Vanishing class sizes and p-nilpotency in finite groups

Emanuele Pacifici

Università degli Studi di Milano
Dipartimento di Matematica
emanuele.pacifici@unimi.it

Joint works with M. Bianchi, J. Brough, R.D. Camina, S. Dolfi, G. Malle, L. Sanus

GTG - Trento, 16 June 2017
In this talk, every group is assumed to be a finite group.

Given a group G, we denote by $\text{Irr}(G)$ the set of irreducible complex characters of G, and we set

$$\text{cd}(G) = \{ \chi(1) : \chi \in \text{Irr}(G) \}.$$
Some general notation

In this talk, every group is assumed to be a finite group.

Given a group G, we denote by $\text{Irr}(G)$ the set of irreducible complex characters of G, and we set

$$\text{cd}(G) = \{\chi(1) : \chi \in \text{Irr}(G)\}. $$
Arithmetical structure of $\text{cd}(G)$ and group structure of G

There is a deep interplay between the “arithmetical structure” of $\text{cd}(G)$ and the group structure of G. One celebrated instance:

Theorem (Ito-Michler)

Let G be a group and p a prime. If every element in $\text{cd}(G)$ is not divisible by p, then G has an (abelian) normal Sylow p-subgroup.
Arithmetical structure of $cd(G)$ and group structure of G

There is a deep interplay between the “arithmetical structure” of $cd(G)$ and the group structure of G. One celebrated instance:

Theorem (Ito-Michler)

Let G be a group and p a prime. If every element in $cd(G)$ is not divisible by p, then G has an (abelian) normal Sylow p-subgroup.
Some other sets of positive integers associated with G

Other significant sets of positive integers associated with a group G:

- $\text{o}(G) = \{o(g) : g \in G\}$.
- $\text{cs}(G) = \{|g^G| : g \in G\}$.

Now, denoting by Van(G) the set of the vanishing elements of G (i.e., the elements on which some irreducible character of G takes value 0), we set

- $\text{vo}(G) = \{o(g) : g \in \text{Van}(G)\}$,
- $\text{vcs}(G) = \{|g^G| : g \in \text{Van}(G)\}$.

We will deal with problems of “Ito-Michler type” concerning the above sets of integers.
Some other sets of positive integers associated with G

Other significant sets of positive integers associated with a group G:

- $o(G) = \{o(g) : g \in G\}$.
- $cs(G) = \{|g^G| : g \in G\}$.

Now, denoting by $\text{Van}(G)$ the set of the vanishing elements of G (i.e., the elements on which some irreducible character of G takes value 0), we set

$$\text{vo}(G) = \{o(g) : g \in \text{Van}(G)\},$$

and

$$\text{vcs}(G) = \{|g^G| : g \in \text{Van}(G)\}.$$

We will deal with problems of “Ito-Michler type” concerning the above sets of integers.
Some other sets of positive integers associated with G

Other significant sets of positive integers associated with a group G:

- $o(G) = \{ o(g) : g \in G \}$.
- $cs(G) = \{ |g^G| : g \in G \}$.

Now, denoting by $\text{Van}(G)$ the set of the \textit{vanishing elements} of G (i.e., the elements on which some irreducible character of G takes value 0), we set

$$\text{vo}(G) = \{ o(g) : g \in \text{Van}(G) \},$$

and

$$\text{vcs}(G) = \{ |g^G| : g \in \text{Van}(G) \}.$$

We will deal with problems of “Ito-Michler type” concerning the above sets of integers.
Some other sets of positive integers associated with G

Other significant sets of positive integers associated with a group G:

- $o(G) = \{ o(g) : g \in G \}$.
- $cs(G) = \{ |g^G| : g \in G \}$.

Now, denoting by $\text{Van}(G)$ the set of the vanishing elements of G (i.e., the elements on which some irreducible character of G takes value 0), we set

$$\text{vo}(G) = \{ o(g) : g \in \text{Van}(G) \},$$

and

$$\text{vcs}(G) = \{ |g^G| : g \in \text{Van}(G) \}.$$

We will deal with problems of “Ito-Michler type” concerning the above sets of integers.
Some other sets of positive integers associated with G

Other significant sets of positive integers associated with a group G:

- $o(G) = \{ o(g) : g \in G \}$.
- $cs(G) = \{ |g^G| : g \in G \}$.

Now, denoting by $\text{Van}(G)$ the set of the vanishing elements of G (i.e., the elements on which some irreducible character of G takes value 0), we set

$$\text{vo}(G) = \{ o(g) : g \in \text{Van}(G) \},$$

and

$$\text{vcs}(G) = \{ |g^G| : g \in \text{Van}(G) \}.$$

We will deal with problems of “Ito-Michler type” concerning the above sets of integers.
Some other sets of positive integers associated with G

Other significant sets of positive integers associated with a group G:

- $o(G) = \{ o(g) : g \in G \}$.
- $cs(G) = \{ |g^G| : g \in G \}$.

Now, denoting by $\text{Van}(G)$ the set of the vanishing elements of G (i.e., the elements on which some irreducible character of G takes value 0), we set

$$\text{vo}(G) = \{ o(g) : g \in \text{Van}(G) \},$$

and

$$\text{vcs}(G) = \{ |g^G| : g \in \text{Van}(G) \}.$$

We will deal with problems of “Ito-Michler type” concerning the above sets of integers.
Some other sets of positive integers associated with \(G \)

Other significant sets of positive integers associated with a group \(G \):

- \(o(G) = \{ o(g) : g \in G \} \).
- \(cs(G) = \{ |g^G| : g \in G \} \).

Now, denoting by \(\text{Van}(G) \) the set of the \textit{vanishing elements} of \(G \) (i.e., the elements on which some irreducible character of \(G \) takes value 0), we set

\[
\text{vo}(G) = \{ o(g) : g \in \text{Van}(G) \} ,
\]

and

\[
\text{vcs}(G) = \{ |g^G| : g \in \text{Van}(G) \} .
\]

We will deal with problems of “Ito-Michler type” concerning the above sets of integers.
Zeros of characters: the starting point

The analysis concerning zeros of characters starts from the following classical result by W. Burnside.

Theorem

Let G be a group, and χ an irreducible character of G such that $\chi(1) > 1$. Then there exists $g \in G$ such that $\chi(g) = 0$.
Zeros of characters: the starting point

This result has been improved in several directions. For instance:

Theorem (Malle, Navarro, Olsson; 2000)

Let $\chi \in \text{Irr}(G)$, $\chi(1) > 1$. Then there exists a prime number p and a p-element $g \in G$ such that $\chi(g) = 0$.

Recall that, if $\chi \in \text{Irr}(G)$ vanishes on a p-element of G, then $\chi(1)$ is divisible by p. From this fact we immediately get:

Corollary

Let $\chi \in \text{Irr}(G)$, $\chi(1) > 1$. If $\chi(1)$ is a π-number, then there exists a π-element $g \in G$ such that $\chi(g) = 0$.
Zeros of characters: the starting point

This result has been improved in several directions. For instance:

Theorem (Malle, Navarro, Olsson; 2000)

Let \(\chi \in \text{Irr}(G) \), \(\chi(1) > 1 \). Then there exists a prime number \(p \) and a \(p \)-element \(g \in G \) such that \(\chi(g) = 0 \).

Recall that, if \(\chi \in \text{Irr}(G) \) vanishes on a \(p \)-element of \(G \), then \(\chi(1) \) is divisible by \(p \). From this fact we immediately get:

Corollary

Let \(\chi \in \text{Irr}(G) \), \(\chi(1) > 1 \). If \(\chi(1) \) is a \(\pi \)-number, then there exists a \(\pi \)-element \(g \in G \) such that \(\chi(g) = 0 \).
Zeros of characters: the starting point

This result has been improved in several directions. For instance:

Theorem (Malle, Navarro, Olsson; 2000)

Let $\chi \in \text{Irr}(G)$, $\chi(1) > 1$. Then there exists a prime number p and a p-element $g \in G$ such that $\chi(g) = 0$.

Recall that, if $\chi \in \text{Irr}(G)$ vanishes on a p-element of G, then $\chi(1)$ is divisible by p. From this fact we immediately get:

Corollary

Let $\chi \in \text{Irr}(G)$, $\chi(1) > 1$. If $\chi(1)$ is a π-number, then there exists a π-element $g \in G$ such that $\chi(g) = 0$.
This result has been improved in several directions. For instance:

Theorem (Malle, Navarro, Olsson; 2000)

Let $\chi \in \text{Irr}(G)$, $\chi(1) > 1$. Then there exists a prime number p and a p-element $g \in G$ such that $\chi(g) = 0$.

Recall that, if $\chi \in \text{Irr}(G)$ vanishes on a p-element of G, then $\chi(1)$ is divisible by p. From this fact we immediately get:

Corollary

Let $\chi \in \text{Irr}(G)$, $\chi(1) > 1$. If $\chi(1)$ is a π-number, then there exists a π-element $g \in G$ such that $\chi(g) = 0$.
Vanishing elements

Let \mathcal{R} be a row in the character table of a group G. Burnside’s Theorem says:

\mathcal{R} contains zeros \iff \mathcal{R} corresponds to a nonlinear character.
Vanishing elements

Let now C be a column in the character table of G. Following the standard “duality” between characters and conjugacy classes, it would be tempting to conjecture:

\[C \text{ contains zeros } \iff C \text{ corresponds to a noncentral conjugacy class.} \]

Part “⇒” of the previous statement is true but, although “⇐” holds for nilpotent groups (Isaacs, Navarro, Wolf; 1999), it does not hold in general (consider Sym(3)). What is true is:

Theorem (Isaacs, Navarro, Wolf; 1999)

Let G be a solvable group, and $g \in G$ an element of odd order. If g is a nonvanishing element of G, then $g \in F(G)$.

Emanuele Pacifici
Università di Milano
Vanishing class sizes and p-nilpotency in finite groups
Vanishing elements

Let now \(C \) be a column in the character table of \(G \). Following the standard “duality” between characters and conjugacy classes, it would be tempting to conjecture:

\[\text{C contains zeros } \iff \text{C corresponds to a noncentral conjugacy class.} \]

Part “\(\implies \)” of the previous statement is true but, although “\(\iff \)” holds for nilpotent groups (Isaacs, Navarro, Wolf; 1999), it does not hold in general (consider \(\text{Sym}(3) \)). What is true is:

Theorem (Isaacs, Navarro, Wolf; 1999)

Let \(G \) be a solvable group, and \(g \in G \) an element of odd order. If \(g \) is a nonvanishing element of \(G \), then \(g \in F(G) \).
Vanishing elements

Let now C be a column in the character table of G. Following the standard “duality” between characters and conjugacy classes, it would be tempting to conjecture:

C contains zeros $\iff C$ corresponds to a noncentral conjugacy class.

Part “\implies” of the previous statement is true but, although “\iff” holds for nilpotent groups (Isaacs, Navarro, Wolf; 1999), it does not hold in general (consider $\text{Sym}(3)$). What is true is:

Theorem (Isaacs, Navarro, Wolf; 1999)

Let G be a solvable group, and $g \in G$ an element of odd order. If g is a nonvanishing element of G, then $g \in F(G)$.
Vanishing elements

A7

<table>
<thead>
<tr>
<th></th>
<th>1a</th>
<th>2a</th>
<th>3a</th>
<th>3b</th>
<th>4a</th>
<th>5a</th>
<th>6a</th>
<th>7a</th>
<th>7b</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X.2</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>X.3</td>
<td>10</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>A</td>
<td>/A</td>
</tr>
<tr>
<td>X.4</td>
<td>10</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>/A</td>
<td>A</td>
</tr>
<tr>
<td>X.5</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>.</td>
<td>-1</td>
<td>2</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>X.6</td>
<td>14</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>.</td>
<td>-1</td>
<td>-1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>X.7</td>
<td>15</td>
<td>-1</td>
<td>3</td>
<td>.</td>
<td>-1</td>
<td>.</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>X.8</td>
<td>21</td>
<td>1</td>
<td>-3</td>
<td>.</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>X.9</td>
<td>35</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>.</td>
<td>-1</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
The above theorem is false if we drop solvability. On the other hand, we have the following.

Theorem (Dolfi, Navarro, P., Sanus, Tiep; 2010)

Let G be a group, and $g \in G$ an element whose order is coprime to 6. If g is a nonvanishing element of G, then $g \in F(G)$.

In this case the assumption on the order can not be removed.
Vanishing elements: a brief digression on Brauer characters

One may consider similar problems in the context of Brauer characters. A contribution in this direction:

Theorem (Dolfi, P., Sanus; 2017)

Let $p > 3$ be a prime number, let G be a solvable group, and let $g \in G$ be such that $p \nmid o(g)$. If no irreducible p-Brauer character of G vanishes on g, then $g \in O_{pp'pp'}(G)$ (i.e., g lies in a normal subgroup of G whose p-length and p'-length are both at most 2), with possible exceptions if $p \in \{5, 7\}$ and $o(g)$ is divisible by 2 or 3.
Vanishing elements: a brief digression on Brauer characters

One may consider similar problems in the context of Brauer characters. A contribution in this direction:

Theorem (Dolfi, P., Sanus; 2017)

Let \(p > 3 \) be a prime number, let \(G \) be a solvable group, and let \(g \in G \) be such that \(p \nmid o(g) \). If no irreducible \(p \)-Brauer character of \(G \) vanishes on \(g \), then \(g \in O_{pp'pp'}(G) \) (i.e., \(g \) lies in a normal subgroup of \(G \) whose \(p \)-length and \(p' \)-length are both at most 2), with possible exceptions if \(p \in \{5, 7\} \) and \(o(g) \) is divisible by 2 or 3.
Vanishing elements

The following elementary observations turn out to be critical in order to detect vanishing elements.

Proposition
Let $N \trianglelefteq G$, and $\theta \in \text{Irr}(N)$. Then $G \setminus \bigcup_{g \in G} I_G(\theta^g) \subseteq \text{Van}(G)$.

Proposition
Let $N \trianglelefteq G$, and p a prime. If there exists $\theta \in \text{Irr}(N)$ such that $p \nmid \frac{|N|}{\theta(1)}$, then every $g \in N$ with $p \mid o(g)$ lies in $\text{Van}(G)$.

Emanuele Pacifici
Università di Milano
Vanishing class sizes and p-nilpotency in finite groups
Vanishing elements

The following elementary observations turn out to be critical in order to detect vanishing elements.

Proposition

Let $N \trianglelefteq G$, and $\theta \in \text{Irr}(N)$. Then $G \setminus \bigcup_{g \in G} I_G(\theta^g) \subseteq \text{Van}(G)$.

Proposition

Let $N \trianglelefteq G$, and p a prime. If there exists $\theta \in \text{Irr}(N)$ such that $p \nmid \frac{|N|}{\theta(1)}$, then every $g \in N$ with $p \mid o(g)$ lies in $\text{Van}(G)$.
Vanishing elements

The following elementary observations turn out to be critical in order to detect vanishing elements.

Proposition

Let $N \trianglelefteq G$, and $\theta \in \text{Irr}(N)$. Then $G \setminus \bigcup_{g \in G} I_G(\theta^g) \subseteq \text{Van}(G)$.

Proposition

Let $N \trianglelefteq G$, and p a prime. If there exists $\theta \in \text{Irr}(N)$ such that $p \nmid \frac{|N|}{\theta(1)}$, then every $g \in N$ with $p \mid o(g)$ lies in $\text{Van}(G)$.
Vanishing elements

If we want to detect vanishing elements, the following theorem is a very useful one.

Theorem (Bianchi, Brough, Camina, P.; preprint 2017)

Let A be an abelian minimal normal subgroup of G. Let N/M be a chief factor of G such that $|N/M|$ is coprime with $|A|$ and $C_N(A) = M$. Then

(a) $N \setminus M \subseteq \text{Van}(G)$.

(b) There exist $x \in N \setminus M$ and $\theta \in \text{Irr}(A)$ such that $x \notin \bigcup_{g \in G} I_G(\theta^g)$.

Emanuele Pacifici

Vanishing class sizes and p-nilpotency in finite groups
Vanishing elements

If we want to detect vanishing elements, the following theorem is a very useful one.

Theorem (Bianchi, Brough, Camina, P.; preprint 2017)

Let A be an abelian minimal normal subgroup of G. Let N/M be a chief factor of G such that $|N/M|$ is coprime with $|A|$ and $C_N(A) = M$. Then

(a) $N \setminus M \subseteq \text{Van}(G)$.

(b) There exist $x \in N \setminus M$ and $\theta \in \text{Irr}(A)$ such that $x \not\in \bigcup_{g \in G} I_G(\theta^g)$.
Vanishing elements

If we want to detect vanishing elements, the following theorem is a very useful one.

Theorem (Bianchi, Brough, Camina, P.; preprint 2017)

Let A be an abelian minimal normal subgroup of G. Let N/M be a chief factor of G such that $|N/M|$ is coprime with $|A|$ and $C_N(A) = M$. Then

(a) $N \setminus M \subseteq \text{Van}(G)$.

(b) There exist $x \in N \setminus M$ and $\theta \in \text{Irr}(A)$ such that $x \not\in \bigcup_{g \in G} I_G(\theta^g)$.
Some “Ito-Michler type” theorems

Let G be a group, p a prime, and $P \in \text{Syl}_p(G)$. Then:

p does not divide $\chi(1)$ for every $\chi \in \text{Irr}(G)$

\Downarrow

vo(G) does not contain any p-power
(i.e., $\chi(x) \neq 0$ for every $\chi \in \text{Irr}(G)$ and $x \in P$)

\Downarrow

(Dolfi, P., Sanus, Spiga; 2009)

$P \trianglelefteq G$
Some “Ito-Michler type” theorems

Let G be a group, p a prime, and $P \in \text{Syl}_p(G)$. Then:

\[p \text{ does not divide } \chi(1) \text{ for every } \chi \in \text{Irr}(G) \]

\[\Downarrow \]

\[\text{vo}(G) \text{ does not contain any } p\text{-power} \]
\[\text{(i.e., } \chi(x) \neq 0 \text{ for every } \chi \in \text{Irr}(G) \text{ and } x \in P) \]

\[\Downarrow \]

\[(\text{Dolfi, P., Sanus, Spiga; 2009}) \]

\[P \trianglelefteq G \]
Some “Ito-Michler type” theorems

Let G be a group, p a prime, and $P \in \text{Syl}_p(G)$. Then:

p does not divide $\chi(1)$ for every $\chi \in \text{Irr}(G)$

\Downarrow

vo(G) does not contain any p-power
(i.e., $\chi(x) \neq 0$ for every $\chi \in \text{Irr}(G)$ and $x \in P$)

\Downarrow

(Dolfi, P., Sanus, Spiga; 2009)

$P \trianglelefteq G$
Some “Ito-Michler type” theorems

Now, set $\text{Irr}(1^G_P) = \{ \chi \in \text{Irr}(G) \mid \langle \chi_P, 1_P \rangle \neq 0 \}$. Then (Malle, Navarro; 2012):

\[p \text{ does not divide } \chi(1) \text{ for every } \chi \in \text{Irr}(1^G_P) \]

\[\Downarrow\]

\[\chi(x) \neq 0 \text{ for every } \chi \in \text{Irr}(1^G_P) \text{ and } x \in P \]

\[\Downarrow\]

\[P \trianglelefteq G \]
Some “Ito-Michler type” theorems

Now, set $\text{Irr}(1^G_P) = \{\chi \in \text{Irr}(G) \mid \langle \chi_P, 1_P \rangle \neq 0\}$. Then (Malle, Navarro; 2012):

p does not divide $\chi(1)$ for every $\chi \in \text{Irr}(1^G_P)$

\Downarrow

$\chi(x) \neq 0$ for every $\chi \in \text{Irr}(1^G_P)$ and $x \in P$

\Downarrow

$P \trianglelefteq G$
Some “Ito-Michler type” theorems

Now, set $\text{Irr}(1^G_P) = \{ \chi \in \text{Irr}(G) \mid \langle \chi_P, 1_P \rangle \neq 0 \}$. Then (Malle, Navarro; 2012):

\[p \text{ does not divide } \chi(1) \text{ for every } \chi \in \text{Irr}(1^G_P) \]
\[\uparrow \]
\[\chi(x) \neq 0 \text{ for every } \chi \in \text{Irr}(1^G_P) \text{ and } x \in P \]
\[\uparrow \]
\[P \trianglelefteq G \]
Some “Ito-Michler type” theorems

Now, set $\text{Irr}(1^G_P) = \{ \chi \in \text{Irr}(G) \mid \langle \chi_P, 1_P \rangle \neq 0 \}$.
Then (Malle, Navarro; 2012):

\[p \text{ does not divide } \chi(1) \text{ for every } \chi \in \text{Irr}(1^G_P) \]

\[\uparrow \]

\[\chi(x) \neq 0 \text{ for every } \chi \in \text{Irr}(1^G_P) \text{ and } x \in P \]

\[\uparrow \]

\[P \trianglelefteq G \]
Some “Ito-Michler type” theorems

Next, we focus on conjugacy class sizes. It is an easy exercise to prove the following

Remark

Let G be a group and p a prime. Then p does not divide any number in $\text{cs}(G)$ if and only if G has a central Sylow p-subgroup (i.e., G has a p-complement H that is a direct factor, and G/H is abelian).

What if the “Ito-Michler assumption” is required only for the sizes of the vanishing conjugacy classes? In this case, we get

Theorem (Dolfi, P., Sanus; 2010)

Let G be a group and p a prime. If p does not divide any number in $\text{vcs}(G)$, then G has a normal p-complement H, and G/H is abelian.
Some “Ito-Michler type” theorems

Next, we focus on conjugacy class sizes. It is an easy exercise to prove the following

Remark

Let G be a group and p a prime. Then p does not divide any number in $\text{cs}(G)$ if and only if G has a central Sylow p-subgroup (i.e., G has a p-complement H that is a direct factor, and G/H is abelian).

What if the “Ito-Michler assumption” is required only for the sizes of the vanishing conjugacy classes? In this case, we get

Theorem (Dolfi, P., Sanus; 2010)

Let G be a group and p a prime. If p does not divide any number in $\text{vcs}(G)$, then G has a normal p-complement H, and G/H is abelian.
Some “Ito-Michler type” theorems

Next, we focus on conjugacy class sizes. It is an easy exercise to prove the following

Remark
Let G be a group and p a prime. Then p does not divide any number in $\text{cs}(G)$ if and only if G has a central Sylow p-subgroup (i.e., G has a p-complement H that is a direct factor, and G/H is abelian).

What if the “Ito-Michler assumption” is required only for the sizes of the vanishing conjugacy classes? In this case, we get

Theorem (Dolfi, P., Sanus; 2010)
Let G be a group and p a prime. If p does not divide any number in $\text{vcs}(G)$, then G has a normal p-complement H, and G/H is abelian.
Some “Ito-Michler type” theorems

Let G be a group and p a prime. Assume that there exists a p-complement H of G.

In view of Malle and Navarro’s work, we set

$$\text{Van}(1^G_H) = \{ x \in G \mid \chi(x) = 0 \text{ for some } \chi \in \text{Irr}(G) \text{ with } \langle \chi_H, 1_H \rangle \neq 0 \}.$$

Theorem (Dolfi, Malle, P., Sanus; preprint 2017)

Let p be a prime, G a p-solvable group, and H a p-complement of G.

Then p does not divide $|x^G|$ for every $x \in \text{Van}(1^G_H)$ if and only if $H \trianglelefteq G$ and G/H is abelian.
Some “Ito-Michler type” theorems

Let G be a group and p a prime. Assume that there exists a p-complement H of G.
In view of Malle and Navarro’s work, we set

$$\text{Van}(1^G_H) = \{ x \in G \mid \chi(x) = 0 \text{ for some } \chi \in \text{Irr}(G) \text{ with } \langle \chi_H, 1_H \rangle \neq 0 \}.$$

Theorem (Dolfi, Malle, P., Sanus; preprint 2017)

Let p be a prime, G a p-solvable group, and H a p-complement of G.
Then p does not divide $|x^G|$ for every $x \in \text{Van}(1^G_H)$ if and only if $H \trianglelefteq G$ and G/H is abelian.
Some “Ito-Michler type” theorems

Let G be a group and p a prime. Assume that there exists a p-complement H of G.
In view of Malle and Navarro’s work, we set

$$\text{Van}(1^G_H) = \{ x \in G \mid \chi(x) = 0 \text{ for some } \chi \in \text{Irr}(G) \text{ with } \langle \chi_H, 1_H \rangle \neq 0 \}.$$

Theorem (Dolfi, Malle, P., Sanus; preprint 2017)

Let p be a prime, G a p-solvable group, and H a p-complement of G.
Then p does not divide $|x^G|$ for every $x \in \text{Van}(1^G_H)$ if and only if $H \trianglelefteq G$ and G/H is abelian.
Some “Ito-Michler type” theorems

Now, we aim to drop the p-solvability assumption. Let B_0 be the principal p-block of G, and define

$$\text{Van}(B_0) = \{ x \in G \mid \chi(x) = 0 \text{ for some } \chi \in \text{Irr}(B_0) \}. $$

Theorem (Dolfi, Malle, P., Sanus; preprint 2017)

Let G be a group and p a prime. Then p does not divide $|x^G|$ for every $x \in \text{Van}(B_0)$ if and only if G has a normal p-complement H and G/H is abelian.

(Note that, if G has a p-complement H, then $\text{Irr}(1^G_H) \subseteq \text{Irr}(B_0)$.)
Some “Ito-Michler type” theorems

Now, we aim to drop the p-solvability assumption. Let B_0 be the principal p-block of G, and define

$$\text{Van}(B_0) = \{ x \in G \mid \chi(x) = 0 \text{ for some } \chi \in \text{Irr}(B_0) \}.$$

Theorem (Dolfi, Malle, P., Sanus; preprint 2017)

Let G be a group and p a prime. Then p does not divide $|x^G|$ for every $x \in \text{Van}(B_0)$ if and only if G has a normal p-complement H and G/H is abelian.

(Note that, if G has a p-complement H, then $\text{Irr}(1^G_H) \subseteq \text{Irr}(B_0)$.)
Some “Ito-Michler type” theorems

Now, we aim to drop the p-solvability assumption. Let B_0 be the principal p-block of G, and define

$$\text{Van}(B_0) = \{x \in G \mid \chi(x) = 0 \text{ for some } \chi \in \text{Irr}(B_0)\}.$$

Theorem (Dolfi, Malle, P., Sanus; preprint 2017)

Let G be a group and p a prime. Then p does not divide $|x^G|$ for every $x \in \text{Van}(B_0)$ if and only if G has a normal p-complement H and G/H is abelian.

(Note that, if G has a p-complement H, then $\text{Irr}(1^G_H) \subseteq \text{Irr}(B_0)$.)