
Mobile Networks and Applications 6(2001), pages 493–500 — Kluwer 1

Cellular Channel Assignment:
a New Localized and Distributed Strategy

Roberto Battiti∗† Alan A. Bertossi∗† Mauro Brunato∗†‡

December 17, 2001

Abstract

As the use of mobile communications systems grows, the need arises for new and more efficientchannel allo-
cation techniques. The total number of available channels on a real-world network is in fact a scarce resource, and
many assignment heuristics suffer from a clear lack of flexibility (this is the case of Fixed Channel Allocation), or
from high computational and communication complexity (as with channel borrowing techniques). Performance
can be improved by representing the system with an objective function whose minimum is associated with a good
configuration; the various constraints appear as penalty terms in the function. The problem is thus reduced to the
search for a minimum, that is often performed via heuristic algorithms like Hopfield neural networks, simulated
annealing or reinforcement learning. These strategies usually require a central process to have global information
and decide for all cells.

We consider an objective-function formulation of the channel assignment problem that has been previously
solved by search heuristics; we prove that the search time for the global minimum of the objective function is
O(n log n), and therefore there is no need for search techniques.

Finally we show that the algorithm that arises from this formulation can be modified so that global knowledge
and synchronization are no longer required, and we give its distributed version. By simulating a cellular network
with mobile hosts on a hexagonal cell pattern with uniform call distribution, we show that our technique actually
performs better than the best known algorithms.

Keywords — Channel Assignment, Cellular Networks, Distributed Algorithms

1 Introduction

Consider a geographic area in which a number of multi-channel transceiver server stations are placed at a suitable
mutual distance. Stations are connected to each other by means of a wired network, which we are not concerned
about in the present paper. Each station acts as a network entry point for all the mobile radio hosts that can
communicate with it at the highest signal-to-noise ratio among all stations. As a result, the geographic area is
divided intocellswhose borders are not well defined, as they depend on the ever-changing radio signal levels, but
could be roughly sketched as in Fig. 1, which still depicts agoodsituation where every cell is a simply connected
domain: reflections, interference and terrain configurations, as well as handoff policies, might substantially alter it.
However, a more regular setting such as the common hexagonal pattern will be considered in experiments, since
it is still the most common test ground. Modeling real-world instances is in fact a very hard and delicate work,
and the situation is made worse by the policies of many cellular service providers who keep their data reserved, or
provide them in a strictly confidential way, so that the scientific community cannot share them.

Usually a server station can be received by server stations in other cells. In this case, mutually interfering
stations must employ different communication channels (i. e. frequency bands, time slices or codes from an or-
thogonal set), in order to avoidco-channel interference(interference caused by transmissions on thesamechannel).

∗Universit̀a di Trento, Dipartimento di Matematica, Via Sommarive 14, I-38050 Povo (TN), Italy.
†Email: battiti|bertossi|brunato@science.unitn.it
‡Corresponding author.

Interference zones

Strong

Medium

Weak

of station

Figure 1: A simple geographic cellular network and the interference area of a server

In its simplest (and most unrealistic) form, the channel assignment problem is equivalent to the Euclidean graph
coloring problem, hence it is NP-hard. This problem can be treated with simple greedy heuristics [5] [3] [1]. Be-
cause a server station must communicate with several mobile hosts at once, however, we must assign more than
one channel to each server. When this problem is handled with graph-coloring heuristics, we need to substitute
every node with a clique of cardinality equal to the required number of channels, in order to give the appropriate
number of channels to each transceiver while respecting the interference constraints. This approach causes, how-
ever, increment in the number of nodes and edges; in particular, the number of nodes is multiplied by the average
traffic per cell, while the number of edges is multiplied by the square of this quantity.

Moreover, radio interference isadditive, and simple adjacency restrictions (like those in the graph or list col-
oring problems) are not sufficient to catch the complexity of the real-world issues. If the interference phenomena
are strong enough, even stations that use different channels may interfere, provided that they operate on adjacent
frequency bands or on subsequent time slices (propagation delays may cause a time slice to partially invade an-
other one). This problem becomes significant when the overall frequency spectrum has to be minimized; indeed,
the strong request of radio bands for several purposes makes the reserved bandwidth for cellular communications
rather small (∆f ≈ 60MHz in the900MHz band for the GSM system [2]), and hardware techniques1 can’t do all
the job by themselves.

In Section 2 we give a fast overview of the algorithms that can be found in the problem literature (Section 2.1);
next (Section 2.2) we describe in greater detail the objective-function approach which is central to this paper and
we show how the problem of minimizing our function, which leads to an approximate solution of the assignment
problem, can be solved in polynomial time (Section 2.3).

In Section 3 we introduce some modifications to the algorithm in order to distribute it among the cells. To do
so, we need a communication scheme to broadcast all status changes to a small local cluster (Section 3.1) and a
local synchronization method to make sure that a cell allocates a channel only when it has enough knowledge of
the status of its neighbors (Section 3.2).

Results of simulations are presented in Section 4, where the algorithm we describe is compared with those
introduced in Section 2.1. In section 5 we draw some conclusions suggested by the experimental analysis.

2 Channel Assignment Algorithms

2.1 Combinatorial strategies

Let us briefly summarize the main channel assignment algorithms (for more details see [7] [6]). In the experimental
Section 4 we shall consider the following techniques:

1Namely, Minimum Shift Keying and Gaussian Minimum Shift Keying to eliminate spectrum bumps around the channel, and frequency
hopping schemes to eliminate constant interferences.

2

• The FCA (Fixed Channel Allocation) algorithm. Each cell is assigned a fixed pool of frequencies, so that no
near cells can use the same channel. No communication is needed between cells; when all channels are in
use, subsequent requests shall be rejected.

• The SBR (Simple Borrow from the Richest) algorithm. Each cell has an assigned pool of frequencies, but
a channel can be borrowed from a richer neighbor, provided that its use does not cause interference. When
more than one neighbor has a free channel, the cell chooses the richest one. It is more efficient than FCA
with low traffic rates, but its performance deteriorates when the traffic rate increases, achieving the same
performance of FCA at higher computational and communication costs.

• One of the many variations of DCA (Dynamic Channel Assignment) techniques, by which every cell can
have access to every channel, as long as it does not cause interference; the cell chooses the channel which is
most ‘blocked’ (due to the interference constraints) in the neighboring cells, so that it gives rise to the least
blocking probability. It is better than FCA at low traffic rates, but worse at high traffic rates, because many
cells might find no channels at all, due to non-optimal decisions at previous times.

• The BDCL (Borrow with Directional Channel Locking) algorithm. Like SBR, but the choice of the channel
to borrow is done by the criterion of the above proposed DCA technique. It is the best combinatorial
algorithm we know.

In Section 4 we shall compare these algorithms with the following technique, based on objective function
minimization.

2.2 A penalty function heuristic

Many penalty-function heuristics have been applied to the channel assignment problem. Some of them require the
rearrangement of the whole cellular system when a new channel is requested [9] [4]; unless the traffic is very low
and service communications among cells are cheap and fast, this approach is of little practical use. Other penalty-
function heuristics, such as the one we shall consider next, just rearrange the channel assignment inside the cell
where the new communication request is issued, by choosing those channels that minimize the probability of a
future channel refusal, trying to keep the system in a suitable status for future requests (this effort of maintaining a
good configuration is clearly unnecessary in the former case).

In both cases, two heuristic steps must be taken. First, we must heuristically determine a good penalty function,
where “good” means that its minimum should correspond to a suitable configuration, sufficiently close to the
optimal assignment. Then, when this function is determined, we must actually locate its global minimum, or at
least find some good local minimum; to do so, we need to apply a minimum-search heuristic technique to the
penalty function.

A penalty function that has been used by previous researchers which empirically finds good approximations
of the optimal assignment is shown in [8]. Following its notation, letnCE be the number of cells andnCH the
total number of channels. Every celli, i = 1, . . . , nCE, has a traffic demand trafi which changes with time. Let
us denote withdii′ the Euclidean distance between the centers of cellsi andi′, and let interfii′ be a{0, 1}-valued
function which states if the two cells interfere or not; the notation can nonetheless be extended to the case of
various degrees of interference.

When a connection or termination request is issued in celli∗, the frequency allocation in this cell must be
optimized. The status of channel allocation is given by a{0, 1}-valued matrixAij whose entry(i, j) is 1 if and

only if channelj is currently in use in celli. The new channel allocation for celli∗ is stored in vectorV (i∗)
j ,

j = 1, . . . , nCH.
An objective function is built whose minimum is likely to be a good solution of the new allocation for celli∗.

First, a term to privilege those solutions without interference (all terms depend onV (i∗), our unknown solution) is
introduced2:

a(V) =
nCH∑
j=1

nCE∑
i=1
i 6=i∗

VjAij interfii∗ .

2From now on, we shall drop the(i∗) superscript from vectorV , since all calculations are local to celli∗.

3

Figure 2: Building a reuse scheme: the basic move

This term adds1 for each cell interfering withi∗ which uses a channel in use ini∗. Second, the requests of the cell
i∗ should be respected as much as possible:

b(V) =

trafi∗ −
nCH∑
j=1

Vj

2

.

The only reason to make this term quadratic is that it must be nonnegative: (an absolute value would also work).
Third, apacking conditionis added: a channel should be reused as near as possible (outside the interference zone),
to restrict the blocking probability in other cells.

c(V) = −
nCH∑
j=1

nCE∑
i=1
i 6=i∗

VjAij
1− interfii∗

dii∗
.

This subtracts a positive term for each cell outside the interference zone which reuses a channel employed in cell
i∗; the larger the distance, the smaller the subtracted term. Next, changes in the present allocation of the celli∗

should be minimized:

d(V) = −
nCH∑
j=1

VjAi∗j .

This subtracts1 every time a channel currently used by celli∗ is chosen for the next configuration (this means
that a mobile host needs to change its channel as rarely as possible). If some frequency hopping technique is used,
however, this requirement does not make much sense, as the mobile host is equipped for frequent configuration
changes. Last, experimental evidence shows that to achieve a good performance the channel reuse should follow
a regular scheme (for example, a compact pattern [10]). This is achieved by introducing the{0, 1}-valued matrix
resii′ whose entry(i, i′) is 1 if and only if cellsi andi′ belong to the same reuse scheme (i.e. should use the same
channels if possible). Common reuse schemes follow some sort of “knight” move (for instance, the one shown in
Fig. 2).

e(V) =
nCH∑
j=1

nCE∑
i=1
i 6=i∗

VjAij(1− resii∗).

Note that all terms are arranged to go towards a lower value when the constraints are satisfied. Let us combine
them in a single objective function to minimize:

J(V) = A · a(V) + B · b(V) + C · c(V) + D · d(V) + E · e(V),

whereA, B, C, D andE give different importance to the various constraints.

4

2.3 The polynomial algorithm BBB

So far a possible penalty functionJ(V) has been heuristically determined. To minimizeJ(V), [8] employs
Hopfield neural networks, but actually the minimization of this function is straightforward and does not require
any heuristic search technique. In fact, we can rewriteJ(V) as a quadratic function in which the quadratic term
depends only on the number of channels, and not on the single channels used. Let us rewrite

a(V) =
nCH∑
j=1

Vjaj , where aj =
nCE∑
i=1
i 6=i∗

Aij interfii∗ ;

the termaj simply counts the number of cells in the interference zone ofi∗ which use the channelj. The term
b(V) can be rewritten as

b(V) =

nCH∑
j=1

Vj

2

− 2 trafi∗
nCH∑
j=1

Vj .

The traf2i∗ term is constant and can be omitted, while the quadratic term is the square of the number of channels
reserved for the celli∗ (the number of1’s in vectorV). Let us rewrite it in a way similar to the other ones:

b(V) =

nCH∑
j=1

Vj

2

+
nCH∑
j=1

Vjb, where b = −2 trafi∗ .

Clearly,b does not depend onj. The other terms can be rewritten as follows:

c(V) =
nCH∑
j=1

Vjcj , d(V) =
nCH∑
j=1

Vjdj , e(V) =
nCH∑
j=1

Vjej

where

cj = −
nCE∑
i=1
i 6=i∗

Aij
1− interfii∗

dii∗
,

dj = −Ai∗j , ej =
nCE∑
i=1
i 6=i∗

Aij(1− resii∗).

The termcj evaluates the packing condition for channelj; the termdj rewards the choice of channelj if it was
already in use; the termej penalizes the use of a channel outside the reuse scheme.

We can collect the single coefficients into global ones:

wj = A · aj + B · b + C · cj + D · dj + E · ej ;

the global objective function is then

J(V) =

nCH∑
j=1

Vj

2

+
nCH∑
j=1

wjVj ,

where, as we have already pointed out, the square term is just the square of the number of assigned channels.
To minimizeJ(V) we calculate the weightswj for each channel; each calculation requires at mostnCE steps

to test interferences, reuses and packing. Globally, the calculation of the weightswj requires timeO(nCEnCH).
If we had fixed the numbern of channels that we want to assign, the minimization would be achieved by taking
the channelsj whosewj are the least (the quadratic term is constant among the solutions with the same number

5

of channels). To take advantage of this, we calculate a permutationσj , j = 1, . . . , nCH, such that the vector
(wσj)j=1,...,nCH is sorted in increasing order. The sort requires timeO(nCH log nCH). At last, let us callJn the
minimum of the objective function restricted ton-channel solutions. Its value is

Jn = n2 +
n∑

j=1

wσj , n = 0, . . . , nCH,

and the difference between the minima for successive values ofn is

Jn − Jn−1 = 2n− 1 + wσn
, n = 1, . . . , nCH.

So, a simple scan of the vectorwσj
is enough to find the minimum for alln, that is the global minimum, in time

O(nCH).
Hence, the global minimum of the objective function,

min
V ∈{0,1}nCH

J(V) = min
n=0,...,nCH

Jn,

can be found in total timeO
(
nCH(nCE + log nCH)

)
. The procedure returns also the number of channels in the

optimal solution, sayn∗, therefore the channels to be assigned to celli∗ are

nσ1 , nσ2 , . . . , nσn∗ .

Let us call this penalty-function minimization heuristic the BBB algorithm. The first advantage of using BBB
is that, of course, we find the true global minimum ofJ(V). In addition, consider that Hopfield networks, like
many other techniques, require our function coefficients to vary only in a certain range in order to ensure stability
and convergence of the search; in other words, coefficients are critical not only in weighting the various constraints
(which is precisely what they are introduced for), but also in making the minimum-search procedure succeed.
Algorithm BBB does not use any heuristic search algorithm, so it is not restricted to those coefficient values that
ensure convergence, and we may let them vary over all the nonnegative real range, thus having more freedom in
tuning them.

3 The distributed polynomial algorithm dBBB

We first note that algorithm BBB can be improved by storing at each cell a permanently sorted array of weights to
be updated at each change of state in the nearby cells. The sorting time can thus be cut down to a simple update of
the sorted array at each call. Moreover, by considering only local interference the calculation of the weights does
not depend on the total numbernCE of cells, but it can be performed inO(1) time.

We need, however, to simplify our objective function by eliminating non-locality. There are only two global
terms in the function:

• The “reuse scheme” given by the array resii′ ; some tests (Fig. 8, Section 4) show that it is not influential on
the overall system performance.

• The “packing condition”, whose weight decreases at increasing distances; the same preliminary tests cited
above prove that we can restrict the “packing condition” to the2r-th ring of neighboring cells (wherer is
the interference radius).

3.1 A communication scheme

Once the objective function is localized, we just need a good communication strategy to replace the central au-
thority which took all the decisions in the previous algorithm. When a cell initiates or terminates a call, it must
broadcast its new status to its neighbors (up to the2r-th ring). To do so, we need a simple broadcasting scheme,
like the one presented in Fig. 3.

6

"Straight" message

"Corner" message

Figure 3: A local broadcasting scheme

1. source:
2. for d in 0 . . . 5 do
3. send(1, 4, 1,m) alongd;
4. relay:
5. upon receipt of (c, r, h, m) from d do
6. if h < r then
7. send(c, r, h + 1,m)
8. alongd + 3 (mod 6);
9. if c then
10. send(0, r, h + 1,m)
11. alongd + 4 (mod 6);
12. Act according to the received message;

Figure 4: The local broadcasting algorithm

Let the message be structured as a tuple(c, r, h, m), wherec is a flag indicating if the message must be
duplicated: ifc is set, the message shall be called a “corner” message;r is the maximum distance from the source
the message must reach,h is the number of steps the message has taken up to now andm is the message itself.
Suppose that in each cell the directions of incoming and outgoing messages are numbered clockwise modulo6.
Then if a message arrives on directiond, the opposite direction will bed + 3 (mod 6).

The algorithm can be implemented as in Fig. 4. The source sends six “corner messages” to its neighbors
(lines 2–3); when a cell receives a message, if it is not far enough (line 6), it must relay it to the cell on the opposite
side (line 8); if it is a corner message, the cell must also propagate a non-corner (c = 0) copy of the message to the
clockwise-next direction (lines 9–11). This copy shall be subsequently propagated only in straight line. After the
propagation of the message, of course, the relay cell must modify its record about the broadcasting cell according
to the message contentm (line 12).

3.2 A Mutual Exclusion technique

Last, to avoid conflicts in channel choice we must ensure that, when a cell is changing its configuration, none of
its neighbors up to the reuse distance does the same thing simultaneously. For this we can implement a multiple
token-passing protocol such that no two tokens are nearer than the reuse distance. If the reuse distance is two and
the network is a regular hexagonal grid, let us refer to Fig. 5. The grey cells possess the token; when a cell is done
with it, it sends a “token” message “upwards” (following the thick arrow) and two “free” messages along the thin

7

"Token" message

"Free" messages

Figure 5: A multiple token-passing scheme

arrows (this requires two other cells to act as relays). Before entering the critical state, a cell must wait for one
“token” and two “free” messages. The “token” message ensures that all preceding cells in the token-passing chain
are safe, while the two “free” messages declare the safety of the two potentially blocking cells which are possibly
using the token at the same time in its neighborhood. To take account of border effects, however, the two leftmost
columns and the two uppermost rows should wait for just one “free” message, the cells in the upper left corner
don’t have to wait for any “free” message, while the lower row cells should generate a token (without waiting for
one) whenever they get enough “free” messages.

The actual algorithm for a7 × 7 grid with a reuse distance of 2 is presented in Fig. 6 (the directions are
numbered clockwise from0 to 5 starting from west). Three variables are used to store the status of the cell. The
booleanTokenflag is true if and only if the cell is holding the token; the counterFree countcontains the number
of “free” messages that still have to be received before the cell is able to use the token; the flagCritical sectionflag
is true if and only if a channel request or release has been issued in the cell. The entry to the critical section is only
allowed whenTokenflag is true andFree countis 0.

All cells must initially call theInit procedure to initialize their status, except those initially possessing the token
(the grey ones in Fig. 5). The cells that initially possess the token must start calling the procedureHave tokenat the beginning.
Cells that need to process a channel request (or release) must call the procedureEnter critical sectionthat sets the
Critical sectionflag, so that the algorithm runs the channel-assignment procedure when possible, and waits until
that same bit is reset.

Of course the main loop is executed concurrently, and theCheckprocedure must end before any other message
is received. For routing purposes, since they have to travel two cells, the “Free” messages have an integer part.
When a cell receives a “free(0)” message, it just has to retransmit it as “free(1)” to a direction that depends on
the incoming path (lines 30–33), while a “free(1)” message must be operated on place (lines 34–36) by procedure
Check, that verifies if the cell has to enter the critical section, skip it or wait because it isn’t ready.

4 Experimental analysis

We consider a7× 7 hexagonal grid, as the one shown in Fig. 5, like in most of the literature. A fixed server station
is placed at the center of each cell, while a number of mobile hosts is free to move across the whole land. The total
number of available channels is70 and the co-channel interference is extended to the second ring of neighbors.
The grid does not wrap like a torus.

A C++ program has been written to run a comparative simulation of five algorithms (FCA, SBR, DCA with
local optimization, BDCL and BBB).

For FCA, the reuse scheme (a reuse distance of two cells has been considered) consists in seven partitions of
ten channels each. The Euclidean distance between the centers of two neighbors is1, and the reuse scheme given
by the function resii′ of Section 2.2 is built by iterating the basic “knight” move of Fig. 2, which gives the same
pattern as the token placement in Fig. 5. The same scheme has been used to distribute the seven channel groups
among the cells for the FCA algorithm.

8

1. ProcedureHave tokenat the beginning:
2. Tokenflag← true;
3. Free count← 0;
4. do Check

5. ProcedureInit:
6. if node is in the first rowthen
7. Tokenflag← true
8. else
9. Tokenflag← false;
10. Free count← 2;
11. if node in two upper rowsthen
12. decreaseFree count;
13. if node in two leftmost columnsthen
14. decreaseFree count;
15. Critical sectionflag← false;

16. ProcedureEnter critical section:
17. Critical sectionflag← true;
18. wait until Critical sectionflag= false;

19. ProcedureCheck:
20. if Tokenflagand Free count= 0 then
21. if Critical sectionflag then
22. Run the CA procedure;
23. SendTokenalong1;
24. SendFree(0) along3 and 4;
25. do Init

26. Main polling loop :
27. Upon receipt ofTokendo
28. Tokenflag← true;
29. do Check
30. Upon receipt ofFree(0) from 1 do
31. SendFree(1) along5;
32. Upon receipt ofFree(0) from 0 do
33. SendFree(1) along3;
34. Upon receipt ofFree(1) do
35. decreaseFree count;
36. do Check

Figure 6: The token-passing algorithm

9

Table 1: Coefficients for functionJ(V)

Coefficient Value
A 7000
B 45
C 1.2625
D 0.01
E 4.17625

0

0.05

0.1

0.15

0.2

0.25

150 160 170 180 190 200 210

B
lo

ck
in

g
fr

eq
ue

nc
y

Cell load (calls per hour)

FCA
SBR
DCA

BDCL
BBB

Figure 7: Comparison among algorithms

Coefficients for the functionJ(V) are shown in table 1.
Each algorithm (FCA SBR, DCA, BDCL, BBB) has been simulated for connection rates of160, 170, 180, 190

and200 calls per hour with Poissonian distribution (and hence exponential interarrival time), corresponding to a
traffic of 8, 8.5, 9, 9.5 and10 erlangs. The mean duration of a connection is exponential with an average of180sec.
Each simulation consisted of50 runs of100000 seconds of simulated time each.

Fig. 7 shows the results of this simulation. Every error bar represents the95% confidence interval calculated
over 50 independent runs. It is clear that algorithm BBB outperforms all these algorithms.

The elimination of the reuse scheme and the localization of the channel packing condition as in Section 3
finally lead us to the data in Fig. 8, where we compare the original BBB algorithm with its distributed version
dBBB. Because the error bars are not visible in the figures, they are also reported in tables 2 and 3. As it is
apparent, all differences lie within the confidence intervals. This enables us to transform the algorithm into a local
one with no performance loss.

5 Conclusions

After the description of some well known algorithms, we have introduced the penalty-function algorithm BBB, we
have described its distributed version dBBB and simulated it over a large number of runs. As we have seen, our
heuristic behaves better than the others we tried, at least when compared on regular hexagonal patterns.

10

Table 2: Comparison among algorithms (see fig. 7)

Cell load FCA Err SBR Err DCA Err BDCL Err BBB Err
(cph) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3)
160 .121 .60 .093 .85 .061 .57 .039 .61 .034 .48
170 .145 .69 .120 .69 .088 .70 .063 .79 .056 .62
180 .168 .70 .148 .89 .115 .77 .090 .72 .080 .73
190 .191 .75 .175 .75 .142 .76 .119 .88 .107 .79
200 .215 .69 .202 .64 .169 .71 .147 .93 .134 .77

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

150 160 170 180 190 200 210

B
lo

ck
in

g
fr

eq
ue

nc
y

Cell load (calls per hour)

BBB
dBBB

Figure 8: Global vs. local optimization

Table 3: Global vs. local optimization (see fig. 8)

Cell load BBB Err dBBB Err
(cph) (×10−3) (×10−3)
160 .034 .48 .033 .64
170 .056 .62 .055 .54
180 .080 .73 .080 .69
190 .107 .79 .106 .65
200 .134 .77 .134 .80

11

Due to their nature, most algorithms have only been studied with such restrictive assumptions as “boolean”
(non-additive) interference, and so our tests had to restrict to that case. However, our method can easily be applied
to a large variety of channel assignment problems with additive interference constraints, adjacent-channel interfer-
ence and so on. In fact, all that is required for the minimization to be polynomial is that every channel provides a
linear contribution to the total penalty function.

References

[1] Roberto Battiti, Alan A. Bertossi, and Maurizio A. Bonuccelli. Assigning codes in wireless networks: Bounds
and scaling properties.Wireless Networks, 5:195–209, 1999.

[2] Onelio Bertazioli and Lorenzo Favalli.GSM — Il Sistema Europeo di Comunicazione Mobile: Tecniche,
Architettura e Procedure. ATES. Hoepli, Milan, 1996.

[3] Alan A. Bertossi and Maurizio A. Bonuccelli. Code assignment for hidden terminal interference avoidance
in multihop packet radio networks.IEEE/ACM Transactions on Networking, 3:441–449, 1995.

[4] Manuel Duque-Ant́on, Dietmar Kunk, and Bernhard Rüber. Channel assignment for cellular radio networks
using simulated annealing.IEEE Transactions on Vehicular Technology, 42(1):14–21, February 1993.

[5] Eli Upfal Eli Shamir. Sequential and distributed graph coloring algorithms with performance analysis in
random graph spaces.Journal of Algorithms, 5:488–501, 1984.

[6] Scott Jordan and Eric J. Schwabe. Worst-case performance of cellular channel assignment policies.Wireless
Networks, 2:265–275, 1996.

[7] Irene Katzela and Mahmoud Nagshineh. Channel assignment schemes for cellular mobile telecommunication
systems: A comprehensive survey.IEEE Personal Communications, pages 10–31, June 1996.

[8] Enrico Del Re, Romano Fantacci, and Luca Ronga. A dynamic channel allocation technique based on hop-
field neural networks.IEEE Transactions on Vehicular Technology, 45(1):26–32, February 1996.

[9] Satinder Singh and Dimitri Bertsekas. Reinforcement learning for dynamic channel allocation in cellular
telephone systems.Submitted to NIPS96, 1996.

[10] Kwan Lawrence Yeung and Tak-Shing Peter Yum. Compact pattern based dynamic channel assignment for
cellular mobile systems.IEEE Transactions on Vehicular Technology, 43(4):892–896, November 1994.

12

