
Quantum Optics Exercise 12

A classical model for superradiance

Consider a forced harmonic oscillator with the usual motion equation

mẍ = −κx−mγẋ+ qE(t) (1)

but a negative mass m < 0 and negative spring constant κ < 0. The damping constant is
instead positive γ > 0 as usual.

1. Show that the conservative part of the equation of motion (1) can be derived from the
usual Hamiltonian,

H =
p2

2m
+
mω2

0

2
x2 − qE(t)x. (2)

Interpret the m,κ < 0 condition in terms of the sign of the Hamiltonian.

2. Describe the dynamics of this “inverted” harmonic oscillator in the absence of driving
field E = 0. Is the stationary state at x = 0 dynamically stable?

3. Discuss briefly the thermodynamical equilibrium state of the system in the absence of
driving field E = 0 and at a finite temperature T in terms of the Canonical Ensemble
in the phase space. Is the system thermodynamically stable at T > 0?

4. Write the differential equation for the time-evolution of the kinetic energy mẋ2/2 and
identify the term due to the damping. Verify whether the γ > 0 choice leads to a
physically meaningful model of mechanical friction and discuss the limits of validity of
this model.

5. Suggest a physical realization of the inverted harmonic oscillator in a solid-state context.
Work out a physical connection to the dynamics of the dipole moment of a population-
inverted atom.

Include now a one-dimensional electromagnetic field incident from z < 0 onto a sheet of two-
dimensional density σ of such dipoles located at z = 0. Study the field that is scattered from
the current that the incident field induces in the dipole sheet. Indicating by q the charge of
each dipole, the reflection and transmission amplitudes read:

r(ω) =
Er
Einc

=
2πiσq2ω
mc

ω2
0 − ω2 − iγω − 2πiσq2ω

mc

(3)

t(ω) =
Et
Einc

=
ω2
0 − ω2 − iγω

ω2
0 − ω2 − iγω − 2πiσq2ω

mc

(4)
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6. Verify that these formulas derived in Lecture 3 for standard harmonic oscillators (m > 0,
κ > 0) also hold in the inverted m,κ < 0 case with the usual definition of a real-valued
resonance frequency ω0 =

√
κ/m.

7. For small enough (a precise condition will be derived in the following of the exercise)
values of σ, discuss the spectral form of the reflectivity and of the transmittivity. What
are the novelties of the inverted m,κ < 0 case?

8. Study in particular the resonant transmittivity for ω = ω0 as a function of γ and of the
(now negative) radiative linewidth γrad = 2πσq2/mc. Give a physical explanation for
the obtained enhanced transmittivity in terms of energy balance.

Let’s now look for solutions of the full motion equations (field and harmonic oscillator) in the
absence of any incident field.

9. Explain why such solutions only exist at the poles of the transmission and reflection
amplitudes r(ω) and t(ω) for complex frequencies ω. Evaluate the position ω̄ of the poles
in the complex-ω plane and give a physical interpretation to the fact that t(ω̄) = r(ω̄)
at the pole.

10. Discuss the spatial shape along z of generic solutions of the field equations for a general
complex frequency ω in a spatially homogeneous geometry in free space with no dipoles.
For the geometry under consideration in this problem, for each of the two piecewise
homogeneous regions z ≷ 0, identify the “out-going” solutions that do not involve any
wave incident from z = ±∞ onto the dipole sheet located at z = 0. Explain the physical
meaning of the imaginary part of the wavevector.

11. Build and characterize the full solution (field and harmonic oscillator) for ω = ω̄ in the
absence of incident field. Explain the different physical nature of such solutions in the
two cases of γ > |γrad| and of γ < |γrad|. Interpret the result in terms of ring-down
oscillations and of dynamical instability.

At the end of the Quantum Optics course you will be able to consider the additional questions:
what happens when we consider a quantum rather than classical electromagnetic field? How
is the stationary state with the harmonic oscillators at rest and a vanishing electromagnetic
field modified by zero-point quantum fluctuations? Is there any emission from the dipole
sheet in its quantum ground state?
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