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1. On p-Groups of Finite Coclass

In this talk p stands for a prime number.
For simplicity of the presentation we assume p 6= 2.

We denote the lower central series of a group G by
γ1(G) = G and γi+1(G) = [γi(G), G].

G is nilpotent of class c if γc(G) 6= 1 and γc+1(G) = 1.

A p-group G has coclass r if G is of class c and |G| = pc+r.
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2. Pro-p Groups of Finite Coclass

A pro-p group G has coclass r if it is the inverse limit of finite
p-groups of coclass r.
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A pro-p group G has coclass r if it is the inverse limit of finite
p-groups of coclass r.

Equivalently, |G/γn(G)| = pn+r for all big enough n.

In particular, G has finite coclass if |γn(G)/γn+1(G)| = p for
all big enough n.
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2. Pro-p Groups of Finite Coclass

A pro-p group G has coclass r if it is the inverse limit of finite
p-groups of coclass r.

Equivalently, |G/γn(G)| = pn+r for all big enough n.

In particular, G has finite coclass if |γn(G)/γn+1(G)| = p for
all big enough n.

In 1980 Charles Leedham-Green and Mike Newman came
with the five coclass conjectures in decreasing order of
difficulty:
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3. The Coclass Conjectures
Conjecture A. For some function f(p, r), every finite
p-group of coclass r has a normal subgroup K of class at
most 2 and index at most f(p, r).
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3. The Coclass Conjectures
Conjecture A. For some function f(p, r), every finite
p-group of coclass r has a normal subgroup K of class at
most 2 and index at most f(p, r).

Conjecture B. For some function g(p, r), every finite
p-group of coclass r has derived length at most g(p, r).

Conjecture C. Every pro-p group of finite coclass is soluble.

Conjecture D. For fixed p and r there are only finitely many
isomorphism classes of infinite pro-p groups of coclass r.

Conjecture E. There are only finitely many isomorphism
classes of infinite soluble pro-p groups of coclass r.
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Theorem (Donkin & Leedham-Green, Shalev &
Zelmanov)
The coclass conjectures are true.
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Theorem (Donkin & Leedham-Green, Shalev &
Zelmanov)
The coclass conjectures are true.

The key point (for us) is that pro-p groups of finite coclass
are p-adic analytic.
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Theorem (Lazard, Lubotzky and Mann)

Let G be a pro-p group. The following are equivalent:

1. G is finitely generated and virtually powerful;
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Theorem (Lazard, Lubotzky and Mann)

Let G be a pro-p group. The following are equivalent:

1. G is finitely generated and virtually powerful;

2. G has finite rank;

3. G has polynomial subgroup growth (PSG);

4. G is a Lie group over the p-adic integers;

5. G is linear over the p-adics.

A point worth noticing: finite rank implies PSG is easy. The
other direction is harder.
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Facts

Let G be a pro-p group of finite coclass.
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Facts

Let G be a pro-p group of finite coclass.

1. There exists K a normal finite subgroup of G such that
G̃ = G/K is just infinite.

2. Every normal subgroup of big enough index of G̃ is equal
γn(G̃) for some n.

3. Thus, there is a constant c such that if N is normal in G,
then N contains γn(G) and |N/γn(G)| ≤ pc.

4. Pro-p groups of finite coclass are not closed under direct
sum.
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4. Pro-p Groups of Finite Width

Let G be a pro-p group. We say that G has width w if for all n

|γn(G)/γn+1(G)| ≤ pw.
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4. Pro-p Groups of Finite Width

Let G be a pro-p group. We say that G has width w if for all n

|γn(G)/γn+1(G)| ≤ pw.

Notice: direct sum of groups of finite width has finite width.

Examples:

1. Let Zp be the p-adic integers.

Gn = SLn
d(Zp) = ker(SLd(Zp) → SLd(Zp/(p

n)).

G = G1 is a pro-p group, Gn = γn(G) and

|Gn/Gn+1| = pd2
−1.
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2. Let Fp[[t]] be formal power series over Fp.

Gn = ker(SLd(Fp[[t]]) → SLd(Fp[[t]]/(t
n)).

G = G1 is a pro-p group, Gn = γn(G) and

|Gn/Gn+1| = pd2
−1.
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2. Let Fp[[t]] be formal power series over Fp.

Gn = ker(SLd(Fp[[t]]) → SLd(Fp[[t]]/(t
n)).

G = G1 is a pro-p group, Gn = γn(G) and

|Gn/Gn+1| = pd2
−1.

3. The Nottingham group

J =
{
t+ a1t

2 + a2t
3 + · · · | ai ∈ Fp

}
,

where the product is by composition.

|γn(J)/γn+1(J)| =

{
p n 6≡ 1 mod p− 1

p2 n ≡ 1 mod p− 1.
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All of the examples till now are hereditarily just infinite and
have periodicity in the lower central series.
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All of the examples till now are hereditarily just infinite and
have periodicity in the lower central series.

4. "Bad" examples of index subgroups of the Nottingham
group, e.g. the Nottingham group in characteristic 2.

Still hereditarily just infinite, but their normal subgroup
structure is a lot more complex.

5. Grigorchuk group: Has finite width, but is not hereditarily
just infinite and does not have periodicity in the lower
central series.

Seems hard to work with, e.g. subgroup growth???

Goal: Find a good definition to avoid all the more difficult
examples.
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5. Few Normal Subgroups
A Pro-p group G has Polynomial Normal Subgroup Growth
(PNSG) if there exists c such that a⊳

n (G) ≤ nc for all n,
where a⊳

n (G) is the number of normal subgroups of index n.
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5. Few Normal Subgroups
A Pro-p group G has Polynomial Normal Subgroup Growth
(PNSG) if there exists c such that a⊳

n (G) ≤ nc for all n,
where a⊳

n (G) is the number of normal subgroups of index n.

A Pro-p group G has Constant Normal Subgroup Growth
(CNSG) if there exists c such that a⊳

n (G) ≤ c for all n.

Our first 3 examples (usually) have CNSG the Grigorchuk
group and the other "bad" examples do not.

Lemma: A pro-p group with CNSG has finite normal rank.

Problem 1: A pro-p group with finite normal rank has
PNSG. What about the other direction?

There is a soluble counter example, what about just infinite?
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Finite obliquity: For all n there are a "few" normal subgroups
which neither contain γn(G) or contained in it.

Formal definition is somewhat technical.
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Finite obliquity: For all n there are a "few" normal subgroups
which neither contain γn(G) or contained in it.

Formal definition is somewhat technical.

A group G is called r-sandwich if there is r such that for all
normal subgroup N of G there exists i such that
γi(G) ≥ N ≥ γi+r(G).

Theorem 1: Let G be a non-nilpotent pro-p group. Then G
has finite obliquity if and only if it is sandwich. Moreover, in
such a case, G is just infinite of finite width and has CNSG.
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Suggested: CNSG is equivalent to finite obliquity.
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Suggested: CNSG is equivalent to finite obliquity.

Not true: CNSG closed under taking a direct sum with a
finite p-group, finite obliquity is not.

Theorem 2: Let G be a non-nilpotent pro-p group with
CNSG. Then G has a maximal finite normal subgroup K
and G/K is just infinite. Moreover, G has finite width.
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Suggested: CNSG is equivalent to finite obliquity.

Not true: CNSG closed under taking a direct sum with a
finite p-group, finite obliquity is not.

Theorem 2: Let G be a non-nilpotent pro-p group with
CNSG. Then G has a maximal finite normal subgroup K
and G/K is just infinite. Moreover, G has finite width.

Problem 2: Suppose G is hereditarily just infinite pro-p
group with CNSG. Is it sandwich?
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6. Periodicity

A period on a pro-p group G is a map τ : M → G, where M
is an open normal subgroup of G such that
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6. Periodicity

A period on a pro-p group G is a map τ : M → G, where M
is an open normal subgroup of G such that

1. τ(M) is an open subgroup of G;

2. for every open normal subgroup H of G contained in
τ(M) we have that τ−1(H) is an open normal subgroup of G
and

[G : H] > [G : τ−1(H)].

We say that a period is uniform if there is a constant c such
that for all H as above,

[G : H] = pc[G : τ−1(H)].
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Proposition: If G admits a period it admits a uniform
period.
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Proposition: If G admits a period it admits a uniform
period.

Theorem 3: Suppose G is a non-abelian just infinite pro-p
group which admits a period. Then G is sandwich, in
particular it has CNSG. Moreover, there is d such for all big
enough n, a⊳

pn(G) = a⊳

pn+d(G).
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Theorem 4: Suppose G is one of the known examples of
hereditarily just infinite pro-p groups with CNSG. Then G
has a period.
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Theorem 4: Suppose G is one of the known examples of
hereditarily just infinite pro-p groups with CNSG. Then G
has a period.

Thus G is sandwich.

Moreover, every subgroup of finite index of G has all of the
above properties too.

In addition, Branch groups and all the other known
examples of hereditarily just infinite pro-p groups are all not
CNSG.
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7. Conjectures?

Do I dare to conjecture that if G is hereditarily just infinite
pro-p group, then:
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7. Conjectures?

Do I dare to conjecture that if G is hereditarily just infinite
pro-p group, then:

1. If G has CNSG, then G has a period and, in particular,
there exists d such that for all big enough n we have
a⊳

pn(G) = a⊳

pn+d(G).

2. If G has finite obliquity or CNSG or a period, then every
subgroup of finite index of G has finite obliquity or CNSG or
a period respectively.

3. If G has few normal subgroups , then there exists a
constant c such that for all n, an(G) ≤ nc log n.
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8. The Nottingham Group
Open subgroups of the Nottingham group have a period:
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8. The Nottingham Group
Open subgroups of the Nottingham group have a period:

Let H be an open subgroup of J . Then H contains some

Jk =
{
t+ akt

k+1 + ak+1t
k+2 + · · · | ai ∈ Fp

}
.

It is easy to see that there exists m such that for all N
normal subgroups of H of big enough index there exists n
such that Jn+pm ≤ N ≤ Jn.

We define the period on Jk by

τm(t(1 + f(t))) = t(1 + tp
m

f(t)).
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Lemma: Let φ = a(t) ∈ J and ψ = t+ s(t) ∈ Jk. Then

φψφ−1 ≡ t+
s(a(t))

a′(t)
mod t2k+2.
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Lemma: Let φ = a(t) ∈ J and ψ = t+ s(t) ∈ Jk. Then

φψφ−1 ≡ t+
s(a(t))

a′(t)
mod t2k+2.

Corollary: For k ≥ pm, the map τm induces a
J-isomorphism from Jk/Jk+pm onto Jk+pm/Jk+2pm.

The fact that τm is a period follows from the sandwich
property on the previous slide.

– p. 19/19
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