The phase operator in quantum mechanics

1. The phase operator. One of the most common definitions of the phase operator for a single-mode optical field in quantum mechanics reads

$$
\begin{equation*}
e^{i \phi}=\left(a^{\dagger} a+1\right)^{-1 / 2} a . \tag{1}
\end{equation*}
$$

(a) Write the matrix elements of $e^{i \phi}$ in the basis of Fock states $|n\rangle$.
(b) Evaluate the commutator of $e^{i \phi}$ with its Hermitian conjugate $\left(e^{i \phi}\right)^{\dagger}$ and with the number operator $n=a^{\dagger} a$. Is the phase operator $e^{i \phi}$ unitary?
(c) Define the operators $\sin \phi$ and $\cos \phi$. Are they Hermitian? Evaluate their commutator with the number operator n and give a physical interpretation of the result.
(d) Determine the eigenvectors $\left|e^{i \phi}\right\rangle$ of the operator $e^{i \phi}$. Choosing the standard normalization $\left\langle 0 \mid e^{i \phi}\right\rangle=1$, prove the completeness relation:

$$
\begin{equation*}
\int d \phi\left|e^{i \phi}\right\rangle\left\langle e^{i \phi}\right|=2 \pi \tag{2}
\end{equation*}
$$

Use this result to prove that the state of the system is univocally determined by the "wave function" $\psi(\phi)=\left\langle e^{i \phi} \mid \psi\right\rangle$. Characterize the Hilbert space of the physically legitimate wavefunctions $\psi(\phi)$ and find a basis of it in terms of plane waves.
(e) Determine an analytical expression for $\psi(\phi)$ for a large amplitude coherent state $|\alpha\rangle$ with $|\alpha| \gg 1$ (coherent states are defined as usual as $|\alpha\rangle=e^{-|\alpha|^{2} / 2} \sum_{n} \frac{1}{\sqrt{n!}} \alpha^{n}|n\rangle$) and determine its main qualitative properties (center of mass, width, etc.).
2. Collapse and revival of the phase. Consider the Hamiltonian:

$$
\begin{equation*}
\mathcal{H}=\frac{\hbar \chi}{2} n^{2} . \tag{3}
\end{equation*}
$$

(a) Write the Schrödinger for the temporal evolution of $\psi(\phi)$ under this Hamiltonian. Determine its eigenvalues and eigenvectors. Provide a physical justification to the result.
(b) Determine qualitatively the temporal evolution of $\psi(\phi, t)$ starting from a coherent state $|\alpha\rangle$ with $|\alpha| \gg 1$. Determine the characteristic time t_{br} for the spreading of the initial wave packet (phase collapse). Determine the time $t_{\text {res }}$ at which the wavepacket recovers its initial shape modulo a global translation (phase revival)? What is the state of the system at the time $t=t_{\mathrm{res}} / 2$?

This exercise is inspired to a Travail Dirigé of Advanced Quantum Mechanics at the DEA de Physique Quantique, year 2003/4.

