (decibels
over one milliwatt). In both cases, values are integer. In
this case, we may assume that signal strength values are
rounded to the nearest integer, so that value s ∈ N will
be returned if the actual signal strength lies in the interval
[s − .5, s + .5). As a result, a discrete probability measure
should be introduced. Let µ be a (continuous) average signal
strength value, as determined by (4). Then the probability of
the received signal being reported as s ∈ N by the radio card
is the overall probability of the actual signal falling into the
range [s− .5, s + .5):

S′(s|µ) =

∫ s+.5

s−.5

S(t|µ) dt.

In other words, S ′ : N×R→ [0, 1] defines the probability that
the card reports a given integer given the average (expected)
signal strength. A better approximation for P (x|x̂) is thus

obtained by replacing the density function S(·|·) with the
probability function S ′(·|·) and by rounding its arguments
— µi(x) and µi(ξ) — to the nearest integer. However, this
discretization correction is very marginal: when µ = −50 and
σ = 6 (acceptable values for a signal strength distribution
in dBm), in the µ ± 3σ region the two values never differ
by more than 1.2% (the Gaussian probability distribution is
smooth and all integration intervals are one unit wide), so that
S′(s|µ) can be approximated by the central value S(s|µ), and
the discretization error (whose treatment would add significant
complexity to the algorithm) need not be taken into account.

B. Signal strength below detection

The major issue to be handled is missed detection due to
finite hardware sensitivity: hardware will just notify absence
of signal if its level falls below a certain threshold, usually set
at the noise level (signal to noise ratio falling below 0dBm).
In practical terms, this means that a wireless card is unable to
report whether it is one or ten kilometers far from an access
point: the two cases are indistinguishable because the signal
strength is well below the noise level. To take this phenomenon
into account, we need to consider a cumulated probability for
a measurement to fall below the chosen threshold. Let η ∈ N

be the lowest signal level that can be reported by the card.
Then a version of the probability distribution S(·|·) aware of
limited hardware sensibility can be defined by cumulating the
probability of the lower tail of the distribution and assigning
it to η:

S̄(s|µ) =















S′(s|µ) if s > η
∫ η

−∞

S(t|µ) dt if s = η

0 if s < η

The value of S̄(·|·) in s ∈ N is the probability for the
card to return value s, if s is over the threshold, and the
probability of missing the signal if s is below the threshold.
These probabilities depend on the expected signal strength µ,
so that a network card that is out of an access point’s range has
a high probability of missing its signal and only a marginal
probability of detecting it at an acceptable level.

By replacing S(·|·) by S̄(·|·) in (6), the fact that an access
point is not received is treated as useful information in order
to minimize the localization error.

IV. ESTIMATING SIGNAL COVERAGE

In a wireless network, attention must be paid to signal
coverage of the networked area. Location error estimation,
considered in the previous Section, has no direct relationship
with the actual network availability, which should be the
primary purpose of every networking infrastructure.

Many coverage measures can be devised. Among them, we
consider lowest signal strength and coverage area.

A. Maximizing the lowest signal strength

The suitability of a configuration (defined as the access point
coordinate values) is given by finding the lowest measured
signal in the area. In the notation of the previous Section, the
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average signal strengths detected at position x from the access
points are µ1(x), . . . , µn(x). The network card will usually
associate to the strongest signal, so that an intensity measure
for that point will be

µ̄(x) = max
i=1,...,n

µi(x).

Finally, the lowest intensity value throughout the are is a
measure of suitability for the current configuration:

S = min
x∈A

µ̄(x).

Clearly, S depends on the access points positions, through
the average signal strength functions µi(·). The goal of the
algorithm will be that of maximizing the value of S by
optimizing the positions of the access points.

B. Maximizing the coverage area

Another possible measure of suitability is obtained by defin-
ing a signal strength threshold τ , below which the signal is
considered unacceptable. According to the previous notation,
we define the set of all points in the networked area that receive
sufficient coverage by at least one access point:

AC = {x ∈ A : µ̄(x) ≥ τ}.

Depending on the chosen threshold, connectivity may be
marginal at points outside AC , or be unavailable at all.

In the experimental section, the size of AC

C = |AC | = |{x ∈ A : µ̄(x) ≥ τ}| (8)

is considered as a measure of coverage (the objective function
for the optimization algorithms).

Function (8) can be extended to a weighted version by
considering the same weighting factor w(x) used in Section III
and with a similar normalization, so that C = A in case of
total coverage:

C =

∫

AC

w(x) dx

1

A

∫

A

w(x) dx

. (9)

Of course, the weighted function reduces to the unweighted
one if w(x) = 1 throughout the area.

V. ERROR MINIMIZATION TECHNIQUES

In this Section the proposed optimization techniques are
introduced. Their purpose is to minimize the average posi-
tioning error E given by (3), the coverage area (8), or a
combination of both, by an appropriate access point placement,
thus changing the conditional probability distribution P (x|x̂)
and the average signal strength values.

All considered techniques fall within the range of local
search heuristics.

In the following, the position of access points is referred
to as configuration; a move is a change in configuration; a
move is local if it belongs to a given set of allowed changes.
For example, in our case a configuration is encoded in the
program as a binary string, and local moves are those that

modify a configuration by changing a single bit. A cost func-
tion associates a real-valued cost to each configuration. The
purpose of the algorithms is that of finding the configuration
associated with the (unknown) minimum cost.

A. Local search heuristics

Local Search techniques are hill-climbing search strategies
where the configuration space (in our case, access point coor-
dinates) is searched for the optimal configuration by starting
from an initial position, that is either random or generated by
a preprocessing step, and then by changing the configuration
by means of local moves until some local minimum is found.

In order to apply the algorithm, a suitable discretization of
the search space must be operated. The physical space shown
in Figure 4 is discretized by a grid, so that only positions
on mesh points are considered. Next, the meaning of local
move, i.e., transforms in the configuration space, must be
adequately defined. For example, it is possible to take into
account all transforms that move one access point from its
current position to one of four nearby grid points. In this case,
for each configuration a maximum of 4n moves are allowed
(they may be less, if some access points are placed at the
border of the area).

Another option is to consider the binary expression of
the coordinates and concatenate them together, so that the
configuration is expressed as a long binary string; in this
case, a local move can be changing the value of a single
bit. Suppose, for sake of simplicity, that the discretization
grid has 2k intervals. Then every coordinate can be expressed
as a k-bit string, and each configuration is expressed by
2nk bits, so that 2nk possible moves are allowed at each
configuration, each of them leading to another valid one.
Unfortunately, configurations that are physically very close
may differ by an arbitrarily large number of bits in their binary
representations (for instance, changing a coordinate from 2j−1
to 2j requires changing j bits). To overcome this drawback,
Gray encoding of coordinates is used. Let n ∈ N \ {0};
its binary representation is l = 1 + blog2 nc bits long. Let
(bi)i=0,...,l−1 the binary representation of n:

n =

l−1
∑

i=0

bi2
i, ∀i = 0, . . . , l − 1 bi ∈ {0, 1}.

The Gray encoding (b′i)i=0,...,l−1 of n is obtained from its
binary representation by leaving the most significant bit un-
changed and XORing consecutive pairs of bits to obtain the
other digits:

b′l−1 = bl−1

∀i = 0, . . . , l− 2 b′i =

{

0 if bi+1 = bi

1 otherwise.

The Gray encoding has the property that adjacent numbers
always differ by exactly one bit, therefore it more suitable to
implement a locality scheme.

Figure 2 outlines a local search algorithm. Variables bestcfg
and bestobj store the best configuration ever found and its cost
(objective value). If cfg is a configuration and mv is a local
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1. iter ← 0
2. bestobj ← +∞
3. bestcfg ← none
4. repeat
5. cfg ← random configuration
6. currentobj ← f(cfg)
7. repeat
8. bestmove ← none
9. moveobj ← currentobj
10. for mv in moves
11. obj ← f(cfg•mv)
12. if obj < moveobj
13. moveobj ← obj
14. bestmove ← mv
15. if bestmove 6= none
16. cfg ← cfg • bestmove
17. currentobj ← moveobj
18. iter ← iter + 1
19. until bestmove = none or iter ≥ maxiter
20. if currentobj < bestobj
21. bestobj ← currentobj
22. bestcfg ← cfg
23. until iter ≥ maxiter

Fig. 2. The basic local search algorithm

move, then cfg•mv is the configuration obtained by applying
mv to cfg, while f(cfg) is the cost of cfg. The basic local search
strategy works by generating a random configuration (line 5),
then it repeatedly performs local moves (inner loop, lines 7–
19) by selecting the configuration that best improves the cost
function value (lines 8–14) and applying it to the configuration
(lines 15–17). When no move is found to improve the cost,
then a new random configuration is generated. The best
configuration ever found is stored into bestcfg (lines 20–22).
Iterations are counted, so that the algorithm terminates after
maxiter steps.

B. Simulated Annealing

The main drawback of the basic local search scheme is its
inability to escape local minima of the cost function. Once a
minimum is found, the search is restarted elsewhere. However,
the internal structure of the configuration space can be better
exploited by exploring the nearby zone, rather than abandoning
it. Therefore the problem of escaping local minima without
going too far must be faced.

The Simulated Annealing technique [17] is based on the
local search scheme discussed in Section V-A. However, a
probabilistic scheme allows the acceptance of a move, even
if the objective function gets worse. Let f be the objective
function evaluated at the current configuration, and let f ′ be
its new value if a move were performed. Then the move will
be accepted with a probability that is proportional to

e−
f′

−f
T , (10)

where T is a “temperature” parameter whose value decreases
during the execution of the algorithm, according to the physi-

1. iter ← 0
2. bestobj ← +∞
3. bestcfg ← none
4. for mv in moves
5. lastperformed[mv] ← −∞
6. cfg ← random configuration
7. currentobj ← f(cfg)
8. repeat
9. bestmove ← none
10. moveobj ← +∞
11. for mv in moves
12. if lastperformed[mv] < iter - T
13. obj ← f(cfg•mv)
14. if obj < moveobj
15. moveobj ← obj
16. bestmove ← mv
17. cfg ← cfg • bestmove
18. currentobj ← moveobj
19. lastperformed[bestmove] ← iter
20. if currentobj < bestobj
21. bestobj ← currentobj
22. bestcfg ← cfg
23. iter ← iter + 1
24. until iter ≥ maxiter

Fig. 3. The Tabu Search algorithm

cal analogy to a system exploiting some randomization, but
converging to a stable system as soon as the temperature
converges to zero.

C. Tabu and Reactive Search

The Reactive Search technique [18], [19] is a history-
sensitive generalization of the local search heuristic algorithm
for discrete optimization. It is able to search for the global
minimum of the cost function through a memory-based feed-
back scheme for the on-line determination of free parameters.
Reactive Search is based on the Tabu Search technique [], a
prohibition-based heuristic.

The important modification introduced by Tabu Search with
respect to the basic local search scheme is the choice of
performing a move even when no improvement is obtained
over the current cost, so that when the system falls inside a
local minimum it can move uphill. To avoid undoing the uphill
move at the very next step, a prohibition scheme is introduced
where a move cannot be undone for the next T steps of the
search. For example, if the configuration is stored as a binary
string and a local move consists of flipping a single bit (from 0
to 1 or from 1 to 0), after a bit has been changed it remains
“frozen” in its new state for T moves.

Figure 3 outlines the basic steps of a Tabu Search algorithm.
An integer array, lastperformed, associates to each move the
last iteration in which it was chosen. In lines 4–5 its entries,
one per move, are set to the lowest possible value (which we
symbolize by −∞), so that all moves are initially allowed. In
order to accept the best move even when it increases the cost
function value, the best cost in the move search loop is set
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to a very high value (+∞, compare line 10 of Figure 3 with
line 9 of Figure 2). If a move is forbidden (line 12) it shall
not be considered. After the best move is applied, the current
iteration number is stored in the corresponding array entry
(line 19), so that it is prohibited for the next T iterations.
The outer loop, with the random restart, has been omitted
for simplicity, and because the prohibition mechanism should
provide the necessary diversification when local minima are
reached. More complex schemata are possible, of course, with
random restart mechanisms and other modifications.

While simple Tabu Search allows exploration of the neigh-
borhood of a local minimum, it depends on a critical pa-
rameter, T (the prohibition period), whose optimal value is
determined by the structure of the configuration space, and
can hardly be set a priori. In fact, an excessively low value
of T prevents escape from deep local minima, while a high
value reduces the algorithm’s freedom of choice, so that a new
minimum would be skipped because no moves are allowed
toward it.

The Reactive Search scheme proposes a simple mechanism
in order to adapt the prohibition period T . Visited configu-
rations are stored, so that repetitions can be detected. Once
configurations are repeated too often, T is increased. If the
number of repeated configurations is below a given threshold,
T is decreased. It turns out that the dependency of system
behavior on the actual increase and decrease rates is low, so
the system does not rely on critical parameters. Rather than
storing configurations, which would amount to huge memory
requirements and search times, small “fingerprints”, usually
64-bit long, are computed and stored into a hash table for fast
retrieval.

The prohibition period is obviously limited by the number
of bits used to encode the configuration (once all bits are
frozen, no more moves are possible), so in some cases a
suitable differentiation cannot be enforced. If such situation is
detected, for example by noticing that configuration repetitions
are not avoided by increasing T , then an escape mechanism
may be invoked: prohibitions are reset, T is initialized and a
new random configuration is generated.

Preliminary experiments have shown that the Reactive
Search algorithm is more effective if search of the best move
is truncated as soon as an improving move is found, provided
that moves are scanned in random order. This permits a higher
iteration rate at the expense of the improvement obtained from
each iteration.

VI. EXPERIMENTS

In order to check the optimization method on a real-world
case, the map shown in Figure 4 was used, representing a
floor of a building situated in the Faculty of Science of the
University of Trento. All measures are expressed in meters,
with an approximate area of 750m2. The floor is composed of
two classrooms, a computer room, an open space with graduate
student desks and common areas. The map also reports the
weight values attributed to each room, to be used in the average
calculation (3).

A series of simulated tests has been performed to compare
reactive tabu search (RTS), local search (LS) and simulated

WC

Room A

Open space corridor

EntranceOpen space

Multimedia Room

Room B

25
m

w=0.8

w=0.6

w=0.8

w=0.3

w=0.2

w=0.6

w=0.4

30m

Fig. 4. Test map with error weights for each room

TABLE I

PARAMETERS FOR SIMULATED ANNEALING

α

localization error 0.9995
coverage 0.9998
combination 0.99

annealing (SA). For each technique, thirty one-hour runs with
different initial AP configurations have been performed for
each of three problems: positioning error minimization, signal
coverage maximization and a combination of both.

In order to calculate the positioning error (3), user positions
and the estimated positions are discretized on a 10× 10-point
mesh. Calculation of the covered area (8) are performed on
a 50 × 50-point mesh. The threshold that gives the optimal
transmission rate is set to 40dBm. Furthermore, the observa-
tions with a signal strength value below 5dBm are considered
as missing in order to simulate a real situation in a building
where an AP cannot cover the whole area of interest. The two
cost functions use different discretization steps because the
positioning error function has a higher computational com-
plexity (it computes two nested two-dimensional integrals),
and a finer granularity would result in unacceptable times.
The experimental section VI reports execution times.

Simulated Annealing uses a probability distribution pro-
portional to (10) where the “temperature” T decreases by a
constant factor α after each iteration, starting from an initial
value T0:

Tk =

{

T0 if k = 0

αTk−1 otherwise.

Preliminary tests with different parameters suggest that the
best convergence rate and probability of finding a good local
optimum is found for T0 = 100 as the initial temperature
value, while the temperature coefficient α differs among the
three problems, as seen on Table I.
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TABLE II

LOCALIZATION ERROR — RESULTS

best fitness occurrencies average 90th 95th
(m) of best (m) (m) (m)

LS 5.857280 1 5.97214 6.03029 6.03085
RTS 5.857280 17 5.89551 6.01243 6.01375
SA 5.857280 15 5.88532 5.93771 5.95139

In order to place the APs by minimizing the average error
and by maximizing the signal coverage, a cost function for the
combination problem has been used

Cerr,cov = E + γ
1

C
(11)

where E and C are the cost function for error minimization (3)
and signal coverage (8). The constant γ is chosen in order
to obtain a linear combination of the two errors so that the
two terms have approximately the same weight (a value of
γ = 2500 has been experimentally determined).

VII. RESULTS

The following subsections report and compare the results
of the three search techniques when applied to the three
problems.

Note that the expression “global optimum” refers to the
best value of the fitness function found by any of the three
heuristics. There are good reasons to suppose that this is
the actual optimum. In fact, the value is found many times
in independent runs by all three algorithms, and it always
corresponds, within the same objective function, to the same
access point configuration.

Also note that the actual user localization error values are
not significant in their values, because they refer to general
assumptions about the localization algorithms, and do not take
into account any specific technique. These values are only
meaningful when used in comparison among themselves.

A. Localization error minimization

When applied to the average localization error problem, the
RTS and SA techniques clearly outperform simple LS. In fact,
they find the global minimum (5.85728 m) respectively 17 and
15 times of the 30 one-hour runs (see table II).

Figure 5 shows a typical trace of the execution of each
algorithm. CPU time is on the horizontal axis, while the
vertical axis reports the best value found up to that moment.
The Figure depicts a behavior that is quite common in local
search techniques: initially, the simple Local Search algorithm
tends to have the same (or even better) performance as the
two more complex techniques. In fact, a typical downhill run
of LS lasts only a few steps, after which a local minimum
or a plateau is found, and a new random start is generated,
so that many local minima are explored. On the other hand,
RTS and SA tend to remain for a longer time around a local
minimum, trying to escape it, and generating a new random
solution only in particular conditions. This strategy tends to
pay in the long run: in the example, the first three minutes
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Fig. 5. Localization error — Typical traces for the three algorithms: best
solution found against CPU time.
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Fig. 6. Localization error — Distribution of the best fitness reported by the
algorithms. Each bar counts the number of one-hour runs reporting a minimum
localization error value in the corresponding range.

show a neat prevalence of simple Local Search, but due to
the random restarts, improvements tend to concentrate at the
beginning and to slow down after the most probable minima
have been found.

Figure 6 shows the distribution of the best fitness values
found by each run of the three algorithms.

Figure 7 shows the CPU time required to get the optimum
value (only runs yielding the optimum value are considered).
The RTS search algorithm seems to have a slight advantage
over the SA, in that it often finds the best fitness value within
a shorter time.

Figure 8 shows the expected average user localization error
over a 50×50 point-mesh, given the optimum AP configuration
as found by the local search algorithms. Note that localization
error is rather low in the neighborhood of the access point
positions, while it may go up to 10 meters in some locations.

In Figure 9 the AP positions corresponding to the minimum
average error is shown. Note that the AP placement is quite
unpredictable: all APs are placed on the south side of the
building.



9

������

������
������
������
���

������
������
������
���

�� ��
��
��
�

��
��
��
�

	�	
�
 ��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
��
��
��
�

������
������
������
������
������
������
���

��
��
��
��
��
��
�

��
��
��
��
��
��
�

��
��
��
�

��
��
��
�

������
������
������
������
������
������
���

��
��
��
��
��
��
�

������
������
������
������
������
������
���

������
������
������
������
������
������
���

������
������
������
������
������
������
������
������
������
������
������
������
������
���

��
��
��
��
��
��
��
��
��
��
��
��
��
�

������

������

�� � !" #$ %�%& '( )* +�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�+

,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,,�,
,�,

--
--
--
--
--
--
--
--
--
--
--
--
--
-

..
..
..
..
..
..
..
..
..
..
..
..
..
.

/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/
/�//�/

0�00�0
0�00�0
0�00�0
0�00�0
0�00�0
0�00�0
0�00�0
0�00�0
0�00�0
0�00�0

11
11
11
11
11
11
11
11
11
11

22
22
22
22
22
22
22
22
22
22

33
33
33
3

44
44
44
4

SA

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20  25  30  35  40  45  50  55  60

N
um

be
r 

of
 o

cc
ur

re
nc

ie
s

CPU time (minutes)

LS
RTS

 0

Fig. 7. Localization error — Distribution of elapsed times to best fitness.
Only runs yielding the global minimum within one hour are counted.
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Fig. 9. Localization error — Optimal AP configuration obtained by RTS
(triangles), LS (squares) and SA (circles).

TABLE III

SIGNAL COVERAGE — RESULTS

best fitness occurrencies average 90th 95th
(m2) of best

LS 419.454 15 419.002 418.164 418.002
RTS 419.454 29 419.443 419.454 419.454
SA 419.454 30 419.454 419.454 419.454
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Fig. 10. Signal coverage — Distribution of the best fitness reported by the
algorithms.

B. Signal coverage

As Table III reports, the basic Local Search algorithm
finds the global optimum within the hour only 50% of the
times. RTS and SA always find the global optimum (with the
exception of one run of the RTS heuristic, yielding a slightly
lower value, as showm in Figure 10).

On the average, RTS can find the best fitness more quickly
than SA: the global maximum is found within the first 5
minutes in 11 runs out of 30. As a consequence, if search
is truncated after a short time (less than an hour), RTS seems
to have the highest probability of reporting the optimal value.

Figure 12 shows the signal strength distribution given by
the optimal AP configuration, where the horizontal plane rep-
resents the signal threshold for an optimal wireless connection.

The optimal AP configuration by maximizing the signal
coverage for the coverage is rather predictable because they
are placed in the interior of the building, far from the outer
walls (Figure 13).

C. Combined problem

Table IV shows the results of the search algorithms when
applied to the combined fitness function (11). As in the previ-
ous cases, a common best fitness is found by all techniques. In
particular, RTS finds the best value 90% of the thirty one-hour
runs (SA just 70%).

Figure 14 shows that all thirty runs of the RTS algorithm
report values that fall in the immediate neighborhood of the
minimum.

However, unlike the previous cases, Figure 15 shows that
there is no prevalence of RTS over SA when considering the
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Fig. 11. Signal coverage — Distribution of elapsed times to best fitness.
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Fig. 13. Signal coverage — Optimal AP configuration obtained by RTS
(triangles), LS (squares) and SA (circles).

TABLE IV

COMBINED PROBLEM — RESULTS

best fitness occurrencies average 90th 95th
of best

LS 13.0872 3 13.1111 13.1375 13.1541
RTS 13.0872 27 13.0875 13.0872 13.0875
SA 13.0872 21 13.1224 13.2128 13.2607
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Fig. 14. Combined problem — Distribution of the best fitness reported by
the algorithms.

time to discover the best fitness.
Figure 16 shows the optimal AP configuration for the

combined problem. It is apparently a midway configuration
between that obtained by the localization error minimization
and the signal coverage maximization heuristics.

D. Cross-Compatibility

The best configurations calculated in the previous sub-
sectons are very different. In particular, the configuration
aimed at minimizing the localization error, Figure 9, looks too
asymmetric to be effective in signal coverage. Vice versa, the
outcome of signal coverage maximization, shown in Figure 13,
may not work as well in localizing users, because APs are too
near to each other, and so many places with similar signal
strength values may be encountered.

Moreover, the outcomes of the local search techniques are
rather different from what may have been planned by hand.
In particular, Figure 17 shows two AP placements that have
been determined by “rule of thumb”: the first (white circles) is
meant to maximize signal coverage; the second (black circles)
to minimize localization error.

Table V compares the outcomes of all configurations for all
kinds of objective function. Obviously, each “best” configura-
tion (in the first three lines) is the best for the problem it is
meant for. Best values for each criterion are shown in bold,
percentage values show the relative difference with the best
value in the column. The table shows that localization error
tends to increase by 40% when the configuration for coverage
is used, while applying the configuration meant for localization
error yields a proportional reduction in covered area.
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Fig. 15. Combined problem — Distribution of elapsed times to best fitness.

Fig. 16. Combined problem — Optimal AP configuration obtained by RTS
(triangles), LS (squares) and SA (circles).

Fig. 17. Two AP configurations placed by hand: the white circles show
a configuration aimed at maximizing coverage, while the black circles are
meant to minimize the localization error.

TABLE V

CROSS-COMPATIBILITY OF CONFIGURATIONS FOUND BY HEURISTIC

SEARCH AND HAND PLACEMENT (FIGURE 17)

Error Coverage Combined
(m) (m2)

Localization best 5.857280 249.737 (40%) 15.8638 (21%)
Coverage best 8.22589 (40%) 419.454 14.1836 (8%)
Combined best 6.58422 (12%) 384.285 (8%) 13.0872
By hand (white) 8.75573 (49%) 310.719 (26%) 16.7984 (28%)
By hand (black) 6.81586 (16%) 284.261 (32%) 15.6071 (19%)

The combined optimization yields a configuration that actu-
ally stands in the middle of the two: by achieving an average
localization error that is only 12% worse than the optimum,
and a coverage area that is just 8% smaller, the combined
optimization solution seems to be a good trade-off between
the two main criteria.

The two configurations designed by hand also stand in the
middle of the two criteria, the first configuration having a
slight preference towards improved localization, the second
for a better coverage.

VIII. CONCLUSIONS

A mathematical model of localization error for algorithms
based on signal strength measurements has been proposed
by making generic assumptions on the nature of positioning
estimate. This model has been implemented in three local
search techniques in order to optimize wireless access point
placement with respect to user localization error. The tech-
niques aim at reducing the error before the application of
postprocessing algorithms such as moving averages, Kalman
filters or path-based corrections.
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Telecomunicazioni, Universit à di Trento, Tech. Rep. DIT-02-0086, Oct.
2002. [Online]. Available: http://eprints.biblio.unitn.it/archive/00000238/

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[18] R. Battiti, “Reactive search: Toward self-tuning heuristics,” in Modern
Heuristic Search Methods, V. J. Rayward-Smith, Ed. John Wiley and
Sons Ltd, 1996, ch. 4, pp. 61–83.

[19] R. Battiti and G. Tecchiolli, “The reactive tabu search,” ORSA Journal
on Computing, vol. 6, no. 2, pp. 126–140, 1994.


