The phase operator in quantum mechanics

1. The phase operator. One of the most common definitions of the phase operator for a single-mode optical field in quantum mechanics reads

$$e^{i\phi} = (a^{\dagger}a + 1)^{-1/2}a.$$
(1)

- (a) Write the matrix elements of $e^{i\phi}$ in the basis of Fock states $|n\rangle$.
- (b) Evaluate the commutator of $e^{i\phi}$ with its Hermitian conjugate $(e^{i\phi})^{\dagger}$ and with the number operator $n = a^{\dagger}a$. Is the phase operator $e^{i\phi}$ unitary?
- (c) Define the operators $\sin \phi$ and $\cos \phi$. Are they Hermitian? Evaluate their commutator with the number operator n and give a physical interpretation of the result.
- (d) Determine the eigenvectors $|e^{i\phi}\rangle$ of the operator $e^{i\phi}$. Choosing the standard normalization $\langle 0|e^{i\phi}\rangle = 1$, prove the completeness relation:

$$\int d\phi \, |e^{i\phi}\rangle \langle e^{i\phi}| = 2\pi. \tag{2}$$

Use this result to prove that the state of the system is univocally determined by the "wave function" $\psi(\phi) = \langle e^{i\phi} | \psi \rangle$. Characterize the Hilbert space of the physically legitimate wavefunctions $\psi(\phi)$ and find a basis of it in terms of plane waves.

- (e) Determine an analytical expression for $\psi(\phi)$ for a large amplitude coherent state $|\alpha\rangle$ with $|\alpha| \gg 1$ (coherent states are defined as usual as $|\alpha\rangle = e^{-|\alpha|^2/2} \sum_n \frac{1}{\sqrt{n!}} \alpha^n |n\rangle$) and determine its main qualitative properties (center of mass, width, etc.).
- 2. Collapse and revival of the phase. Consider the Hamiltonian:

$$\mathcal{H} = \frac{\hbar\chi}{2} n^2. \tag{3}$$

- (a) Write the Schrödinger for the temporal evolution of $\psi(\phi)$ under this Hamiltonian. Determine its eigenvalues and eigenvectors. Provide a physical justification to the result.
- (b) Determine qualitatively the temporal evolution of $\psi(\phi, t)$ starting from a coherent state $|\alpha\rangle$ with $|\alpha| \gg 1$. Determine the characteristic time $t_{\rm br}$ for the spreading of the initial wave packet (phase *collapse*). Determine the time $t_{\rm res}$ at which the wavepacket recovers its initial shape modulo a global translation (phase *revival*)? What is the state of the system at the time $t = t_{\rm res}/2$?

This exercise is inspired to a Travail Dirigé of Advanced Quantum Mechanics at the DEA de Physique Quantique, year 2003/4.