ABELIAN HOPF GALOIS STRUCTURES
ON PRIME-POWER GALOIS FIELD EXTENSIONS

S. C. FEATHERSTONHAUGH, A. CARANTI, AND L. N. CHILDS

Abstract. The main theorem of this paper is that if \((N, +)\) is a finite abelian \(p\)-group of \(p\)-rank \(m\) where \(m + 1 < p\), then every regular abelian subgroup of the holomorph of \(N\) is isomorphic to \(N\). The proof utilizes a connection, observed in [CDVS06], between regular abelian subgroups of the holomorph of \(N\) and nilpotent ring structures on \((N, +)\). Examples are given that limit possible generalizations of the theorem. The primary application of the theorem is to Hopf Galois extensions of fields. Let \(L|K\) be a Galois extension of fields with abelian Galois group \(G\). If also \(L|K\) is \(H\)-Hopf Galois where the \(K\)-Hopf algebra \(H\) has associated group \(N\) with \(N\) as above, then \(N\) is isomorphic to \(G\).

1. Introduction

Let \(L|K\) be a Galois extension of fields with (finite) Galois group \(G\). Then \(L\) is a \(KG\)-Hopf Galois extension of \(K\), where \(KG\) is the group ring of \(G\) acting on \(L\) via the action by the Galois group \(G\). As Greither and Pareigis showed [GP87], there may exist \(K\)-Hopf algebras \(H\) other than the group ring \(KG\) that make \(L\) into a Hopf Galois extension of \(K\). If so, then under base change, the \(L\)-Hopf algebra \(L \otimes_K H\) is isomorphic to the group ring \(LN\) of a regular subgroup \(N\) of \(Perm(G)\), the group of permutations of \(G\). Conversely, if \(N\) is a regular subgroup of \(Perm(G)\) normalized by \(\lambda(G)\), the image of the left regular representation of \(G\) in \(Perm(G)\), then the action of \(LN\) on \(Hom_L(LG, L)\) descends to an action of the \(K\)-Hopf algebra \(H = LN^G\) on \(L\), making \(L|K\) into a \(H\)-Hopf Galois extension. Thus determining Hopf Galois structures on \(L|K\) becomes a problem of finding regular subgroups \(N\) of \(Perm(G)\) normalized by \(\lambda(G)\).

If \(L \otimes_K H \cong LN\), then we say \(H\) has associated group \(N\).

Subsequently, Byott [By96] translated the problem. Suppose \(N\) is a group of the same cardinality as \(G\), and let \(Hol(N) \subset Perm(N)\) be the normalizer of \(\lambda(N)\). Then \(Hol(N) = \rho(N) \cdot Aut(N)\), where \(\rho : N \to Perm(N)\) is the right regular representation \((\rho(g)(x) = xg^{-1})\). Byott

\textit{Date: November 12, 2010.}
showed that there is a bijection between Hopf Galois structures on $L|K$ where the K-Hopf algebra H has associated group N and equivalence classes of regular embeddings of G into $\text{Hol}(N)$, where two embeddings $\beta, \beta' : G \to \text{Hol}(N)$ are equivalent if there is an automorphism γ of N so that for all σ in G, $\gamma \beta(\sigma) \gamma^{-1} = \beta'(\sigma)$.

Let $e(G, N)$ denote the number of equivalence classes of regular embeddings of G into $\text{Hol}(N)$. Then the number of Hopf Galois structures on $L|K$ is the sum $\sum e(G, N)$, where the sum is over all isomorphism types of groups N of the same order as G. Counting the number of Hopf Galois structures on $L|K$ then becomes a set of problems, one for each isomorphism type of groups N of the same cardinality as G.

It is therefore of interest to know when $e(G, N) = 0$. Of course, since $L|K$ is Galois with Galois group G, $e(G, G) \geq 1$, and as Greither and Pareigis showed, if G is not abelian, then $e(G, G) \geq 2$. But for N not isomorphic to G, there have been some results on this question. For example, Byott [By96] showed that if the order of G is a Burnside number then $e(G, N) = 0$ if N is not isomorphic to G and $= 1$ for $N = G$. In [CaC99], respectively [By04], it was shown that if G is a simple non-abelian group, then $e(G, N) = 2$, resp. 0, if N is, resp. is not isomorphic to G. Kohl [Ko98] showed that if G is cyclic of odd prime power order, then $e(G, N) = 0$ unless $N \cong G$. On the other hand, there are groups G for which $e(G, N) \neq 0$ for every group N of the same cardinality as G—see, for example, [Ch03] or Proposition 6.1 of [Ko07].

In this paper we prove that if G and N are non-isomorphic abelian p-groups where N has p-rank m and the prime $p > m + 1$, then $e(G, N) = 0$. The proof utilizes methods of [CDVS06] that relate abelian regular subgroups of $\text{Hol}(N)$ to commutative associative nilpotent ring structures on N (Proposition 2 below).

Following the proof we look at a set of examples that show that the hypotheses on the main theorem are necessary.

For discussion of the relationship between Hopf Galois structures and local Galois module theory, see [Ch00].

2. The main theorem

Theorem 1. Let p be prime and N be a finite abelian p-group of p-rank m. If $m + 1 < p$, then every regular abelian subgroup of $\text{Hol}(N)$ is isomorphic to N.

Before proceeding to the proof, we make some preliminary observations.
The paper [CDVS06] proves that if $(N, +)$ is a finite elementary abelian p-group, then every abelian regular subgroup T of $\text{Hol}(N) \cong N \rtimes \text{Aut}(N)$ yields a commutative, associative multiplication \cdot on N so that $(N, +, \cdot)$ is a nilpotent ring, as follows. Define a function $\tau : N \to \text{Hol}(N) \subseteq \text{Perm}(N)$ by: $\tau(a)$ is the unique element $b \cdot \alpha$ of T (for b in N, α in $\text{Aut}(N)$) such that $\tau(a)(0) = a$. (Since $\alpha(0) = 0$ and $b(0) = 0 + b$, necessarily $b = a$.) Write $\alpha(x) = x + \delta(x)$ for all x in N. Then $\delta : N \to N$ is a homomorphism of $(N, +)$ and defines a multiplication on N by $a \cdot b = \delta(a)(b)$. This multiplication is commutative and associative and makes $(N, +, \cdot)$ into a nilpotent ring.

It then follows from [Ja65, p. 4] that the operation $a \circ b = a + b + a \cdot b$ makes (N, \circ) into an abelian group, and the function $\tau : N \to T$ yields an isomorphism from (N, \circ) to T.

It is straightforward to verify that the argument of Theorem 1 of [CDVS06] extends without change to the case where N is an arbitrary finite abelian p-group, to give

Proposition 2. Let $(N, +)$ be a finite abelian p-group. Then each regular abelian subgroup of $\text{Hol}(N)$ is isomorphic to the group (N, \circ) induced from a structure $(N, +, \cdot)$ of a commutative, associative nilpotent ring on $(N, +)$, where $a \circ b = a + b + a \cdot b$.

We will use this description of regular abelian subgroups of $\text{Hol}(N)$.

Notation. For $m > 0$ and a in N, define $m \circ a = a \circ a \circ \ldots \circ a$ (m factors).

The following easily verified formula is a key to the proof of the main theorem:

Lemma 3. For a in $(N, +)$,

$$p \circ a = pa + \sum_{i=2}^{p-1} \binom{p}{i} a^i + a^p.$$

As a first simple example of how Lemma 3 will be exploited, we prove a slightly stronger version of Theorem 1 in the elementary abelian case.

Proposition 4. Let p be prime and N be a finite elementary abelian p-group of p-rank m. If $m < p$, then every regular abelian subgroup of $\text{Hol}(N)$ is isomorphic to N.

Proof. Since $(N, +, \cdot)$ is a nilpotent ring of order p^m and $p \geq m + 1$, we have $N^p \subseteq N^{m+1} = \{0\}$, so that $a^p = 0$ for all a in N. Now Lemma 3 implies immediately that (N, \circ) is also elementary abelian. \qed
3. Proof of the main theorem

For $i \geq 0$, let
\[\Omega_i(N, +) = \{ x \in \mathbb{N} | p^i x = 0 \}. \]

If $(N, +)$ has exponent p^e, we have
\[0 \subset \Omega_1(N, +) \subset \cdots \subset \Omega_e(N, +) = N \]
Each $\Omega_i(N, +)$ is an ideal of $(N, +, \cdot)$, hence also a subgroup of (N, \circ).

Similarly, for $i \geq 0$, let
\[\Omega_i(N, \circ) = \{ x \in \mathbb{N} | p^i \circ x = 0 \}. \]

The core of the proof is to show that $(N, +)$ and (N, \circ) have the same number of elements of each order.

Proposition 5. For all $i \geq 0$,
\[\Omega_{i+1}(N, +) \setminus \Omega_i(N, +) \subseteq \Omega_{i+1}(N, \circ) \setminus \Omega_i(N, \circ) \]

Since N is the disjoint union of $\{0\}$ and the left (resp. right) sides, we must have equality. It follows that $(N, +) \cong (N, \circ)$, proving the main theorem.

Proof of Proposition 5. We first do the case $i = 0$.

Let $a \neq 0$ in $\Omega_1(N, +)$. Then $pa = 0$, so by Lemma 3,
\[p_o a = a^p. \]

Since $M = \Omega_1(N, +)$ is an elementary abelian subgroup of $(N, +)$, the p-rank of M is $\leq m$, the p-rank of $(N, +)$. Since M is an ideal of the nilpotent ring $(N, +, \cdot)$, M is a nilpotent ring of order dividing p^m.

Since $m + 1 < p$, $M^p = 0$. Thus $a^p = 0$, and so $p_o a = 0$. Therefore,
\[\Omega_1(N, +) \subset \Omega_1(N, \circ). \]

Now let $i \geq 0$ and assume by induction that
\[\Omega_i(N, +) \setminus \Omega_{i-1}(N, +) \subseteq \Omega_i(N, \circ) \setminus \Omega_{i-1}(N, \circ). \]

We prove that
\[\Omega_{i+1}(N, +) \setminus \Omega_i(N, +) \subseteq \Omega_{i+1}(N, \circ) \setminus \Omega_i(N, \circ). \]

Let $a \in \Omega_{i+1}(N, +) \setminus \Omega_i(N, +)$.

We first show that a is in $\Omega_{i+1}(N, \circ)$.

If a is in $\Omega_{i+1}(N, +)$, then pa is in $\Omega_i(N, +)$. Now
\[p_o a = pa + \sum_{i=2}^{p-1} \binom{p}{i} a^i + a^p, \]
so $p_o a$ is in $\Omega_i(N, +)$ iff a^p is in $\Omega_i(N, +)$. But $M = \Omega_{i+1}(N, +)/\Omega_i(N, +)$ is an elementary abelian section of $(N, +)$, hence has p-rank $\leq m$, and
so \(|M| \leq p^m \). Also, \(M \) is the quotient of two ideals of \((N, +, \cdot)\), hence is nilpotent. Thus \(M^{m+1} = 0 \). Since \(m+1 < p \), we have \(M^p = 0 \). Thus \(a^p \) is in \(\Omega_i(N, +) \), hence \(p_o a \) is in \(\Omega_i(N, +) \subset \Omega_i(N, \circ) \). Thus \(a \) is in \(\Omega_{i+1}(N, \circ) \).

Now we show that \(a \) is not in \(\Omega_i(N, \circ) \), by showing that \(p_o a \) is not in \(\Omega_{i-1}(N, +) \). Then \(p_o a \) is in \(\Omega_i(N, +) \setminus \Omega_{i-1}(N, +) \subset \Omega_i(N, \circ) \setminus \Omega_{i-1}(N, \circ) \), and hence \(a \) is not in \(\Omega_i(N, \circ) \).

To show that \(p_o a \) is not in \(\Omega_{i-1}(N, +) \) we look at the subring \(S \) of \(\Omega_{i+1}(N, +)/\Omega_{i-1}(N, +) \) generated by \(a \). Then \(S \) is a nilpotent subring of \((N, +, \cdot)\) and we have a decreasing chain

\[
S \supset S^2 \supset \ldots
\]

Now \(p_o a \) is not in \(\Omega_{i-1}(N, +) \), so \(p_o a \neq 0 \) in \(S \). Recall Lemma 3:

\[
p_o a = p a + \sum_{i=2}^{p-1} \binom{p}{i} a^i + a^p.
\]

If \(p_o a \) is not in \(S^2 \), then \(p_o a \equiv p_o a \pmod{S^2} \), so \(p_o a \neq 0 \) in \(S \), and hence \(p_o a \) is not in \(\Omega_{i-1}(N, +) \).

Suppose \(p_o a \) is in \(S^k \) and not in \(S^{k+1} \) for some \(k > 1 \). Then \(S/S^k \subset S/pS \) is an elementary abelian section of \((N, +)\), so has \(p \)-rank \(\leq m \). Also, \(S/S^k \) is an \(\mathbb{F}_p \)-vector space with basis \(a, a^2, \ldots, a^{k-1} \). Hence \(k - 1 \leq m < p - 1 \), and so \(k + 1 \leq p \). Thus \(a^p \) is in \(S^{k+1} \). Looking again at Lemma 3, we see that \(p_o a \equiv p a \pmod{S^{k+1}} \). Thus \(p_o a \) is in \(\Omega_i(N, +) \) but not in \(\Omega_{i-1}(N, +) \), and hence in \(\Omega_i(N, \circ) \setminus \Omega_{i-1}(N, \circ) \). Therefore \(a \) is in \(\Omega_{i+1}(N, \circ) \setminus \Omega_i(N, \circ) \). Thus

\[
\Omega_{i+1}(N, +) \setminus \Omega_i(N, +) \subset \Omega_{i+1}(N, \circ +) \setminus \Omega_i(N, \circ).
\]

By induction, the proof of Proposition 5 is complete, proving the main theorem. \(\square\)

Remark 6. If \(N \) is an elementary abelian \(p \)-group, then \(\text{Hol}(N) \equiv \text{AGL}(N) \), the affine group of the \(\mathbb{F}_p \)-vector space \(N \), that is, the semidirect product \(N \rtimes \text{Aut}(N) \). If \(N \) has dimension \(m \) then \(\text{Aut}(N) \) may be viewed as the matrix group \(\text{GL}_m(\mathbb{F}_p) \). It is perhaps worth observing that that description may be generalized. Suppose

\[
N = \mathbb{Z}_p^{n_1} \times \mathbb{Z}_p^{n_2} \times \cdots \times \mathbb{Z}_p^{n_m}
\]

where \(n_1 \leq n_2 \leq \ldots \leq n_m \). Then we may view endomorphisms of \(N \) as matrices of homomorphisms of the indecomposable direct factors of
N. If A is an endomorphism of N, then A may be written as

$$A = \begin{pmatrix} f_{11} & \cdots & f_{m1} \\ \vdots & \ddots & \vdots \\ f_{1m} & \cdots & f_{mm} \end{pmatrix}$$

where f_{ij} is a homomorphism from $\mathbb{Z}/p^{n_i}\mathbb{Z}$ to $\mathbb{Z}/p^{n_j}\mathbb{Z}$. Now

$$\text{Hom}(\mathbb{Z}/p^{n_i}\mathbb{Z}, \mathbb{Z}/p^{n_j}\mathbb{Z}) \cong p^{n_j-n_i}(\mathbb{Z}/p^{n_j}\mathbb{Z})$$
if $n_j \geq n_i$,

$$\cong \mathbb{Z}/p^{n_j}\mathbb{Z}$$
if $n_j \leq n_i$.

Thus given the “standard” basis $\{e_1, \ldots, e_m\}$ of N, namely,

$$e_1 = (1, 0, \ldots, 0)^{tr}, \ldots, e_m = (0, \ldots, 0, 1)^{tr},$$

we can associate a matrix of integers to the endomorphism A as follows: let

$$f_{ij}(e_i) = p^{n_j-n_i}a_{ij}e_j \text{ if } i \leq j$$

$$= a_{ij}e_j \text{ if } i \geq j,$$

where a_{ij} in both cases is defined modulo p^{n_j}. Then the matrix of A relative to the standard basis is

$$A = \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ p^{n_2-n_1}a_{12} & \cdots & a_{m2} \\ \vdots & \ddots & \vdots \\ p^{n_m-n_1}a_{1m} & p^{n_m-n_2}a_{2m} & \cdots & a_{mm} \end{pmatrix},$$

where the entries in the jth row are defined modulo p^{n_j}.

Following Hiller and Rhea [HR07], let R_p be the set of all matrices in $M_m(\mathbb{Z})$ of the form A as above, where all a_{ij} are in \mathbb{Z}. Then R_p is a ring with identity under matrix multiplication ([HR07], (3.2)), and the map

$$\psi : R_p \to \text{End}(N)$$
given by $(b_{i,j}) \mapsto (b_{i,j} \mod p_j)$ is a surjective homomorphism ([HR07], (3.3)). If $\pi : \text{End}(N) \to \text{End}(\mathbb{Z}/p\mathbb{Z})^m$ is the map induced by mapping the matrix $A = (a_{i,j})$ in R_p (or equivalently, $\psi(A)$ in $\text{End}(N)$) to $\pi(A) = (a_{i,j} \mod p)$, then $\psi(A)$ is an automorphism of N iff $\pi(A)$ is in $\text{GL}_m(\mathbb{Z}/p\mathbb{Z})$ ([HR07], (3.6)).

A proof of the main theorem (with a somewhat more restrictive hypothesis on p) may be constructed using this description of $\text{Hol}(N)$: see [Fe03].
4. Examples

We first give examples showing that the condition $m < p$ in Proposition 4 is necessary.

Example 7. We find an example of a regular abelian subgroup G of $\text{Hol}((\mathbb{Z}/3\mathbb{Z})^3)$ of exponent 9. Since $\mathbb{Z}/3\mathbb{Z} \rtimes U_3(\mathbb{Z}/3\mathbb{Z})$ is a 3-Sylow subgroup of $\text{Hol}((\mathbb{Z}/3\mathbb{Z})^3)$ and is isomorphic to $U_4(\mathbb{Z}/3\mathbb{Z})$ under the embedding of $\text{Hol}(\mathbb{Z}/3\mathbb{Z})$ into $\text{GL}_4(\mathbb{Z}/3\mathbb{Z})$, it suffices to find a regular subgroup of exponent 9 in $U_4(\mathbb{Z}/3\mathbb{Z})$.

Let

$$S = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. $$

Then

$$S^3 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

so S has order 9. It is routine to verify that T has order 3 and S and T commute, so $G = \langle S, T \rangle$ is an abelian subgroup of $U_4(\mathbb{Z}/3\mathbb{Z})$ of order 27. To check regularity we need to show that the map $\pi : G \to \mathbb{Z}/3\mathbb{Z}$ given by

$$\pi\left(\begin{pmatrix} 1 & * & * & a \\ 0 & 1 & * & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \right) \rightarrow (a, b, c)$$

is onto. But we may verify easily that

$$\pi(S^c) = (x, y, c)$$

for some x, y in $\mathbb{Z}/3\mathbb{Z}$, and then for any matrix M in $U_4(\mathbb{Z}/3\mathbb{Z})$, if $\pi(M) = (a, b, c)$, then

$$\pi(TM) = (a + c, b + 1, c) \text{ and } \pi(S^3M) = (a + 1, b, c).$$

Hence given (a, b, c) in $(\mathbb{Z}/3\mathbb{Z})^3$, we have $\pi(S^c) = (x, y, c)$ for some x, y in $\mathbb{Z}/3\mathbb{Z}$, then $\pi(T^{b-y}S^c) = (w, b, c)$ for some w, then $\pi(S^{3(a-w)}T^{b-y}S^c) = (a, b, c)$. So G is a regular subgroup of $\text{Hol}((\mathbb{Z}/3\mathbb{Z})^3)$ but is not isomorphic to $(\mathbb{Z}/3\mathbb{Z})^3$.

Example 8. Let $F = \mathbb{F}_p$, let R be the truncated polynomial ring $F[x]/x^{m+1}F[x]$, and let $N = xF[x]/x^{m+1}F[x]$, a nilpotent subring of R. Then $(N, +)$ is an elementary abelian p group of rank m. With the
operation $u \circ v = u + v + u \cdot v$, (N, \circ) is an abelian regular subgroup of Hol$(N, +)$. The map $u \mapsto 1 + u$ defines an isomorphism from (N, \circ) onto the group $U_1(R)$ of principal units of R.

Let $m = p$ and a be the image of x in R. Then, using Lemma 3, we have

\[
p_a a = \sum_{i=1}^{p-1} \binom{p}{i} a^i + a^p = a^p \neq 0,
\]

so that (N, \circ) has exponent at least p^2. In fact, in [Ch07], Corollary 3, the structure of $(N, \circ) \cong U_1(R)$ as an abelian p-group was determined for every m: for $m = p$, (N, \circ) has type (p^2, p, \ldots, p) (i.e., $(N, \circ) \cong Z_{p^2} \times Z_{p^2}$).

Here is a “reverse” of the last example. This example shows that the condition $m + 1 < p$ in Theorem 1 is necessary.

Example 9. Let S be the ring $\mathbb{Z}[x]/x^{p+1} \mathbb{Z}[x]$, let \bar{x} be the image of x in S, let $(N, +, \cdot) = S/(p\bar{x} + \bar{x}^p) S$, and let a be the image of \bar{x} in N. Then

\[
(1) \quad pa + a^p = 0, a^{p+1} = 0 \text{ and } pa^i = 0 \text{ for } i > 1.
\]

Thus $(N, +)$ has generators a, a^2, \ldots, a^{p-1} with $pa = -a^p \neq 0$, so $(N, +)$ has order p^p, p-rank $m = p - 1$ and type (p^2, p, \ldots, p).

Since $(N, +, \cdot)$ is a nilpotent ring, the operation $u \circ v = u + v + u \cdot v$ for u, v in N defines a group (N, \circ), which by Proposition 2 is isomorphic to an abelian regular subgroup of Hol$(N, +)$. Using Lemma 3 and the relations (1), we have

\[
p_a a = pa + \sum_{i=2}^{p-1} \binom{p}{i} a^i + a^p = 0,
\]

so that (N, \circ) is elementary abelian.

Now we give an example to show that the abelian assumption is necessary.

Example 10. Let $p \geq 5$, let $N = \mathbb{F}_p^3$ and let

\[
G = U_3(\mathbb{F}_p) = \left\{ \begin{pmatrix}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{pmatrix} \mid a, b, c \in \mathbb{F}_p \right\}.
\]

Then G is a non-abelian group in which every element of G has order dividing p. We show that G has a regular embedding in Hol(N).
Evidently $G = \langle A, B, C \rangle$ with
\[
A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]
with C central in G and A, B satisfying $AB = CBA$.

Identify the p-Sylow subgroup of $\text{Hol}(\mathbb{F}_3^p)$ with $U_4(\mathbb{F}_p)$ as in Example 7, and let $\beta : G \to U_4(\mathbb{F}_p)$ by
\[
\beta(A) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \beta(B) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},
\]
\[
\beta(C) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.
\]

One may verify that β is a homomorphism, and that an element of $\beta(G)$ has the form
\[
\beta(A^rB^sC^t) = \begin{pmatrix} 1 & q & \binom{q}{2} \\ 0 & 1 & q \\ 0 & 0 & 1 \end{pmatrix} x + \begin{pmatrix} q \\ 0 \end{pmatrix} + \begin{pmatrix} \binom{q}{2} \end{pmatrix},
\]
where $q = r + s$ and $x = w + t$ where w depends only on r and s.

To show that the group $\beta(G)$ is regular, we need to show that the map $\pi : U_4(\mathbb{F}_p) \to \mathbb{F}_p^3$ by
\[
\pi(\beta(A^rB^sC^t)) = (w + t, s + \binom{r + s}{2}, r + s)
\]
is onto, that is, for all (a, b, c) in \mathbb{F}_p^3, there exist r, s, t so that
\[
a = w + t
\]
\[
b = s + \binom{r + s}{2}
\]
\[
c = r + s.
\]
But $b = s + \binom{c}{2}$ determines s, then $c = r + s$ determines r, hence w, then $w + t = a$ determines t. So $\beta(G)$ is a (non-abelian) regular subgroup of $\text{Hol}(\mathbb{Z}/p\mathbb{Z}^3)$.
Remark 11. Recall that $e(G, N)$ is the number of H-Hopf Galois structures on a Galois extension of fields with Galois group G where the Hopf algebra H has associated group N. When $e(G, N) > 0$ it is of interest to determine $e(G, N)$, or at least find a lower bound for $e(G, N)$.

For N an elementary abelian p-group of rank m with $p > m$, a lower bound for $e(N, N)$ was found in [Ch05]. If $p \geq 5$ and G is the group of principal units of the ring $\mathbb{F}_p[x]/(x^{m+1})$ as in Example 8, a lower bound for $e(G, N)$ was found in [Ch07], namely, $e(G, N) > p^{(m+1)^2/3-m}$.

Continuing with Example 10, we have

Proposition 12. Let N be an elementary abelian p-group of rank 3 with $p \geq 5$ and let $G = U_3(\mathbb{F}_p)$. Then there are $p^3 - p$ H-Hopf Galois structures on a Galois extension of fields with Galois group G, where H has associated group N.

Proof. Following the approach in [Ch07], we can determine $e(G, N)$ by determining $\text{Aut}(G)$ and the stabilizer $\text{Sta}(J)$ in $\text{Aut}(N)$ of the subgroup $J = \beta(G)$ inside $U_4(\mathbb{F}_p)$; then $e(G, N) = |\text{Aut}(G)|/|\text{Sta}(J)|$.

We first find $\text{Aut}(G)$.

Since every element of G has order dividing p and the center of G is generated by C, an endomorphism α of G satisfies

$$\alpha(A) = A^t B^s C^t, \alpha(B) = A^x B^y C^z, \alpha(C) = C^c,$$

where since $AB = CBA$, we must have

$$c = sx - ry = \det \begin{pmatrix} s & y \\ r & x \end{pmatrix}.$$

If $\alpha(A^l B^m C^n) = 1$, then

$$(A^t B^s C^t)^l (A^x B^y C^z)^m (C^c)^n = 1.$$

This has the form

$$A^{rl+xm} B^{sl+ym} C^k$$

for some k (all exponents in \mathbb{F}_p). If $c \neq 0$, then $\det \begin{pmatrix} s & y \\ r & x \end{pmatrix} \neq 0$, hence $\alpha(A^l B^m C^n) = 1$ only for $l, m, n = 0$. Thus α is an automorphism for all r, s, t, x, y, z, c such that $c = sx - ry \neq 0$. Since t and z may be chosen arbitrarily,

$$|\text{Aut}(G)| = |\mathbb{Z}/p\mathbb{Z}|^2 \cdot |\text{GL}_2(\mathbb{Z}/p\mathbb{Z})| = p^2(p^2 - 1)(p^2 - p).$$

As for $\text{Sta}(J)$, it is a subgroup of

$$\begin{pmatrix} \text{GL}_3(\mathbb{Z}/p\mathbb{Z}) & 0 \\ 0 & 1 \end{pmatrix} \subset \text{GL}_4(\mathbb{Z}/p\mathbb{Z}).$$
For \(\begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \) in \(\text{Sta}(J) \), the equation

\[
\begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \beta(A) = \beta(A^r B^s C^t) \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix}
\]

for some \(r, s, t \) implies that \(P \) has the form

\[
P = \begin{pmatrix} q^3 & eq + q \left(\frac{q}{2} \right) & c \\ 0 & q & e \\ 0 & 0 & q \end{pmatrix}
\]

where \(q = r + s \neq 0 \) and \(e = s + \left(\frac{q}{2} \right) \) and \(c \) are arbitrary elements of \(\mathbb{F}_p \), and conversely, if \(P \) has that form, then \(\begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} \) is in \(\text{Sta}(J) \). Hence

\[
\left| \text{Sta}(J) \right| = p^2(p - 1), \quad \text{and so} \quad e(G, N) = \left| \text{Aut}(G) \right| / \left| \text{Sta}(J) \right| = p^3 - p.
\]

\(\square \)

REFERENCES

DEPARTMENT OF MATHEMATICS, BOROUGH OF MANHATTAN COMMUNITY COLLEGE/CUNY, 199 CHAMBERS STREET, ROOM N-520, NEW YORK, NY 10007

E-mail address: sfeatherstonhaugh@bmcc.cuny.edu

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI TRENTO, VIA SOMMARIVE 14, I-38123 POVO (TRENTO), ITALY

E-mail address: caranti@science.unitn.it

DEPARTMENT OF MATHEMATICS, UNIVERSITY AT ALBANY, ALBANY, NY 12222

E-mail address: childs@math.albany.edu