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9.2 Friedmann-Lemâıtre-Robertson-Walker universe . . . . . . . . . . . . . . . . . . . . . 81
9.3 Einstein universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9.4 de Sitter universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10 The Standard Cosmological Model 86
10.1 Cosmological redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.2 Evolution of FLRW universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

10.2.1 Actual critical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.2.2 The age of the universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.3 Explicit solutions of Friedman equations . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.3.1 Flat space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ii



10.3.2 Curved space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.4 Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.5 Conformal diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 Thermal history of the universe 98
11.1 A schematic description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.2 Actual cosmological parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.3 Redshift parameter relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.3.1 Time-redshift relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
11.3.2 Angular diameter-redshift relation . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.3.3 Luminosity-redshift relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
11.3.4 Temperature-redshift relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11.4 The cosmic microwave background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.4.1 Characteristic quantities for CMB . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.5 Relic neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.5.1 Thermal decoupling of neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.6 Primordial nucleosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.7 Dark matter and dark energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.8 The cosmological constant problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12 Perturbations of metric and energy density 117
12.1 Classification of perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.2 Gauge transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.3 Scalar perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.4 Vector perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.5 Tensor perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.6 Cosmological perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

13 Anisotropies in CMB 123
13.1 CMB power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.2 The dipole anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.3 Multipole contributions to CMB anisotropies . . . . . . . . . . . . . . . . . . . . . . . 127
13.4 Sachs-Wolfe effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
13.5 Sachs-Wolfe platou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

14 Inflation 133
14.1 Homogeneity, isotropy and initial conditions . . . . . . . . . . . . . . . . . . . . . . . 133
14.2 Flatness problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
14.3 Horizon problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.4 Monopole problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
14.5 Some considerations about inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

15 Appendices 140

A Planck units 140

B Boson-Fermion statistic 140

iii



C Autonomous systems 141

Text books

general relativity:

• S. Weinberg, Gravitation and Cosmology, John Wiley & Sons, New York (1972).

• L.D. Landau, E.M. Lifshitz, Teoria dei Campi, Editori Riuniti, Roma (1976).

cosmology:

• P.J. Peebles, Principles of Physical Cosmology. Princenton University Press (1993).

• V. Mukhanov. Physical Foundations of Cosmology. Cambridge University Press (2005).

• S. Weinberg, Cosmology. Oxford University Press, New York, (2008).

iv



quantity symbol value

speed of light in vacuum c 2.998× 1010 cm/sec
Newton constant G 6.673× 10−8 cm3/g sec2

Planck constant h 6.625× 10−27 erg sec
electron charge e 4.80× 10−10 esu

Table 1: universal constants

quantity symbol value

astronomic unit u.a. 1.49598× 108 Km
parsec pc 3.2615 light-year

3.0856× 1013 Km
Hubble constant H0 70 (Km/sec) /Mpc

Table 2: astronomic quantities

Notations and definitions

Indices: Latin indices i, j, k, ... and Greek indices α, β, ...µ, ν, ... assume the values 0, 1, 2, 3, while
Latin indices a, b, c, ... assume the values 1, 2, 3 or 2, 3 as specified in the text. As usual, it is
implicitly assumed that repeated indices are summed on the range of they values.

Signature: for the metric we shall use the signature -,+,+,+, which is convenient in the limit
processes.

Units: in the last part of the lecture we shall use units in which the speed of light c = 1. By a
dimensional analysis, the final equations could be written in standard units.
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diameter in Km mass in g density in g/cm3

sun 1392000 2× 1033 1.4
earth 12757 6× 1027 5.5

Table 3: sun and earth

planet diameter M/MT revolution rotation distance from the sun eccentricity

mercury 4878 0.055 88 59 58 0.2060
venus 12180 0.815 225 243 108 0.0070
earth 12757 1 365 1 149.598 0.0167
mars 6787 0.107 687 1 228 0.0934
jupiter 142200 317.89 4329 0.41 778 0.0485
saturn 119300 95.17 10753 0.43 1427 0.0556
uranus 51200 14.60 30660 0.70 2870 0.0472
neptune 49500 17.2 60152 0.75 4497 0.0086
pluto 2290 0.0022 90410 6.3 5900 0.2500

Table 4: planets

Solar system

The astronomic unit corresponds to the mean distance between sun and earth. In the tables 3 and
4 there are some (approximated) values of quantities related to the solar system. Units measure
are the following: diameter in Km, mass in comparison to the earth mass, period of revolution and
rotation in days, mean distance from the sun in MKm = 106Km.

We recall that:

• Eccentricity e of an ellipse: is the ratio between the focal distance and the major axes. Its
value is in the range [0, 1]. 0 corresponds to the circle and 1 to the straight line (limit case).

• Trigonometric parallax of a star P : is the maximum angle under which the star “sees” the
earth-sun system during the whole year. (It is the angle in P of the isosceles triangle built up
with the three points star-earth-sun).

• parsec: is the distance at which the star has a parallax equal to a second of degree.
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1 Introduction

Here we give a schematic description of the ideas concerning physics and geometry, which had great
importance in the theoretical development of General Relativity.

The Geometry: from Euclid to Riemann

The Euclidean geometry (Euclid, 325 b.c.), is based on five postulates, one of which (the fifth) (the
parallel postulate: given a straight line and an external point, it exists a second straight line,
parallel to the first and crossing the given point), always has been accepted with “extremely care”
(from Euclid himself) and many attempts have been made in order to derive it from the previous
four, the last one due to Legendre1.

In the year 1733, the Jesuit Saccheri2 tries to construct geometries without the use of the parallel
postulate, but the so called non-Euclidean geometries effectively appear in the 19th century after the
works of the three mathematicians: Gauss3, Lobachevskii4 and Bolyai5, who independently discover
the geometry of the hyperbolic plane, which is a surface with negative, constant curvature and for
which the fifth postulate does not hold. Such a surface can not be immersed in a 3 − dimensional
space and so it is not possible to see it (as the sphere). It is only possible to characterise it by an
intrinsic geometric description.

It is interesting to observe that Gauss proposed an experiment in order o verify which geometry
corresponds to the physical 3 − dimensional space. In fact, using a theodolite, he measured the
internal angles of a big triangle, the vertex being the tops of three mountains in Bajern. The result
was 180◦ in agreement with Euclidean geometry. It is also remarkable that he implicitly assumed
that the light moved on geodesics (the curves of minimal distance between two points).

The non Euclidean geometry originally formulated for the surface, has been extended by Riemann6

to spaces with arbitrary dimensions (Riemannian geometry) and then developed by Christoffel7,
Ricci8, Bianchi9 and Levi-Civita10.

The Physics: from Galileo to Einstein

The Newtonian mechanics11 is based on a privileged family of reference frames (inertial frames), in
which the physical laws do not change. (Galileo Relativity principle-Galileo Transformations12). All
inertial reference systems are moving with constant velocity with respect to the absolute space, its
existence being assumed “a priori”.

• The bucket experiment. Newton himself proposed an experiment in order to verify the existence
of the absolute space. The bucket full of water rotates around its vertical axis and one observes

1Adrien Marie Legendre (France) 1752-1833.
2Giovanni Girolamo Saccheri (Italia) 1667-1733.
3Johann Carl Friedrich Gauss (Germany) 1777-1855.
4Nikolai Ivanovich Lobachevskii (Russia) 1792-1856.
5János Bolyai (Romania) 1802-1860.
6Georg Friedrich Bernhard Riemann (Germany) 1826-1866.
7Elwin Bruno Christoffel (Germany) 1829-1900.
8Gregorio Ricci-Curbastro (Italia) 1853-1925.
9Luigi Bianchi (Italia) 1856-1928.

10Tullio Levi-Civita (Italia) 1873-1941.
11Isaac Newton (England) 1642-1727.
12Galileo Galilei (Italia) 1564-1642.
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that the water assumes a parabolic outline when it also rotates with respect to the absolute
space, the rotation with respect to the bucket being not important.

Leibniz13 with other people criticises the Newtonian hypothesis because there are no physical
(philosophical) reasons for the introduction of the absolute space. According to him only the relations
between the material bodies have an intrinsic physical meaning.

The first constructive attack to the Newtonian hypothesis has been done by Mach14. According to
him, all celestial bodies have an influence on the reference systems. This means that the water in the
bucket assumes the parabolic form when it rotates with respect to the other bodies in the universe
and not with respect to a hypothetic absolute space. Mach himself proposed an experiment in order
to measure the “inertial forces” which act on a massive body at rest inside a rotating massive shell
(Mach principle). General relativity gives a “partial answer” to the Mach principle (Lense-Thirring
effect), but the problem is still open.

The Galilean relativity principle (more precisely the Galileo transformations) starts to be crit-
icised with the formulation of electromagnetism 15, because electrodymamics laws do not change
according to Galileo transformations when one changes the inertial frame. For example, electromag-
netic waves move with a constant velocity (the speed of light) independently on the observer or the
source. In order to preserve the relativity principle and a constant speed of light it is necessary
to change the transformation laws between inertial frames by replacing Galileo transformation with
Lorentz transformations16 (Poincaré17) and all physical laws have to be covariant with respect to
such transformations (special relativity principle18). Mechanical laws can be easily modified in such a
way to satisfy the special relativity principle, but this does not happen for the Newton gravitational
law.

The General Relativity

It is a relativistic theory of gravitation, which has been built up in order to satisfy purely theoretic
and philosophic requirements (at that time no experimental measure justified the abandonment of
Newtonian gravitation law) and which unifies the inertial forces with the gravitational ones (according
to Mach ideas), by extending the relativity principle from the inertial to all reference systems.

General relativity can also be seen as a geometrical theory because it is strictly related to the
geometry of space-time. The matter bodies create the geometry of the space-time in which they
move.

The construction of the whole theory, due to Einstein, has required about ten years, during which,
with the help of his friend Grossmann19, he studied the tensor calculus and the Riemannian geometry,
which are extremely important for the development of the theory. Here the principal steps:

1907: Principle of Equivalence;

1913: Principle of General Relativity; gravitational field described by a tensor;

1915: Final form of General Relativity theory;

13Gottfried Wilhelm von Leibniz (Germany) 1646-1716.
14Ernst Mach (Mähren)) 1838-1916.
15James Clerk Maxwell (Scotland) 1831-1879.
16Hendrik Antoon Lorentz (Holland) 1853-1928.
17Jules Henri Poincaré (France) 1854-1912.
18Albert Einstein (Germany) 1879-1955.
19Marcel Grossmann (Hungaria) 1878-1936.
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1916: Schwarzschild20 solution (spherical symmetry);

1917: cosmological models by Einstein and de Sitter21;

1922: cosmological solution by Friedmann22;

1930: cosmological model by Friedmann-Lemâıtre23-Robertson24 -Walker25;

1963: Kerr26 Solution (axial symmetry).

20Karl Schwarzschild (Germany) 1873-1916.
21Willem de Sitter (Holand) 1872-1934.
22Aleksandr Aleksandrovich Friedmann (Russia) 1888-1925.
23Georges Èdouard Lemâıtre (France) 1894-1966.
24 Howard Percy Robertson (USA) 1903-1961.
25Arthur Geoffrey Walker (England) 1909-2001.
26Roy Patrick Kerr (New Zealand) 1934.
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Figure 1: Eötvös experiment

2 The Principle of Equivalence

In General Relativity the equivalence between the mass of a body (inertial mass) and its “gravita-
tional charge” (gravitational mass) is assumed “a priori” as a fundamental principle. In Newtonian
theory such an equivalence is a pure accidental fact, based on the Eötvös27 experiment (1889), which
has a very high precision (∆ /m) < 10−9. 10−11 (Dicke, 1960), 10−13 (Adelberger et al. , 1999).

Recall that inertial mass mi and gravitational mass mg enter dynmical and gravitational laws
respectively, that is

~F = mi~a , ~Fg = −GmgMg~r/r
3 , mi ≡ mg . (2.1)

Here ~F is a generic force applied to the particle, while ~Fg is the gravitational force generated by the
particles.

2.1 The Eötvös experiment

The apparatus is the one in figure 1. On the two heavy bodies act the gravitational forces, pro-
portional to the gravitational masses mg,Mg, the inertial forces (due the rotation of the earth),
proportional to the inertial masses mi,Mi and the torque T due to the presence of the string. When
the system is in equilibrium, one has the relation

T = lmiat − LMiat , l(mgg −miav) = L(Mgg −Miav) ,

where g is the gravitational acceleration and at, av the components of centrifugal acceleration, which
satisfy at � g, av � g.

From system above it follows

T ∼ latmg

(
mi

mg

− Mi

Mg

)
.

The measured value of T is vanishing and this means that mi/mg ≡ Mi/Mg, that is, the inertial
mass is equivalent to the gravitational mass with an appropriate choice of the unit measure.

27Lóránd Baron von Eötvös (Hungaria) 1848-1919.
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2.2 Formulation of the principle of equivalence

In every point of space-time and in an arbitrary gravitational field it is always possible to choose a
reference frame where, in a “small” region of space-time, all the laws of nature are the ones which
one has in the absence of gravitation. In other words, locally it possible to choose a Minkowskian
reference frame (the locally inertial frame-the frame in free fall). (Is has to be remember that around
every point of an arbitrary surface, is is possible to choose coordinates where the Pitagora’s theorem
holds (normal or Gaussian coordinates).

This formulation of the principle of equivalence is said strong, because it is valid for all inter-
actions. There is a weak form, restricted to mechanical laws only, which is essentially the same
thing as the equivalence between inertial and gravitational mass. Finally there is a third formulation
medium-strong, which concerns all interactions but the gravitational one. This is due to the fact
that the precision of experiment (10−13) tests also the electromagnetic binding energy, but not the
corresponding gravitational one.

General relativity is based on the strong principle of equivalence and in the following we shall
always consider such a formulation.

2.3 The Motion of a test particle in a gravitational field

As a first application of the principle of equivalence now we derive the differential equation which
describe the motion of a free particle in a given gravitational field. We can choose a local inertial
frame in which the motion of the particle is the one of Special Relativity. Of course this holds in a
small space-time region. If the region can be extended to the whole space-time, the “gravitation”
is simply due to “apparent forces” due to the fact that we are using an accelerated frame in the
Minkowski space28).

If Xµ are the coordinates of the test particle in such a reference, then the equation of motion
reads

d2Xµ

c2 dτ 2
=
d2Xµ

ds2
= 0 , ds2 = −c2 dτ 2 = ηµνdX

µdXν , µ, ν, ... = 0, 1, 2, 3,

where ds is the invariant interval, dτ the proper time and ηµν the Minkowski metric.
We indicate by xk the coordinates of the particle in an arbitrary reference frame

(i, j, k, ... = 0, 1, 2, 3). We assume xk = xk(Xµ) to be a “smooth” function (continuous, differentiable,
invertible, etc..). Then we can set

Akµ ≡ Akµ(X) =
∂xk

∂Xµ
, Bµ

k ≡ Bµ
k (x) =

∂Xµ

∂xk
, AiµB

µ
j = δij , AkµB

ν
k = δνµ . (2.2)

The interval ds is a scalar. It has the same value in all reference frames, then we get

ds2 = ηµνdX
µdXν = grsdx

rdxs , grs(x) = ηµνB
µ
rB

ν
s . (2.3)

grs(x) is the metric tensor, which takes into account of the presence of a gravitational field as well
as of the choice of the coordinates. It is equivalent to the Minkowski metric only in a local inertial
frame.

For the equation of motion we get (we use compact notation ∂k = ∂/∂xk)

0 =
d2Xµ

ds2
=

d

ds

(
Bµ
i

∂xi

ds

)
= Bµ

i

∂2xi

ds2
+ ∂iB

µ
j

∂xi

ds

∂xj

ds
.

28Hermann Minkowski (Lithuania) 1864-1909.
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Finally, multiplying by the inverse matrix Akµ we obtain the equation of motion of the test particle
in the arbitrary reference frame, that is

d2xk

ds2
+ Γ̂kij

∂xi

ds

∂xj

ds
= 0 , geodesic equation. (2.4)

Γ̂kij = Γ̂kji = Akµ ∂jB
µ
i = −Bµ

i ∂jA
k
µ =

∂xk

∂Xµ

∂2Xµ

∂xi∂xj
, connexion. (2.5)

The quantity Γ̂kij = Γ̂kji (Christoffel symbols or Levi-Civita connexion 29) plays the role of “gravita-
tional force”. It is completely determined by g. This can be seen by deriving the expression of the
metric and using the symmetry properties of the connexion. We have

∂kgij = ηµν [∂kB
µ
i ∂sX

ν + ∂kB
ν
s ∂jX

µ]

and since

ηµν B
ν
i = gij A

j
µ ,

we also obtain

∂kgij = Γ̂lkiglj − Γ̂lkjgli . (2.6)

In order to invert the latter expression we write it in three different ways obtained by cyclic permu-
tation of the indices, that is

∂igjk = Γ̂lijglk − Γ̂likglj , (2.7)

∂jgki = Γ̂ljkgli − Γ̂ljiglk . (2.8)

By summing (2.7), (2.8), subtracting (2.6) and taking into account of the symmetries properties of
Γ̂kij we finally get

Γ̂kij =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) . (2.9)

Note: The evolution parameter in the geodesic equation (2.4) is not really important in the sense
that it will be expressed in terms of the time t when the equations will be explicitly solved. This
means that one can use an arbitrary evolution parameter and not necessary the proper time. Using
an arbitrary evolution parameter σ, the geodesic equation (2.4) holds also for massless particles for
which the proper time is vanishing. It has to be remarked that (2.4) has that form only for parameters
related to proper time by an affine transformation (linear transformation).

2.3.1 The Newtonian limit

In order to understand the physical meaning of metric and connexion, on the geodesic equation
we perform the Newtonian limit. This means that we consider “small velocities” and weak fields
independent on time. Then∣∣∣∣∣dxads

∣∣∣∣∣�
∣∣∣∣∣dx0

ds

∣∣∣∣∣ , a = 1, 2, 3 , gij = ηij + hij , |hij| � 1 , ∂0hij = 0 .

29Tullio Levi-Civita (Italia) 1873-1941.
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Using such an approximation the geodesic equation becomes

d2xk

ds2
+ Γ̂k00

(
dx0

ds

)2

∼ 0 , Γ̂k00 ∼ −
1

2
gkl∂lg00 ∼ −

1

2
ηkl∂lh00 ,

from which

d2x0

ds2
∼ −Γ̂0

00

(
dx0

ds

)2

∼ 0 ,
d2xa

ds2
∼ −Γ̂a00

(
dx0

ds

)2

=
1

2
ηal∂lh00

(
dx0

ds

)2

.

From the first equation above it follows that x0 ∼ ct (t being the time of Newtonian’s theory), while
the second equation can be set in the form

d2~x

dt2
=

1

2
c2~∇h00 (2.10)

and has to be compared with the analog Newtonian equation

d2~x

dt2
= −~∇φ , φ = −MG

r
, (2.11)

φ being the potential (Newtonian) for unit mass, G the gravitational constant and M the mass of
the body which generates the gravitational field. We see that (2.10) gives the correct limit (2.11) if

g00 ∼ −
(

1 +
2φ

c2

)
. (2.12)

All components gij of the metric are (remarkable) different from ηij only in the presence of high
gravitational fields. For example, on the surface of the earth one has h00 ∼ 10−6.

2.4 Coordinate systems, reference frame and measurable quantities

As it is clear from examples above, the gravitational field modifies the metric tensor gij and as a
consequence, the geometry of space-time will be different from the Minkowskian one. In general it
will be a Lorentzian (pseudo-Riemannian) geometry. Only locally it will be possible to choose a
coordinate system where special relativity holds.

The coordinates can be chosen in an arbitrary way and they do not have a direct physical mean-
ing. What are physical relevant are invariant quantities (scalars) with respect to general coordinate
transformations.

In the following we shall talk about coordinate system and reference system without distinction,
but it has to be remarked that at any reference frame, realised by physical objects (bars and clocks)
corresponds a coordinate system, but in general it is not true the “vice-versa”. The coordinate
system has to satisfy some constraints in order to be realised by physical objects.

Given a coordinate system {xk}, the invariant interval is given by

ds2 = gijdx
idxj ,

where gij depends (in general) on xk. The fact that gij is different from Minkowski metric does not
necessarily mean that we are in the presence of a gravitational field. For example, the Minkowski
interval in a rotating reference frame with angular velocity ω around the z axis assumes the form

ds2 = −c2dt2 + dr2 + r2dϕ̃2 + dz2 = −(c2 − ω2r2)dt2 + dr2 + r2dϕ2 + 2ωr2dtdϕ+ dz2 , (2.13)
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where (r, ϕ̃, z) are the coordinates of the point P attached to the rotating body, while (r, ϕ = ϕ̃−ωt, z)
are the coordinates of the same point as seen by an observer on the ground. According to the principle
of equivalence the metric in (2.13) can be seen as due to a “factious gravitational field”.

The proper time dτ is the one measured by a clock at rest with the event, that is

dτ = −ds
c

=

√
|g00| dx0

c
.

For the specific example above we have

dτ =

√
1− ω2r2

c2
dt , (2.14)

in agreement with the the formula of Special Relativity (the clock in P moves with velocity ωr with
respect to the observer on the ground O. At any time we can attach at P an inertial reference frame
O′ with velocity ωr with respect to O and apply the formulae of Special relativity).

Using the principle of equivalence, the formula (2.14) can be also read in a different way. We can
think about two different clocks in the points P1 ≡ (r, ϕ̃, z) and P2 ≡ (r, ϕ, z) of a “gravitational
field” given by the metric in (2.13). In such a case the ratio between the proper times measured by
the two clocks reads

dτ2

dτ1

=

√
|g00(P2)|√
|g00(P1)|

.

For the principle of equivalence we expect such a result to be valid in a generic gravitational field.
Note: in general the integration of the proper time does not have a physical meaning because

dτ is not an exact differential form and so its integration depend on the path. We can integrate dτ
in order to obtain the finite duration of a phenomena if the initial and final events have the same
spatial coordinates. On the contrary, it is always possible to integrate the coordinate time dt because
it is an exact differential form.

2.5 Time dilation

We consider an arbitrary metric independent on time x0, two events E1 ≡ (x0, ~x), E2 ≡ (x0 + dx0, ~x)
at the same spatial point and two observers P1 ≡ (xk1), P2 ≡ (xk2) at rest with respect to ~x.

The coordinate interval between the two events is dx0 for all the observers, but the interval
measured in proper time depends on the observer. We have

dτ2

dτ1

=

√
|g00(P2)|√
|g00(P1)|

. (2.15)

This means that the rate of a clock depends on the gravitational field. In particular, the clock in
the presence of gravitation is always in late with respect to the clock in the absence of gravitation.
Such an effect has been measured by astronomical and also terrestrial experiments. It has not to be
confused with time dilation of Special Relativity, where the effect is due to the relative motion of the
two clocks. Of course, if these are moving in a gravitational field, both the effects have to be taken
into account.
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2.6 Spatial distance and spatial geometry

Now we are going to define the spatial distance between two infinitely closed points A and B. To
this aim we consider a light signal living the point A at the time x0 + dx0

1, reflecting in B at time
x0 and arriving again in A at time x0 + dx0

2. For the light one has ds2 = 0, which is a second order
algebraic equation which permits to derive dx0

1,2 in terms of the metric. In fact

dx0
1,2 =

1

g00

[
−g0adx

a ∓
√

(g0ag0b − g00gab)dxadxb
]
, a = 1, 2, 3,

from which

∆x0 = dx0
2 − dx0

1 =
2

g00

√
(g0ag0b − g00gab)dxadxb , ∆τ =

√
|g00|
c

∆x0 =
2

c

√
γabdxadxb ,

where

γab = gab −
g0ag0b

g00

, γab = gab , det g = g00 det γ

and ∆τ is the distance (in proper time) between two events in the same spatial point (where the
signal starts and arrives).

Now it is natural to define the spatial distance between the points A and B by mean of the
equation

∆σ =
c∆τ

2
=⇒ dσ2 = γabdx

adxb .

γab defines the spatial geometry. Note that if the metric depends on time, then it has no meaning to
integrate dσ in order to find the distance between far points, because this depends on time.

2.7 Some properties of the metric

The metric of a gravitational field in a physical reference frame must satisfy the following properties:

det g < 0 : real gravitational field ,
g00 < 0 : physical reference frame built up with material bodies ,
γab : positive quadratic form .

The third condition assures the spatial distance to be always positive.

2.8 Static and stationary fields

A gravitational field is said to be constant if it is possible to choose a coordinates system in which gij
does not depend on the coordinate time x0. More precisely, a constant field is said static if g0a = 0
and stationary if g0a 6= 0 (a = 1, 2, 3). In the latter case the metric is not invariant with respect to
time inversion. A static field for which g00 = 1 is said ultrastatic and the corresponding reference
frame is said synchronous, because for such frames it is possible to synchronise the clocks. Moreover
in such frames the coordinate t = x0/c represents the proper time and the lines t = constant are the
geodesic on the 3-dimensional section because ds2 = −(dx0)2 + γabdx

adxb.

• In any gravitational field it is always possible to choose coordinates for which g0a = 0, but in
general these depend on time.
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2.9 The shift of spectral lines

Analysing the light arriving from distant stars we can read off atomic spectra similar to the ones
which we observe on the earth, but shifted (to the red), the shift depending also on the frequency
of the spectral line. Such a phenomena is a direct consequence of time dilation and represents a
confirmation of the principle of equivalence. Here we shall give three different derivations of such an
important effect, two of them explicitly based on the principle of equivalence,

2.9.1 Derivation I

Let us consider a stationary gravitational field (this means that exists a coordinates system in which
the metric does not explicitly depend on the coordinate time x0 = ct) and an atom in the point S
(the source) which performs a transition and emits photons with proper frequency ν0 (by definition,
the proper frequency is the one measured by a clock at rest with the atom).

In the period ∆τS = n/ν0 the atom will emit a number n of waves and these will be received
in the point O (the observer) during the period ∆τO. For the observer in O such waves will have a
frequency ν = n/∆τO. Because the field is stationary, the (coordinate) travel time ∆t is the same
for all the observers and in particular ∆tS = ∆tO. In this way

∆τS
∆τO

=

√
|g00(S)|√
|g00(O)|

=⇒ ν

ν0

=

√
|g00(S)|√
|g00(O)|

.

For weak fields g00 ∼ −(1 + 2φ/c2) and so

∆ν

ν0

∼ ∆φ

c2
, ∆ν = ν − ν0 , ∆φ = φ(S)− φ(O) . (2.16)

According to the latter formula, the frequency undergoes a shift (to the red in the case sun-earth
because ∆φ < 0) which is proportional to the frequency itself. Note that it is assumed that the
proper frequency is independent on the gravitational field and in some sense this can be considered
as a definition of standard clock.

It has to be remarked that it is quite difficult to measure such an effect, because it is “covered” by
the Doppler effect30 due to the motion of the source, the thermal motion which spread the spectral
lines and the convective motion of the solar atmosphere.

Moreover, the formula in (2.16), as it stands, connot be used for the sun-earth system, because
it has been derived for two points at rest in a stationary gravitational field, but the observer on the
earth is in “free fall” with the earth itself in the gravitational field generated by the sun, then the
formula has to be corrected by taking into account of doppler effect due to the motion of the observer
too.

There are however experiments prepared in the laboratory (Pound e Rebka (1960)), which agrees
with (2.16) and confirms the principle of equivalence.

• The formula (2.16) can be also derived by using a semiclassical treatment of photon and the
conservation of energy. In fact one has

hν0

(
1 +

φ(S)

c2

)
= hν

(
1 +

φ(O)

c2

)
,

from which equation (2.16) directly follows. Here h is the Planck’s constant.

30Christian Andreas Doppler (Österreich) 1803-1853.
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2.9.2 Derivation II

Let us consider an atom at P (the sourse) on a rotating body with angular velocity ω, with respect
to an inertial observer O.

At a generic time t, the point P overlaps a point P ′ of an inertial system O′, which moves
with velocity ωr with respect to O, r being the radial coordinate of P in the system O(t, r, ϑ, ϕ.).
According to Special Relativity one has

dτ = dt

√
1− ω2r2

c2
= dt

√
1 +

2φc
c2

, φc = −ω
2r2

2
,

where φc is the centrifugal potential, dτ the proper time for the observer in P ′ and dt the proper
time for the observer O. During the period dτ the atom emits n waves with frequency ν0 and these
are received by O during the period dt. Then

dτν0 = n = dt ν =⇒ ∆ν

ν0

∼ φc
c2

=
∆φc
c2

.

Using the principle of equivalence, the result can be extended to an arbitrary gravitational field.

2.9.3 Derivation III

Let us consider an atom in the terrestrial gravitational field situated at a given quote z = d with
respect to the ground. The atom emits radiation with proper frequency ν0 and this arrives at z = 0
with frequency ν,

By means of the principle of equivalence, the gravitational field can be “replaced” by a field of
inertial forces ~a = g~k generated by an accelerated lift, ~k being a unit vector. For the observer inside
the lift, the signal is emitted at t = 0, with frequency ν0, when the velocity of the atom is zero and it
is received at t ∼ d/c, with frequency ν, when the velocity of the lift is ~v ∼ (gd/c)~k. Due to Doppler
effect ν 6= ν0. The Doppler formula for the general case reads

ν

ν0

=

√
1− v2/c2

1− v cosα/c
,

where v = |~v| and α is the angle between the direction of the signal and the velocity of the detector.
In this particular case α = −π and so

ν

ν0

=

√
1− v2/c2

1 + v/c
∼ 1− v

c
=⇒ ∆ν

ν0

= −gd
c2

=
∆φg
c2

,

∆φg being the difference of fields between source and detector.
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3 Tensor Analysis

In the following we shall deal with quantities that do not change under coordinate transformations,
like pure numbers and functions, but also with quantities that change when we pass from a reference
frame to another one, like vectors and tensors. In the present context, the simplest way to define
tensors is by means of the transformation rules of their components with respect to general coordinate
transformations.

To this aim, in a N−dimensional manifold MN we consider two coordinate systems x ≡ {xk}
and x̃ ≡ {x̃k}, (k = 0, 1, 2, ...N − 1) the two matrices which relate the two systems

aij =
∂x̃i

∂xj
, bij =

∂xi

∂x̃j
, aikb

k
i = δij , bika

k
i = δij . (3.1)

and the components of tensors (intrinsic invariant quantities) in both the coordinate systems. Ac-
cording to the following transformation rules, we call scalars, vectors and tensors the quantities we
are dealing with. More precisely

tensor transformation rules

scalar φ does not change, that is φ̃(x̃) = φ(x)

controvariant vector V k Ṽ k = akjV
j

covariant vector Vk Ṽk = bjkVj
controvariant tensor of order p (p indices) T̃ ijrs... = aii′a

j
j′a

r
r′a

s
s′ ...T

i′j′r′s′...

covariant tensor Tijrs... of order q (q indices) T̃ijrs... = bi
′
i b
j′

j b
r′
r b

s′
s ...Ti′j′r′s′...

mixed tensor T ij..rs.. of order (p, q) T̃ ij...rs... = aii′a
j
j′ ...b

r′
r b

s′
s ...T

i′j′

r′s′...

As in special relativity lower/upper indices represent covariant/controvariant indices respectively,
but here the transformations matrices are arbitrary matrices and depend on the considered point.

3.1 Examples

It has to be stressed that the coordinate xk is not a vector. Coordinates are simply labels which
realise a correspondence (one to one) between the points of a region of the manifold we are dealing
with and a region in IR4. In the language of differential geometry this is called a chart. In order
to cover all the manifold in general more charts are necessary. The collection of the charts is called
atlas (for example, in order to cover the sphere S2, at least two charts are necessary).

On the contrary, the differential dxk is an important example of controvariant vector and we have

dx̃k =
∂x̃k

∂xj
dxj = akjdx

j .

In a similar way, the derivative of an arbitrary function (scalar) is a covariant vector. In fact

∂φ̃

∂x̃k
=

∂φ

∂xj
∂xj

∂x̃k
= bjk

∂φ

∂xj
.

The (tensor) product of a tensor of order p with one of order q gives rise to a tensor of order p + q,
while the contraction (the sum over a covariant-controvariant index) on a tensor of order p gives rise
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to a tensor of order p− 2. In particular, the contraction of any covariant vector with a controvariant
one gives rise to a scalar. In fact

T̃ ijk...rsk... = aii′a
j
j′a

k
k′ ...T

i′j′k′...
r′s′k′′...b

r′

r b
s′

s b
k′′

k ... = aii′a
j
j′ ...T

i′j′k...
r′s′k...b

r′

r b
s′

s ...

Ṽ kŨk = akk′b
k′′

k V k′Uk′′ = V kUk .

An important example of tensor of order two is given by the metric, which, according to (2.3), is
given by

gij =
∂Xµ

∂xi
∂Xν

∂xj
ηµν , g̃ij =

∂Xµ

∂x̃i
∂Xν

∂x̃j
ηµν ,

from which directly follows

g̃ij = bri b
s
jgrs , gij = aria

s
j g̃rs . (3.2)

Then the metric is a covariant tensor of order two.
Now we are going to show that the inverse matrix of the metric is a controvariant tensor. To

this aim it is convenient to use a matrix notation, then we shall indicate by m a generic matrix with
component mij and by mT the transpose matrix with component mji. Using this notation, equation
(3.2) can be written in the form

g = aT g̃ a (3.3)

and as a consequence

1 = g−1 g = g−1 aT g̃ a .

The desired result can be found by multiplying the latter equation by [aT g̃a]−1 and recalling that
a−1 = b. We get

b g̃−1 bT = g−1 =⇒ g̃−1 = a g−1 aT . (3.4)

We see that the matrix g−1 transforms like a controvariant tensor of order two. As usual, we indicate
its components as gij. So

g̃ij = aira
j
s grs , gikgkj = δij .

From the latter equation one sees that the Krönecker symbol δij is a mixed tensor of order two.
By means of the metric tensor we pass from covariant to controvariant components of a tensor

and viceversa. One has

T ij... = gii
′
gjj
′
...Ti′j′... , Tij... = gii′gjj′ ...T

i′j′... .

For this reason, on a Riemannian/Lorentzian manifold there is no deep difference between covariant
and controvariant tensors.
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3.2 Tensor densities

On a Lorentzian manifold an important role is played by the determinant of the metric g = | det gij|.
Such a quantity is not a scalar but a scalar density of weight −2, because it transforms like a scalar
apart the factor J−2, J being the Jacobian of transformation. In fact we have

g̃ij = bri b
s
j grs =⇒ g̃ = det g̃ = J−2 g , J =

∣∣∣det bij
∣∣∣−1

=
∣∣∣det aij

∣∣∣ =

∣∣∣∣∣∂x̃∂x
∣∣∣∣∣ .

We call tensor density of weight w a quantity T which transforms homogeneously like a tensor apart
a factor Jw. An arbitrary tensor density can always be expressed in the form T = T g−w/2, T being
an ordinary tensor.

The square root
√
|g| is a scalar density of weight −1. This is particularly important because

it permits to build up invariant volumes. For a coordinate transformation the infinitesimal volume
dNx is not invariant, but

dN x̃ = J dNx =⇒
√
|g̃| dN x̃ =

√
|g| dNx .

Another important example of tensor density of weight −1 is the Levi-Civita symbol eijrs.... This is
completely antisymmetric and e0123..,N−1 = 1.

It has to be noted that both tensors and tensor densities transform homogeneously. This means
that if they are vanishing in a given reference frame, then they are vanishing in all reference frames.

3.3 Affine connection

We shall deal also with quantities which do not transform homogeneously and so they are not tensors
or tensor densities. We have already seen that we can always choose a coordinates system in which
all Christoffel symbols are vanishing, but in an arbitrary frame this is not the case. This means that
the connection is not a tensor because it transforms non homogeneously. In fact, recalling definition
(2.5) and (3.1) (from now on we suppress the “hat”)

Γkij = Akµ
∂

∂xi
Bµ
j , Γ̃kij = Ãkµ

∂

∂x̃i
B̃µ
j ,

Akµ =
∂xk

∂Xµ
, Bµ

k =
∂Xµ

∂xk
, AiµB

µ
j = δij , AkνB

µ
k = δµν ,

Ãkµ =
∂x̃k

∂Xµ
, B̃µ

k =
∂Xµ

∂x̃k
, ÃiµB̃

µ
j = δij , ÃkνB̃

µ
k = δµν ,

AiµB̃
µ
j = bij , ÃiµB

µ
j = aij ,

we get

Γ̃kij = Ãkµ
∂

∂x̃i

(
Bµ
s b

s
j

)
= Ãkµ b

r
i

∂

∂xr

(
Bµ
s b

s
j

)
= Ãkµ b

r
i b

s
j

∂

∂xs
Bµ
s + Ãkµ b

r
i B

µ
s

∂

∂xs
bsj

= akmb
r
i b
s
j Γmrs + akmb

r
i∂rb

m
j

=
∂x̃k

∂xm
∂xr

∂x̃i
∂xs

∂x̃j
Γmrs +

∂x̃k

∂xm
∂2xm

∂x̃i x̃j
. (3.5)
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We see that the connection transforms as a tensor with respect to linear transformations, because in
such a case the transformation matrices a and b are constant quantities, but it has also to be noted
that the difference between two different connections is a third order tensor. In fact, if Γ and Σ are
two distinct connections we get{

Γ̃kij(x̃) = akmb
r
i b
s
j Γmrs(x) + akmb

r
i∂rb

m
j ,

Σ̃k
ij(x̃) = akmb

r
i b
s
j Σm

rs(x) + akmb
r
i∂rb

m
j ,

=⇒ Γ̃kij(x̃)− Σ̃k
ij(x̃) = akmb

r
i b
s
j [ Γmrs(x)− Σm

rs(x)] .

3.4 Covariant differentiation

Now we want to generalise the concept of differentiation, in such a way that the “differential” of a
tensor is again a tensor. We see that the ordinary differentiation does not satisfy such a requirement.
For example, for a controvariant vector we have

∂Ṽ k

∂x̃i
= bri∂r (aksV

s) = bria
k
s∂r V

s + briV
s∂ra

k
s ,

dṼ k = dx̃i
∂Ṽ k

∂x̃i
= dxr ∂r (aksV

s) = aks dV
s + V s daks . (3.6)

Again we see that the differential is a vector only with respect to linear transformation. This is due
to the fact that we are dealing with two vectors V k and V k + dV k in two different points xk and
xk + dxk and they transform in different ways when the matrices a , b are not constant. In order to
compare the two vectors, we have to “parallel transport” them in the same point, for example, we
can transport the vector V k in the point xk + dxk and then compare it with the vector V k + dV k.
Of course, the parallel transport has to be defined. In Euclidean (Minkowskian) manifolds and in
Cartesian coordinates, parallel vectors have proportional components, but this is not the case in
arbitrary systems.

In an N−dimensional manifold MN , the vectors in a generic point P “live” in the tangent space
TP at P , which is a N−dimensional vector space (IRN), while the vectors at the point Q “live” on
TQ, which is another N−dimensional vector space. One has to define how compare TP with TQ.
In classical physics one works in Euclidean manifolds (MN ≡ IRN) and so the tangent spaces are
isomorphic to the base manifold MN and often one confuses them.

• Example: as an example we consider two “parallel” vectors ~V and ~U in IR2 applied at two
different points P1 and P2. We use both Cartesian {xk} ≡ (x, y) and polar coordinates {x̃k} ≡
(r, ϕ), that is

{
x = r cosϕ
y = r sinϕ

=⇒
{
dx = cosϕdr − r sinϕdϕ
dy = sinϕdr + r cosϕdϕ

from which it follows

b =

{
∂xi

∂x̃j

}
=
(

cosϕ −r sinϕ
sinϕ r cosϕ

)
=
(
b1

1 b1
2

b2
1 b2

2

)
, (3.7)

a =

{
∂x̃i

∂xj

}
=

( x√
x2+y2

y√
x2+y2

− y
x2+y2

x
x2+y2

)
=
(
a1

1 a1
2

a2
1 a2

2

)
, (3.8)
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The vectors assume the form

~V = V1 û x + V2 û y = Ṽ1 û r + Ṽ2 û ϕ ,

~U = U1 û x + U2 û y = Ũ1 û r + Ũ2 û ϕ ,

where { û x. û y} is the “repère naturelle” generated by Cartesian coordinates, while { û r. û ϕ}
is the “repère naturelle” generated by polar coordinates 31. while Vk, Uk and Ṽk.Ũk (k = 1, 2)
are the corresponding components. In order to simplify the computation we assume a constant
~V ≡ U and parallel to the abscissa. Because the frame { û x, û y} does not depend on the point
we have{

~V = v û x ,
~U = v û x ,

=⇒
{
V1 = U1 = v ,
V2 = U2 = 0 ,

v = constant .

We see that two equal vectors have equal Cartesian coordinates. The situation completely
change in polar coordinates, because the frame { û r, û ϕ} depends on the point. In fact using
(3.7) we have

Ṽk = bjk(P1)Vk , Ũk = bjk(P2)Uk ,

and explicitly

{
Ṽ1 = b1

1V1 + b2
1V2 = v cosϕ1

Ṽ2 = b1
2V1 + b2

2V2 = −vr1 sinϕ1
,

{
Ũ1 = b1

1U1 + b2
1U2 = v cosϕ2

Ũ2 = b1
2U1 + b2

2U2 = −vr2 sinϕ2
.

where P1 ≡ (x1, y1) ≡ (r1, ϕ1) and P2 ≡ (x2, y2) ≡ (r2, ϕ2). Now we choose the points P1, P2

infinitely close then
(r1, ϕ1) ≡ (r, ϕ), (r2, ϕ2) ≡ (r + dr, ϕ+ dϕ) and

δṼ1 ≡ Ũ1 − Ṽ1 = −v sinϕdϕ =
Ṽ2

r
dϕ ,

δṼ2 ≡ Ũ2 − Ṽ2 = −v sinϕdr = vr cosϕdϕ =
Ṽ2

r
dr − rṼ1 dϕ .

It is easy to see that the latter relation can be written in the compact form (here we suppress
the tilde)

δVk = Γ̂jikdx
iVj , i, j, k = 1, 2 , (x1, x2) = (r, ϕ) , (3.9)

Γ̂jik bing the Christoffel symbols related to the metric of IR2 (ds2 = dx2 + dy2 = dr2 + r2dϕ2).
This means that in general equal vectors in different points have different components when
the Christoffel symbols are non vanishing. In Cartesian coordinates all components of the

31The coordinate system determines a reference which is called “repère naturelle”, which is given by the unitary
vectors tangent to the coordinate surfaces in the given point and in general it depends on the point itself. The “repère
naturelle” corresponding to Cartesian coordinates does not depend on the point because it is alway parallel to itself.
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metric are constant and so the corresponding Christoffel symbols are vanishing and (3.9) gives
δVk = 0, while in polar coordinates we have

g11 = grr = 1 , g22 = gϕϕ = r2 , gij = 0 , for i 6= j .

Using (2.9) one finds that all the Christoffel symbols are vanishing but

Γ̂1
22 = −r , Γ̂2

12 = Γ̂2
21 =

1

r
.

Looking at (3.9) we see that in general, also in an Euclidean manifold, the “natural components”
of a vector changes when we make a parallel transport from a point to another. This is due to
the fact that the “repère naturelle” depends on the given point.

3.5 Parallel transport of a vector

The concept of parallel transport has been introduced by Levi-Civita, by considering the original
manifold MN merged in an Euclidean manifold IRN(N+1)/2 and subsequently it has been defined
axiomatically by Cartan and Weyl directly in MN .

We consider a vector field V k(x) and V k + dV k in two different points xk and xk + dxk and we
indicate by V k + δV k the vector obtained by parallel transport of V k in the point xk + dxk. We
expect δV k to be proportional to the “distance” dx and to the vector itself, in such a way that
δ(V k

1 + V k
2 ) = δV k

1 + δV k
2 . Then we write

δV k = −Γkij dx
iV j ,

where Γkij are quantities, depending on the coordinates, which defines the law of parallel transport.
The coefficients Γkij are the components of the affine connection and can be defined also in a non-
Riemannian manifold.

After the parallel transport we have two vectors at the same point and the difference DV k ≡ ∇V k

reads

DV k ≡ ∇V k = dV k − δV k = dV k + Γkij dx
iV j .

The latter equation defines the covariant differential of a controvariant vector and it is a controvariant
vector if Γkij transforms as in (3.5), that is

Γ̃kij = akpb
r
i b
s
j Γprs + akp∂ib

p
j .

Now we define the covariant derivative ∇i by D = dxi∇i and so, for a controvariant vector we get

∇iV
k = ∂iV

k + ΓkijV
j . (3.10)

By definition, when ∇iV
k = 0 the vector is parallel transported along the curve xi.

In principle the connection can be chosen with the only restriction that it satisfies the transfor-
mation law (3.10) and so there are infinite possible choices. For example, one can add an arbitrary
tensor Kk

ij to a given connection Γ̂kij and the result Γkij = Γ̂kij + Kk
ij is a new connection different

with respect to the given one. If the given connection is symmetric (for example the one of Levi-
Civita), then Kk

ij is called contorsion tensor and its antisymmetric part defines the torsion tensor

17



Skij = Γkij − Γkji = Kk
ij − Kk

ji. It gives a “measures” of the torsion of the tangent space parallel
transported along a coordinate line.

In order to restrict the possible choices, it is natural to require the scalar product between two
arbitrary vectors Ak and Bk to be invariant when they are parallel transported. In this way their
transportation laws are related because

0 = δ(AkBk) = AkδBk +BkδA
k = AkδBk −BkΓ

k
ijdx

iAj =⇒ δBk = Γjikdx
iBj (3.11)

and the covariant derivative

∇iBk = ∂iBk − ΓjikBj .

The covariant differentiation can be generalised to tensors of arbitrary orders. We start with the
special tensor T ij = AiBj. We have

∇kT
ij = ∇k(A

iBj) = Ai∇kB
j) +Bj∇kA

i

= Ai(∂kB
j + ΓjklB

l) +Bj(∂kA
i + ΓiklA

l) = ∂kT
ij + ΓiklT

lj + ΓjklT
il

and because this is linear in the tensor it is valid for an arbitrary tensor of order two. Now, with a
similar trick we obtain the derivative of an arbitrary tensor of order (p, q). It reads

∇kT
ij...
rs... = ∂kT

ij...
rs... + Γikk′T

k′j...
rs... + Γjkk′T

ik′...
rs... − Γk

′

krT
ij...
k′s... − Γk

′

ksT
ij...
rk′... + ... (3.12)

and this is a tensor of order (p, q + 1). In particular we have

∇kgij = ∂kgij − Γlkiglj − Γlkjgil = 0 .

The fact that the covariant derivative of the metric vanishes is a direct consequence of the choice
(3.11). To see this we choose two arbitrary vector fields obtained by the parallel transport of Ai and
Bj, then

0 = ∇kA
i = ∇kBj = ∇k(A

iBi) .

But in a Riemannian manifold we also have

0 = ∇k(A
iBi) = ∇k(gijA

iBj) = AiBj∇kgij

and due to the arbitrariness of the vectors we obtain

∇kgij = 0 =⇒ ∂kgij = Γlkiglj + Γlkjgil . (3.13)

When the latter condition is satisfied, we say that the connection is compatible with the metric.
It has to be noted that from (3.13) it is not possible to determine the connection coefficients as

it has been done in (2.9), because in general they are not symmetric (Γkij 6= Γkji), but it is possible if
we choose torsion-free connections. In fact we have the following important result:

• In a Riemannian manifold there is a unique connection compatible with the metric and torsion
free and this is the Levi-Civita connection.

This means that{
∇kgij = 0
Skij = 0

=⇒ Γkij = Γkji = Γ̂kij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij) . (3.14)

In the rest of the paper we shall always use such a connection, which, during a parallel transport,
preserve the scalar product, the angle between vectors and it is in agreement with the equivalence
principle.
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3.6 Some useful formulae

Now we derive some useful relations regarding derivative of tensors and determinant of metric.
From girgrs = δis we immediately get

girdgrs + grsdg
ir = 0 =⇒

{
dgij = −girgjsdgrs , ∂kg

ij = −girgjs∂kgrs ,
dgrs = −girgjsdgij , ∂kgrs = −girgjs∂kgij .

(3.15)

Recalling the definition of the inverse matrix and the determinant g we also get

1

g
dg = gijdgij = −gijdgij =⇒ 1

g
∂kg = gij∂kgij = −gij∂kgij ,

1

g
∂kg =

1

g

∂g

∂gij
∂kg

ij = gij∂kgij =⇒ 1

g

∂g

∂gij
= gij . (3.16)

Note that these equations can be easily derived by recalling the relation which exists between the
trace of the logarithm of matrix Λ and the logarithm of its determinant. In fact, given a symmetric
square matrix Λ with eigenvalues λ1, λ2, ..., λN one has

Tr log Λ =
N∑
n=1

log λn = log
N∏
n=1

λn = log det Λ .

Now, if the matrix depends on a parameter ρ, deriving the latter identity we get

d

dρ
Tr log Λ = Λ−1 d

dρ
Λ =

d

dρ
log det Λ =

1

det Λ

d

dρ
det Λ .

Applying this to the metric, identity (3.16) follows.
From (3.14), by contraction and using (3.13) we have

Γkik =
1

2
grs∂igrs =

1√
|g|

∂i
√
|g| = ∂i log

√
|g| , grsΓkrs = − 1√

|g|
∂i(
√
|g| gik) . (3.17)

With the use of formulae above, we can write the (covariant) divergence of a vector Ak and the
(covariant) D’Alembertian of a scalar φ in the form

∇kA
k = grs∇rAs = ∂kA

k + ΓkkjA
j = ∂kA

k + Aj∂j log
√
|g| = 1√

|g|
∂k(

√
|g|Ak) , (3.18)

∇kφ = ∂kφ , 2φ = grs∇r∇rφ =
1√
|g|

∂r(
√
|g| grs∂sφ) , (3.19)

while the derivative of an antisymmetric tensor F ij = −F ji reads

∇kF
kj = ∂kF

kj + ΓkklF
lj + ΓjklF

kl =
1√
|g|

∂k(
√
|g|F kj) . (3.20)

In particular, for the electromagnetic tensor field we obtain

Fij = ∇iAj −∇jAi = ∂iAj − ∂jAi , ∇kF
kj = 2Aj − gjs∇r∇sA

r . (3.21)

We stress again that we are using the Levi-Civita connection. In the presence of torsion, some of the
relations above have more terms.

19



To finish this section we would like to observe that the integration over a region V N ⊂ MN of
the covariant divergence of a vector gives rise to an integral on the boundary SN−1 of V N , via the
Gauss theorem. In fact we have∫

V N
∇kA

k
√
|g| dNx =

∫
V N

∂k

(√
|g|Ak

)
dNx =

∫
SN−1

√
|g|Ak dσk . (3.22)

This means that, as it happens in special relativity, a continuity equation of the kind ∇kJ
k = 0 will

give rise to a conservation law, but, in contrast with special relativity, to a continuity equation of
the kind ∇kT

kj = 0 in general will not correspond a conserved vector (see Section 8).
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4 The Influence of Gravitation on Physical Systems

Here we are going to see how gravitation modifies the equations of motion of s ome physical systems.
To this aim we shall make use of the following principle of general covariance:

• If a physical equation is true in the absence of gravitation and it is written in a covariant form,
then it is valid in an arbitrary gravitational field.

This means that in order to include gravitation in special relativity, we write the equations of
motion or the field equations in a covariant form, that is in a form which is invariant under general
coordinate transformations. Then we have to use only tensors and covariant operators.

It has to be noted that as regarding the physical contents, the principle of equivalence and the
principle of general covariance are the same thing, but the latter provides a powerful mathematical
technique which permits to take into account of an arbitrary gravitational field.

4.1 The motion of a test particle

We have already study such a system in the presence of gravitation by using the equivalence principle.
Now we shall use the principle of general covariance.

In special relativity the motion of a test particle is determined by the equation

duk

dτ
= 0 , uk =

dxk

dτ
= −c dx

k

ds
, ukuk = −c2 , (4.1)

uk being the 4-velocity, which with our conventions satisfy the constraint ukuk = −c2.
Equation (4.1) is not covariant, because we have seen in the previous section that the differential

of a vector is not a vector, but we have also seen that it becomes a vector if we replace differentiation
with covariant differentiation. Then we expect the motion of a test particle in the presence of
gravitation to be described by the equation

Duk

dτ
= 0 , uk =

dxk

dτ
. (4.2)

This is a covariant equation and in the absence of gravitation reduces to (4.1) (the connection is
always the one of Levi-Civita). The solutions of (4.2) are called auto parallel. In our case (Riemannian
manifold equipped with Levi-Civita connection) they coincide with the geodesics already discussed
in (2.4). Equation (4.2) holds also for massless particles, but in such a case dτ is an arbitrary scalar
parameter, but not the proper time, which for massless particles is vanishing.

If the particle is not free, but in the presence of an external force ~f , on the right hand sides of
(4.1) and (4.2) we have fk/m, m being the mass of the particle and fk the 4-vector obtained by

means of a coordinate transformation applied to (0, ~f). Then

Duk

dτ
=
fk

m
=⇒ d2xk

dτ 2
=
fk

m
− Γkij

dxi

dτ

dxj

dτ
.

The last term can be seen as the gravitational force acting on the particle.
Using the constraints ukuk = −c2 and fkuk = 0, the latter equation can be written in the form

Duj

dτ
= W jkuk , W jk = −W kj =

ujfk − ukf j

mc2
. (4.3)

When a vector satisfies an equation of that kind, we say that it is transported a la Fermi-Walker32.
The velocity of a free particle is parallel transported along a geodesic, equation (4.2), while in the
presence of an external force it is transported a la Fermi-Walker, equation (4.3).

32Enrico Fermi (Italia) 1901-1954.
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4.2 The motion of the spin

Now we consider a particle with spin. In the system in which the particle is at rest, uk ≡ (−c, 0, 0, 0)

and the spin vector is Sk ≡ (0, ~S) and so Sku
k = 0. Of course, in the absence of external forces it is

conserved. Then, in an arbitrary gravitational field we shall have

DSk

dτ
= 0 , Sku

k = 0 .

The situation changes if on the particle acts an external force ~f . For simplicity we suppose the force
not experiencing any torque. This means that the particle is accelerated, but in a locally inertial
frame momentarily at rest with respect to the particle there is no precession of the spin. In such a
frame, as above we have

~u = 0 ,
d~S

dt
= 0 , (4.4)

This “no torque” condition can be written in the covariant form

dSk

dτ
= α uk , (4.5)

which effectively reduces to (4.4) in the reference where ~u = 0.
There scalar function α, in general depending on spin and velocity, can be explicitly determined

by deriving the identity Sku
k = 0, which holds in any frame. One gets

0 = uk
dSk

dτ
+ Sk

duk
dτ

= α c2 +
Skf

k

m
=⇒ α =

Skf
k

mc2
.

Then it follows

dSk

dτ
= αuk =

Sjf
j uk

mc2
,

and so, as it is well known, if the particle is accelerated the spin vector changes direction. This
phenomenon is known as the Thomas precession.

The latter equation can be immediately generalised to gravitational field by using the principle
of general covariance. We have

DSj

dτ
= W jkSk , W jk =

ujwk − ukwj

c2
, wj =

Duj

dτ
=
f j

m
.

As well as the velocity, also the spin is transported a la Fermi-Walker.

4.3 The electromagnetic field

Starting from the potential Ak we define the electromagnetic strength tensor Fij and its dual ∗F ij

by

Fij = ∇iAj −∇jAi = ∂iAj − ∂jAi , ∗F ij =
eijrs

2
√
|g|

Frs .

eijrs being the usual Levi-Civita symbol. The current vector reads

Jk = ρ0u
k ,
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ρ0 being the proper charge density, that is the density in the frame in which the infinitesimal volume
we are considering is momentarily at rest. The Maxwell equation in the presence of gravitation read

∇j
∗F jk = 0 , ∇jF

jk = −4π

c
Jk .

Recalling (3.20) one also gets

∂j

(√
|g|F jk

)
= −4π

c

√
|g|Jk =⇒ 1√

|g|
∂k

(√
|g| Jk

)
= ∇kJ

k = 0 .

From the last (continuity) equation it follows the conservation law of the electric charge.

4.4 Exercise: the action for a test particle

Derive the equation of motion for a test particle using the action principle.
As in special relativity, the only scalar which can be built up using parameters and coordinates

of particle is proportional to the invariant interval ds and so the equation of motion is given by

δ
∫ s2

s1
ds = δ

∫ λ2

λ1

ds

dλ
dλ = δ

∫ λ2

λ1

√
gij
dxi

dλ

dxj

dλ
dλ = 0 , (4.6)

where an arbitrary evolution paramter λ has been introduced.
According to action principle, the variation is performed on the arbitrary trajectory xk, but with

the constraint δxk(s1) = δxk(s2) = 0 (s1 = s(λ1), s2 = s(λ2)). We observe that

δ
ds

dλ
= δ

√
gij
dxi

dλ

dxj

dλ
=

(
dxi

ds

dxj

ds
δgij + gij

dxi

ds

dδxj

ds
+ gij

dδxi

ds

dxj

ds

)
ds

2dλ
.

Using this result in (4.6) we have

δ
∫ s2

s1
ds =

∫ λ2

λ1

dλ δ

√
gij
dxi

dλ

dxj

dλ
=
∫ s2

s1
ds

(
dxi

ds

dxj

ds
δgij + gij

dxi

ds

dδxj

ds
+ gij

dδxi

ds

dxj

ds

)
. (4.7)

Integrating by parts and using the fact the variation δxk is arbitrary, we finally obtain the geodesic
equations

d2xk

ds2
+

1

2
gkl (∂igjl + ∂jgil − ∂lgij)

dxi

ds

dxj

ds
=
d2xk

ds2
+ Γ̂kij

dxi

ds

dxj

ds
. (4.8)

Of course here we have the Levi-Civita connection, because only metric appears in the action.

23



A

B’’

C

V

V’’

V’ V’

V’’

B’

l 

l 
l 

l 

2
3

4

1

Figure 2: parallel transport of a vector along a “parallelogram”

5 The Riemann Tensor

Here we define and study the properties of Riemann tensor, which generalise to manifolds with
arbitrary dimensions, the concept of curvature as introduced by Gauss for the surface.

5.1 The parallel transport of a vector along a closed curve

In general, when a vector is transported by parallelism along a closed curve, the final vector differs
with respect to the original one. To see this, we chose a vector Ai and an infinitesimal “parallelogram”
built up along the coordinate axis (r, s) and then we compare the two vectors obtained by the parallel
transport of Ai along the two paths (see figure 2). Then we have

∇r∇sA
i −∇s∇r A

i ≡ [∇r,∇s] A
i = Ri

jrs A
j , (5.1)

Ri
jrs = ∂rΓ

i
sj − ∂sΓirj + ΓirkΓ

k
sj − ΓiskΓ

k
rj , (5.2)

where Ri
jrs – the Riemann tensor – is built up with the metric and its derivatives (up to second

order). In particular, it is linear in the second derivative of the metric and it is possible to show that
Ri
jrs is the unique tensor with such an important feature.

• Note that in the presence of torsion other terms appear on the right-hand side of (5.1).

A relation similar to (5.1) is valid for a covariant vector, that is

[∇r,∇s]Bj = [∇r,∇s] gjkB
k = gjk [∇r,∇s]B

k = gjkR
k
lrs B

l = −Ri
jrs Bi .

Since the commutator satisfies the Leibniz rule

[∇r,∇s] (AiBj) = Ai[∇r,∇s]B
j +Bj[∇r,∇s] A

i ,

for a generic tensor we get

[∇r,∇s] T
ij...
mn... = Ri

krsT
kj...
mn... +Rj

krsT
ik...
mn... + ...−Rk

mrsT
ij...
kn... −Rk

nrsT
ij...
mk... − ...
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5.2 Sectional curvature

In order to understand the mathematical meaning of the components of the Riemann tensor, in an
arbitrary point P we consider two non-parallel vectors ai and bj. These define a plane ΣP in the
manifold (a section). We call sectional curvature the quantity

K(a, b) =
Rijrsa

ibjarbs

(gmpgnq − gmqgnp)ambnapbq
. (5.3)

This represents the Gauss curvature of the surface which has ΣP as tangent plane in P .

5.3 Properties of the Riemann tensor

Now we derive the symmetry properties of the Riemann tensor in the absence of torsion(In the
presence of torsion some of the properties below have to be modified). To this aim we it is convenient
to write it in terms of the metric, using (3.14). By a straightforward calculation we get

Rk
jrs =

1

2
∂r
[
gkl (∂sgjl + ∂jgsl − ∂lgsj)

]
+ ΓkrlΓ

l
sj − (r ↔ s)

=
1

2
(∂sgjl + ∂jgsl − ∂lgsj) ∂r gkl +

1

2
gkl (∂r∂sgjl + ∂r∂jgsl − ∂r∂lgsj) + ΓkrlΓ

l
sj − (r ↔ s) ,

where (r ↔ s) means that one has to add the same expression by exchanging the two specified
indices. Using the following properties for gij:

gik∂r g
kl = −gkl∂r gik , ∂r gik = ∇r gik + Γlriglk + Γlrkgil = Γlriglk + Γlrkgil ,

for the completely covariant tensor we get

Rijrs =
1

2
(∂r∂sgij + ∂r∂jgsi − ∂r∂igsj)− Γkjs∂r gik + gikΓ

k
rlΓ

l
sj − (r ↔ s)

=
1

2
(∂i∂sgjr + ∂j∂rgis − ∂i∂rgjs − ∂j∂sgir) + gpqΓ

p
isΓ

q
jr − gpqΓ

p
irΓ

q
js . (5.4)

As we already said above, the Riemann tensor is linear in the second derivatives of the metric and
all the following properties hold:

1.) Rijrs = −Rijsr = −Rjirs = Rrsij ;

2.) {Rijrs}(jrs) ≡ Rijrs +Rirsj +Risjr = 0 ; (5.5)

3.) {∇kR
i
jrs}(krs) ≡ ∇k R

i
jrs +∇r R

i
jsk +∇sR

i
jkr = 0 ; (Bianchi Identity).

where by {Tijk...}(ijk) = Tijk... + Tjki... + Tkij... we indicate the sum over the cyclic permutations of
i, j, k. All the symmetry properties in (1.) trivially follow from (5.4) and also the property in (2.) can
be easily verified starting from (5.4). In order to verify the Bianchi identity in (3.) it is convenient
to use a local inertial frame. In fact, because the Bianchi identity is a tensorial expression it has to
be valid in an arbitrary reference frame and in particular in a local inertial frame where the metric
is the one of Minkowski and the connection is vanishing (in the considered point). In such a case we
have

∇kR
i
jrs =

1

2
ηil (∂k∂l∂sgjr + ∂k∂j∂rgls − ∂k∂l∂rgjs − ∂k∂j∂sglr)

and by summing over cyclic permutations the required identity follows.
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5.4 Independent components

Due to symmetry properties above, the components of the Riemann tensor are not all independent.
To compute the number of independent ones it is convenient to see Rijrs as a symmetric matrix RAB,
where A ≡ (ij) and B ≡ (rs) correspond to the couple of antisymmetric indices. If we indicate by
N the dimension of the manifold, then the indices A and B (they are antisymmetric matrices) can
assume N = N(N − 1)/2 values and so the symmetric matrix RAB has N (N + 1))/2 independent
elements . By taking into account of all symmetries (properties in 1.), the number of independent
components of Ri

jrs is then N(N − 1)[N(N − 1) + 2]/8, but such components have to satisfy the
condition in (2.), which correspond to N(N − 1)(N − 2)(N − 3)/24 independent equations. By
subtracting such a number from the previous one we finally get

νN =
N2(N2 − 1)

12
, ν1 = 0 , ν2 = 1 , ν3 = 6 , ν4 = 20 .

This is the number of independent components of the Riemann tensor.
In one dimension, the Riemann tensor is always vanishing (every one-dimensional space is flat),

while in two dimensions there is only one independent component, which has to be proportional to
the Gauss curvature (K = (r1r2)(−1), r1, r2 being the principal curvature radius).

5.5 Ricci tensor, scalar curvature and Einstein tensor

Starting from Riemann tensor, by contraction we can build up a tensor of order two and a scalar,
that is

Rij = Rk
ikj = Rji , R = gijRij . (5.6)

The symmetry of the Ricci tensor Rij is true only in the absence of torsion.
By contracting the Bianchi identity (property 3. in 5.5), we get

0 = ∇i R
i
j −

1

2
∇j R = ∇i(R

i
j −

1

2
δij R) .

The tensor in the brackets above is called Einstein tensor and is usually indicated by Gi
j. Then

Gij = Gji = Rij −
1

2
gij R , ∇i G

i
j = 0 . (5.7)

5.6 Example: the sphere

Compute Riemann, Ricci and scalar curvature for the sphere S2.

On S2 we choose (local) coordinates ϑ, ϕ (latitude, longitude) in such a way that the distance
between infinitely closed points reads

dσ2 = r2(dϑ2 + sin2 ϑdϕ2) ,

where r is a constant. If we see the sphere as embedded in R3, then r represents the radius of the ball
having S2 as frontier and ds is the distance in IR3 in spherical coordinates (ρ, ϑ, ϕ), but restricted to
ρ = r.
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Using definition of Christoffel symbols for the non-vanishing components we obtain

Γ1
22 = −1

2
sin 2ϑ , Γ2

12 = Γ1
21 = cotϑ ,

from which it follows

R1
212 = sin2 ϑ , =⇒ R1212 = R2121 = r2 sin2 ϑ .

Finally, by contraction

R11 = 1 , R22 = sin2 ϑ , R12 = R21 = 0 , R =
2

r2
.

We see that R = 2K, K = 1/r2 being the Gauss curvature.
Using (5.3) we obtain the unic sectional curvature

K(a, b) =
R1212 [(a1b2)2 + (a2b1)2 − 2a1b1a2b2]

g11g22 [(a1b2)2 + (a2b1)2 − 2a1b1a2b2]
=

1

r2
.

5.7 Exercise: Geodesic deviation

All components of the Riemann tensor are vanishing only in the absence of gravitational field (flat
manifold). In order to evidenziate a ”true” gravitational field then we have to measure the compo-
nents of that tensor. To this aim let xk and yk = xk + ξk be the coordinates of two free test particles
in free fall in an arbitrary reference frame, ξk being the ”small distance” between them.

Show that the vector ξk satisfies the following equation of geodesic deviation

D2ξk

dτ 2
= Rk

ijsu
iuj ξs , uk =

dxk

dτ
. (5.8)

The first particle moves along the geodesic

Duk

dτ
=
d2xk

dτ 2
+ Γkij(x)

dxi

dτ

dxj

dτ
= 0 ,

but also the second particle moves along a geodesic given by

d2yk

dτ 2
+ Γkij(y)

dyi

dτ

dyj

dτ
= 0 .

Taking into account that ξ is a small quantity we expand the latter equation in series of Taylor up
to first order. We have

dyk

dτ
=
dxk

dτ
+
dξk

dτ
= uk +

dξk

dτ
,

Γkij(y) = Γkij(x) + ξr∂rΓ
k
ij(x) +O(ξ2) ,

and so

d2yk

dτ 2
+ Γkij(y)

dyi

dτ

dyj

dτ
=

Duk

dτ
+
d2ξk

dτ 2
+ 2Γkij(x)ui

dξj

dτ
+ ξr∂rΓ

k
ij(x)uiuj +O(ξ2) .

At lowest order the vector ξk satisfies the equation

d2ξk

dτ 2
+ 2Γkij(x)ui

dξj

dτ
+ ξr∂rΓ

k
ij(x)uiuj = 0 ,

which can be written in the covariant form (5.8).
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6 The Einstein Equations

Now we are looking for covariant equations which, in the Newtonian limit, that is for small velocities
and weak gravitational fields, are going to coincide with the Poisson equation

∆φ = 4πGµ0 , φ = − ∼ −c
2(g00 + 1)

2
, µ0 ∼

T00

c2
, (6.1)

which describe Newtonian gravity. The solution of Poisson equation gives rise to the gravitational
potential φ = −MG/r2, G being Newton constant. µ0 is the mass density and T ij the energy-
momentum tensor of the matter which generates gravitation. Using the energy-momentum tensor
and recalling (2.12), we can rewrite (6.1) in the form

∆ g00 ∼ −
8πG

c4
T00 . (6.2)

We expect the field equations to be non-linear, second-order differential equations in the metric.
The non linearity is due to the fact that the gravitational field has a “gravitational charge” (the
energy-momentum) and so it has to be an auto-interacting field.

Now we must find a covariant equation which, in the Newtonian limit, reduces to (6.2). The
right-hand side of (6.2) can be immediately generalised by putting the energy-momentum tensor Tij,

while on the left-hand side we shall have a tensor Ĝij depending on the second derivative of the
metric.

We have seen in Section 5, that only the Riemann tensor and its contractions depend linearly on
the second derivative of the metric. Then, in order to build up Ĝij, we have at disposal only the
following three tensors: Rij, Rgij and Λ gij, Λ being the so called cosmological constant. The more
general tensor with the properties required will be an arbitrary combination of such three tensors.

In special relativity Tij satisfies the continuity equation ∂kT
k
j = 0, which gives rise to the conser-

vation of energy and momentum and so one expects Tij to satisfy the equation ∇kT
k
j = 0 and as a

consequence ∇kĜ
k
j = 0. The only possibility is then Ĝij = Gij + Λ gij, Gij being the Einstein tensor

defined in Section 5.
Following Einstein here we disregard the cosmological constant and write the equation in the

original form

Gij = Rij −
1

2
gij R =

8π G

c4
Tij , (6.3)

∇i G
i
j =

8π G

c4
∇i T

i
j = 0 . (6.4)

The dimensional constant factor on the right-hand side has been chosen in order to have the correct
Newtonian limit.

Note that one can trivially take into account of the presence of the cosmological constant by the
replacement

Tij → Tij −
c4

8π G
Λ gij , (6.5)

in the final equations.
Before to verify that they have the right Newtonian limit (6.1), we make some observations:
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• On the right-hand side of the Einstein equations has to appear the energy-momentum tensor of
matter fields in the symmetric form. This means that Tij is not the canonical tensor of quantum
field theory, because in general that is not symmetric. A symmetric energy-momentum tensor
can be directly obtained by deriving the matter Lagrangian density with respect to the metric
gij (see Section 6.4). Of course in this way one obtains a symmetric tensor which coincide with
the one obtained by using the symmetrisation procedure of Belifante.

• By taking the trace gijGij of (6.3) we obtain the equations in the equivalent form

Rij =
8π G

c4
(Tij −

1

2
gij T ) , T = gij Tij . (6.6)

• As we have already anticipated, the Einstein equations can be generalised by adding the con-
stant term Λ gij, which can be seen as the contribution due to a perfect fluid spread out in the
whole universe. Such a fluid has negative pressure p = −Λc4/8πG and energy density ε = −p.
In the original Einstein equations that term was not present, but it was introduced later in
order to have static cosmological solutions (see Section 9.3).

6.1 The Newtonian limit

We consider a macroscopic body which generates a gravitational field. Its energy-momentum tensor
has the general form

T ij = (p+ ε)
uiuj

c2
+ pgij , uk ≡ (u0, ua) , ukuk = −c2 , a = 1, 2, 3 , (6.7)

where uk is the macroscopic 4-velocity of the fluid, p the pressure and ε the energy density, which
takes into account of the interaction energy between the particles which constitute the body. If the
relative velocities of such particles are small with respect to c, then the interaction energy and the
pressure can be disregarded with respect to the proper energy µ0c

2. Then we have

T ij = µ0 u
iuj . ε ∼ µ0c

2 , p ∼ 0 . (6.8)

It has to be stressed that in principle the macroscopic velocity uk can be arbitrary, but if the
macroscopic motion is non-relativistic, then

|u0| � |ua| =⇒ |T00| � |Tak| , T ∼ g00T00 , a = 1, 2, 3 , k = 0, 1, 2, 3 .

In such an approximation, equations (6.3) and (6.6) notably simplify because

0 ∼ Rka −
1

2
gkaR = Rka −

1

2
ηkaR +O(h2) =⇒

{
Rka ∼ 0 , ∀k 6= a ,
R11 ∼ R22 ∼ R33 ∼ 1

2
R ,

(6.9)

where we have put gij ∼ ηij + hij and we have used the fact that the Riemann tensor is at least of
first order in hij. We also get

R = gijRij = (ηij − hij +O(h2))Rij ∼ R11 +R22 +R33 −R00 +O(h2) .

From equations above it follows that the diagonal components of Ricci tensor are all equal, that is
R11 ∼ R22 ∼ R33 ∼ R00 and so the only independent equation is

R00 =
8πG

c4

(
T00 −

1

2
g00T

)
∼ 4πG

c4
T00 .
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From definition of Riemann tensor, at leading order in hij = gij − ηij (weak-static field)) we get

R00 ∼ ∂kΓ
k
00 ∼ −

1

2
∆ g00 ,

from which, as required, the Poisson equation (6.1) directly follows.

6.2 The invariance under diffeomorphism

The Einstein tensor is a symmetric tensor in 4 dimensions and so it has 10 independent components
(N [N+1]/2, N = 4). Then Einstein equations (6.3) correspond to 10 differential equations of second
order in the 10 unknown functions gij. Nevertheless, by choosing suitable boundary conditions it is
not possible to determine a unique solution because such equations are not linearly independent due
to contracted Bianchi identity ∇iG

i
j = 0. This means that only 6 of the 10 components of the metric

can be determined from field equations, This is related to the fact that the choice of the coordinate
system is arbitrary, that is, the metrics gij and g̃ij = bri b

s
j grs both are solutions of (6.3). The choice

of the 4 arbitrary functions x̃k(x) is equivalent to fix 4 arbitrary conditions on the metric, as well as
the gauge invariance permits o fix a condition on the electromagnetic potential.

In many problems, a convenient choice of ‘’gauge” is the following (see Section 8):

gij Γkij = 0 , de Donder condition.

It is interesting to observe that the quantities G0
k do not depend on the second derivatives of time

parameter and so the corresponding field equations are not “evolution equations”, but constraints
on initial conditions. In fact one has

0 = ∇kG
k
j = ∇0G

0
j +∇aG

a
j =⇒ ∂0G

0
j = −∂aGa

j − ΓkklG
l
j + ΓlkjG

k
l .

The last member in equation above depends almost on second derivative of metric (with respect to
time) and so G0

j depends almost on first derivative of metric (with respect to time).

6.3 The action for gravitation

The action in a curved manifold has to be expressed as the integral of a scalar quantity in the
invariant volume

√
g d4x. In order to obtain (6.3), the scalar has to depend on the first derivatives of

the metric. The only non-trivial scalar which can be built up with the metric is the scalar curvature
R (and of course its powers), which however depends on second derivatives too. Then one could
expect field equations depending on the third derivatives of the metric, but this is not the case,
because the contribution of the second derivatives to the action is a 4-divergence of a vector and it
does not contribute to the field equations if the variation of the metric vanishes on the boundary of
the integration domain, as required by the action principle.

By recalling that

Γjkj =
1

2
gij∂k gij = ∂k ln

√
g ,

gijΓkij = −gklΓjlj − ∂lgkl = −∂l(glk ln
√
g) ,

after tedious but straightforward calculations one gets

√
g R =

√
ggij

(
ΓrisΓ

s
jr − ΓlklΓ

k
ij

)
+ ∂k f

k , fk =
√
g
(
gijΓkij − gkjΓljl

)
.
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Then we try the action

Sg[g, ∂k g] = − c3

16πG

∫
R
√
g d4x (Einstein-Hilbert action)

= − c3

16πG

∫ √
ggij

(
ΓrisΓ

s
jr − ΓlklΓ

k
ij

)
d4x− c3

16πG

∫
∂k f

k d4x ,

where the integral is done over a 4-dimensional region and the variation of the metric vanishes on
the boundary of such a hyper-surface. The last integral vanishes due to Gauss theorem. The first
integral on the right-hand side is called Einstein-Hilbert action33.

To complete the theory we must add to Sg the action Sm of all other fields. The interaction
between matter/radiation fields with gravitation is obtained by replacing ordinary with covariant
derivatives (minimal coupling) and ηij with gij. As already anticipated above, the variation of Sm
with respect to the metric gives the energy-momentum tensor, that is the right member of (6.3),
while the variation of Sg gives rise the first one. The constant factor in front of the integral is chosen
in order to get the correct equations when interaction is considered.

The Einstein-Hilbert action or alternatively the non-invariant one give rise to the same field
equations. By considering a small variation of the metric δgij(x) we have

δ Sg ≡ S[g + δg]− S[g] = − c3

16πG

∫
δ(
√
g R) d4x

= − c3

16πG

∫ [
Rδ (
√
g) +

√
g δ

(
gijRij

]]
d4x .

Recall that

dg

g
= −gij dgij =⇒ δ

√
g = −1

2

√
g gijδg

ij

and

δRi
jrs = δ∂rΓ

i
sj + δ

(
ΓirkΓ

k
sj

)
− (r ↔ s) = ∂rδΓ

i
sj + ΓirkδΓ

k
sj + ΓksjδΓ

i
rk − (r ↔ s)

= ∇rδΓ
i
sj −∇sδΓ

i
rj . (6.10)

Since we are considering a variation in form of the metric at the given point x, δΓ is a tensor because
it is the difference between two connections at the same point, that is

δΓkij(x) = Γkij(g + δg)− Γkij(g) .

Contracting (6.10) we obtain (δki is the Kronecker tensor)

δRij = δRk
ikj = ∇k

(
δΓkij − δki δΓljl

)
, gijδ Rij = ∇k

(
gijδΓkij − gkjδΓljl

)
= ∇kV

k ,

V k being a controvariant vector. Recalling (3.22) we see that such a term does not contribute to the
field equations, because the variations vanish on the boundary of the region of integration.

Finally we get

δSg[g] = − c3

16πG

∫ (
Rij −

1

2
Rgij

)√
g δgij d4x ,

Sm[Φ, g] =
1

2c

∫
Tij
√
g δgij d4x .

Due to the arbitrariness of the variations, from 0 = δS = δSg + δSm the Einstein equations (6.3)
follow. By Φ we have indicated the collection of all matter/radiation fields.

33David Hilbert (Russia) 1862-1943.
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6.4 The matter energy-momentum tensor

Let us consider an infinitesimal coordinate transformation (at first order is a “translation”)

x̃k = xk + ξk(x) =⇒
{
aij = ∂x̃i

∂xj
= δij + ∂jξ

i ,

bij = ∂xi

∂x̃j
= δij − ∂jξi + o([ξi]2) .

At first order in ξ, the relation between g̃ij(x̃) and gij(x) can be obtained in two different ways, that
is by means of coordinate transformation or by Taylor expansion. One has respectively

g̃ij(x̃) ∼ gij(x) + gik∂kξ
j + gjk∂kξ

i ,

g̃ij(x̃) ∼ g̃ij(x) + ξk∂kg̃
ij(x) ∼ g̃ij(x) + ξk∂kg

ij(x) ,

and comparing the two equations above

δgij = g̃ij(x)− gij(x) = −ξk∂kgij + gik∂kξ
j + gjk∂kξ

i , (6.11)

which can be written in the covariant form

δgij = gik∇kξ
j + gjk∇kξ

i , δgij = −(∇iξj +∇jξi) . (6.12)

Now we compute the variation of the matter action Sm[Φ, g] due to an infinitesimal transforma-
tion of coordinates xk → xk + ξk. The action is a scalar quantity and so it is invariant under a
coordinate transformation, that is δξS = δξSg = δξSm = 0, δξS being the variation due to a change
of coordinates.

The action depends implicitly on coordinates through metric and matter fields. An infinitesimal
transformation of coordinates induces a transformation δξg

ij and δξΦ on metric and matter fields
respectively. The first one δξg

ij is given in (6.12), while the second one δξΦ in principle can be
computed for any field but for our aim it is not necessary to have its form explicitly.

We have

0 = δξSm = δgξSm + δΦξSm = 0 , δξg
ij = gik∇kξ

j + gjk∇kξ
i , (6.13)

where by δgξSm and δΦξSm we indicate the variations of matter action due to the induced variation
of metric and matter fields respectively.

We choose the infinitesimal vectors ξk to vanish on the boundary of integration region. With
this choice both δξg

ij and δξΦ will be vanish on the same boundary. Moreover, we assume Φ to be
solution of matter fields equations.

By definition, the field equations for matter/radiation are the solutions of δΦSm = 0 and so they
satisfy the Euler-Lagrange34 equations

∂L
∂Φ
−∇k

∂L
∂∇kΦ

= 0 ,

because for an arbitrary variation δΦ, vanishing on the boundary of the region of integration, one
has

δΦSm =
1

c

∫ √
g

(
∂L
∂Φ

δΦ +
∂L

∂∇kΦ
δ∇kΦ

)
d4x =

1

c

∫ √
g

(
∂L
∂Φ
−∇k

∂L
∂∇kΦ

)
δΦ d4x .

34Leonhard Euler (Switzerland) 1707-1783; Joseph-Louis Lagrange (Italia) 1736-1813.
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If Φ is solution of field equations then δΦSm = 0. As a consequence also δΦξSm = 0, because this is
a particular variation of fields, and so, for an infinitesimal transformation of coordinates

0 = δgξSm ≡
1

2c

∫ √
g Tij δ̄g

ij d4x =
1

c

∫ √
g T ij∇iξ

j d4x = −1

c

∫ √
g∇iT

i
j ξ
j d4x ,

where in the last integral an integration by parts has been performed, taking into account that ξk

vanishes on the boundary.
Due to the arbitrariness of ξk it follows

∇iT
ij = 0 , Tij = Tji =

2
√
g

[
∂

∂gij
− ∂k

∂

∂∂kgij

]
(
√
g Lm ) . (6.14)

The tensor Tij will be identified with the energy-momentum tensor of matter/radiation fields because
it follows from the invariance of the action with respect to coordinate transformations.

It has to be observed that it is a symmetric tensor as required by Einstein equations and it is
possible to show that it is equal to canonical energy-momentum tensor of quantum field theory, after
symmetrisation via Belifante procedure.

6.5 Killing vectors

We have seen that under an arbitrary infinitesimal coordinate transformation xk → xk+ξk the metric
changes according to

δgij = − (∇iξj +∇jξi) , (6.15)

and so it is invariant, that is δgij = 0, if ξ is a Killing vector. This means that it is a solution of the
Killing equation35

∇iξj +∇jξi = 0 . (6.16)

The number of Killing vectors is related to the symmetries of the manifold we are dealing with, but
in any case it cannot to be greater than N(N + 1)/2, N being the dimension. In 4-dimensions, the
number of Killing vectors is less or equal to ten.

Manifolds having the maximal number of Killing vectors are called maximally symmetric spaces.
An important example is given by the Minkowski space. It has ten Killing vectors, which generate
the four translations and the six rotations (the Poincaré group). Other examples are the spaces with
constant curvature (hyper-spheres and hyperbolic manifolds).

6.5.1 Example: energy-momentum tensor for electromagnetic field

Compute energy-momentum tensor for electromagnetic field with arbitrary gravity.
The action can be directly obtained from the one of special relativity by minimal coupling. So

Sm =
1

c

∫
Lm

√
|g| d4x , Lm = − 1

16π
F rs Frs = − 1

16π
gijgrs Fir Fjs .

Recalling that Fij = ∇iAj −∇jAi = ∂iAj − ∂jAi we get

Tij =
2
√
g

[
∂

∂gij
− ∂k

∂

∂∂kgij

]
(
√
g L ) = − 1

4π
grs Fir Fjs +

1

16π
gij F

rs Frs .

Finally we have the known expression

T ji =
1

4π

[
−Fik F jk +

1

4
δji F

rs Frs

]
.

35Wilhelm Karl Joseph Killing (Germania) 1847-1923.
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6.6 Energy-momentum and angular momentum for gravitation

In Minkowski space, the continuity equation ∂µT
µν = 0 gives rise to the conservation of energy-

momentum and angular momentum of the corresponding field. In fact, integrating on a spatial
region V and using the Gauss theorem one has

∂0

∫
V
T 0ν d3x =

∫
V
∂0T

0ν d3x = −
∫
V
∂aT

aν d3x = −
∫

Σ
naT

aν dΣ ,

where Σ is the boundary of V with unit outward vector n̂ ≡ na (a = 1, 2, 3). Now, if the energy-
momentum tensor has compact support in V , then the last intgral is vanishing and so energy-
momentum P µ and angular momentum Jµν are consrved quantities. They are given by

P µ =
1

c

∫
V
T 0µ dV , Jµν =

1

c

∫
V

(xµT 0ν − xνT 0µ) dV .

In general relativity, the energy-momentum tensor of matter field satisfies the covariant continuity
equation ∇kT

k
j = 0, to which in general does not correspond conserved quantities, because

∇kT
k
j = ∂kT

k
j + ΓkklT

l
j − ΓlkjT

k
l =

1
√
g
∂k(
√
gT kj )− ΓlkjT

k
l .

This fact is not surprising because also the gravitational field possesses energy and momentum
and so it is reasonable to expect that the whole energy and the whole momentum are conserved
(matter+gravity).

We have to look for a quantity τ ij, depending on matter and gravity, satisfying a continuity
equation to which correspond conserved quantities. It is easy to understand that we shall fall in
trouble, because τ ij cannot be a tensor satisfying a covariant equation. In fact, in such a case we
go back to previous result with τ ij in place of T ij. Then we have to renounce to the tensoriality of
τ ij, or alternatively to have a covariant continuity equation or both of them. In any case we shall
have serious problems with interpretation (the gravitational energy problem). It is not possible to
say how much energy there exists in a finite region, because it depends on the reference frame, but
nevertheless it is possible to define the total energy of gravitation in the whole universe.

There are several proposal which permit to define energy and momentum of gravitation. All of
them are based on “pseudo-tensors” tij for the gravitational field, which locally are different, but
they give the same results for energy, momentum and angular momentum of the whole gravitational
field.

Here we first give a definition of tij for a general gravitational field (Landau-Lifsits pseudo-tensor)
and then we shall discuss a second quite simple and “intuitive” definition, which however can be used
only for asymptocally flat manifods, because it is based on the existence of a “quasi-Minkowskian”
reference frame.

6.6.1 The Landau-Lifsits energy-momentum pseudo-tensor

First of all we observe that in a locally inertial reference frame (more generally in any frame where
∂kgij = 0 , ∂r∂sgij 6= 0 in the considered point) one has

T ij = ∂kη
kij =

c4

8πG |g|
∂kQkij =

c4

8πG|g|
∂kQkji ,

{
ηikj = −ηjki ,
Qikj = −Qjki . (6.17)

In fact, using (5.4) and (3.16), after straightforward calculations one gets

Gij =
1

2|g|
∂k∂l

[
|g|(gijgkl − gikgjl)

]
=

1

|g|
∂kQkij =

1

|g|
∂kQkji , (6.18)
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Qkij = −Qjik =
1

2
∂l
[
|g|(gijgkl − gikgjl)

]
, (6.19)

which give rise to (6.17) via Einstein equation. It as to be noted that Qkij is not symmetric with
respect to the last two indices.

Since Qkij is not a tensor, in a general reference frame equation (6.17) is no more valid. We shall
have

c4

8πG|g|
∂kQkij − T ij = tijL = tjiL 6= 0 ,

where tijL is the Landau-Lifsits energy-momentum pseudo-tensor. By definition it is vanishing in a
local reference frame and so it depends on first derivative of the metric only. It can be written as a
complicated quadratic form in the Levi-Civita connection, which can be derived from the following
identity after a long and tedious calculation (see Landau-Lifsits)

tijL =
c4

8πG|g|
∂kQkij −Gij . (6.20)

Ones tijL has been computed, Einstein equations assumes the form

∂kQkij =
8πG

c4
τ ijL , τ ijL = |g|(T ij + tijL ) ,

Due to the antisymmetry of Qikj = −Qjki one has

∂j∂kQkij = ∂j∂kQkji = 0 =⇒ ∂iτ
ij = 0 ,

from which we derive the “conserved” quantities

P j =
1

c

∫
V
τ 0j dV , J ij =

1

c

∫
V

(xiτ 0j − xjτ 0i) dV . (6.21)

To be more precise, momentum and angular momentum are conserved if the integration is done over
the whole spatial section and at same time τ ij goes to zero on the boundary. In such case we get,
for example

dP j

dt
= −

∫
V
∂aτ

aj dV = −
∫

Σ
naτ

aj dΣ→ 0 .

It as to be noted that, as well as tij, P j and J ij are not tensors with respect to general coordinate
transformations, but they are tensors with respect to linear (in particular to Lorentz) transformations.
This means that the quantities above, for example P j, depend on reference frame. Also in the absence
of gravitation, tij is different from zero in non Minkowskian coordinates.

We finally observe that in an asymptotically flat manifold, energy-momentum and angular mo-
mentum of gravitational field are determined by the asymtotic behaviour of the field if we choose
a reference frame which is Minkowskian at infinity. In fact in such hypothesis it is reasonable to
assume |gij − ηij| ∼ 1/r and looking at (6.19) one gets Qkij| = O(1/r2) . Choosing a ball of radius r
and boundary Σ(r) as integration region in (6.21), we have

P j =
c3

8πG

∫
V
∂aQa0j dV =

c3

8πG

∫
Σ(r)

naQa0jdΣ =
c3r2

8πG

∫
S2

naQa0jdσ , (6.22)

where S2 is the unitary sphere and dσ = sinϑ dϑ dϕ. The last integral above is convergent and in
the limit r → ∞ gives the total energy-momentum of the field, which is a Lorentz 4-vector. This
corresponds to energy-momentum as measured by the Minkowskian observer at infinity. A Similar
equation holds for angular momentum too.
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6.6.2 Energy-momentum in asymptotically Minkowskian manifolds

Now we give a different definition of energy-momentum for gravitation, which is more “intuitive”
with respect to the previous one, but it works only on manifolds which asymptotically concide with
Minkowski. If this is the case, we can choose a “quasi-Minkowskian” reference frame where

gij = ηij + hij , |hij| → 0 , (at infinity), gij → ηij , (at infinity), (6.23)

and we can write the Einstein tensor in the form

Gij(grs) = Gij(ηrs + hrs) = G
(1)
ij +

(
Gij −G(1)

ij

)
,

where G
(1)
ij is the lowest contribution in hrs in a Taylor series expansion of Gij. It is linear in the

second derivatives of hrs. In fact, at first order one gets

Γkij =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) =

1

2
ηkl (∂ihjl + ∂jhil − ∂lhij) +O(h2) (6.24)

Ri
jrs = ∂rΓ

i
sj − ∂sΓirj + ΓirlΓ

l
sj − ΓislΓ

l
rj

=
1

2
ηil [∂j (∂rhsl − ∂shrl)− ∂l (∂rhsj − ∂shrj)] +O(h2) (6.25)

Rij = Rk
ikj = −1

2

[
2hij + ∂i∂jh− ∂i∂khkj − ∂j∂khki

]
+O(h2) ≡ R

(1)
ij +O(h2) (6.26)

R = gijRij = −2h+ ∂i∂jh
ij +O(h2) ≡ R(1) +O(h2) (6.27)

Gij =
1

2

[
∂i∂kh

k
j + ∂j∂kh

k
i − ∂i∂jh−2hij − ηij (∂r∂sh

rs −2h)
]

+O(h2)

≡ G
(1)
ij +O(h2) (6.28)

Here and in the rest of this section, all indices are rised and lowered by using the metric ηij and 2

represents the D’Alembertian operator in Minkowski space, that is

hkj = ηkihij , hrs = ηriηsjhij h = ηijhij , 2 = ηrs∂r∂s .

By O(h2) we mean corrections of the order equal or greater than h2 and its derivatives. More precisely,
in (6.24) the quadratic corrections start with O(h∂h) and so the corrections in (6.25)-(6.28) starts
with O(∂h∂h;h∂2h).

Using this notation, the Einstein equations can be set in the form

G
(1)
ij =

8πG

c4
(Tij + tij) =

8πG

c4
τij , (6.29)

where

tij = tji = − c4

8πG

(
Gij −G(1)

ij

)
, tij = O(h2) ≡ O(∂h∂h;h∂2h) . (6.30)

From (6.29) we see that τij is the source of the tensorial field hij and of course it depends on hij itself,
because the gravitational field is auto-interacting (the 4-momentum is the “charge” of gravitation).
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In this approach in which gravitation is considered as a “tensor” field on Minkowski space, the
quantity tij is interpreted as the “energy-momentum tensor” of the hij field. Note however that G

(1)
ij ,

hij and tij are not true tensors with respect to general coordinate transformations.

As it can be trivially verified using equation (6.28), the quantity G
(1)
ij satisfies the exact identity

(sometime called linearised Bianchi identity) ηik∂kG
(1)
ij = 0 and so the “energy-momentum tensor”

τij has to satisfy the continuity equation

∂iτ
ij = 0 , τ ij = ηirηjsτrs , (6.31)

which gives rise to the (conserved) quantities{
P k = 1

c

∫
V τ 0k d3x , dPk

dt
= −

∫
Σ naτ

ak dΣ ,

J ij = 1
c

∫
V (τ 0ixj − τ 0jxi) d3x , Jij

dt
= −

∫
Σ na(τ

aixj − τajxi) dΣ ,
(6.32)

which respectively represent the 4-momentum and the angular momentum of matter plus gravitation.
The quantities V,Σ, n̂ ≡ na have the same meaning as above.

For the hypothesis done on the metric, for r →∞ we shall reasonable have |hij| ∼ 1/r and as a
consequence tij ∼ 1/r4 because tij is at least quadratic in the derivatives of hij. Moreover, Tij has
a compact support and so the convergence of integrals in (6.32) is assured and surface integrals do
not give contributions, in the limit r → ∞. The momentum and angular momentum of a closed
gravitational system are conserved.

It has to be remarked that as well as τij, such quantities are not tensors, but nevertheless they
are Lorentz covariant. This means that they are tensors with respect to the Lorentz group (we are
considering a tensor field theory in Minkowski).

Using (6.18) or directly (6.28) of course one gets

Gij
(1) = ∂kQ

kij
(1) = ∂kQ

kji
(1) , Qkij

(1) = Qjik
(1) , (6.33)

where Qkij
(1) is the lowest contribution in the series expansion of (6.19).

Performing the integrals in (6.32) in a ball of large radius r with boundary Σ(r) and using the
Gauss theorem as above we get

P k =
c3

8πG

∫
V
∂iQ

i0k
(1) dV =

c3

8πG

∫
Σ(r)

naQ
a0k
(1) dΣ =

c3r2

8πG

∫
S2

naQ
a0k
(1) dσ , (6.34)

which is the total momentum of fields inside the ball. A similar equation can be written for the
angular momentum Jij.

• The interesting thing to note is that, while the integrals in (6.32) are done on an 3-dimensional
hypersurface t = constant, the integral in (6.34) is done on a 2-dimensional spherical surface
of radius r. This means that energy, momentum and angular momentum are determined only
by the asymptotic behaviour of the field.

• Another important feature of such quantities is that they are invariant with respect to coordi-
nate transformations which leave the metric in the quasi-Minkowskian form (6.23).
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6.6.3 Example: energy of Schwarzschild gravitational field

Now we compute the energy for the solution we shall derive in Section 7.2, equation (7.9).
The metric in spherical coordinates is

ds2 = −
(

1− rS
r

)
dt2 +

dr2

1− rS/r
+ r2dσ2 , rS =

2MG

c2
.

In order to compute the energy of the field, first of all we have to write it in “quasi-Minkowskian”
coordinates form, that is

ds2 = gijdx
idxj = (ηij + hij) dx

idxj , xk ≡ (x0, x1, x2, x3) ≡ (t, x, y, z) .

To this aim we set ~r = xûx + yûy + zûz = x1u1 + x2u2 + x3u3, ûa being the unit vectors along the
axis, and observe that

r =
√
δab xaxb ,

dr = βadx
a ,

dr2 + r2dσ2 = δabdx
axsdxb ,

=⇒ r2dσ2 = (δab − βaβb) dxadxb ,

where

βa =
xa

r
=

xa√
δab xaxb

, βaβa = 1 ,
∂βa

∂xb
=

1

r
(δab − βaβb) , ∂af(r) = βaf

′(r) .

Note that there are no difference between covariant and controvariant spatial indices since the spatial
components of the metric are δab.

In these coordinates we get

ds2 = ηijdx
idxj +

rS
r

(dx0)2 +
rS/r

1− rS/r
βaβbdx

adxb

= ηijdx
idxj + ε(r) (dx0)2 + ε(r) βaβb dx

adxb +O(ε)2 , (6.35)

where we have set ε(r) = rS/r .
The total energy can be computed using (6.34) or (6.22). Also in this latter case we can approxi-

mate the metric up to first order in hij since all terms in Qkij which in the limit r →∞ goes to zero
more quickly that 1/r2 do not give contributions to the integral. Then we get

gij = ηij + hij , h0a = 0 , h00 = ε(r) , hab = ε(r) βaβb ,

gij ∼ ηij − hij , h0a = 0 , h00 = ε(r) , hab = ε(r) βaβb .

From (6.22) it follows

P 0 =
c3r2

8πG

∫
S2

naQ
a00 dσ , n̂ =

~r

r
=⇒ na =

xa
r

= βa .

The quantity Qa00 has to be computed up to the order 1/r2 ∼ ε′(r). Using (6.19) one obtains

Qa00 =
1

2
∂b
(
|g| g00gab

)
∼ −1

2
∂b
(
|g|δab + h00 δab − hab

)
.
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Now

∂bh
00 = ∂bε(r) = βb ε

′(r) ,

∂bh
ab = βaβb∂bε(r) +

ε(r)βb

r
(δab − βaβb) +

ε(r)βa

r
(δbb − βbβb) = βaε′ + 2βa

ε(r)

r
.

Recalling (3.16) we also get

∂b |g| = gij∂b gij ∼ −∂bh00 + δcd∂bhcd = −∂b
[
ε(r) (1− δabβcβd)

]
= 0 ,

and so

Qa00 ∼ βa
ε(r)

r
= βa

rS
r2
.

Using this in (6.22) we finally obtain

P 0 = Mc =⇒ E = Mc2 .

As expected, the total energy of the static field is equal to the rest energy of the body.
One can also verify that the momentum P a = 0, as expected. In fact, applying (6.19) to this

special case it follows

Qa0b = −1

2
∂0

(
|g| g00gab

)
= 0 .
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7 Exact Solutions of Einstein Equations

Here we shall compute exact solutions of Einstein equations and we shall discuss in some detail the
physical consequences.

7.1 Spatial spherical symmetry

We start with solutions which represent the gravitational field generated by sources with spatial spher-
ical symmetry (central potential). This means that it has to be possible to find “quasi Minkowskian
coordinates” (t, ~x), which permit to write the interval ds in a form invariant with respect to the
(spatial) orthogonal group. The interval has to be a quadratic form in dxk, depending only on time
and rotational invariants

~x · ~x , ~x · d~x , d~x · d~x .

It is convenient to use “polar coordinates” (r, ϑ, ϕ)

r =
√
~x · ~x , ~x · d~x = r dr ,

d~x · d~x = dr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)
= dr2 + r2 dσ2 ,

dσ2 being the metric of the unitary sphere. In such coordinates the general form for the interval is

ds2 = α(t, r) dt2 + β(t, r) dr2 + γ(t, r) dσ2 + 2δ(t, r) dr dt ,

α, β, γ, δ being arbitrary functions of t and r. The coordinates are not yet fixed. In fact, without
breaking the symmetry, we can perform coordinate transfomations of the kind

(t, r, ϑ, ϕ)→ (f1(t̃, r̃), f2(t̃, r̃), ϑ, ϕ) ,

With a suitable choice of the functions f1, f2 the metric can be diagonalised and put in the “standard”
form

ds2 = −B dt2 + A dr2 + r2
(
dϑ2 + sinϑ dϕ2

)
, (7.1)

A = A(t, r) and B = B(t, r) being arbitrary functions to be determined by solving Einstein’s
equations. For physical reasons the signature has to be (−,+,+,+) and so A,B must be positive
functions.

Now we show that the transformation which permits to write the metric in standard form effec-
tively exists. First af all, we perform the transformation (t, r, ϑ, ϕ) → (t̃, r̃, ϑ, ϕ) by means of t̃ = t
and r̃2 = γ. In this way

ds2 = α̃(t̃, r̃) dt̃2 + β̃(t̃, r̃) dr̃2 + r̃2 dσ2 + 2δ̃(t̃, r̃) dr̃ dt̃ .

By a second transformation (t̃, r̃, ϑ, ϕ)→ (t, r, ϑ, ϕ) of the kind (t̃ = f(t, r) , r = r̃), with

df

dr
= − δ̃

α̃
,

df

dt
6= 0 ,

the standard form directly follows.
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7.2 The Schwarzschild solution

This is the first exact solution of Einstein equations (1916). It gives the gravitational field outside a
spherical symmetric source (external solution). Due to the symmetry of the source, we can put the
metric in the simplified form (7.1) and compute the positive functions A(t, r), B(t, r).

Of course, the energy-momentum tensor of the source has support in a spatial region r < R0, R0

being the radius of the spherical source, which in principle could depend on time (the source could
contract/expand). For r > R0 the energy-momentum tensor is vanishing and so we have to look for
solutions of Einstein equations in vacuum, that is with Tij = 0. Using (6.6) these read

Rij = 0 , (7.2)

which in principle correspond to ten second-order differential equations in the metric, but, as we
have already said, only six of them are independent. In our case, due to symmetry, we expect less
independent equations, because the metric has only two free parameters.

Now we have to compute all components of Ricci tensor using (3.14), (5.2) and (5.6). The compu-
tation is quite tedious but straightforward. It is convenient to distinguish between temporal/radial
(p, q, r, s = 0, 1) and angular (a, b, c, d = 2, 3) indices. As usual i, j, k, l = 0, 1, 2, 3.

Since the metric in (7.1) is diagonal we have gij = 1/gij and so

g00 = −B , g11 = A , gab = r2ĝab ,

g00 = − 1

B
, g11 =

1

A
, gab =

ĝab

r2
,

where “hatted” quantities are related to the unitary sphere S2 (see example 5.6). We obtain

Γcab = 1
2
ĝcd (∂aĝbd + ∂bĝad − ∂dĝab) = Γ̂cab ,

Γpab = −1
2
gpq∂qgab ,

Γapb = 1
2
gac∂pgbc ,

Γapq = −1
2
gac∂cgpq ,

Γpaq = 1
2
gpr∂agpr ,

Γrpq = 1
2
grs (∂pgqs + ∂qgps − ∂sgpq)

(7.3)

and the non-vanishing components of connection read

Γ0
00 = Ḃ

2B
, Γ0

01 = Γ0
10 = B′

2B
, Γ0

11 = Ȧ
2B
,

Γ1
00 = B′

2A
, Γ1

01 = Γ1
10 = Ȧ

2A
, Γ1

11 = A′

2A
,

Γ1
ab = − r

A
ĝab , Γa1b = Γab1 = 1

r
δab , Γcab = Γ̂cab ,

Γ̂2
33 = −1

2
sin 2ϑ , Γ̂2

23 = Γ̂2
32 = − cotϑ , Γ̂3

23 = Γ̂3
32 = − cotϑ ,

(7.4)

where “dot” and “prime” means derivative with respect to t and r respectively.
We start with the computation of the R01 component. Using previous expressions we get

R01 = R10 = Rk
1k0 = ∂pΓ

p
10 − ∂1Γpp0 + Γaa1Γ1

10 + ΓppqΓ
q
10 − Γp1qΓ

q
p0 =

Ȧ

rA
.

According to (7.2) the latter quantity has to be vanish and this happens if

Ȧ = 0 =⇒ A = A(r) .
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Such a condition now can be used to simplify other equations. One verifies that all components of
Rij with i 6= j are identically vanishing, while the components with i = j read

0 = R00 =
B′′

2A
− B′

4A

(
A′

A
+
B′

B

)
+
B′

rA
, (7.5)

0 = R11 = −B
′′

2B
+
B′

4B

(
A′

A
+
B′

B

)
+
A′

rA
, (7.6)

0 = R22 = 1 +
r

2A

(
A′

A
− B′

B

)
− 1

A
, (7.7)

0 = R33 = sin2 ϑ R22 . (7.8)

Among the four differential equations above, only two of them are linearly independent and these
determine the two unknown functions A and B.

Dividing (7.5) by B and (7.6) by A and summing up the two expressions we obtain

R00

B
+
R11

A
=

1

rA

(
A′

A
+
B′

B

)
,

which is vanishing if

A′

A
+
B′

B
= 0 =⇒ ∂

∂r
(AB) = 0 =⇒ AB = f(t) .

With a transformation of coordinates depending only on the temporal variable t → g(t) (this does
not change the standard form of the metric) it is always possible to put f(t) = 1, that is A = 1/B,
which corresponds to a particular choice of the time parameter. Such a transformation is solution of
the equation f(g(t)) (ġ(t))2 = 1. In fact with such a transformation

f(t) = A(t, r)B(t, r)→ A(g(t), r)B(g(t), r)ġ2(t) = f(g(t))ġ2(t) = 1 .

Finally, using (7.7) we get

R22 = 1− rB′ −B = 0 =⇒ d

dr
(rB) = 1 =⇒ B = 1− rS

r
,

where −rS is an integration constant, which will be fixed by taking the Newtonian limit. For weak
field and small velocity in fact we have (see (2.12)

−B = g00 ∼ −
(

1 +
2Φ

c2

)
= −

(
1− 2MG

c2r

)
=⇒ rS =

2MG

c2
,

where M is the mass of the body which generates the gravitational field. The quantity rS is called
the Schwarzschild radius.

The final solution has then form

ds2 = −
(

1− rS
r

)
dt2 +

1

1− rS/r
dr2 + r2(dϑ2 + sin2 ϑ dϕ2) . (7.9)

This is called the Schwarzschild metric. It represents the gravitational field outside a spherical
symmetric body. At the spatial infinity r � rS the metric (7.9) will coincide with the one of
Minkowski and this means that very far from the source the special relativity holds true.
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• The spherical source which generates the gravitational field can have arbitrary dimension R0.
For planets and visible stars one has R0 � rS and since the Schwarzschild solution is valid for
r > R0, the metric (7.9) has no singularities. The situation drastically change when R0 < rS.
In fact, in such a case the static metric (7.9), is singular for r = rS. However it has to be
noted that this is not a “true” singularity of the field because in such a point all invariant
quantities are finite (of course Ricci tensor and scalar curvature are vanishing, but for example
the scalar RijrsRijrs is equal to 12r2

Sr
−6 and so it is singular only at r = 0). The singularity of

the metric is due to the “particular choice of coordinates”. When we cross the surface r = rS
(the horizon), both g00 and g11 change the sign. In particular, for r < rS g00 becomes positive,
while g11 becomes negative. This means that the time-like Killing vector ∂t becomes space-like,
while the space-like Killing vector ∂r becomes time-like. Such a feature will be discussed in
more detail in chapter 7.8 which is dedicated to the physics of black holes.

In the case of a “point-like source”, the metric in (7.9) has a second singularity at r = 0, which
effectively corresponds to a “physical” singularity, which is due to the fact the density of matter
has to be infinite at the origin (ε(r) = M δ(r)).

• It has also to be noted the curious fact that the classical escape velocity of a particle at a
distance d = rS from the body is equal to the speed of light (this seems a pure coincidence).

7.3 The classical tests of Einstein equations

In the Newtonian theory there are three classical phenomena which are in disagreement with exper-
imental data, even if one takes into account of possible corrections due to special relativity. On the
contrary general relativity is in excellent agreement with all that phenomena. Recently other tests
have confirmed the validity of general relativity.

1. Precession of perihelia: it has been observed that the perihelia (the point on the orbit
nearest the sun) of mercury is not fixed with respect to distant stars, but it “advance”, the
precession angle being ∆ϕO = 5600.73 ± 0.41 seconds per century. This means that the orbit
is not exactly elliptic, but it precesses around a focus (see figure 3). Even if one takes into
account of perturbations due to the presence of other planets and the rotation of the earth, the
Newtonian theory gives a precession angle ∆ϕN = 5557.62 ± 0.20 seconds per century. The
discrepancy between the measured value and the one provided by Newtonian theory is then
43.11±0.45′′ per century. This could be due to a modification of Newtonian law, for example as
a consequence of the solar oblateness or other unknown effects. Of course the effect is present
in all planets, but for mercury it is more evident because such a planet has a very eccentric
orbit and moreover it is quite near the sun.

2. The deflection of light by the sun: as well as massive particles, photons move along
geodesic and so they interact with gravitational field. Then we expect the light to be deflected
by the sun. This effect can be observed by looking at a distant star when the sun is between
the earth and the star itself and six month later, when the sun is on other side (see figure (4)
(the first data was taken during an eclipse in the year 1919).

For a massive particle, the deflection angle can be computed using Newtonian theory. It
depends on the starting velocity at infinity and the impact parameter, but (of course) not on
the mass of the particle. Then in the formula one can put the speed of light and obtains in
this way a formula valid also for photons. As we shall explicitly see, general relativity gives a
deflection angle which is double than the one computed by using Newtonian theory.
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Figure 3: precession of perihelia-aphelia (figure by G. t’Hooft)

3. The radar echo delay: this concerns the time which takes an electromagnetic signal to go
from the earth to a inner planet and back. As we shall see, this is longer than what expected
if light traveled in straight lines at constant velocity (Shapiro experiment (1964).

7.4 The orbit of a test particle in Newtonian theory

Before to find the geodesics of the metric (7.9), we study the motion of a particle in Newtonian
theory, then we consider a test particle in a central field V (r) = mφ(r) = −mMG/r. As it is well
known, the angular momentum L and the energy E are conserved quantities. They read

L = mr2ϕ̇ = const , E =
1

2
m(ṙ2 + r2ϕ̇2) + V =

mṙ2

2
+

L2

2mr2
+ V = const . (7.10)

The differential equation which determines the trajectory of the particle can be easily obtained from
equations in (7.10) by eliminating the time variable. This gives

dϕ =
L dr

r2

[
2m(E − V )− L2

r2

]−1/2

=⇒ ϕ(r)− ϕ(r0) =
∫ r

r0

Ldr

r2
√

2m(E − V )− L2/r2
. (7.11)

For an open orbit (see figure 4) one has L = mbv∞ and E = mv2
∞/2 where b is the impact parameter

and v∞ the velocity very far from the scattering center. Choosing the system of coordinates as in
figure 4) (φ = 0 corresponds to the point on the trajectory nearest the source), the deflection angle
read

χN = |2φ(∞)− π| , ϕ(∞) = b
∫ ∞
r0

dr

r
√
r2 + 2MGr/v2

∞ − b2
, (7.12)

where r0 is the minimum value (on the trajectory) of the coordinate r. This means that φ(r0) = 0
and dr

dt
(r0) = 0, then r0 it is the positive solution of the equation

2m(E − V )− L2

r2
= 0 =⇒ 2mE =

L2

r2
0

− 2m2MG

r0

.

The integral in (7.12) can be done exactly, the primitive of the integrand function being

ϕ(r) = arcsin
2C +Br

r
√

∆
, B =

2MG

v2
∞

, C = −b2 , ∆ = B2 − 4C . (7.13)

Since the angle does not depend on the mass of the particle, the latter formula can be used for a
photon too, by putting v∞ = c. In this way B = 2MG/c2 = rS.

The experimental impact factor is (more or less) equal to the radius o the sun, that is b ∼ r0 ∼ R�
and rS � R�. For our purposes it is sufficient to find an approximate solution at the first order in
rS/R�. From (7.13) then it follows

ϕ(∞) ∼ π

2
+
rSr0

2b2
∼ π

2
+

rS
R�

and finally χN ∼ rS/R�. As we shall see below, this result is exactly one-half with respect to the
one given by general relativity.
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Figure 4: deflection of light

7.5 The orbit of a test particle in general relativity

A test particle moves along a geodesic xk(λ) given by the equation

Duk

dλ
=
duk

dλ
+ Γkij u

i uj = 0 , uk =
dxk

dλ
, (7.14)

where λ is an arbitrary affine parameter (not the proper time, because we shall compute the trajec-
tories for photons too) and uk represents the 4-velocity (it is exactly the 4-velocity if λ = τ). Now
we look for solutions of (7.14) for a generic static and isotropic metric of the form

ds2 = −Bdt2 + Adr2 + r2 dσ2 = gijdx
idxj ,

where A = A(r) and B = B(r). We have seen above that this metric is solution of Einstein equations
in vacuum if A = 1/B, but for more generality, we do not use such a result (see the post-Newtonian
approximation in 7.6).

Then we use connection (7.4) with Ȧ = Ḃ = 0 and re-write (7.14) in the form

du0

dλ
+ Γ0

iju
iuj =

du0

dλ
+
B′

B
u0u1 = 0 , (7.15)

du1

dλ
+ Γ1

iju
iuj =

du1

dλ
+
B′

2A
(u0)2 +

A′

2A
(u1)2 − r

A

[
(u2)2 + sin2 ϑ(u3)2

]
= 0 , (7.16)

du2

dλ
+ Γ2

iju
iuj =

du2

dλ
+−sin 2ϑ(u3)2

2
+ 2 cotϑu2u3 +

2u1u2

r
= 0 , (7.17)

du3

dλ
+ Γ3

iju
iuj =

du3

dλ
+ 2 cotϑu2u3 +

2u1u3

r
= 0 . (7.18)

As it happens in the classical case, for symmetry reasons we expect the trajectory of the particle
to belong to a plane, say (x, y). Then we look for solutions with ϑ = π/2. This choice implies
u2 = dϑ/dλ = 0 and so equation (7.17) is identically satisfied. Recalling also that u1 = dr/dλ, the
other three equations simplify to

d

dλ
log u0 = −u1 d

dr
logB = − d

dλ
logB , (7.19)
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du1

dλ
= − 1

2A

[
B′(u0)2 + A′(u1)2

]
+
r(u3)2

A
, (7.20)

d

dλ
log u3 = −2u1

r
= − d

dλ
log r2 . (7.21)

Now equations (7.19) and (7.20) can be trivially solved and in fact

d

dλ
log(Bu0) = 0 =⇒ u0 =

dx0

dλ
=
cost

B
,

d

dλ
log(r2u3) = 0 =⇒ r2u3 = r2dϕ

dλ
= cost = J .

(7.22)

The first integration constant is related to the possible choices of the λ parameter and so we put it
equal to 1. This means that

dx0

dλ
=

1

B
=⇒ λ→ x0 = ct at large distances where B → 0 .

In this case the evolution parameter tends to the Newtonian time very far from the source.
The second integration constant J , which we call angular momentum, at large distances effectively

becomes the angular momentum per unit mass, in units where c = 1.
There exists a second conserved quantity, the energy, which can be derived from (7.20), but more

quickly by recalling that the scalar product is invariant under parallel transport. So

0 =
D

dλ

(
ukuk

)
=

d

dλ

(
ukuk

)
=⇒ ukuk =

ds2

dλ2
= −E .

The constant E is positive for massive particles and vanishing for massless particles and we shall see
that it is related to the classical energy.

From previous equations now we get the explicit relation

ds2

dλ2
= − 1

B
+ A

(
dr

dλ

)2

+
J2

r2
= −E .

In conclusion, the trajectory is determined by the two equations

J = r2dϕ

dλ
, (7.23)

E =
1

B
− A

(
dr

dλ

)2

− J2

r2
=

1

B

1− A

c2B

(
dr

dt

)2
− J2

r2
, (7.24)

where in the last expression we have explicitly set λ = ct. At large distances from the source the
coordinate time t will coincide with the Minkowskian time.

Now we eliminate the parameter λ and obtain the exact solution

ϕ(r)− ϕ(r0) = J
∫ r

r0

√
AB dr

r2
√

1−BE −BJ2/r2
. (7.25)

The meaning of the constant of motion can be understood in the Newtonian limit, where the
metric becomes the one of Minkowski. We have

B = −g00 ∼ 1 +
2φ

c2
, λ ∼ ct , φ = −MG

r
,
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J ∼ r2

c

dϕ

dt
=⇒ J =

L

c
,

1

2

(dr
dt

)2

+
L2

r2

+ φ =
c2(1− E)

2
=⇒ E = 1− 2E

c2
,

where L and E are Newtonian, non-relativistic quantities (angular momentum and energy per unit
mass).

7.5.1 Particular solutions: closed circular orbits

We look for circular orbits, this means r = r0 =constant. The values of r0 can be determined by
equation (7.24) which becomes

−J
2

r2
0

+
1

B(r0)
= E .

The derivative of (7.24) with respect to r at r = r0 reads

−B
′(r0)

b2(r0)
+

2J2

r3
0

= 0

and so

E =
1

B(r0)

(
1− r0B

′(r0)

B(r0)

)
, J2 =

r3
0B
′(r0)

B2(r0)
.

From equations above one derives E and J starting from the dimension r0 of the orbit.
For massless particles, E = 0 and so r0B

′(r0) = B(r0), from which one gets

r0 =
3

2
rS .

We see that the light can travel along a circular closed orbit with a radius equal to 3/2 the
Schwarzschild radius.

Of course all considerations above holds for r ≥ R�, R� being the radius of the body which
generates the field.

7.6 The post-Newtonian approximation

One starts from a generic static and isotropic metric, but without to assume the validity of Einstein
equations and one develops the functions A and B in power series of rS/r, that is

ds2 = −B(r)(dx0)2 + A(r)dr2 + r2(dϑ2 + sin2 ϑ dϕ2) , (7.26)

A(r) = 1 + γ
rS
r

+ . . . , B(r) = 1− α rS
r

+
β − αγ

2

(
rS
r

)2

+ . . . ,

α, β, γ being arbitrary parameters to be determined from experimental data.
From the principle of equivalence it follows g00 ∼ −(1 − 2MG/c2r) and so α = 1. If we assume

also the validity of Einstein equations (6.3)), then γ = β = 1. For the moment, for more generality
we do not fix β and γ, but we put α = 1 as it is imposed by the principle of equivalence.
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At the first order in rS/r we get

A(r) ∼ 1 + γ
rS
r
, B(r) ∼ 1− rS

r
.

Conserved quantities and trajectory for test particle/photon are given by equations (7.23), (7.24)
and the (7.25), that is

J = r2 dϕ

dλ
, E =

1

B
− A

(
dr

dλ

)2

− J2

r2
. (7.27)

ϕ(r)− ϕ(r0) = J
∫ r

r0

√
AB dr

r2
√

1−B(r)E −BJ2/r2
. (7.28)

7.6.1 The deflection of light

For massless particles we have E = 0 and J = L/c = b, where b is the impact parameter (see figure 4).
The deflection angle is

χ = |2ϕ(∞)− π| , ϕ(∞) = J
∫ ∞
r0

√
AB dr

r2
√

1−BJ2/r2
,

r0 being the minimum value of the r coordinate and ϕ(r0) = 0. From equation dr/dλ = 0 we get

J2 =
r2

0

B(r0)
=

r2
0

1− rS/r0

∼ r2
0(1 + ε) ,

where we have set ε = rS/r0. Putting x = r0/r we obtain

√
AB ∼

√
(1 + γεx)(1− εx) ∼ 1 +

ε(γ − 1)

2
,[

1− B(r)J2

r2

]−1/2

∼
[
1− (1− εx)(1 + ε)x2

]−1/2
∼ 1√

1− x2

(
1 +

εx2

2(1 + x)

)
, (7.29)

from which

ϕ(∞) ∼
√

1 + ε
∫ 1

0

[
1 +

ε(γ − 1)x

2
+

εx2

2(1 + x)

]
dx√

1− x2

=
√

1 + ε

arcsinx− ε
√

1− x
1 + x

− εx

2

√
1− x
1 + x

− ε

2
arcsinx− ε(γ − 1)

2

√
1− x2

1

0

∼
[
π

2
+ ε+

ε(γ − 1)

2

]
. (7.30)

Now, choosing r0 ∼ R�, at the first order in ε we obtain

χ ∼ 2rS
R�

+
(γ − 1)rS

R�
.

As we already said, for general relativity (γ = 1) such a result is twice the one computed using
Newtonian theory. For the sun one gets the value χ ∼ 1.75 seconds, which is in good agreement with
the experimental data.
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Figure 5: radar echo delay

7.6.2 Radar echo delay

We would like to compute the time t(r1, r2) which takes a photon to go from the point P1 ≡
(r1, π/2, ϕ1) to the point P2 ≡ (r2, π/2, ϕ2) in the presence of the gravitational field generated
by a star (see figure 5). In order to make the calculation we first compute the time t(r, r0) which
the signal takes to reach the nearest point to the star P0 ≡ (r0, π/2, 0), starting from an arbitrary
point P ≡ (r, π/2, ϕ) on the trajectory (note that we refer to the specular trajectory with respect to
the one in the picture 5). The minimal distance r0 from the star is directly related to the angular
momentum because the energy vanishes (E = 0). The coordinate time can be obtained by integrating
dx0 = dλ/B, which is an exact differential form.This means that the integral does not depend on
the path (in a stationary field).

Putting x = r0/r, at the first order in ε = rS/r0 we get

dx0 =
dλ

B
=

√
A

B

dr√
1−BJ2/r2

∼ −
[
1 +

(γ + 1)εx

2

] [
1 +

εx2

2(1 + x)

]
r0 dx

x2
√

1− x2
,

from which it follows

c t(r, r0) =
∫ r

r0

√
A

B

dr√
1−BJ2/r2

∼ r0

∫ 1

r0/r

[
1 +

(γ + 1)εx

2
+

εx2

2(1 + x)

]
dx

x2
√

1− x2

=
√
r2 − r2

0 +
rS(γ + 1)

2
log

r +
√
r2 − r2

0

r0

+
rS
2

√
r − r0

r + r0

.

The first term on the right-hand side of the latter equation represents the time which the signal will
take if it was moved along a straight line at constant velocity c. As we can see, the true time is
greater than that, in contrast with what happens for massive particles.
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The equations of motion are invariant with respect to time inversion, then t(r, r0) = t(r0, r) and
the total time which the signal takes to go from P1 to P2 and back is

ttot = 2[t(r1, r0)± t(r2, r0)] ,

where in the latter equation one has to take the minus sign when the two points are on the same side
with respect to the star, while one has to take the plus sign when they are on opposite positions, as
in figure 5, In such a latter case one obtains a delay given by
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∆t = 2
[
t(r1, r0) + t(r0, r2)− 1

c

(√
r2

1 − r2
0 +

√
r2

2 − r2
0

)]

= (γ + 1)
rS
c

log
r1r2

r2
0

+ log

1 +

√√√√1− r2
0

r2
1

+ log

1 +

√√√√1− r2
0

r2
2


+
rS
c

[√
r1 − r0

r1 + r0

+

√
r2 − r0

r2 + r0

]
(7.31)

Of course, what one effectively measures is the proper time ∆τ =
√
g00(P1) ∆t.

• In the physical experiment (Shapiro-1964) one measures the time which takes a radar signal
to go from the earth to mercury and back and one obtains a delay ∆τ = 240µs, which is in a
good agreement with (7.31) if γ = 1 (general relativity).

7.6.3 The precession of perihelia

Let us consider a particle (mercury) freely moving in the gravitational field generated by a star
(sun). We assume the metric to be defined by (7.26) and the orbit of the particle to be a spatial,
approximatively closed curve (an ellipse, according to Newtonian theory – see figure 6). Let us
indicate by r1 and r2 respectively the nearest (perihelia) and the more far away (aphelia) points of
the orbit, with respect to the star. In such a points dr/dλ = 0 and so they are solutions of the
equation

f(r) =
1

B(r)
− J2

r2
− E = 0 , (7.32)

It has to be noted that, in contrast with Newtonian theory, in general the latter algebraic equation
has more than two solutions (the orbit is not elliptic), but since for our aim approximated solutions
are sufficient, we expand the function 1/B(r) in power series up to second order in rS/r. In such a
way (7.32) becomes a second order algebraic equation in the variable 1/r. In fact

f(r) ∼
[
1− (β − γ)

2
− J2

r2
S

]
r2
S

r2
+
rS
r

+ 1− E = −C
(

1

r
− 1

r1

) (
1

r
− 1

r2

)
, (7.33)

C = J2 −
(

1− β − γ
2

)
r2
S .
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By the equations f(r1) = 0 and f(r2) = 0 we get

E =

r2
1

B1
− r2

2

B2

r2
1 − r2

2

∼ 1 +
rS

r1 + r2

+ ...

J2 =
1
B1
− 1

B2

1
r2
1
− 1

r2
2

∼ rSL

2
+

[
1− β − γ

2

]
r2
S + ... (7.34)

where we have disregard higher order terms and we have set

B1 = B(r1) , B2 = B(r2) ,
1

L
=

1

2

(
1

r1

+
1

r2

)
.

Using this notation C = rSL/2 and

J2

C
∼ 1 +

[
1− β − γ

2

)
r2
S

C
= 1 +

[
1− β − γ

2

)
2rS
L

.

The approximated expressions can be obtained directly and more quickly by means of (7.33).
From equation (7.28) of the trajectory we get

ϕ(r2)− ϕ(r1) = J
∫ r2

r1

√
A dr

r2
√
f
∼ J√

C

∫ r2

r1

√
A dr√(

1
r1
− 1

r
)
) (

1
r
− 1

r2
)
)

∼
√
r1r2

[
1 +

(
1− β − γ

2

)
rS
L

] ∫ r2

r1

(
1 +

γrs
2r

)
dr

r
√
r − r1

√
r2 − r

= π

[
1 +

(
1− β − γ

2

)
rS
L

] (
1 +

γrS
2L

)

∼ π +
(2 + 2γ − β)πrS

2L
.

We see that the difference between the angular coordinates of perihelia (r1) and aphelia (r2) is greater
than π and this means the the two points are not on opposite side with respect to the star (the orbit
is not elliptic, it is not closed).

For a complete revolution we obtain

∆ϕ = 2[ϕ(r2)− ϕ(r1)]− 2π =
3π

L

(
2 + 2γ − β

3

)
.

For the system Mercury-Sun, general relativity (β = γ = 1) gives the value ∆ϕ = 0.1038 seconds
per revolution. To this value correspond 43.03 seconds per century, which is exactly the value which
could not be explained in the framework of Newtonian theory.

• In the numeric computation it has to be taken into account that the revolution is the one
of mercury, while the century corresponds to 100 revolutions of the earth equivalent to 415
revolutions of mercury (see table 4).

• As we have already pointed out, the observed precession of mercury is 5600.73′′ per century,
but 5025′′ are due to the rotation of the astronomic system of coordinates and 532′′ are due to
the perturbation of other planets.
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It has also to be noted that general relativity would give negligible corrections (about ∼ 10−4

seconds per century) to the value ∆ϕN computed in the framework of Newtonian theory as
the sum of the two effects above. This means that, in our approximation, it is effectively
reasonable to compare the theoretical value ∆ϕ with ∆ϕO−∆ϕN (for an exhaustive discussion
see Weinberg-1972).

• The last integral above can be easily computed using the residue theorem. To this aim we
consider the function

F (z) =
1

z

(
1 +

γrS
2z

)
1√

z − r1

√
r2 − z

and integrate it over a closed path which includes the two singularities r1 and r2. The residue
theorem gives

∮
F (z) dz = −2πi

∑
residue = −2

∫ r2

r1
F (r) dr .

In the sum one has to consider all external residue, infinity too, but since the function at
infinity goes as 1/z3, the residue at that point is vanishing. In order to compute the residue at
the origin, where there is a simple pole, it is convenient to make the Laurent expansion. Then

F (z) ∼ 1

z

(
1 +

γrS
2z

)
1√
−r1r2

(
1 +

z

2r1

)(
1 +

z

2r2

)
∼ 1√

−r1r2

(
1 +

γrS
2L

)
1

z
+ ...

The integral now read

∫ r2

r1
F (r) dr = π

1√
−r1r2

(
1 +

γrS
2L

)
,

from which the desired result follows.

7.7 The internal solution (spherical symmetry)

Here we shall find a solution of Einstein equations, in the presence of matter, representing a spherical
symmetric body (of course in a suitable system of coordinates). The more general form of the metric
is given by (7.1), while for the energy-momentum tensor with the required symmetry we choose the
one of a perfect fluid, which has the form

T ij = (p+ ε)
uiuj
c2

+ pδij , ukuk = −c2 ,

where ε represents the energy density, p the pressure and uk = dxk/dτ the 4-velocity of the fluid.
It is convenient to choose a system of coordinates in which the fluid is at rest, that is ~u = 0,
ukuk = u0u0 = −c2, u0 = c/

√
−g00 and for simplicity we look for static solutions (the collapse of a
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star is not considered here). With such assumptions all parameters depend on the r coordinate only
and we have (see equation (7.5)-(7.8))

ds2 = −B(r)dt2 + A(r)dr2 + r2dσ2 =⇒


R00 = B′′

2A
− B′

4A

(
A′

A
+ B′

B

)
+ B′

rA
,

R11 = −B′′

2B
+ B′

4B

(
A′

A
+ B′

B

)
+ A′

rA
,

R22 = 1 + r
2A

(
A′

A
− B′

B

)
− 1

A
,

R33 = sin2 ϑ R22 .

while the non vanishing components of energy-momentum tensor read{
T 0

0 = −ε(r) ,
T ab = p(r) δab ,

{
T00 = B(r) ε(r) ,
Tab = p(r) gab , T = T kk = 3p(r)− ε(r) .

Now we can use (6.3) or alternatively (6.6) to compute the parameters A and B in terms of p and ε.
Using (6.3) for G00, after a straightforward calculation we get

G00 =
8πGB(r) ε(r)

c4
=
B(r)

r2

d

dr

[
r

(
1− 1

A(r)

)]
. (7.35)

The latter equation can be integrated to obtain

A(r) = g11 =

[
1− 2M(r)G

rc2

]−1

, M(r) =
4π

c2

∫ r

0
ε(y)y2 dy .

The other parameter of the metric can be obtained by solving (6.6) for R22. We have

R22 =
4πG (ε− p)r2

c4
=

r

2A

[
2(A− 1)

r
+
A′

A
− B′

B

]
,

and from (7.35)

A′

A
=

8πGε rA

c4
− A− 1

r
.

Then we get

B′

B
=

2M(r)G
rc2

+ 8πGr2p(r)
c4

r
[
1− 2M(r)G

rc2

] . (7.36)

• It has to be noted that g11 = A(r) is “formally” similar to what we have obtained for the
external solution, but with M replaced by M(r), which represents “the mass” inside the ball
of radius r (not exactly, because it is not the proper mass).

As well as it happens in Newtonian gravity, we see that the mass outside the surface r does
not influence the gravitational field at any point inside that surface, but the same thing is not
valid for g00 = −B(r).

For r greater that the dimension of the source (r > R0) one has p(r) = ε(r) = 0 and, as
expected, the metric becomes equal to the one of Schwarzschild .
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An interesting physical constraint between variables can be obtained by using the four conserva-
tion laws (6.4.) One can verify that the unique non trivial one is ∇kT

k1 = 0. Using the fact that T ij

is diagonal we get

∇kT
k1 = ∂kT

k1 + ΓkkjT
j1 + Γ1

kjT
kj = ∂r T

11 + Γkk1 T
11 + Γ1

00T
00 + p gab Γ1

ab .

Using the Christoffel symbols in (7.3) we have

0 = ∂r

(
p

A

)
+

(
B′

2B
+
A′

2A
+

2

r

)
p

A
+

εB′

2AB
+ p

(
A′

2A2
− 2

rA

)

=
1

A

(
p′ +

(p+ ε)B′

2B

)
,

and by means of equation (7.36) we finally obtain

p′ = −(p+ ε)
M(r)G
rc2

+ 4πGr2p(r)
c4

r
[
1− 2M(r)G

rc2

] . (7.37)

This is the Tolman-Oppenheimer-Volkoff equation of the thermodynamical equilibrium. Its physical
meaning becomes clear in the Newtonian limit p � ε, M(r)G � rc2 where the equation assumes
the simple form

p′ ∼ −M(r)Gε

r2c2
.

The right-hand side of the latter equation represents the gravitational force which the mass M(r)
experience on the unitary surface element with mass ε/c2. The star will contract under the proper
gravitational attraction until the internal pressure p(r) will satisfy (7.37). If the mass M of the orig-
inal star is sufficiently large (M > MTOV , MTOV ∼ 3.2M� being the mass of Tolman-Oppenheimer-
Volkoff and M� the mass of the sun), then the pressure will not be able to contrast the gravitational
force and the collapse will be unavoidable and unstoppable. The radius of the star will became
smaller than the Schwarzschild radius and so it will become a black hole.

In the usual stars like the sun, the main contribution to the pressure is proportional to the
temperature (ordinary pressure of a gas) and as a consequence the thermodynamical equilibrium is
broken when the temperature becomes smaller than a critical value depending on the total mass. In
such a case the star will start to collapse, the density, as well as the electron degeneracy pressure,
will increase. If the value of the mass M is smaller than MCh (MCh ∼ 1.44M� is called the mass of
Chandrasekhar) then the collapse will stop, the final result being a white dwarf. In such a case the
gravitational force in balanced by the electron degeneracy pressure.

Also in the case in which the value of the mass M is greater than MCh, but smaller that MTOV

the collaps will stop, the result being a neutron star. The density is so high that all electrons are
“captured” by protons to form neutrons. The gravitational force in balanced by neutron degeneracy
pressure.

• Note that in principle the collapse for stars with M > MTOV could be stopped by quark
degeneracy pressure or by unknown effects of quantum gravity.
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7.8 Black holes

We recall the Schwarzschild metric

ds2 = −
(

1− rS
r

)
dt2 +

1

1− rS/r
dr2 + r2(dϑ2 + sin2 ϑ dϕ2) ,

where rS = 2MG/c2 and coordinates run over t ∈ (−∞,∞), ϑ ∈ [0, π], ϕ ∈ [−0, 2π] and r ∈ (rS,∞).
As we have already said above, the singularity of the metric at r = 0 corresponds to a physical

singularity, because at that point some physical/geometrical quantities diverge, while the singularity
of the metric at r = rS is not a physical singularity because at that point all invariant quantities are
finite.

In principle there could be massive bodies with dimensions R� smaller than the corresponding
Schwarzschild radius rS. They are entirely contained inside the spherical surface r = rS, which is
called event horizon.

From the classical (non-quantistic) point of view, what is inside the event horizon cannot be
seen by an observer outside it. For this reason such objects are called black holes. According to
the principle of equivalence, a very “small” observer in free fall crossing the event horizon will not
experience any force, apart tide forces, which in principle could be very small because they are due
to the curvature of space-time. In fact, on the horizon one gets

RijrsR
ijrs =

12r2
S

r6
=⇒ RijrsR

ijrs
∣∣∣
r=rS

=
12

r4
S

=
3

4

c8

G4M4

and the curvature is really small for heavy black holes. For example, on the surface of the earth
the “square” of Riemann tensor is of the order 10−52 cm−4, while for the the smallest black hole
generated by the collapse of a star, this means M ∼ 3M�, the square of Riemann tensor is of the
order 10−23 cm−4, but it seams that at the center of galaxies there are black holes with M ∼ 108M�.
For such supermassive objects the square of Riemann tensor is of the order 10−55 cm−4.

Note however that such considerations do not take into account of quantum effects (see the end
of this section).

7.8.1 Schwarzschild geometry

The Schwarzschild metric is a solution of Einstein equations in vacuum also for 0 < r < rS, this
means inside the event horizon, but in such a case the meaning of coordinates become “unclear”
because the inner region is not connected with the external one and the interpretation of the results
becomes problematic. Temporal and spatial components of the metric change sign and so, when we
cross the event horizon, the time-like Killing vector ∂t becomes space-like, while the space-like Killing
vector ∂r becomes time-like and so they exchange they roles.

Moreover, the geometry of space-time inside the event horizon analysed by means of Schwarzschild
coordinates appear to be unphysical, since for example, proper time and proper distance becomes
imaginary. The reason of such a very strange behaviour is due to the fact that the Schwarzschild
metric describes the geometry of space time as seen by an observer at rest. As we shall see below,
inside the event horizon it is impossible to have an observer at rest.

In the external region r > rS, the null radial geodesic (ds = 0, dϑ = 0, dϕ = 0) satisfy the
equation

dt

dr
= ± 1

1− rS/r
, r > rS .
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The plus and minus signs refer to outgoing and ingoing geodesic respectively,
The proper time of an observer at rest at the point r > rS (angular coordinates does not matter),

is given by

dτ(r) =
√
|g00| dt =

√
1− rS

r
dt < dt , r > rS .

This is in agreement with time dilation: the clock in the gravitational field runs more slowly that the
clock at infinity where gravitation is absent. In fact, the coordinate time t is also equal to the proper
time of the observer at rest at infinity (in units where c = 1). This means that for the observer at
infinity, the time duration between two events in a point near the horizon will be very large, tending
to infinity for r → rS.

In a similar way, the light emitted by a source at rest at the point r > rS, will arrive at infinity
redshifted by the factor (1−rS/r)−1/2. If λ0 is the proper wavelength of the light, then the wavelength
λ∞ measured by the observer at rest at infinity is given by

λ∞ =
λ0√

1− rS/r
,

which tends to infinity when r approaches rS.
The ga0 “spatial-temporal” components of the metric are vanishing (a = 1, 2, 3) and so the spatial

metric, which describes the spatial geometry, is trivially given by

γab = gab =⇒ d`2 =
dr2

1− rS/r
+ r2

(
dϑ2 + sin2 ϑ dϕ2

)
.

d` represents the proper distance between the two points P1 = (t, r + dr, ϑ + dϑ, ϕ + dϕ) and
P = (t, r, ϑ, ϕ) as measured by an observer at rest in P at time t. In particular, for two points on
the same radial line (dϑ = dφ = 0) we have

d` =
dr√

1− rS/r
, r > rS ,

and we see that the proper distance diverge when r → rS.
In order to study the region inside the horizon it is convenient to use a non singular metric. As

we see by looking at above equations, the singularity r = rS of the metric is not a singularity of
the field. One can verify that all invariants quantities, as well as the determinant of the metric,
are not singular on the event horizon. Such a surface is a singularity of the metric only and can be
eliminated by a suitable choice of coordinates. In fact, there exists a choice of coordinates in which
the Schwarzschild metric is regular everywhere, apart the origin r = 0, which is a true singularity
of the field. The price to pay is to have a non-static metric. There are various metric extensions
of that kind, which describe different regions of space-time (Eddington36 (1924), Lemâıtre (1938),
Finkelstein (1958), Fronsdal (1959)). The maximal extension is due to Kruskal and Szekeres (1960).

7.8.2 The Eddington-Finkelstein coordinates

Starting from Schwarzschild coordinates (t, r, ϑ, ϕ) one first introduces the Regge-Wheeler or tortoise
coordinate r∗ by

dr

1− rS/r
= dr∗ =⇒ r∗ = r + rS log

∣∣∣∣ rrS − 1
∣∣∣∣ , r > rS , (7.38)

36Arthur Stanley Eddington (England) 1882-1944.
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which satisfies the properties

lim
r→rs

r∗ = −∞ ,
dr2

1− rS/r
=
(

1− rS
r

)
dr2
∗ .

In terms of (t, r∗, ϑ, ϕ) coordinates the Schwarzschild metric assumes the form

ds2 =
(

1− rS
r

) (
−dt2 + dr2

∗

)
+ r2(dϑ2 + sin2 ϑ dϕ2) ,

from which it follows that the null radial geodesic (ds = 0, dϑ = 0, dϕ = 0) satisfy the equation

dt2 = dr2
∗ =⇒ dt = ±dr∗ =⇒ t± r∗ = const .

Then one defines the ingoing and outgoing null coordinates (also called advanced and retarded time
respectively)

v = t+ r∗ , u = t− r∗ , v ∈ (−∞,∞) , u ∈ (−∞,∞) , (7.39)

which for v, u = const represent ingoing and outgoing radial null geodesic respectively (straight lines
in such coordinates).

In terms of ingoing/outgoing Eddington-Finkelstein coordinates the metric reads

ds2 = −
(

1− rS
r

)
dv2 + 2dv dr + r2(dϑ2 + sin2 ϑ dϕ2) , (7.40)

ds2 = −
(

1− rS
r

)
du2 − 2du dr + r2(dϑ2 + sin2 ϑ dϕ2) . (7.41)

Of course, for r > rS both the two metrics above are solutions of Einstein equations in vacuum because
they have been obtained from the Schwarzschild one by a regular transformation of coordinates.
However, in contrast with Schwarzschild solution, in such coordinate systems there are no metric
singularity at r = rS because both the matrices above and their inverses are regular at r = rS and
so we can analytically extend the coordinates to the values r ≤ rS, that is

0 < r <∞ ; −∞ < v <∞ ; −∞ < u <∞ .

It has to be noted that, after such an extension, the new coordinates (v, r) and (u, r) can not
be obtained from the Schwarzschild ones by a regular transformation, because r∗ diverges on the
horizon. The parameter t(v, r) = v − r∗ as a function of the new coordinates, goes to infinity when
r → rS and goes to zero when r → 0.

By definition, dv = 0 represents an ingoing null radial geodesic, that is the geodesic of a massless
particle which runs to the singularity at r = 0, while du = 0 represents an outgoing null radial
geodesic, that is the geodesic of a massless particle which runs away from the singularity at r = 0.

Now let us first focus our attention to the first extension (7.40) of Schwarzschild metric. In
order to study the motion of particles/fotons in such a space it is useful to make a Finkelstein
diagram, which is a plot of t∗ = t + (r∗ − r) = v − r against r (see Figure 7). The light cone of
an observer in an arbitrary point P ≡ (t∗, r, ϑ, ϕ) is defined by means of the radial null geodesics of
(ds = 0, dϑ = 0, dϕ = 0) , that is

dv = 0 , (ingoing), dv =
2dr

1− rS/r
, (outgoing),
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or, what is the same,

dt∗
dr

= −1 , (ingoing),
dt∗
dr

=
1 + rS/r

1− rS/r
, (outgoing).

By definition of the coordinates, the ingoing null geodesics are straight lines, which in the Finkelstein
diagram have angular coefficient equal to −1 at any point, while the outgoing geodesic, as well as its
tangent at P , depend on the point considered and the amplitude of the light cone becomes smaller
and smaller while r → 0. More precisely, for the outgoing null geodesics we get

lim
r→∞

dt∗
dr

= 1 , lim
r→rS

dt∗
dr

= +∞ , lim
r→0

dt∗
dr

= −1 .

Of course, very far from the singularity the light cone is the one of an observer in Minkowski space,
while for r < rS the future light cone is entirely contained inside the event horizon.

Now let us consider the radial motion of massive and massless particles, then from (7.40) it follows

2dv dr = ds2 +
(

1− rS
r

)
dv2 .

With our conventions ds2 ≤ 0 and time increase when dv > 0 (past to future).
We see that when r > rS for a massive particle dv dr can be positive, negative or vanishing

depending on initial conditions and so the particle outside the event horizon can move in any direction,
while for a massless particle dv dr can be only positive or vanishing corresponding to outgoing or
ingoing null geodesics.

On the contrary, when r < rS

dv dr < 0 =⇒ dr < 0 , (r < rS) . (7.42)

and we see that inside the event horizon the r coordinate can only decrease in time and this means
that the particle/foton is destined to fall on the singularity. It can not stay at rest or move backward.

The ingoing metric (7.40), which is defined for v ∈ (−∞,∞), r ∈ (0,∞), describes a space-time
in which there is a region r < rS from which particles and light can enter but can not escape. For
this reason such a solution of Einstein equations is called black hole.

All considerations we have done for the ingoing solution can be repeated for the outgoing solution
using t∗ = t− (r∗ − r) = u+ r against r in the plot. In such a case, for r < rS one gets

du dr > 0 =⇒ dr > 0 , (r < rS) . (7.43)

Inside the horizon the r coordinate always increase in time and this means that particles and light
will always go away from the singularity at r = 0. Never can remain inside the event horizon.

The outgoing metric (7.41), which is defined for u ∈ (−∞,∞), r ∈ (0,∞), describes a space-time
in which there is a region r < rS from which particles and light will escape away. For this reason
such a solution of Einstein equations is called white hole.

The ingoing Eddington-Finkelstein coordinates can be considered as an extension of the Schwarzschild
ones to the region r < rS and represent the gravitational field created by spherical symmetric col-
lapsed body (black hole), while the outgoing Eddington-Finkelstein coordinates represent the same
solution, but with future and past exchanged. Such a solution was mathematically expected because
Einstein equations are invariant under time reversal but its physical realisation requires very peculiar
and improbable initial conditions.
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Figure 7: Eddington-Finkelstein diagram

7.8.3 The Kruskal-Szekeres extension

The maximal extension of Schwarzschild metric has been done by Kruskal and Szekeres and describes
both black and white holes.

One starts again from Schwarzschild coordinates (t, r, ϑ, ϕ) defined for r > rS and make the
transformation

X2 − T 2 =
(
r

rS
− 1

)
er/rS , log

X + T

X − T
=

t

rS
. (7.44)

In these coordinates the metric read

ds2 =
4 r3

S e
−r/rS

r
(−dT 2 + dX2) + r2dσ2 , r = r(T,X) ,

and it is singular only at r(T,X) = 0. Then we can extend the coordinates to all values r(T,X) > 0,
that is X2 − T 2 > −1.

The physical singularity at r = 0 in such coordinates is an extended region defined by means of
equation

X2 − T 2 = −1 =⇒ T = ±
√
X2 + 1 .

This represents a hyperbola with two branches, one in the future and one in the past (with respect
to T = 0).

The Kruskal space-time is divided in four natural regions by the null geodesic X2 − T 2 = 0. In
the Schwarzschild coordinates these correspond to the horizon r = rS. (see figure 8).

The first two regions (I, II) form the black hole and correspond to the outer and inner regions
of the event horizon. In particular, the outer region (I) is the one described by Schwarzschild
coordinates.

The two regions (III, IV ) have similar properties to the previous ones, but with past and future
exchanged. They form the so called white hole.

In the diagram of Kruskal, radial null geodesics are straight lines which form an angle of 45o

with the horizontal axes. This means that an object inside the region II is destined to fall on the
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Figure 8: Kruskal extension of Schwarzschild metric

singularity X =
√
T 2 − 1 (r = 0). In order to escape from such a region it would travel with a

velocity greater than the speed of light. On the contrary, an object inside the region III will escape
away, in regions I or IV .

An observer at rest in region I or IV (in the other two regions nothing can stay at rest) is
represented by the hyperbola X2 − T 2 = const. It can send signals only to infinity or to region II
and it can receive signals only from region III. Observers in region I can not communicate with
observers in region IV and viceversa.

The Kruskal-Szekeres coordinates are an extension of Eddington-Finkelstein ones. One says that
these represent the maximal extension of Schwarzschild coordinates because all geodesic can be
prolongated and eventually they stop on the physical singularity.

Sometimes the metric is written in “null” coordinates{
V = T +X ,
U = T −X ,

=⇒ ds2 = −4r3
S

r
er/rS dUdV + r2(dϑ2 + sin2 ϑ dϕ2) .

To finish the section we just right down the inverse transformation of (7.44), that is T =
√

r
rS
− 1 er/2rS sinh t

2rS
,

X =
√

r
rS
− 1 er/2rS cosh t

2rS
,

r > rS ,

 T =
√

1− r
rS
er/2rS cosh t

2rS
,

X =
√

1− r
rS
er/2rS sinh t

2rS
,

r < rS .

• According to quantum mechanics, black holes are not really black. since they can emit particles
by tunneling effect. The emission has a Planckian spectrum with a temperature

TH =
h̄c

4πkB rS
,
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where kB is the Boltzmann constant and h̄ = h/2π, h being the Planck constant. TH is called
the Hawking temperature and is the one measured by an observer at rest very far from the
source.
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8 Gravitational Radiation

Here we shall show that Einstein equations can have radiative solutions, which, in the weak field
approximation, have properties similar to electromagnetic waves. The similarty is valid for weak
fields, since in such a case only we can disregard autointeracting terms and consider linear equations.
The “linearised” gravitational waves have an interpretation as a flux of particles, called graviton, as
well as electromagnetic waves can be seen as a flux of photons. As in Section 6.6.2, we choose a
“quasi-Minkowskian” reference frame where

gij = ηij + hij , |hij| → 0 , (at infinity), gij → ηij , (at infinity), (8.1)

and we develop the field equations in a power series up to first order in hij, around Minkowski metric.
In this way the Einstein theory becomes equivalent to the standard theory of a tensorial field on the
Minkowski space. Gravitational waves are seen as perturbations of flat space-time.

• In principle one could expand the metric around an arbitrary solution ĝij of Einstein equation,
that is gij = ĝij + hij, and interpret gravitational waves as perturbations of such a solution.
Such a procedure is necessary for example when one studies cosmological waves which are
perturbations of FLRW solution (see Section 9).

By assuming |hij| � 1 we get

gij ∼ ηij − hij , det{gij} ∼ (1 + h) det{ηij} =⇒ g = | det{gij}| ∼ |1 + h| ,

Γkij ∼
1

2
ηkl (∂ihjl + ∂jhil − ∂lhij) , Γkik ∼

1

2
∂ih , ηijΓkij ∼ ∂jh

jk − 1

2
ηjk∂jh ,

R
(1)
ij = −1

2

[
2hij + ∂i∂jh− ∂i∂khkj − ∂j∂khki

]
, R(1) = −2h+ ∂i∂jh

ij ,

G
(1)
ij = −1

2

[
2hij − ηij2h+ ∂i∂jh−

(
∂i∂kh

k
j + ∂j∂kh

k
i − ηij∂l∂khkl

)]
,

where 2 = ηij∂i∂j and all indices are rised and lowered by means of Minkowski metric as in Section
6.6.2.

In order to simplify calculations now we use the freedom to choice the coordinate system. As we
have seen in Section 6.5, by an infinitesimal coordinate transformation of the kind xk → xk + ξk one
has

gij → gij −∇iξj −∇jξi =⇒ hij → hij − ∂iξj − ∂jξi +O(h2) ,

where ∂iξj is of the order of hij in order to deal again with a weak field.

• Note that the latter transformation for the field hij is similar to the gauge transformation which
one has for the electromagnetic potential.

We can fix four arbitrary conditions on the metric by choosing a suitable vector field ξk. For our
aim, a very convenient choice is the so called de Donder gauge Γkijg

ij = 0, which at first order in hij
simplifies to

∂kh
k
j −

1

2
∂kh = ∂kψ

k
j = 0 , ψkj = hkj −

1

2
δkj h .
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This is also called harmonic gauge, because the coordinates are harmonic functions, that is 2xk = 0.
In such a gauge one has

R
(1)
ij = −1

2
2hij , G

(1)
ij = −1

2
2ψij ,

and the field equations (6.28) read

2ψij = −16πG

c4
τij = −16πG

c4
(Tij + tij) , ∂kψ

k
j = 0 . (8.2)

At first order in hij we can dropped the grvitational energy-momentum pseudo-tensor tij since it is
at least a second order function in hij an so, in vacuum (Tij = 0) the field equations can be written
as

R
(1)
ij ∼ 0 =⇒ 2hij = 0 , ∂k

(
hkj −

1

2
δkj h

)
= 0 . (8.3)

Such equations are similar to the ones which satisfy electromagnetic waves in the Lorentz gauge.
Their solutions can be obtained by using the same methods, which we briefly recall in the following
section.

8.1 Electromagnetic waves

In the Lorentz or covariant gauge one has

2Aµ = 0 , ∂µA
µ = 0 . (8.4)

A real solution is given by the plane wave

Aµ = eµ e
ikαxα + e∗µ e

−ikαxα ,

where

kµk
µ = 0 , kµeµ = 0 ,

which are the wave equation and the Lorentz gauge in the momentum space.
We see that the four quantities eµ are not independent because they have to satisfy the transver-

sality equation kµeµ = 0. The Lorentz gauge does not fix completely the field Aµ. In fact, it remains
a residual gauge which permits to fix a second condition together transversality. Starting from a
potential Aµ which satisfy the Lorentz gauge, we can build up a new potential A′µ by means of a
gauge transformation of the kind

A′µ = Aµ + ∂µf , 2f = 0

and also this, by construction, satisfy the Lorentz gauge and of course is a solution of the wave
equation. This means that effectively the Lorentz gauge selects a whole class of potentials. We can
pick up a particular element of that class in the way we are going to describe. We put

A′µ = eµ e
ikαxα + e∗µ e

−ikαxα + ∂µf , f = iε eikαx
α − iε e−ikαxα .

By construction, if ε is an arbitrary constant, then 2f = 0 and so A′µ is a solution of (8.4). It can
be written as

A′µ = e′µ e
ikαxα + e′∗µ e

−ikαxα , e′µ = eµ − ε kµ .
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It is always possible to choose ε in such a way that one component of A′µ vanishes. The independent
components then remain only 2.

To be more explicit, we suppose the wave to propagate along the x axis. Then k2 = k3 = 0,
k0 = k1 > 0 e k0 = −k1. From this it follows that e0 = −e1 and with the choice ε = e1/k1 one gets
e′0 = −e′1 = 0. The true physical degrees of freedom correspond to e2 and e3, that is A2 and A3,
which are the components orthogonal to the direction of propagation.

The physical meaning becomes clear if we perform a rotation around the propagation axis (x).
This is realised by the Lorentz matrix

Λ =


1 0 0 0
0 1 0 0
0 0 cosϕ sinϕ
0 0 − sinϕ cosϕ

 .

The vectors transform according to the law

ẽµ = Λν
µ eν ,

from which we get

ẽ0 = e0 , ẽ1 = e1 ,

{
ẽ2 = cosϕe2 + sinϕe3 ,
ẽ3 = − sinϕe2 + cosϕe3 ,

=⇒ ẽ± = e± e
∓iϕ , e± = e2 ± ie3 .

The electromagnetic field has been decomposed in parts with elicity equal to ±1 (right and left
polarisation) and so we say that the photon has spin equal to 1. The non physical part has elicity 0.

8.2 Gravitational plane waves

In analogy with electromagnetism, we write the solution of (8.3) in the form

hij = eij e
ikrxr + e∗ij e

−ikrxr , eij = eji , (8.5)

with

krk
r = 0 , kieij −

1

2
kj e

r
r = 0 .

eij is said polarisation tensor. In the following we shall see that it has only two independent compo-
nents. This means that the physical degrees of freedom of the gravitational field are only two.

Four components of eij can be directly eliminated by choosing the harmonic gauge, while the
other four can be eliminated by using the residual gauge. In fact, given a solution satisfying the
harmonic gauge, one can do a gauge transformation of the form

h′ij = hij − ∂iξj − ∂jξi , 2ξk = 0 ,

obtaining in this way another solution satisfying the harmonic gauge. Putting

ξk = iεk eikrx
r − iε∗k e−ikrxr , 2ξk = 0 ,

with a constant vector εk, we get

e′ij = eij + kiεj + kjεi .
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Since εk is arbitrary, we can fix other four conditions.
Now we consider a wave propagating along the x axis. Then ka = 0, k0 = k1 > 0 e k0 = −k1

(a, b = 2, 3) and from harmonic gauge condition it follows

e0a + e1a = 0 , −e00 − e01 = e01 + e11 =
1

2
(e11 + e22 + e33 − e00) .

Solving the algebraic system we have

e0a = −e1a , e01 = −1

2
(e00 + e11) , e22 = −e33 . (8.6)

Now, by the residual gauge we also obtain

e′ab = eab , e′0a = e0a − k1εa , e′1a = e1a + k1εa ,
e′00 = e00 − 2k1ε0 , e′11 = e11 + 2k1ε1 , e′01 = e01 + k1(ε1 − ε0) .

By taking equation (8.6) into account, we see that with a suitable choice of εk all components of
e′ij vanish, but e′ab = eab, which remain invariant under such a transformation. Then, of the ten
original components of the polarisation tensor e′ij (or equivalently h′ij), only two of them are linearly
independent, that is

e′22 == −e′33 = e22 = −e33 , e′23 = e′32 = e23 = e32 ,

h′22 = −h′33 = h22 = −h33 , h′23 = h′32 = h23 = h32 ,

all the other components e′0k, e
′
1k h

′
0k h

′
1k being vanishing. It has to be observed that now h′ = h′kk =

h′22 + h′33 = 0.
As in the previous paragraph, by a rotation generated by the matrix Λ we get

ẽij = Λr
iΛ

s
j ers =⇒


ẽ00 = e00 ,
ẽ11 = e11 ,
ẽ01 = e01 ,

{
ẽ± = e±2iϕ e± ,

f̃± = e±iϕ f± ,

where we have set

e± = e22 ∓ ie23 = −e33 ∓ ie23 , f± = e12 ∓ ie13 = −e02 ± ie03 .

The components e± and f± have elicity equal to ±2, and ±1 respectively, while e00, e11 and e01 have
elicity 0. The physical components e± have elicity ±2 and this corresponds to a particle with spin
equal to 2, said graviton.

Transverse-Traceless gauge. — We have seen that it is always possible to choose a gauge in which
the wave has only two independent components orthogonal to the direction of propagation. This
gauge is called Transverse-Traceless gauge (TT-gauge). For a plane wave the components hTTij ≡ h′ij
satisfy the conditions

hTT0k = 0 , n̂ahTTab = 0 , ηijhTTij = 0 , ηij∂ih
TT
jk = 0 ,

where n̂a (a = 1, 2, 3) is the unit 3-vector which points in the direction of propagation.
In general it is very difficult to realised explicitly the required gauge transformation, but to our

aim it is sufficient to observe that the physical components are equal to the ones in the harmonic
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gauge. For example, for a plane wave propagating along the (x) axis, the non vanishing components
read

hTT22 = −hTT33 = h22 = −h33 , hTT23 = hTT32 = h23 = h32 ,

and satisfy the conditions

ηijhTTij = 0 , ηij∂ih
TT
jk = 0 ,

but

ηijhij = h 6= 0 , ηij∂ihjk =
1

2
∂kh 6= 0 .

Now we observe that

hTT22 = −hTT33 =
1

2

(
hTT22 − hTT33

)
=

1

2
(h22 − h33) =

1

2
(ψ22 − ψ33) ,

and finally

hTT22 = −hTT33 =
1

2
(ψ22 − ψ33) , hTT23 = hTT32 = ψ23 . (8.7)

Just for completeness we write down the gauge transformation which relates hTTab to ψab. It reads

hTTab =
[
(δac − n̂an̂c)(δbd − n̂bn̂d)−

1

2
(δab − n̂an̂b)(δcd − n̂cn̂d)

]
ψcd , a, b, c, d = 1, 2, 3

Choosing n̂a ≡ (1, 0, 0) one recovers (8.7).

8.3 Example: test particles in the presence of a gravitational wave

First of all we consider a free test particle initially at rest, that is ~u = 0 with respect to the chosen
reference system. The particle moves according to geodesic equation

duk

dτ
+ Γkiju

iuj = 0 , uk =
dxk

dτ
,

where Γkij is the connection related to the metric gij = ηij + hij due to the plane wave. The initial
acceleration of the particle reads

duk

dτ

∣∣∣∣∣
0

= −Γk00u
0u0 = 0 , Γk00 ∼

1

2
ηkj(2∂0h0j − ∂jh00) ,

and we see that it is vanishing if the TT-gauge, because h0j = hTT0j = 0. This means that the
particle remains at rest also in the presence of the wave, but this is simply due to the properties of
the reference frame corresponding to the TT-gauge. The coordinate of the particle does not change
in such a reference frame, but remember that coordinates have no direct physical meaning. In a
different coordinate system h0j 6= 0 and so the particle is accelerated.

In order to read off the presence of gravitational waves we have to compare the motion of more
particles. As an example, at time t consider a first particle at the origin P1 ≡ (0, 0, 0) and a second
particle at the point P2 ≡ (0, 0, ε), ε being a small quantity. The proper distance is given by

∆ ` =
∫ P2

P1

|γabdxadxb|1/2 =
∫ ε

0

√
γ33 dx

3 ∼ ε
√
g33(0) ,
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where γab is the metric of spatial geometry. For a plane wave in the TT-gauge γab = gab = ηab + hTTab
and so

∆ ` ∼ ε [1 + hTT33 (0)]1/2 ∼ ε
[
1 +

1

2
hTT33

]
.

We see that also in the TT-gauge the proper distance between the particles in general changes as a
consequence of the gravitational wave.

More information about the motion can be obtained by means of geodesic deviation equation.
Let xk and yk = xk + ξk be the coordinates of two “sufficiently close” test particles in free fall in the
gravitational field due to a plane wave moving along the x3 = z direction. In such a case the “small
quantity” ξk satisfies the equation of geodesic deviation (see (5.8))

D2ξk

Dτ 2
= Rk

rsju
rus ξj ,

uk and τ being respectively the 4-velocity and the proper time of the first particle. Of course the
equation is valid in any reference system, but for physical interpretation and experimental applica-
tions it is natural to choose a Lorentzian frame attached to the first particle. With this choice the
particle is at rest in the point P1 (say the origin) along the whole geodesic and so, at any time

uk = (c, 0, 0, 0) , Γkij(P1) = 0 ,
dΓkij
dτ

(P1) = 0 , τ = t ,

In such a reference frame the geodesic deviation equation becomes

∂2ξk

∂t2
≡ ξ̈k = c2Rk

00jξ
j ,

but since we are not in the TT-gauge, the components of the gravitational wave can be very com-
plicated. Fortunately the linearised Riemann tensor is gauge invariant and so the right-hand side of
the latter equation can be evaluated in an arbitrary gauge. At lowest order in hij then we get

ξ̈k ∼
1

2
c2∂2

0h
TT
kj ξ

j ∼ 1

2
ḧTTkj ξ

j(0) ,

where on the right-hand side ξj has been replaced by its initial value since of course

ξk ∼ ξk(0) +O(h) , ξk(0) = yk(0) ≡ (0, ε cosφ, ε sinφ, 0) .

We have put the second particle in the (x, y) plane near the origin, ε being a small constant quantity
and 0 ≤ φ < 2π. The third component of the particle does not enter the game because the wave has
non vanishing components only in the (x, y) plane, in fact, for a plane wave along the z axis we have
hTT11 = −hTT22 and hTT12 = hTT21 . Then

ξ̈1 =
1

2
ε
(
ḧTT11 cosφ+ ḧTT12 sinφ

)
,

ξ̈2 =
1

2
ε
(
ḧTT12 cosφ− ḧTT11 sinφ

)
.

The latter equations have the solution

ξ1 = ε cosφ+
1

2
ε (A11 sinωt cosφ+ A12 sinωt sinφ) ,

ξ2 = ε sinφ+
1

2
ε (A12 sinωt cosφ− A11 sinωt sinφ) ,
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Figure 9: Motion of a ring of test particles - polarized plane wave along z direction

where the plane wave has been written in the real form

hTTij = Aij sinω(t− z) , A0k = 0 A3k = 0 , Akk = 0 .

In order to understand the physical meaning of the latter equations in it convenient to consider
separately the two linear polarizations of the wave, that is A11 = 0 or A12 = 0. In such case we see
that

A11 6= 0 , A12 = 0 =⇒
{
ξ1 = ε cosφ+ 1

2
εA11 sinωt cosφ ,

ξ2 = ε sinφ− 1
2
εA11 sinωt sinφ ,

A12 6= 0 , A11 = 0 =⇒
{
ξ1 = ε cosφ+ 1

2
εA12 sinωt sinφ ,

ξ2 = ε sinφ+ 1
2
εA12 sinωt cosφ .

In the first case (A12 = 0) consider for example φ = 0 and φ = π. Then we see that ξ2 remains equal
to its initial value, while |ξ1| increases in both the cases in the interval t ∈ [0, π/2ω] and decreases
for t ∈ [π/2ω, π/ω]. On the contrary, if φ = π/2 or φ = 3π/2 then ξ1 remains unchanged, while |ξ2|
first decreases and then increases during the above periods of time. A similar reasoning holds in the
second case too (A11 = 0) but with the choices φ = π/4, φ = 5π/4 and φ = 3π/4, φ = 7π/4. This
means that a ring of test particles moves as in figure 9.

8.4 Energy and momentum of a plane gravitational wave

The energy-momentum “tensor” of the gravitational field can be defined by means of (6.30), where

G
(1)
ij = R

(1)
ij −

1

2
ηij R

(1) , R(1) = ηij R
(1)
ij , R(2) = ηij R

(2)
ij .

Up to second order in hij we get

Gij = R
(1)
ij −

1

2
ηijR

(1) +R
(2)
ij −

1

2

[
ηijR

(2) + hijR
(1) − ηijhrsR(1)

rs

]
+ ...

and so at lowest order one has

tij ∼ −
c4

8πG

{
R

(2)
ij −

1

2

[
ηijR

(2) + hijR
(1) − ηijhrsR(1)

rs

]}
+O(h3) .

We are interested in the energy-momentum “transported” by a plane wave in vacuum. Then equa-
tions (8.3) hold and

R
(1)
ij = 0 , R(1) = 0 , tij ∼ −

c4

8πG

[
R

(2)
ij −

1

2
ηijR

(2)
]
.

Of course, in such an approximation we disregard auto-interacting terms by putting R
(1)
ij = 0.

The quantity tij is a function of hij and its derivative and could be exactly computed in a
straightforward way, but from the experimental point of view, what is really important is not the
energy as a function of time, but the one contained in a given finite volume with dimensions greater
that the cube of the typical wave length. For this reason it is sufficient to consider the average
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〈tij〉 over a region of space-time with dimensions larger than the wave length λ. In this way, by
integration, for the mean value of tij one obtains the simple expression in the wave vectors

〈tij〉 =
c4 kikj
16πG

(
erse∗rs −

1

2
|ekk|2

)
. (8.8)

The exact calculation of the latter equation can be done by using the solution (8.5), but it is quite

tedious and complicated and we do not report it explicitly. However we observe that R(2) e R
(2)
ij

are real, quadratic functions in hij depending on its second derivatives and the square of its first
derivative and so the average of tij has to be a real, quadratic function of polarisation eij and at
the same time a quadratic function of wave vector ki. Since krk

r = 0 and kieij = kje
r
r/2, it is not

possible to built up a scalar quadratic expression in ki and eij. This means that 〈R(2)〉 = 0. With a

similar reasoning one finds that a tensor 〈R(2)
ij 〉, quadratic in ki and eij, must have the form

〈R(2)
ij 〉 = kikj(αe

rse∗rs + β|ekk|2) , 〈R(2)〉 = 0 ,

α, β being constants to be determined by explicit computation.
The energy-momentum “tensor” tij is not gauge invariant, but its averaged value 〈tij〉 is gauge

invariant, as it has to do. In fact

e′ij = eij + kiξj + kjξi =⇒ 〈t′ij〉 = 〈tij〉 .

Finally we write the expression (8.8) for a plane wave propagating along the x axis. It reads

〈tij〉 =
c4 kikj
8πG

(
|e22|2 + |e23|2

)
=
c4 kikj
16πG

(
|e+|2 + |e−|2

)
. (8.9)

In general the expression of tij is really complicated and this is true also at lowest order in hij,
but for a plane wave in the TT-gauge, where

ηij∂ih
TT
jk = 0 , ηijhTTij = 0 ,

after a straightforward calculation using (6.19) and (6.20), for the Landau-Lifsits pseudo-tensor tLLij
one gets the simple expression

tLij ∼
c4

32πG
∂ih

rs
TT∂jh

TT
rs . (8.10)

By definition, at lowest order the energy-momentum tensor tLij ia a quadratic expression in ∂khij,
but for a plane wave in the TT-gauge only the term in (8.10) will survive. Of course, by taking the
average of (8.10) for a plane wave propagating along the x1 axes one obtains the result in (8.9).

8.5 Emission of gravitational waves

Here we would like to compute the energy emitted as gravitational waves by an arbitrary source.
To this aim we consider a weak gravitational field generated by massive bodies which move at small
velocities and are confined in a small region around the origin of coordinates. In the harmonic
gauge the field equations are given by (8.2), where we can drop tij because it gives second order
contributions. At first order in hij then we have

2ψij ∼ −
16πG

c4
T ij , ∂kψ

k
j = 0 , ∂kT

k
j ∼ 0 .

70



The solution of the latter equation can be written down by recalling the “retarded potentials solution”
which solves the analog electromagnetic equation. If fact in that case one has

2Aµ = −4π

c
Jµ , Aµ(t, ~x) = −1

c

∫ Jµ(~y, t− |~x− ~y|/c)
|~x− ~y|

d3y ,

Since the equations we have to solve are formally similar to the electromagnetic ones we can directly
write the solution in the form

ψkj (t, ~x) = −4G

c4

∫ T kj (~y, t− |~x− ~y|/c)
|~x− ~y|

d3y .

∼ − 4G

c4ρ

∫
T kj

(
~y, t− ρ

c
+
~x · ~y
ρ c

)
d3y

∼ − 4G

c4ρ

∫
T kj

(
~y, t− ρ

c

)
d3y ,

where the integral is extended to the compact support of T kj . As usual we have assumed the observer
to be very far from the source, that is |~x| � |~y| and so we have set |~x− ~y| ∼ ρ , with ρ a constant.
Moreover, since we are considering non relativistic sources, in the last expression above we have also
disregarded the term (~x · ~y/ρ c), which is the time necessary for the wave to cross the source.

From the (approximated) conservation law ∂kT
k
j = 0 we are able to get the spatial components

of Tij in terms of the temporal component. To this aim we first observe that

∂0T
0
0 = −∂aT a0 , ∂0T

0
b = −∂aT ab , a, b, c = 1, 2, 3.

By integration one obtains

∂0

∫
T 0
a y

b dV =
∫
∂0T

0
a y

b dV = −
∫
∂cT

c
ay

b dV = −
∫
∂c(T

c
ay

b) dV +
∫
T ab dV .

From Gauss theorem, all total divergences do not give contributions to the integral, because the
integral functions have compact support, then{ ∫

T ab dV = ∂0

∫
T 0ayb dV∫

T ab dV = ∂0

∫
T 0bya dV

=⇒
∫
T ab dV =

1

2
∂0

∫ (
T 0ayb + T 0bya

)
dV .

In a similar way, for the temporal component we have

∂0

∫
T 00yayb dV = −

∫
∂cT

c0yayb dV =
∫

(T 0ayb + T 0bya) dV ,

∂2
0

∫
T 00yayb dV = ∂0

∫
(T 0ayb + T 0bya) dV = 2

∫
T ab dV .

Finally∫
T ab dV =

1

2
∂2

0

∫
T 00yayb dV ∼ 1

2
∂2
t

∫
µyayb dV ,

where T 00 ∼ µc2 has been set, µ being the mass density of the non relativistic source.
At large distances from the source the solution reads

ψab(t, ~x) ∼ − 2G

ρ c4
∂2
t

∫
µ(t− ρ/c, ~y) yayb d3y = − 2G

ρ c4
M̈ab

∣∣∣
t−ρ/c

, (8.11)
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where Mab is related to the (mass) quadrupole moment Qab of the source. It has to be stressed
that we have neglected from the very beginning the auto-interacting terms, by replacing the whole
“tensor” τij with the matter tensor Tij. Of course in some situations this could be dangerous.

We recall that the multipole moments are defined by means of the Taylor expansion

f(~x) =
∫ µ(t, ~y) dV

|~x− ~y|
=
M

|~x|
+
Da û

a

|~x|2
+
Qab û

a û b

2|~x|3
+ ... û =

~x

|~x|
, |~y| � |~x| ,

where

M(t) =
∫
µ(t, ~y) dV , monopole (total mass),

Da(t) =
∫
µ(t, ~y) ya dV = M(t) ~xcm , dipole,

Qab(t) =
∫
µ(t, ~y)(3yayb − |~y|2δab) dV = 3Mab − δabM c

c , quadrupole,
Mab(t) =

∫
µ(t, ~y) yayb dV ,

~xcm being the coordinates of the center of mass.

• It has to be noted that the monopole (the total mass) depends on time only if the source loses
energy, for example by emission of gravitational waves, while the dipole moment is vanishing
if one chooses the origin in the center of mass. In any case ẍcm = 0.

Since we are very far from the source, from the practical point of view ψab will be a plane wave
at least in a small spacetime region. This means that by choosing (x1) as direction of propagation,
the non vanishing components of hTTij will be hTT22 = −hTT33 6= 0, hTT23 = hTT32 6= 0.

Using for simplicity the Landau-Lifsits energy-momentum “tensor” (8.10), for the energy flux
along the (x1) axis then we obtain (recall that for plane waves ∂0 = −∂1 and use (8.7))

ct01
LL ∼

c3

16πG

[(
ḣTT23

)2
+
(
ḣTT22

)2
]

=
c3

16πG

ψ̇2
23 +

(
ψ̇22 − ψ̇33

2

)2
 . (8.12)

From (8.12) we see that the energy flux at large distances is determined by ψab, which in the ap-
proximation here considered is related to the quadrupole moment by means of (8.11). For technical
reasons, in place of Mab it is convenient to use Qab, which is a traceless spatial tensor.

In terms of Qab we have

ψ23 = − 2G

3ρ c4
Q̈23 , ψ22 − ψ33 = − 2G

3ρ c4
(Q̈22 − Q̈33) ,

from which it follows

ct01 =
G

36πρ 2c5

 ...

Q
2

23 +

 ...

Q22 −
...

Q33

2

2
 .

The latter equation represents the energy density which pass through a unitary surface during the
unitary time due to a plane wave. The energy which pass through an infinitesimal surface dS = ρ 2dΩ
is then

ct01dS =
G

36πc5

 ...

Q
2

23 +

 ...

Q22 −
...

Q33

2

2
 dΩ , (8.13)
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dΩ being the solid angle. This represents the contribution due to a wave propagating along (x1). In
order to take into account of waves propagating in all possible directions, we write (8.13) in a form
invariant under spatial rotations, using the (spatial) polarisation tensor eab, with the properties

eaa = 0 , eabn̂
b = 0 , eab e

ab = 1 , a, b = 1, 2, 3 , n̂an̂
a = 1 , (8.14)

where n̂a is a unitary vector along the propagation direction and eab is a unitary three-dimensional
tensor (under spatial rotations). By means of eab we have

dW =
G

72πc5

(
...

Q
ab
eab

)2

dΩ , (8.15)

which is the contribution to the flux of an arbitrary polarised plane wave.
For example, the two matrices

eab =
1√
2

 0 0 0
0 0 1
0 1 0

 , eab =
1√
2

 0 0 0
0 1 0
0 0 −1

 ,
in (8.15) gives respectively the two contributions in (8.13).

In order to take into account of all polarisations, one makes an “average” of the kind

dW̄ = 2
G

72πc5

(
...

Q
ab ...

Q
cd
eabecd

)
dΩ , (8.16)

where the factor 2 arises from the two independent polarisation of the wave. The mean value of the
product of all polarisations is a constant spatial tensor of order four which depends on the directions.
This means that it can be built up by using the vector ~n, which takes into account of the direction
and the constant tensor δab. Note that the other constant tensor eabc (Levi-Civita) can not be used
because it has negative parity (it is a pseudotensor). It is easy to verify that the more general
constant tensor which satisfy the properties in (8.14) has to be the following:

eabecd =
1

4
[n̂an̂bn̂cn̂d + (n̂an̂bδcd + n̂cn̂dδab)

−(n̂an̂cδbd + n̂an̂dδbc + n̂bn̂cδad + n̂bn̂dδac)− δabδcd + δacδbd + δadδbc] .

Using such an expression in (8.16) we get

dW̄ =
G

36πc5

[
1

4

(
...

Q
ab
n̂an̂b

)2

+
1

2

(
...

Q
ab ...

Qab

)
−

...

Q
ac ...

Q
b

c n̂an̂b

]
dΩ .

Now, the total emitted energy from he source is obtained by taking the average over all directions,
given by the vector ~n, and by integrating over the angles. We have at disposal only the tensor δab
and so

n̂an̂b =
1

3
δab , n̂an̂bn̂cn̂d =

1

15
(δabδcd + δacδbd + δadδbc) .

After this last average the flux does not depend on the directions and so the integration over the
angles gives just a factor 4π, The finally expression read

Wtot = −dE
dt

=
G

45c5

...

Q
ab ...

Qab . (8.17)
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This is called the quadrupole formula and represents the total gravitational energy emitted from the
gravitational source in the unit time (the total power Wtot). In general it is a very small quantity
due to the presence of the factor G/45c5 ∼ 6 · 10−55 sec3/Kg m2, but it could be measured in the
presence of high quadrupole moments with high variations (supernova explosion).

The quadrupole formula has been indirectly verified by R.A. Hulse, J.H. Taylor37 and collaborators
(1974) by the observation (for many years) of the binary system PSR 1916+13. One of the two stars
is a pulsar (neutron star), which rotates around the partner and emits radio signals, which permit
to determine the orbit with high precision. The radius of the orbit decreases systematically in time
for the emission of gravitational energy in agreement with the quadrupole formula above.

8.6 Examples

We consider some simple gravitational sources and compute their power by means of (8.17).

8.6.1 Rotating bar

Just to have an idea of the intensity of the gravitational waves with respect to the sources, we first
consider a bar rotating around a fixed axis with a constant angular velocity ω. Let us M and L
be respectively the mass and the length of the bar. If the transverse dimensions are negligible with
respect to the length, then the maximum quadrupole moment is obtained when the rotational axis
is orthogonal to the axis of the bar.

Without doing the explicit computation, from dimensional considerations we obtain

QabQab ∼
[
ML2

]2
,

...

Q
ab ...

Qab∼
[
ML2ω3

]2
,

and from (8.17)

Wtot ∼
G

c5
M2L4ω3 ∼

[
10−53W

] [M
Kg

]2 [
L

m

]4 [ ω

sec−1

]6

,

where 1W = 1Kgm2/sec3. It is clear then it is practically impossible to generate gravitational
waves in a laboratory. Then one has to look for astronomic or cosmological sources.

8.6.2 Generic bounded gravitational system

We recall that the virial theorem for the Newtonian potential states that

〈K〉 = −1

2
〈U〉 ,

〈K〉 and 〈U〉 being the averaged (in time) kinetic and potential energies of a bounded gravitational
system. For such kind of systems we can define a typical angular frequency ω by means of

ω2 ∼ MG

L3
,

M being the total mass of the system and L the spatial size.

37Nobel price in Physics (1993).
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For example, if we consider the system of two particles with mass m rotating on a circular orbit
of radius R0 with angular velocity ω we have exactly{

K = 1
2
Iω2 = mR2

0ω
2 ,

U = −m2G
2R0

,
=⇒ ω2 =

mG

4R3
0

=
MG

L3
, M = 2m, L = 2R0 .

By dimensional considerations now we get

Wtot ∼
c5

G

(
MG

c2L

)5

=
c5

G

(
rS
2L

)5

.

The Schwarzschild radius rS is always smaller than the size of the system and so one obtains a
constraint for the power radiated by a bounded gravitational system, that is

Wtot <
c5

G
< 1053W .

8.6.3 A simple binary system

As a simple binary system we consider two bodies with masses m1,m2, total mass M = m1 + m2,
moving in the (x, y) plane in a circular orbit under the reciprocal gravitational force. We indicate
by ω, and by µ = m1m2/M the angular velocity and the reduced mass respectively and choose the
origin in the center of mass and, as usual, we put ~r = ~r1 − ~r2. Since the orbit is circular, r = |~r| is a
constant and so

φ̇ =

√
MG

r3
= ω , φ(t) = ωt . (8.18)

The non vanishing components of tensors Mab and Qab are


Mxx = µ r2 cos2 ωt = µ r2

2
(1 + cos 2ωt) ,

Myy = µ r2 sin2 ωt = µ r2

2
(1− cos 2ωt) ,

Mxy = µ r2 cosωt sinωt = µ r2

2
sin 2ωt ,

=⇒



Qxx = µ r2

2
(1 + 3 cos 2ωt) ,

Qyy = µ r2

2
(1− 3 cos 2ωt) ,

Qzz = −µ r2 ,
Qxy = 3

2
µ r2 sin 2ωt ,

Qxz = Qyz = 0 .

From (8.17) it follows

Wtot = −dE
dt

=
32G

15c5
µ2r4ω6 . (8.19)

This is the total energy emitted by the system during a unit time. The energy emitted in a period
of revolution T = 2π/ω is then

ET =
∫ T

0
dWtot dt = T Wtot =

64πG

15c5
µ2r4ω5 .

In the calculation we have assumed the distance r between the two bodies to be a constant and this
is a reasonable assumption if ET is negligible with respect to the absolute value of the total energy
E of the system, that is

E = −Gm1m2

2r
, ET �

Gm1m2

2r
. (8.20)
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With this assumption we get

dE

dt
=
Gm1m2

2r2

dr

dt
= −Wtot ,

from which it follows

dr

dt
= − 2r2

Gm1m2

Wtot = − 64µ

15Mc5
r6ω6 = −K

r3
, K =

64µM2G3

15c5
.

Here we have replaced ω by means of (8.18). By integrating this latter equation we can compute the
total life of a system, with initial dimension r = r0. We get

Ttot = − 1

K

∫ 0

r0
r3 dr =

r4
0

4K
.

The latter result has to be considered a rough approximation of the real one, because condition (8.20)
does not hold for all time.

Using equation (8.19) for the planets in their motion around the sun we get, for example for earth
and jupiter

W earth
tot ∼ 66W , T earthtot ∼ 1023 years ,

W jupiter
tot ∼ 1700W , T jupitertot ∼ 1024 years .

It is also interesting to analyse the polarisation of the wave emitted by the system. To this aim
we recall that

ψab = − 2G

ρ c4
M̈ab ,

and the TT-gauge components can be obtained by means of (8.7).
We first consider the waves emitted along the (z) axis (normal to the orbital plane). The non

vanishing components of the wave in TT-gauge are given by hTTxx = −hTTyy = 1
2

(ψxx − ψyy) = 4Gr2ω2

ρ
cos 2ωt ,

hTTxy = hTTyx = ψxy = 4Gr2ω2

ρ
sin 2ωt ,

=⇒ (circular polarisation).

It is clear that due to axial symmetry all the waves with direction in the plane of the orbit have the
same properties. Then it is sufficient to consider a wave directed along the (x) axis. We get{

hTTyy = −hTTzz = 1
2

(ψyy − ψzz) = 2Gr2ω2

ρ
cos 2ωt ,

hTTyz = hTTzy = ψyz = 0 ,
=⇒ (linear polarisation) .

We see that the waves in the direction normal to the plane of the orbit have circular polarisation
and twice the amplitude of the waves with direction in the orbital plane. The ratio between the
corresponding contribution to Wtot is then 1/8.
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8.6.4 The Hulse-Taylor binary system

Now we study the emission of gravitational radiation of the system classified as PSRB1913 + 16,
which is constituted by two stars rotating on an elliptic orbit. All parameters of the system are
known with high precision and it has been observed that the dimension of the trajectory, as well as
the period of revolution, decrease as a function of time. This can be a consequence of the energy loss
due to the emission of gravitational waves.

As in the previous example we choose (x, y) as the orbital plane and we indicate by µ,M the
reduced and the total mass respectively and by ~r = (r cosφ, r sinφ, 0), the relative position. In this
way, the motion of a star with respect to the other is described by the equations

a(1− e2)

r
= 1 + e cosφ , φ̇ =

√
MGa(1− e2)

r2
,

where a is the semi-major axis and e the eccentricity. Energy, momentum and revolution period are
“nearly conserved” quantities given by

E = −Gm1m2

2a
, L = Gm1m2µ a(1− e2) , T =

2πa3/2

√
GM

.

The quadrupole moments are similar to the ones computed in the previous example, that is

Qxx = µ r2

2
(1 + 3 cos 2ωt) ,

Qyy = µ r2

2
(1− 3 cos 2ωt) ,

Qzz = −µ r2 ,
Qxy = 3

2
µ r2 sin 2ωt ,

Qxz = Qyz = 0 .

However now the time dependence of φ and r are non trivial and for this reason the computation of
the third derivatives of Qab is quite long and tedious. The final result reads

W = −dE
dt

=
8G4Mm2

1m
2
2

15c5a5(1− e2)5
(1 + e cosφ)4[12(1 + e cosφ)2 + e2 sin2 φ] .

The average power irradiated on a period T is given by

〈W 〉 =
1

T

∫ T

0
W dt =

1

T

∫ 2π

0

W dφ

φ̇
, (8.21)

from which the following Peters-Mathews result follows:

〈dE
dt
〉 = −32G4Mm2

1m
2
2

5c5a5
f(e) , f(e) = (1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)
.

We see that f(e) is a rapidly increasing function of e which amplifies the effect.
For the period one gets

dT

dt
= 3π

√
a

MG

da

dt
=

6πa5/2

µ(MG)3/2

dE

dt
,

Ṫ = 〈dT
dt
〉 =

6πa5/2

µ(MG)3/2
〈dE
dt
〉 = −192πm1m2G

5/3

5c2M1/3

(
T

2π

)−5/3

f(e) .
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For the system under consideration e ∼ 0.617 and f(e) ∼ 10. The other parameters are

mp ≡ m1 ∼ 1.44M� , mc ≡ m2 ∼ 1.38M� , a ∼ 1950100Km.

With these data one gets Ṫ ∼ −2.4024× 10−12. The observed value is Ṫobs ∼ −2.4184× 10−12. To
this latter value one has to add a small contribution due to the acceleration of the binary system
with respect to solar system as a consequence of the rotation of the galaxy. Taking such a correction
into account one has Tcor =∼ −2.4056× 10−12 and finally

Ṫ

Ṫcor
∼ 1.0013 .
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9 Cosmological Solutions

These are solutions of Einstein equations, which are able to describe the whole universe. They are
based on few, very general axioms, which principally derive from astronomical observations and from
the assumption that we are not in a privileged position. Then it is natural o assume the universe to
be spatially homogeneous.

From our point of view (on a large scale), the universe appears also spatially isotropic since
all directions are “essentially equivalent” and, because there are not privileged points, it has to be
isotropic with respect to any point. The isotropic property which we observe now is assumed to
be valid at any time (a non-isotropic model always evolves in an isotropic one). It is clear that
homogeneity and isotropy are not local properties, but properties which are valid for a “smeared
out” universe averaged on a “sufficiently large scale” of the order 108 ∼ 109 light-year (this includes
many clusters of galaxies).

In the following we shall use units in which c = 1 and we shall indicate with ρ and p respectively
the density of matter/energy and the pressure of the whole universe.

Cosmological principle: during all its evolution the universe is spatially homogeneous and isotropic
or, what is the same, it is isotropic around any point.

From the mathematical point of view this means that it is possible to choose an universal time t
in such a way that, at any t, the spatial metric is the same in any point and in any direction. That is,
the spatial 3− dimensional space has 6 independent Killing vectors (3 translations and 3 rotations)
and so it is a maximally symmetric manifold (see 6.5). The metric can be written in the general form

ds2 = −dt2 + a2(t) dΣ2 , dΣ2 = ĝabdx
adxb , a, b, c = 1, 2, 3,

where dΣ2 is the metric of a maximally symmetric space and a(t) is a function of time only, which
will be determined by solving Einstein equations.

It is clear that this is the more general form for a metric satisfying the cosmological principle. If
fact, a dependence of the function a from spatial coordinates trivially breaks homogeneity, but also
a dependence of g00 from spatial coordinates breaks homogeneity, because in such a case proper time
depends on the chosen point and as consequence also a(t), as a function of proper time, will depend
on the point. A possible presence of g00(t) can be drop by a redefinition of time.

9.1 Maximally symmetric spaces

These are manifolds with the maximum number of possible Killing vectors and are isotropic and
homogeneous, Viceversa, any isotropic and homogeneous space is maximally symmetric. Such kind
of manifolds must have constant scalar curvature and so

R̂abcd = K(ĝacĝbd − ĝadĝbc) , R̂ab = (n− 1)K γab , R̂ = n(n− 1)K , (9.1)

where n is the dimension (3 in our case) and K the Gauss curvature. k can be positive, negative
or vanishing. One respectively has the hypersphere Sn, the hyperbolic space Hn and the Euclidean
space IRn. The n − dimensional spaces with constant curvature can be embedded in an Euclidean
manifold with n+1−dimensions. In such a case the Gauss curvature K = 1/b2 becomes the inverse
of the square of the “radius” (in the case of Sn, b is really the radius of the ball in IRn+1, while in
the hyperbolic case b is imaginary).
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In the case of General Relativity n = 3 and an embedded hypersurface in IR4 is described by the
equation

x2 + y2 + z2 + u2 = b2 , dΩ2 = dx2 + dy2 + dz2 + du2 , (9.2)

dΩ2 being the metric of IR4 in Cartesian coordinates. By taking into account of the constraint,
we can derive u in terms of the other coordinates and in this way dΩ2 becomes the metric of the
hypersurface. To this aim it is convenient to use hyper-cylindrical coordinates in IR4, that is spherical
coordinates in the sub-space {x, y, z}. We put

x = r sinϑ cosϕ , r2 = x2 + y2 + z2 ,

y = r sinϑ sinϕ , u2 = b2 − r2 ,

z = r cosϑ , du = − rdr√
b2 − r2

,

and so

dΩ2 =⇒ dΣ2 = dr2 + r2(dϑ2 + sin2 ϑ dϕ2) + du2 =
dr2

1− r2/b2
+ r2(dϑ2 + sin2 ϑ dϕ2) .

Now the whole metric assumes the FLRW form (Friedmann-1922, Lemâıtre-1927, Robertson-Walker-
1930)

ds2 = −dt2 + a2(t)

[
dr2

1− k r2
+ r2(dϑ2 + sin2 ϑ dϕ2)

]
, k =

K

|K|
= 1, 0,−1 , (9.3)

which is spatially homogeneous and spatially isotropic, but in general it is not stationary for the
presence of the factor a(t). In order to get (9.3) we have performed the transformation
r2 → r2/|K| , a2(t) → a2(t)|K|. In such a case a(t) becomes the “radius” of the spatial part of the
universe at cosmological time t.

Reference and coordinates in which the universe appears homogeneous and isotropic are called re-
spectively co-moving reference frame and co-moving coordinate system. In some physical applications
it could be convenient to replace t, r by the conformal co-moving coordinates η, χ given by{

η(t) =
∫ dt

a(t)
=⇒ dt = a(η) dη ,

dχ2 = dr2

1−kr2 =⇒ r = φk(χ) , χ = fk(r) ,
(9.4)

where by definition a(η) ≡ a(t(η)), while

r = φk(χ) ≡


sinχ , k = 1 , (0 ≤ χ < π) , (0 ≤ r < 1) ,
χ , k = 0 , (0 ≤ χ <∞) , (0 ≤ r <∞)
sinhχ , k = −1 , (0 ≤ χ <∞) , (0 ≤ r <∞) ,

(9.5)

χ = fk(r) ≡


arcsin r , k = 1 , (0 ≤ r < 1) , (0 ≤ χ < π) ,
r , k = 0 , (0 ≤ r <∞) , (0 ≤ χ <∞) .
arcsinh r , k = −1 , (0 ≤ r <∞) , (0 ≤ χ <∞) .

(9.6)

In terms of conformal coordinates the metric reads

ds2 = a2(η)
[
−dη2 + dχ2 + φ2

k(χ)
(
dϑ2 + sin2 ϑ dϕ2

)]
. (9.7)

In the special case k = 0, the metric in conformal coordinates is conformally flat. This means that
it is proportional to the Minkowski metric.
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9.2 Friedmann-Lemâıtre-Robertson-Walker universe

In previous section we have determined the form of the more general homogeneous and isotropic
metric. It depends only on an arbitrary fuction of time a(t), which has to be determined in such
a way that metric in (9.3) is a solution of Einstein equations with a spatially homogeneous and
isotropic energy-momentum tensor (a perfect fluid).

The non vanishing components of the metric read

g00 = −1 , gab = a2(t)ĝab , g00 = −1 , gab =
ĝab

a2(t)
, a, b, ... = 1, 2, 3

where ĝab = γab is the metric of the 3-dimensional hypersurface (S3, IR3, H3), which has constant
curvature, Riemann and Ricci tensors given (9.1).

The non vanishing components of Riemannian quantities can be easily computed and read

Γ0
ab = aȧĝab =

ȧ

a
gab , Γa0b = Γab0 =

ȧ

a
δab , Γcab = Γ̂cab ,

R0
a0b = ∂0Γ0

ab − Γ0
bcΓ

c
0a =

ä

a
gab ,

R0
abc = aȧ

(
∂bĝac − ∂cĝab + Γdacĝbd − Γdabĝcd

)
= ∇̂bĝac − ∇̂cĝab = 0 ,

Rc
dab = R̂c

dab +
ȧ2

a2
(δcagbd − δcbgad) ,

R00 = −3ä

a
,

Rab =
ä

a
gab + R̂ab +

2ȧ2

a2
gab =

aä+ 2 (k + ȧ2)

a2
gab ,

R =
6 (k + ȧ2 + aä)

a2
. (9.8)

Finally we also get

G00 = 3

(
ȧ2

a2
+
k

a2

)
,

Gab = −
(

2ä

a
+
ȧ2

a2
+
k

a2

)
gab . (9.9)

The general form of the energy-momentum tensor with the required symmetry is the one of a
perfect fluid with pressure p and mass/energy density ρ depending on universal time only, that is

T ij = pgij + (p+ ρ)uiuj , T = T kk = 3p− ρ , p = p(t) , ρ = ρ(t) .

In co-moving reference frame matter is “at rest”. This means that

uk ≡ (1, 0, 0, 0) , ukuk = −1 , uk ≡ (−1, 0, 0, 0) ,

and so

T00 = ρ , T00 −
1

2
g00T =

ρ+ 3p

2
, Tab = p gab
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and from Einstein equations (6.3-6.6) it follows
G00 = 8πGT00 ,

R00 = 8πG
(
T00 − 1

2
g00 T

)
,

Gab = 8πGTab , ,

=⇒


(
ȧ
a

)2
+ k

a2 = 8πG
3
ρ ,

ä
a

= −4πG
3

(ρ+ 3p) ,
2ä
a

+
(
ȧ
a

)2
+ k

a2 = −8πGp ,

(9.10)

Note that only two of the three equations above are linearly independent. Another independent
equation can be obtained by using the conservation law. In particular we have

d

dt
(a3ρ) = −3pa2ȧ , (9.11)

which follows from the equation

0 = ∇kT
k0 = ∂kT

k0 + ΓkklT
l0 + Γ0

klT
kl = ∂tT

00 + Γkk0T
00 + Γ0

klT
kl

= ρ̇+
3ȧ

a
ρ+

3ȧ

a
p =

1

a3

[
d

dt
(a3ρ) + 3pa2ȧ

]
.

The other three equations are trivially satisfied because

∇kT
kb = ∂kT

kb + ΓkklT
lb + ΓbklT

kl = ∂aT
ab + ΓccaT

ab + ΓbacT
ac

=
p

a2

[
∂aĝ

ba + Γ̂ccaĝ
ab + Γ̂bacĝ

ac
]

=
p

a2
∇̂aĝ

ac = 0 .

Assuming ρ(t) to depend on t by means of a(t), that is ρ(t) = ρ(a(t)), equation (9.11) assumes the
form

d

da
(a3ρ) = −3pa2 .

In order to completely solve the problem one has to postulate also an equation of state for matter,
that is a relation p = p(ρ) between pressure and energy, which determines the type of fluid we are
dealing with. In summary we have the equations

2ä
a

+
(
ȧ
a

)2
+ k

a2 = −8πGp , field equation,
ä
a

= −4πG
3

(ρ+ 3p) , field equation,

(
ȧ
a

)2
+ k

a2 = 8πG
3
ρ , Friedmann equation,

d
da

(a3ρ) = −3pa2 , conservation law,
p = p(ρ) , equation of state,

(9.12)

where k can assume the values 0,±1. In has to be stressed that the equations above are not linearly
independent and in fact the last three are sufficient for a complete integration.

9.3 Einstein universe

Just for historical reasons now we briefly describe the Einstein cosmological model (1917), which
was the first one based on General Relativity. This is a static, spatially homogeneous and isotropic
model, which was immediately rejected after the discovery of the cosmological red-shift (see the next
Chapter), which is not present in a static universe.

If one does not take into account of a cosmological constant, the FLRW metric is the more general
one which gives rise to a spatially homogeneous and isotropic universe, but, as it follows from second
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and third equations in (9.12), for ordinary matter (ρ > 0 and p ≥ 0), the solution is not static. This
means that in order to have a static solution we have to consider exotic matter with negative pressure
or alternatively we have to modify Friedmann equations by taking into account of a cosmological
constant Λ. As we said in chapter (6), the cosmological constant Λ gives contributions to the field
equations which can be trivially obtained by the replacemet (see (6.5))

Tij → Tij −
c4

8π G
Λ gij =⇒

{
ρ→ ρ+ Λ

8πG
,

p→ p− Λ
8πG

.

From second and third equations in (9.12) then we get

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (9.13)

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
, (9.14)

and the static solution ȧ = ä = 0 gives

Λ =
3k

a2
− 8πGρ = 4πG(ρ+ 3p) > 0 .

We see that there is a static solution only for Λ > 0 and moreover also k must be positive. The
spatial part of the Einstein universe is a hypersphere with constant radius a.

9.4 de Sitter universe

This was introduced by de Sitter in 1917 and is a solution of Einstein equations in the absence of
matter, but in the presence of a cosmological constant Λ. It is based on a maximally symmetric
manifold in 4-dimensions, which is more than required by physical considerations. Also this model
could be seen as a special case of FLRW, but due to the maximal symmetry, it is easy to study it
directly too. In such a case a(t) is not a constant and so it provides the cosmological red-shift.

The Riemann, Ricci and scalar curvature tensors have the form

Rijrs = K(girgjs − gisgjr) , Rij = 3Kgij , R = 12K ,

K being the Gauss curvature of the whole space-time (do not confuse it with the curvature of the
spatial section k). Einstein equations become

Gij = Rij −
1

2
Rgij = −3Kgij = 8πG Tij − Λgij .

It is interesting to note that there are non trivial solutions also in the absence of matter, that is
Tij = 0. In such a case K = −Λ/3 and equations (9.13), (9.14) assume the simple form

ä

a
=

Λ

3
,

(
ȧ

a

)2

=
Λ

3
− k

a2
. (9.15)

Integrating the fisrt equation in the case with Λ > 0, which corresponds to de Sitter original model
(the solution with Λ < 0 is called anti-de Sitter), we have the general solution

a(t) =
1

2

α exp

√Λ

3
t

+ β exp

−
√

Λ

3
t

 , α + β

2
= a(0) , (9.16)
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and now from the second equation above we get

k =
αβΛ

3
.

We see that the form of a(t) depends on k. In particular, if k = 0 then H(t) = ȧ/a = ±
√

Λ/3 and

the spatial section of the universe is a flat manifold which expands/contracts linearly in time. From
(9.16) it follows

a(t) = a(0) exp

√Λ

3
t

 , expanding flat solution,

a(t) = a(0) exp

√−Λ

3
t

 , contracting flat solution.

Ik k = 1 we can choose for example α = β and the solution becomes

a(t) = a(0) cosh

√
Λ

3
t , a(0) =

√
3

Λ
. (9.17)

In such a case the spatial part of de Sitter universe is a hypersphere which expands according to
(9.17).

Ik k = −1 then we can choose for example α = −β and the solution becomes

a(t) = a(0) sinh

√
Λ

3
t , a(0) =

√
3

Λ
. (9.18)

In such a case the spatial part of de Sitter universe is a hyperbolic manifold which expands according
to (9.18).

The more general solution for a(t) is an arbitrary combination of exponentials or hyperbolic
functions. The choice of a particular solution is related to the choice of the parameter t. The
solution (9.17) with the hyperbolic cosine above corresponds to a metric without (cosmological)
horizons, while different choices correpond to metric with horizons, which, as a consequence, do
not cover the whole manifold. By transformations and extensions it is always possible to obtain a
solution from another one.

The original de Sitter metric was written in the static form

ds2 = −
[
1− ΛX2

3

]
dT 2 +

dX2

1− ΛX2/3
+X2dσ2 , (9.19)

which, in contrast with the FLRW metric with a(t) given by (9.17), is singular at X2 = 3/Λ where
there is a (cosmological) event horizon. The metric covers only half of the hyperboloid (since we are
dealing with Lorentian 4-dimensional spaces, a constant curvature hypersurface is a hyperboloid in
4-dimensions).

Exercise — Verify by a direct computation that the metric in (9.19) satisfies Einstein equation with
a cosmological constant Λ.

The Einstein equation with a cosmological constant can be written in the form

Rij = Λ gij .
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In order to simplify the calculation we use the results already obtained for Schwarzschild . To this
aim we put{

B = B(X) = 1− ΛX2

3
, Ȧ = Ḃ = 0 ,

A = A(X) = 1
1−ΛX2/3

= 1
B(X)

, A′

A
= −B′

B
,

where “dot” and “prime” mean derivative with respect to T and X respectively.
From (7.5)-(7.8) we directly obtain

R00 =
B′′

2A
− B′

4A

(
A′

A
+
B′

B

)
+
B′

rA
= −BΛ = g00Λ ,

R11 = −B
′′

2B
+
B′

4B

(
A′

A
+
B′

B

)
+
A′

rA
=

Λ

B
= g11Λ ,

R22 = 1 +
r

2A

(
A′

A
− B′

B

)
− 1

A
= r2Λ = g22Λ ,

R33 = sin2 ϑ R22 = r2 sinϑ Λ = g33Λ .

Exercise — Verify that the following Schwarzschild-de Sitter metric satisfies Einstein equation with
a cosmological constant Λ:

ds2 = −
[
1− 2MG

r
+

Λr2

3

]
dt2 +

dr2

1− 2MG/r + Λr2/3
+ r2dσ2 . (9.20)

There is an event horizon at the largest real soution of

1− 2MG

r
+

Λr2

3
= 0 .

This corresponds to Schwarzschild-de Sitter black hole. Asymptotically the manifold is de Sitter
with k = 1.

85



10 The Standard Cosmological Model

Here we shall discuss the more important consequences of standard cosmology, which is based on the
FLRW metric. We shall follow the historical point of view first (briefly) considering pure General
Relativity and then we will discuss the possible modifications of such a theory in order to take account
of recent observational data.

• It has to be noted that the name standard cosmological model (SCM) for the model of the
universe we are going to discuss is not universally used. It has been introduced by Weinberg in
analogy with the standard model (SM) of elementary particles in place of the misleading name
big-bang theory.

If not otherwise specified, in the following by flat universe we shall mean “spatially flat” universe
and by (conformal) coordinates we shall mean “(conformal) comoving coordinates”, that is the ones
in which the metric has the FLRW form. “The observer” O is put in the origin of coordinates and so
O ≡ (t, 0, 0, 0) ≡ (η, 0, 0, 0), t, η being related by (9.4). A generic point S ≡ (t, r, ϑ, ϕ) ≡ (η, χ, ϑ, ϕ),
with constant coordinates r, ϑ, ϕ represents a “fixed” star (galaxy). The coordinates of the galaxy
with respect to the observer do not change, but the proper distance increase as a consequece of the
expansion. Note that due to homogeneity, all results we shall derive for the observer will be valid for
any observer in the universe.

10.1 Cosmological redshift

It has been observed that the spectrum of atoms of distant galaxies is shifted to the red, the shift
being proportional to the distance (Hubble38,1929). It is natural to interpret such a phenomena as
due to Doppler effect. This means that all galaxies are moving away with a velocity proportional to
their distance. As we shall see, such an effect is a direct consequence of the (non-stationary) FLRW
metric and gives also an answer to the Olbers paradox, because in this way the visible universe is
finite.

• NOTE: Cosmological redshift is a consequence of the form of the metric and it does not involve
the field equations.

It is convenient to introduce the notation

H(t) =
ȧ(t)

a(t)
, H0 = H(t0) , a0 = a(t0) ,

q(t) = −a(t)ä(t)

ȧ2(t)
= − ä(t)

H(t)ȧ(t)
= − ä(t)

H2(t)a(t)
, q0 = q(t0) ,

where t0 is the present value of the universal time. The quantity H0 and the dimensionless parameter
q0 are called respectively the Hubble constant and the deceleration parameter and can be determined
by measuring the red-shift of the spectrum of distant galaxies (see below). Using such notations we
get

a(t)

a(t0)
= 1 +H0(t− t0)− 1

2
q0H

2
0 (t− t0)2 + ... (10.1)

38Edwin Powell Hubble (USA) 1889-1953.
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Let S ≡ (r, 0, 0) be the coordinates of a galaxy with respect to the observer on the earth at a generic
time t. In FLRW the spatial geometry is represented by the metric

dl2 = a2(t)

[
dr2

1− kr2
+ r2(dϑ2 + sin2 ϑ dϕ2)

]
,

and so the proper distance lS of the galaxy reads

lS(t) ≡
∫ r

0

a(t)dr√
1− kr2

= a(t)fk(r) ,

where fk is the function defined in (9.6), but its mathematical form is not important for the calcula-
tion. The only important thing is that the proper distance follow a scaling law, with a scale factor
a(t) depending on time.

By deriving with respect to time we obtain the speed of the galaxy which is moving away according
to

vS(t) =
dlS
dt

= ȧ(t)fk(r) = H(t) lS(t) =⇒ vS(t0) = H0lS(t0) . (10.2)

vS(t0) and lS(t0) are respectively the velocity and the distance of the galaxy with respect to the
observer. Actually the velocity is positive because the measured Hubble constant is positive.

Now we suppose that at time t the galaxy emits a light with frequency ν = 1/∆t, which arrives
on the earth at time t0 with frequency ν0 = 1/∆t0. Since for the light ds2 = 0 we get

dt

a(t)
= − dr√

1− kr2
=⇒

∫ t0

t

dt

a(t)
=
∫ t0+∆t0

t+∆t

dt

a(t)
= −

∫ 0

r

dr√
1− kr2

= fk(r) , (10.3)

from which it follows∫ t+∆t

t

dt

a(t)
=
∫ t0+∆t0

t0

dt

a(t)
=⇒ ∆t0

a(t0)
=

∆t

a(t)
.

In deriving the latter equations we have assumed a(t) to be constant during a period of the emitted
wave. This is a reasonable assumption because a(t) is a cosmological quantity that changes very
slowly. In this way we have

a(t0)

a(t)
=

∆t0
∆t

=
ν

ν0

=
λ0

λ
= 1 +

λ0 − λ
λ

= 1 + z ,

where z = (λ0 − λ)/λ > 0 is the redshift parameter.
Using expansion (10.1) for a(t0)/a(t) one obtains

z = −H0(t− t0) +
(

1 +
1

2
q0

)
H2

0 (t− t0)2 + ...

and at the lowest order

z ∼ H0(t0 − t) ∼ H0 a(t0)fk(r) , =⇒ z = vS(t0) = H0lS(t0) , (Hubble law).

We see that, in agreement with (non-relativistic) Doppler formula z is proportional to the speed of
the source. It has to be remarked that the latter expression is valid only if t0− t is sufficiently small,
which implies that the galaxies have not to be too far. In fact in such a case it is reasonable to
assume a(t) to be constant in the interval (t, t0) and from (10.3) one gets t0 − t ∼ a(t0)fk(r).

The redshift parameter can be used as evolution parameter in place of time as a consequence of
the relation

z =
a(t0)

a(t)
, (10.4)

which is valid for slowly varying a(t).
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Figure 10: FLRW Model

10.2 Evolution of FLRW universe

The evolution of the universe can be determined by studying Friedmann equations in the case of
strong energy dominance condition ρ+3p > 0, which is trivially valid for “ordinary” matter/radiation
because in such cases both p and ρ are positive (by “ordinary matter/radiation” we mean the one
we are usually dealing with, that is atoms, baryons, leptons, photons, neutrinos, etc).

If such hypothesis is satisfied, from second equation in (9.12) it follows that ä/a < 0 and so a(t)
is a concave function because a(t) > 0 by definition. Moreover we know that ȧ(t0) > 0 because the
Hubble constant is positive. This implies that a(t), in a neighbourhood of t0, is a positive, concave
downward, increasing function and so it has to intersect the temporal axis in a point O, which we
take as the origin of time (see figure 10). In such a point, called Big Bang, the Friedmann equations
become singular and so it has no physical sense to cross it.

Due to the concavity of the function (see figure 10) the ratio a(t0)/t0 > ȧ(t0) and so t0 < 1/H0.
With a value H0 ∼ 70 (Km/sec)/Mpc the actual age of the universe becomes lower than 14 billion
years.

Looking at Friedmann equation in (9.12) one sees that in the case k = 1, ȧ(t) has to be vanish
at a given value of t > t0 In such a case a(t) achieves its maximum value at t = T > t0 and so the
universe is spatially closed, it expands during a period T , which is the solution of the equation

ρ(T )a2(T ) =
3

8πG
. (10.5)

At time t = T the universe achieves its maximum and then it contracts for a period T and reaches
again the initial singularity at t = 2T (Big Crunch).

In the two other cases k = 0,−1 the universe expands indefinitely. Since the density decreases
as a−3 or greater, in the limit t→∞ from (9.12) one obtains ȧ→ 0 or ȧ2 → 1 according to whether
k = 0 or k = −1.
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10.2.1 Actual critical parameters

In a matter dominated era the Friedmann equations evaluated at t = t0 can be written in terms of
the parameters ρ0 = ρ(t0), a0, H0, q0, p0 ∼ 0 and the critical density

ρc =
3H2

0

8πG
. (10.6)

From second and third equations (9.12) with p0 = 0 in particular we get

ρ0

ρc
− 1 =

k

H2
0a

2
0

= 2q0 − 1 =⇒ ρ0

ρc
= 2q0 . (10.7)

We see that the value of the spatial curvature depends on the value of the actual density ρ0 in relation
to the critical one ρc or, alternatively, from the value of the deceleration parameter q0. In fact

ρ0 = ρc =⇒ k = 0 ⇐= q0 =
1

2
,

ρ0 > ρc =⇒ k = 1 ⇐= q0 >
1

2
,

ρ0 < ρc =⇒ k = −1 ⇐= q0 <
1

2
.

Of course, such results have to be compared with the measured values of the parameters. In the
past, a privileged value for q0 was of the order of unity, giving rise to a closed universe with k = 1
and ρ0/ρc > 1, while the estimated value of the density in ratio to the critical one was very small
(ρ0/ρc ∼ 0.01). Then one was talking about a missing mass (black holes, neutrinos, dusts,...).

At the end of the last century the situation was completely changed as a consequence of very
precise new data, but the problem of missing mass, now called dark matter and dark energy, still
remains (see Section 11.2).

10.2.2 The age of the universe

By assuming the universe to be dominated by matter for the most part of his history, we can derive
a relation between its age and q0. In such a case the fourth equation in (9.12) trivially gives

ρ(t) =
(
a0

a

)3

ρ0 =
(
a0

a

)3

2q0ρc =⇒ ρ0

ρc
= 2q0

(
a0

a

)3

.

Now using (10.7) the Friedmann equation in (9.12) assumes the form(
ȧ

a

)2

= H2
0

[
1− 2q0 + 2q0

a0

a

] (
a0

a

)2

and finally, by integration

t0 =
1

H0

∫ a0

0

[
1− 2q0 + 2q0

a0

a

]−1/2 da

a0

=
1

H0

∫ 1

0

[
1− 2q0 +

2q0

x

]−1/2

dx <
1

H0

, (10.8)

that gives the age of the universe in terms of the deceleration parameter q0. In a flat universe, k = 0,
ρ0/ρc = 1, q0 = 1/2 and so t0 = 2/3H0.

• It has to be noted that the results of the latter paragraph are valid only during the matter
dominated era. From recent experimental data we know that recently the expansion started
to accelerate and so the actual “deceleration” parameter is negative. In such a case equation
(10.8) has to be modified in order to take into account of “repulsive” forces.
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10.3 Explicit solutions of Friedman equations

In order to solve the system in (9.12) it is necessary to know the equation of state of matter, which in
principle can change during the evolution and could be very complicated, However explicit solutions
can be easily obtained when the pressure is proportional to the density, that is p = wρ, with the
barotropic parameter w to be a constant. Such equation of state cover the two important cases
corresponding to low and high velocities of particles and also the cosmological constant case.

Then putting p = wρ, equations in (9.12) assume the form

2ä
a

+
(
ȧ
a

)2
+ k

a2 = −8πGwρ , field equation,
ä
a

= −4πG
3

(1 + 3w) ρ , field equation,(
ȧ
a

)2
+ k

a2 = 8πG
3
ρ , Friedmann equation,

d
da

(a3ρ) = −3wρa2 , conservation law,
p = w ρ , equation of state,

(10.9)

Equation fourth in (10.9) can be easily solved, the solution being

ρ(t) =
const

a3(1+w)
, p(t) = wρ(t) .

The integration constant has to be fixed by initial conditions.
As we already said above for suitable choices of the barotropic parameter the equation of state

(10.9) cover physical important cases. With the chosen signature, the trace of the energy-momentum
tensor has to be negative (for ordinary matter/energy), then we get

0 ≤ p ≤ ρ

3
, ordinary matter.

The two limits correspond to

non relativistic matter =⇒ p� ρ ,

ultra-relativistic matter =⇒ p ∼ 1

3
ρ ,

which correspond to the choices w = 0 and w = 1/3 respectively. The choice w = −1 corresponds to
the cosmological constant, which can be seen as a perfect fluid with negative pressure. In summary
we have

dust =⇒ p = 0 =⇒ ρ(t) =
cost

a3(t)
, (10.10)

radiation =⇒ p =
ρ

3
=⇒ ρ(t) =

cost

a4(t)
, (10.11)

cosm. const. =⇒ p = −ρ =⇒ ρ(t) = const . (10.12)

The integration constants can be fixed by initial conditions. For example, by measuring matter
density ρM(t0) at present time t = t0, we have

ρM(t) =
ρ0a

3
0

a3(t)
, ρ0 = ρM(t0) , a0 = a(t0) .

The density ρ of the universe is probably a “mixture” due to matter, radiation and cosmological
constant, but, looking at equations (10.10)-(10.12) we see that, due to the different behaviour during
the expansion, we can distinguish three different ere in which one of the three components dominates
with respect to the others, starting from the beginning, when radiation dominates, until the present
era dominated by the component due to cosmological constant.

Note that the ratio between non-relativistic (dust) and ultra-relativistic (radiation) matter de-
pends on the energy. At the beginning of time, only ultra-relativistic matter was present.
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10.3.1 Flat space

According to recent cosmological data. the spatial section of the universe is flat, that is k = 0. In this
case the Friedmann equations can be easily solved. To this aim it is sufficient to consider equation
(10.9) (with k = 0) for the two cases w 6= −1 and w = −1. In this way we get

[
a(3w+1)/2 ȧ

]2
= const =⇒ a(t) = a0

[
t

t0

] 2
3(w+1)

, w 6= −1 . (10.13)

For w = −1 the behaviour of the solution completely changes because

H(t) =
ȧ

a
= const = H0 =⇒ a(t) ∼ eH0t . (10.14)

We see that in both radiation and matter dominated ere the radius of the universe increase slowly,
while in the era dominated by cosmological constant the radius increase exponentially.

The actual age of the universe can be easily computed by assuming that the main contribution
is due to matter dominated era. This is a reasonable assumption because radiation dominated for a
brief period and cosmological constant starts to dominate very recently. From the solution (10.13)
with w = 0 we get

H(t) =
ȧ

a
=

2

3 t
=⇒ t0 ∼

2

3H0

. (10.15)

1/H0 is called the Hubble time.
In the following we shall also need the age of the universe as a function of the Hubble parameter

in a radiation-dominated universe. From (10.13) with w = 1/3 we have

H(t) =
ȧ

a
=

1

2 t
=⇒ t ∼ 1

2H
. (10.16)

10.3.2 Curved space

Now we solve Friedmann equations in the presence of curvature. To this aim it is convenient to use
the conformal coordinates (9.4). In such coordinates, for an arbitrary function f(t) = f(η(t)) we
have

ḟ =
df

dt
=
df

dη

dη

dt
=
f ′(η)

a(η)
, f ′ =

df

dη
.

By setting h = a′/a, the first three equations in (10.9) read

2h′ + h2 + k = −8πGwρ a2 , (10.17)

h′ = −4πG

3
(3w + 1)ρ a2 , (10.18)

h2 + k =
8πG

3
ρ a2 . (10.19)

We consider separately the three cases w = 0, w = 1/3 and w = −1.

• w = 0. In such a case equation (10.17) can be directly solved because it becomes

2h′ + h2 + k = 0 =⇒ h(η) =


cot η

2
, k = 1 ,

2
η
, k = 0 ,

coth η
2
, k = −1 .
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Now, by integrating the equation h = a′/a we obtain the radius as a function of η, that is

a(η) = A


1− cos η , k = 1 ,
η2

2
, k = 0 ,

cosh η − 1 , k = −1 ,

(10.20)

and finally

t(η) =
∫
a(η) dη = T


η − sin η , k = 1 ,
η3

6
, k = 0 ,

sinh η − η , k = −1 ,

where A, T are integration constants to be determined by initial conditions. We see that in all
the cases the size of the universe in vanishing at η = 0 (Big Bang). In both the cases k = 0,−1
the universe expands indefinitely, while for k = 1 the universe reaches its maximal size for
η = π and then a(η) decreases and reaches the value a(η) = 0 for η = 2π (Big Crunch).

• w = 1/3. In such a case, by summing (10.18) and (10.19) we have

h′ + h2 + k = 0 =⇒ h(η) =


cot η , k = 1 ,
1
η
, k = 0 ,

coth η , k = −1 ,

and for a(η) and t(η) it follows

a(η) = A


sin η , k = 1 ,
η , k = 0 ,
sinh η k = −1 ,

t(η) = T


1− cos η , k = 1 ,
η2

2
, k = 0 ,

cosh η − 1 , k = −1 .

(10.21)

Also in this case the universe expands indefinitely for k = 0,−1 and it is finite for k = 1, but
now a(η) reaches its maximum for η = π/2 and vanishes again for η = π.

• w = −1. Such a case has been already considered in section (9.4).
In fact, setting −p = ρ = Λ/8πG we get (see (9.15)

ä

a
=

Λ

3
,

(
ȧ

a

)2

=
Λ

3
− k

a2
.

For Λ > 0 we obtain

a(t) = A


cosh

√
Λ
3
t , k = 1 ,

exp
√

Λ
3
t , k = 0 ,

sinh
√

Λ
3
t , k = −1 .

Now the universe expands indefinitely in all the cases, but this is not a surprise because all the
above solutions correspond to de Sitter space. The first solution covers the whole manifold,
while the other two cover only part of it.

If Λ < 0 (anti de Sitter) then there is a solution only in the case k = −1. It reads

a(t) = A sin

√
|Λ|
3
t , k = −1 .
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10.4 Horizons

In FLRW can exist both particle as well as event horizons, which delimit regions inaccessible to the
observer. More precisely, a particle horizon delimits a region in the past which cannot be seen by the
observer at a given time, but it could be seen in the future, while an event horizon delimits a region
in the future which will never be influenced by the observer. In order to see that it is convenient to
use conformal coordinates (9.4) and metric (9.7).

Let us consider the observer O in the origin of coordinates who received a light signal at conformal
time η emitted by a comoving source S (star/galaxy) at coordinate distance χi and at conformal
time ηi. Angular coordinates do not enter the game because the light travels along radial geodesics,
for which dϑ = dϕ = 0, that is

ds2 = 0 , ϑ = const , ϕ = const =⇒ dη2 = dχ2 .

These correspond to straight lines at angles ±π/4 in the {η, χ} plane. For conformal coordinate and
proper distance of the source we obtain respectively

χi = χi(t, ti) = η − ηi =
∫ t

ti

dt′

a(t′)
, li(t, ti) = a(t)χ(t) = a(t)

∫ t

ti

dt′

a(t′)
. (10.22)

Of course, for a fixed ti, at time t the observer can not get informations concerning objects at distance
l > li, but in principle, for a fixed t, li(t, ti) could increase indefinitely as a function of ti < t. For
example, in Minkowski space li = t − ti and the observer, ant any time, can receive signals from
all points because |ti| can be arbitrary large (ti → −∞). The light past cone of any observer in
Minkowski space covers the whole spatial manifold.

The situation drastically changes if the integral in (10.22) is finite for any choice of ti < t. In
particular, if ti is the “beginning of time” (ti = 0 in FLRW), then the observer can only see the
object which lie inside the hypersurface l ≤ li(t, ti) ≡ dP (t), which can be finite. In such a case the
hyper-surface l = dP (t) is called particle horizon. This is a dynamical quantity because it depends
on time. It could increase but also decrease.

• It has to be noted that our universe was opaque to photons until the time of hydrogen recom-
bination (when universe was more or less 1000 times smaller than now) and so, for physical
reasons, there is an “optical horizon” with dopt < dP (t0), which “obscures” information about
the most interesting stages of the evolution of the early universe.

As well as an observer could not see regions in the past (at present time), there could be regions
in the future with which he will not be able to communicate. In fact, the signal sent by the observer
at time η, t, will never reach the points for which

χ > χE = ηf − η =⇒ l > dE(t) = a(t)
∫ tf

t

dt′

a(t′)
,

tf being the final time, which can be finite or infinite. The hypersurface l = dE(t) is called event
horizon. At present time we could never communicate with observers in the region l > dE(t0),

Particle horizons arise when the past light cone of the observer O terminates at a finite conformal
time ηi. Then there will be worldlines of other particles which do not intersect the past of O, meaning
that they were never in causal contact. One has

χP = η − ηi , dP (t) = a(t)
∫ t

ti

dt′

a(t′)
, (10.23)
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η and t being the conformal and universal time of the observer.

Event horizons arise when the future light cone of the observer O terminates at a finite conformal
time. Then there will be worldlines of other particles which do not intersect the future of O, meaning
that they cannot possibly influence each other. One has

χE = ηf − η , dE(t) = a(t)
∫ tf

t

dt′

a(t′)
, (10.24)

η and t being the conformal and universal time of the observer.

In order to clarify the meaning of horizons we explicitly compute them in flat FLRW, for the
three cases considered above (10.13,10.14).

• w = 1/3. In the radiation-dominated era we have

a(t) = A
√
t , =⇒ dP (t) = A

√
t
∫ t

0

dt′

A
√
t′

= 2t . (10.25)

We see that the particle horizon increase linearly in time, while there is no event horizon
because dE(t) = ∞ when tf = ∞. At the time t, the observer will see only objects inside the
region l < 2ct.

• w = 0. In the matter-dominated era we have

a(t) = A t2/3 , =⇒ dP (t) = A t2/3
∫ t

0

dt′

A t′2/3
= 3t . (10.26)

Also in this case the particle horizon increase linearly in time and there is no event horizon.
At the time t, the observer will see only objects inside the region l < 3ct.

• w = −1. In such a case, setting HΛ =
√

Λ/3 we have

a(t) = AeHΛt =⇒

 dP (t) = eHΛt
∫ t
ti
e−HΛt dt = 1

HΛ

(
eHΛ(t−ti) − 1

)
,

dE(t) = eHΛt
∫∞
t e−HΛt dt = 1

HΛ
.

(10.27)

We see that there is an event horizon which is independent on t. The observer can not influence
the region out of the sphere d > dE. The particle horizon depends on the initial time ti. If one
considers the whole de Sitter space, then ti = −∞ and in such a case dP = ∞. This means
that the observer can see all the manifold at any time, but if for some physical reason ti has to
be finite, then there is also a particle horizon depending on time.

10.5 Conformal diagrams

As we have seen by general considerations, the metric of a homogeneous and isotropic manifold can
be written in the conformal coordinates as

ds2 = a2(η)
[
−dη2 + dχ2 + φ2

k(χ) dσ2
]
, φk(χ) =


sinχ , k = 1 ,
χ , k = 0 ,
sinhχ , k = −1 ,
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dσ2 being the metric of the unitary 2−dimensional sphere. The global properties of a manifold with
a metric of such a form are completely determined by the radial geodesics and can be conveniently
represented by a 2-dimensional conformal diagram in which every point corresponds to a 2-sphere.
This possibility only depends on the form of the metric and so conformal diagrams are used in other
contests too, for example in the physics of black holes. In such cases, the factors a2 and φ could
depend of both η, χ.

In general the coordinates η, χ extend to infinite intervals, but it is always possible to perform a
further transformation of coordinates which preserves the form of the metric and maps both η, χ in
finite intervals. In this way we can represent the manifold by a compact diagram (η, χ), in which the
radial geodesics are the straight lines χ = ±η+const. The size of the diagram and the range spanned
by coordinates can be altered, but the shape is uniquely determined by the form of the metric. Of
course, all metrics related by non singular conformal transformations give rise to the same diagram.

In the construction of the diagram one has to take into account also of the singularities and of
the boundaries which are determined by the functions a(η, χ) and φk(η, χ).

Closed radiation dominated universe. As a first example we consider the universe dominated
by radiation with k = 1. The metric and solution read (see 10.21)

ds2 = −a2(η)
[
−dη2 + dχ2 + φ2

1(χ) dσ2
]
,


φ1(χ) = sinχ ,
a(η) = A sin η ,
0 = ηi =≤ η ≤= ηf = π ,
0 ≤ χ ≤ π ,

A being determined by initial conditions.
All the coordinates have finite range and cover the whole manifold. The conformal diagram is a

square with boundaries at (η, 0) and (η, π) and physical singularities at (0, χ) and (π, χ) where the
conformal factor vanishes, while energy and pressure diverge. In the period 0 < η < π/2 the universe
expands, while it contracts for π/2 < η < π (see figure (11).

The particle and event horizons for the observer read respectively

χP (η) = η − ηi = η , χE(η) = ηf − η = π − η .

We see that the particle horizon increase with time and the observer will see all the space at η = π,
that is just at the moment of recollapse.

There is an event horizon at any time and this means that there are regions which can not be
influenced by the observer at time η.

Closed matter dominated universe. As a second example we consider the universe dominated
by matter with k = 1. The metric and solution read (see 10.20)

ds2 = −a2(η)
[
−dη2 + dχ2 + φ2

1(χ) dσ2
]
,


φ1(χ) = sinχ ,
a(η) = A(1− cos η) ,
0 = ηi ≤ η ≤ ηf = 2π ,
0 ≤ χ ≤ π .

Also in this case all the coordinates have finite range and cover the whole manifold, but now the
conformal diagram is a rectangle with boundaries at (η, 0) and (η, π) and singularities at (0, χ) and
(2π, χ) where a(η) vanishes (see figure (11). The universe expands for 0 < η < π and contracts for
π < η < 2π.
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Figure 11: Conformal diagrams: closed radiation (left) and matter (right) flat universes

Particle and event horizons for the observer read respectively

χP (η) = η − ηi = η , χE(η) = ηf − η = 2π − η .

Looking at the diagram we see that there is a particle horizon but only during the expansion era and
an event horizon but only during the contraction era. The observer can influence any region of the
universe in the period η < π and can see any region of the universe in all period η > π.

It has to be noted that in the period η > π the observer at χ = 0 can see at the same time two
copies of the same galaxy, one older than the other, because the light emitted in opposite directions
will reach the observer at different times. This is visualized in the diagram by observing that the
light signals are “reflected” on the boundaries at χ = 0 and χ = π and move back. This is due to
the fact that spatial section is a hypersphere.

As well as ϑ = 0 and ϑ = π correspond to opposite poles of the 2-dimensional sphere
dσ2 = dϑ2 + sin2 ϑ dϕ2, χ = 0 and χ = π correspond to opposite poles of the 3-dimensional sphere
dΣ2 = dχ2 + sin2 χdσ2. It is well known that it is not possible to cover all the sphere with a single
chart and in fact our coordinates cover the 3-sphere, but a point, say the south pole. In order to
clarify what happens in a neighbourhood of such a point, one has to use another chart.

Consider for example a light signal moving on the 3-sphere along a radial geodesic.
Let’s P+ ≡ (χ, ϑ, ϕ) be the trajectory, ϑ and ϕ being constant and χ = χ(η) increasing in time.
When the signal cross the south pole χ = π at crossing time ηS, then ϕ→ ϕ+ π and ϑ→ π−ϑ and
χ starts to decrease. Note that P+ and P− ≡ (χ, π − ϑ, ϕ+ π) are specular points (on the geodesic)
with respect to the north-south axis. P+ is the trajectory for η < ηS and P− is the trajectory for
η > ηS. This means that when the signal cross the south pole the geodesic in the the conformal
diagram is represented by a reflected line on the boundary at χ = π. Of course the same thing holds
for a signal which propagates in the opposite direction. In such a case it is reflected on the boundary
at χ = 0.

As we have already said, an observer at χ = 0 will see two copies of the galaxy at χ = χg. Looking
at the digram it seams that the observer moving with the galaxy itself will see its younger image at
η = η1, but this is not the case because its coordinates at η = η2 are (χg, ϑ, ϕ), while the coordinates
of the younger image at η = η2 are (χg, π − ϑ, ϕ + π). We have not to forget that any point of the
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diagram represents a sphere. This fact becomes clear for the observe at the origin. The light emitted
from a galaxy at origin will never intersect the world line of the observer.
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11 Thermal history of the universe

(Lemâıtre–1931) “The evolution of the world can be compared to a display of fireworks that has
just ended: some few red wisps, ashes and smoke. Standing on a well chilled-cinder we see the
slow fading of the suns, and we try to recall the vanished brilliance of the origin of the world.”

The thermal history of the universe has been developed by many people starting from 1930 and
it is far to be completed. The standard cosmological picture deals with the universe as it is now and
as one can trace its evolution back in time. It is based on the following assumptions:

• On large scale average the mass distributions is close to homogeneous.

• The universe is expanding according to Hubble law.

• The dynamics is described by general relativity and local physics is the same everywhere and
at all time.

• The universe expands from a hot state dominated by thermal black body radiation.

The evolution can be parametrized not only by time, but also by the redshift parameter or by
the “equilibrium temperature”, which is the really important one, because it determines what kind
of particles are present and which reactions are permitted. Of course, we assume that all physical
laws which we kn ow from particle experiments are also valid during all evolution of the universe.

The relation between temperature of black-body radiation and redshift parameter is very simple
(see below), while the relation with time depends on matter content and in general is quite com-
plicated, but for the first period dominated by radiation one can use the (roughly) approximated
formula (pure numerical identity–dimensionally wrong)

TMeV ∼
1√
tsec

,

where time has to be measured in seconds and temperature in MeV. Remember that temperature and
energy are related through the relation E = kT , k being the Boltzmann constant. In the following
there is no possibility to confuse it with the curvature parameter.

11.1 A schematic description

Now we write down a schematic description of the thermal evolution and then we shall analyse some
parts in more detail.

t ∼ 4.35× 1017 sec ∼ 13.8× 109 years –
Actual age of the universe usually indicated with t0.

t ∼ 1016 − 1017 sec –
Galaxies and their clusters are formed from small initial inhomogeneities as a result of gravi-
tational instability. Structure formation can be described using Newtonian gravity.

t ∼ 1012 − 1013 sec –
Nearly all free electrons and protons recombine and form neutral hydrogen. The universe be-
comes transparent to the background radiation. The cosmic microwave background (CMB)
temperature fluctuations, induced by the slightly inhomogeneous matter distribution at re-
combination, survive to the present day and deliver direct information about the state of the
universe at the last scattering surface.
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t ∼ 1011 sec − T ∼ eV –
Matter-Radiation equality which separates the radiation-dominated epoch from the matter-
dominated one. The exact value of the cosmological time at equality depends on the con-
stituents of the dark component and it is known at present only up to a numerical factor of
order unity.

t ∼ 200− 300 sec − T ∼ 0.05MeV –
Nuclear reactions become efficient at this temperature. Free protons and neutrons form helium
and other light elements. The abundances of the light elements resulting from primordial
nucleosynthesis are in very good agreement with available observation data and this strongly
supports our understanding of the universe evolution back to the first second after the big bang.

t ∼ 1 sec − T ∼ 0.5MeV –
Energy of the order of the electron mass. The numerous electron-positron pairs present in the
very early universe begin to annihilate when the temperature drops below their rest mass and
only a small excess of electrons over positrons remains.

t ∼ 0.2 sec − T ∼ 1− 2MeV –
Primordial neutrinos decouple from the other particles and propagate without further scat-
terings. Ratio of neutrons to protons freezes out because the interactions that keep neutrons
and protons in chemical equilibrium become inefficient. The number of the surviving neutrons
determines the abundances of the primordial elements.

t ∼ 10−5 sec − T ∼ 200MeV –
Quark-gluon transition takes place: free quarks and gluons become confined within baryons
and mesons (physics not completely understood).

t ∼ 10−10 − 10−14 sec − T ∼ 100GeV − 10TeV –
This range of energy scales can still be probed by accelerators. The electroweak symmetry is
restored and the gauge bosons become massless.

t ∼ 10−14 − 10−43 sec − T ∼ 10TeV − 1019GeV –
This energy range will not be reached by accelerators. The very early universe can give us some
rough information about fundamental physics. We can still use General Relativity to describe
the dynamics. The main uncertainty is the matter composition. Supersymmetric particles?
WIMP (weakly interacting massive particles candidates for dark matter).

The origin of baryon asymmetry in the universe is related to physics beyond the standard
model (SM). Grand Unification of electroweak and strong interactions takes place at energies
about 1016 GeV . Topological defects, such as cosmic strings, monopoles, that occur naturally
in unified theories might play some role in the early universe, but according to the current
microwave background anisotropy data, it seems that they have any significance for large scale
structure.

Perhaps the most interesting phenomenon in the above energy range is the accelerated expan-
sion of the universe (inflation), which probably occurs somewhere near Grand Unification scales.
Fortunately, the most important robust predictions of inflation do not depend substantially on
unknown particle physics.
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t ∼ 10−43 sec − T ∼ 1019GeV –
Near the Planckian scale quantum gravity dominates, spacetime could have no meaning and
general ralativity can no longer be trusted.

11.2 Actual cosmological parameters

The Friedmann equations now are usually written by introducing a dimensionless parameter Ω by

Ω = Ω(t) =
8πGρ(t)

3H2(t)
, Ω0 = Ω(t0) =

ρ0

ρc
, ρc =

3H0

8πG
,

ρc being the actual critical density already introduced in previous chapter. In some cases Ω is also
split in matter, radiation, dark-energy components, but here we will do it only at present time t0.
From equations in (9.12) we get

Ω− 1 =
k

a2(t)H2(t)
,

dΩ

da
= (1 + 3w)

Ω(Ω− 1)

a
, (11.1)

where p = wρ and dH/da = Ḣ/ȧ have been used. We see that the spatial curvature k is positive,
vanishing or negative according to whether Ω is larger, equal or smaller than 1.

It is convenient to introduce the following notation for actual values of cosmological parameters:

H0 = 100h (Km/sec)/Mpc Hubble constant (h ∼ 0.68) ;
τ0 = 1

H0
∼ 0.98× 1010h−1 years Hubble time (τ0 ∼ 1.45× 1010 years) ;

L0 = c
H0
∼ 3000h−1Mpc Hubble length (L0 ∼ 4000Mpc) ;

ΩM = 8πGρM
3H2

0
matter (ΩM ∼ 0.3) ;

Ωk = − k
a2

0H
2
0

curvature (Ωk ∼ 0) ;

ΩΛ = Λ
3H2

0
dark energy (ΩΛ ∼ 0.69) ;

H0,ΩM ,Ωk,ΩΛ being constant quantities to be measured. H0 is measured by redshift, while ΩM is
deduced in different ways (galaxy rotation, virial theorem). The best value of Ωk (as well as ΩM) is
deduced from CMB, while ΩΛ is deduced by Friedmann equation in (11.1) at prensent time, that is

Ω0 = ΩM + ΩΛ = 1− Ωk =⇒ ΩΛ = 1− ΩM − Ωk .

We shall see below that the contribution of radiation is actually negligible.
One has to pay attention to the fact that all data in the right hand side of the table above depends

on the value of h, related to the Hubble constant. According to recent results (Planck spacecraft
2013), h ∼ 0.68.

Note that ΩΛ represents the contribution of dark energy, which in the ΛCDM model is related
to the cosmological constant by the definition above. The ΛCDM (Λ-Cold Dark Matter) model is
a FLRW model with cosmological constant Λ, where the matter parameter ΩM is (quite entirely)
due to weakly interacting massive particles (WIMP), that is particle which manifest only through
gravitational or weak interactions. They are not visible since they have no charges (electric,color)
and they have decoupled very early and so they are could (for non relativistic matter the temperature
scales as TM ∼ 1/a2).

The ΛCDM model is in good agreement with experimental data, but since it presents some
theoretical problems (see Section (11.7), other possibilities are actually under consideration, where Λ
is not given “a priori”, but it emerges as an effective dynamical quantity, for example as a consequence
of modified general relativity.
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The matter parameter is usually split as

ΩM = ΩB + ΩD ,

 ΩB = 8πGρB
3H2

0
∼ 0.05 ,

ΩD = 8πGρD
3H2

0
∼ 0.25 .

where ΩM is the contribution of all matter detected by gravitational interactions (galaxy rotation,
gravitational lensing, CMB, BAO, etc.), while ΩB is the contribution of ordinary (visible) matter
(the most part is due to baryons (protons, neutrons,...) because electrons, photons, neutrinos ... give
negligible contributions and ΩD is the contribution of Dark matter. It could be ordinary matter, but
not visible (black holes, clouds, neutrinos), but the most part has to be constituted by WIMP.

The actual values of the energy densities are

ρc =
3H2

0

8πG
∼ 1.88× 10−29 h2 g/cm3 ∼ 9.5× 10−30 g/cm3 ,

ρM = ρcΩM ∼ 1.88× 10−29 ΩM h2 g/cm3 ∼ 2.84× 10−30 g/cm3 ,

ρΛ = ρcΩΛ ∼ 1.88× 10−29 ΩΛ h
2 g/cm3 ∼ 6.63× 10−30 g/cm3 ,

and all of them correspond to a proton per cubic meter.

11.3 Redshift parameter relations

As we already said above, the evolution can be parametrised by time, temperature or redshift pa-
rameter because there is a “one to one” correspondence between them. Here we explicitly derive
such relations.

The temperature/energy determines the reactions which preserve the thermal equilibrium and so
it is the natural parameter evolution for theoretical developments, while the redshift parameter is
important from the experimental point of view.

11.3.1 Time-redshift relation

In order to get the relation between time and redshift we choose a galaxy (the source)
S ≡ (t, r, 0, 0, ) = (η, χ, 0, 0) and the observer at the origin O ≡ (t0, 0, 0, 0) =≡ (η0, 0, 0, 0). We recall
that the redshift parameter z is defined by

λ0

λ
=

a0

a(t)
= 1 + z =⇒ a(t) =

a0

1 + z
, a0 = a(t0) , (11.2)

where z = ∆λ/λ is a measurable quantity related to universal time by a one-to-one correspondence.
This means that one can use z as evolution parameter. In fact, deriving the latter equation we have

dz = −a0ȧ(t)

a2(t)
dt = −a0H(t)

a(t)
dt = −(1 + z)H(t) dt , (11.3)

and choosing the integration constant so that z =∞ corresponds to t = 0 we obtain

t(z) =
∫ ∞
z

dz

(1 + z)H(z)
. (11.4)

For an arbitrary function f we also have the relation

ḟ =
df

dz

dz

dt
= −a0H(z)

a(z)

df

dz
=⇒ ḟ(t0) = −H0

df

dz
. (11.5)
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The Hubble parameter as a function of z can be obtained by the Friedmann equation (9.12),
which in terms of z reads

H2(z) +
k(1 + z)2

a2
0

=
8πGρ(z)

3
= H2

0 Ω0
ρ(z)

ρ0

, (11.6)

ρ0 = ρ(t0) = ρ(z = 0) , Ω0 =
ρ0

ρc
=

8πGρ0

3H2
0

. (11.7)

Here ρ is the whole energy density (matter, radiation, ...).
For z = 0 we get

k

a2
0

= (Ω0 − 1)H2
0 =⇒ H(z) = H0

√
(1− Ω0)(1 + z)2 +

Ω0ρ(z)

ρ0

. (11.8)

The energy density as a function of z can be obtained from the continuity equation, that is

dρ = −3(p+ ρ)d log a =⇒
∫ ρ(z)

ρ0

dρ

ρ+ p(ρ)
= 3 log(1 + z) . (11.9)

Ones ρ(z) has been computed, one finds H(z) and finally t(z) by (11.4).

The redshift parameter can also be used in place of the distance, because

χ = η0 − η =
∫ t0

t

dt′

a(t′)
=

1

a0

∫ z

0

du

H(u)
. (11.10)

However it has to be noted that when z → ∞, χ tends to the particle horizon χP and this means
that z can measure distances only for χ < χP (when χ > χP the velocity of the source exceeds the
speed of light).

In a dust dominated universe ρ(z) = ρ0(1 + z)3 and so

H(z) = H0(1 + z)
√

1 + Ω0 z . (11.11)

If the universe is also flat (Ω0 = 1) one easily obtains

t(z) =
2

3H0

1

(1 + z)3/2
, χ(z) =

2

a0H0

(
1− 1√

1 + z

)
, (11.12)

from which the known result t0 = 2/3H0 follows.

11.3.2 Angular diameter-redshift relation

In a static, Euclidean space, the angle which an object with a given transverse size l subtends on
the sky is inversely proportional to the distance to this object. In an expanding universe the relation
between the distance and the angular size is not so trivial.

Let us consider an extended object with proper transverse size l at a comoving distance χ, the
end points of such an object being P1 ≡ (η, χ, ϑ, ϕ) and P2 ≡ (η, χ, ϑ + ∆ϑ, ϕ). The observer will
measure the angular size ∆ϑ which is related to the proper length by l

l = a(η)φk(χ)∆ϑ =⇒ ∆ϑ =
l

a(η)φk(χ)
. (11.13)
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Because photons run on radial geodesics, the time η corresponding to the emission of the photons
which reach the observer at time η0 is given by η = η0 − χ and so

∆ϑ =
l

a(η0 − χ)φk(χ)
. (11.14)

When the object is quite near the observer one obtains the Euclidean formula because in such a case

χ� η0 =⇒ φk(χ) ∼ χ =⇒ ∆ϑ ∼ l

a(η0)χ
=
l

d
, (11.15)

d = a(η0)χ being the proper distance.
The relation drastically changes if the object is very far away, that is close to the particle horizon.

In such a case

a(η0 − χ)� a(η0) , φk(χ) ∼ φk(χP ) = const , (11.16)

and the angular size ∆ϑ increases with distance because a(η0 − χ) is a decrescent function of χ. As
it approaches the horizon its image covers the whole sky. Of course, the apparent luminosity drops
with increasing distance, otherwise remote objects would completely out-shine nearby ones.

• For example, in a closed 1 + 2-dimensions universe the spatial section is a 2-sphere and the
observer at the north pole will see a given object in the south hemisphere subtending an angle
∆ϑ, which increases as the object approaches the south pole.

In terms of redshift one has

∆ϑ(z) =
(1 + z) l

a0φk(χ(z))
.

In particular in a flat universe dominated by matter

φ0(χ) = χ , χ(z) =
2

a0H0

(
1− 1√

1 + z

)
,

and so

∆ϑ(z) =
H0 l

2

(1 + z)3/2

√
1 + z − 1

.

If z � 1 then ∆ϑ ∼ ∆ l/z, while for z � 1, ∆ϑ ∼ z∆ l. The minimum value is reached at z = 5/4.
If curvature is taken into account then

∆ϑ(z) =
H0 l

2

Ω2
0(1 + z)2

Ω0z + (Ω0 − 2)
(√

1 + Ω0z − 1
) . (11.17)

In principle, having standard rulers distributed over a range of redshifts we could use the measure-
ments of angular diameter versus redshift to test different cosmological models.

Of course we have not at disposal true standard rulers distributed in the universe, but we can use
characteristic lengths at recombination time and tray to use them as rulers in order to extract useful
physical informations from cosmic microwave background anisotropies. One of this length is the
sound horizon lS , that is the maximum distance that a sound wave in the baryon-radiation fluid can
have propagated until recombination. It is of the order of the Hubble length at recombination, that is
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lS ∼ 1/H(zr), zr ∼ 1000 being the value of redshift parameter at recombination time. Such a special
ruler subtends an angle ∆ϑ, which depends on the curvature. The temperature autocorrelation
function measures how the microwave background temperature in two directions in the sky differs;
this temperature difference depends on the angular separation. The power spectrum is observed to
have a series of peaks as the angular separation is varied from large to small scales. The first “acoustic
peak” is roughly determined by the sound horizon at recombination. Measuring the angular scale of
the first acoustic peak one determines the spatial curvature. Our best evidence that the universe is
spatially flat (Ω0 = 1), as predicted by inflation, comes from this test.

11.3.3 Luminosity-redshift relation

A method of recovering expansion history of universe is with the help of the luminosity-redshift
relation.

Consider a source of radiation at P ≡ (t, r, 0, 0) = (η, χ, 0, 0) and let L be its total luminosity,
that is the energy released by the source per unit time. Then the total energy released in the interval
∆ t is

∆E = L∆ t = L
∆ t

∆ η
∆ η = La(t) ∆ η .

All photons emitted in such an interval are located in a shell of width ∆χ = ∆ η, with radius growing
with time. When the photons reach the observer at t0, the proper width and the area of the shell
read respectively

∆ l0 = a0∆χ = a0∆ η , S0 = 4πa2
0φ

2
k(χ) ,

and due to the redshift of photons the energy in the shell at t0 is

∆E0 =
a(t)

a0

∆E =
a(t)

a0

L∆ η .

All photons in the shell are detected by the observer in a time ∆ t0 = ∆ l0 = a0∆ η. This means that
the bolometric flux F measured by the observer, that is the energy per unit area per unit time, is
equal to

F =
∆E0

S0∆ t0
=

L

4πφ2
k(χ)

a2(t)

a4
0

,

and as a function of redshift parameter

F (z) =
L

4πa2
0 φ

2
k(χ(z))(1 + z)2

.

The bolometric flux is related to the (bolometric) magnitude mbol by

mbol = −2.5 log10 F = 5 log10(1 + z) + 5 log10 φk(χ(z)) + const

=
5

log(10)
[log(1 + z) + log φk(χ(z))] + const ,

where log10 x = log x/ log(10). For z � 1, using (11.10) we have

φk(χ) ∼ χ =
1

a0

∫ z

0

du

H(u)
∼ 1

a0H0

∫ z

0

du

1 + uH ′(0)/H0 +O(u2)

∼ 1

a0H0

∫ z

0
du

[
1− uH ′(0)

H0

]
∼ z

a0H0

(
1− z H ′(0)

2H0

+ ...

)
,

104



log φk(χ) ∼ log z + log

(
1− z H ′(0)

2H0

)
+ const ∼ log z − z H ′(0)

2H0

+ const ,

where H ′ is the derivative with respect to z. Finally, using (11.5)

mbol = 5 log10 z +
2.5

log(10)
(1− q0)z + const .

q0 is the deceleration parameter which can be written as

q0 =
1

2
Ω0

(
1 +

3p0

ρ0

)
= − ä

aH2

∣∣∣∣
t=t0

= −1− Ḣ

H2

∣∣∣∣∣
t=t0

= −1 +
H ′(0)

H0

.

In principle, measuring the magnitude it is possible to determine the deceleration parameter q0 (See
the Supernova Cosmology ProjectType–SCM).

11.3.4 Temperature-redshift relation

In an expanding universe the frequency of any wave scales as the inverse of the expansion factor a(t),
that is

ν ∼ 1

a(t)
=⇒ λ ∼ a(t) .

In order to derive this property we consider a packet of waves with definite wavelength and two
observers at distinct points P1 and P2. At time t the packet passes the first observer who samples
the radiation and measures a wavelength λ(t) and subsequently at time t+ ∆t the packet passes the
second observer at a proper distance l = ∆t away from the first. According to (10.2), the second
observer moves with respect to the first one at a speed v = Hl = H(t)∆t and so the frequency he
measures is lowered by the Doppler shift. If P1 is near P2 then v � 1 and wavelength is increased
according to non relativistic formula

λ(t+ ∆t) ∼ λ(t)(1 + v) = λ(t)

[
1 +

ȧ(t)

a(t)
∆t

]
.

On expanding to first order in ∆t we obtain the desired result

λ̇

λ
=
ȧ

a
=⇒ λ(t) ∼ a(t) =⇒ ν(t) ∼ 1

a(t)
. (11.18)

With the same method one can show that the momentum p of a particle scales as the frequency, that
is p(t) ∼ 1/a(t) and of course the de Broglie wavelength scales as λ(t). It has to be noted that the
scaling law is the same for all frequencies or momenta.

Now we shall derive the scaling law of the equilibrium temperature. We will show that

Tγ(t) ∼
1

a(t)
, (radiation and/or relativistic matter);

TM(t) ∼ 1

a2(t)
, (non relativistic matter). (11.19)

From physics of black-body we know that the occupation number (or mean number per mode) of
photons at temperature of equilibrium T = Tγ is given by the Planck distribution

〈N〉 =
1

eh̄ω/kT − 1
, (11.20)
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where k is the Boltzmann constant, while h̄ and ω = 2πν are respectively the Planck constant
over 2π and the angular frequency. This number depends on temperature only and so, assuming
thermodynamic equilibrium and no-interactions with other fields, the temperature has to scale has
ν, that is

T (t) ∼ 1

a(t)
=⇒ T (t) =

T0a0

a(t)
,

and for T (z) we obtain the simple relation

T (z) = T0(1 + z) . (11.21)

Of course this is true if the expansion can be considered as an adiabatic reversible transformation.

The relation (11.21) holds also for an ideal relativistic gas of bosons or/and fermions. In such a
case one has the Bose-Einstein/Fermi distributions

〈N〉 =
1

e(ε−µ)/kT ± 1
,

ε, µ being the energy and chemical potential of the particle. The energy is proportional to the
momentum p and so the temperature has to scale as p.

For non relativistic matter the temperature scales as p2 because the occupation number at tem-
perature TM is given by Boltzmann distribution

〈NM〉 ∼ e
p2

2mkTM =⇒ TM(t) ∼
(
a0

a(t)

)2

TM(t0) .

We see that the expansion of the universe tends to break thermal equilibrium between radiation and
non relativistic matter due to different cooling laws, but since the heat capacity of non relativistic
matter in comparison with the one of radiation is negligible, the radiation will keep its thermal
spectrum.

• Note that in this section k is the Boltzmann constant (do not confuse it with spatial curvature),
h ∼ 0.68 is the dimensionless quantity related to Hubble constant (do not confuse it with Planck
constant) and T = Tγ is the equilibrium temperature of radiation.

11.4 The cosmic microwave background

Energy density of thermal radiation at temperature T = Tγ can be obtained from (11.20) by recalling
that the number of modes per unit volume in the solid angle dΩ with angular frequency in the interval
(ω, ω + dω) is

d3N = 2
ω2dω dΩ

(2π)3
,

where the factor of 2 takes account of the two polarisation states.
Now the integration over the solid angle takes account of photon in all directions, then

dnγ(ω) =
1

π2

ω2dω

eh̄ω/kT − 1
.
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This represents the number of photons per unit volume with angular frequency in dω and arbitrary
direction. The number density (number of photons per unit volume) is then

nγ =
1

π2

∫ ∞
0

ω2dω

eh̄ω/kT − 1
=
k3T 3

π2h̄3

∫ ∞
0

x2dx

ex − 1
=

2ζ(3)

π2

(
kT

h̄

)3

, (11.22)

where the Riemann ζ(s) function is given by

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1dx

ex − 1
, Re s > 1 , ζ(3) ∼ 1.20 , ζ(4) =

π4

90
.

The energy of a photon with frequency ω is h̄ω and so the energy density due to photons with angular
frequency in interval dω is given by the well known Planck blackbody radiation spectrum

u(ω)dω =
h̄

π2

ω3dω

eh̄ω/kT − 1
.

Finally, integrating on ω one gets the blackbody radiation energy density

u =
∫ ∞

0
u(ω) dω =

h̄

π2

∫ ∞
0

ω3dω

eh̄ω/kT − 1
=
k4T 4

π2h̄3

∫ ∞
0

x3dx

ex − 1

=
6k4T 4

π2h̄3 ζ(4) =
π2k4T 4

15h̄3 = aBT
4 , (11.23)

where aB = π2k4/15h̄3 ∼ 7.56× 10−15 (erg/cm3)/oK4.

For the radiation, the heat capacity at fixed volume is

Cγ =
∂u

∂T

∣∣∣∣∣
V

= 4aBT
3 ,

while the heat capacity of non relativistic matter does not depend on T . In fact, any degree of
freedom contributes with k/2. For example, if matter consists of atomic hydrogen then
CM = 3nBk/2, nB being the mean number of atoms per unit volume. Because actually the matter
contributes to the energy density with a proton per cubic meter we get

CM
Cγ

=
3nBk

8aBT 3
∼ 4× 10−9 ΩMh

2 .

This ratio is independent on the redshift because both T 3 = T 3
γ and nB during the expansion scale

as 1/a3 or, what is the same as (1 + z)3. At high redshift nB is large and so the interaction between
matter and radiation is appreciable. This means that matter relaxes to radiation temperature,
because radiation has the higher heat capacity. Moreover, due to the very small ratio CM/Cγ, the
spectrum of radiation remains thermal, no matter how strong the interaction.

In contrast with heat capacities, the ratio between energy densities depends on redshift because
matter and radiation densities have a different scale behaviour and so

ρM(z)

u(z)
=

(1 + z)3ρM
aBT 4

=
4× 104 ΩMh

2

1 + z
.

As expected, at present time (z = 0) the energy density due to radiation is a very small fraction of
the total one. Moreover, when the redshift is not too large, the energy available from annihilation of
mass by nuclear burning or by the process accretion by black holes is sufficient to produce appreciable
local perturbation to temperature of radiation.
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11.4.1 Characteristic quantities for CMB

The entropy of a gas of photons is

dsγ =
duγ
T

= 4aBT
2dT =⇒ sγ =

4

3
aBT

3 =
4π2k

45

(
kT

h̄

)3

.

The number nγ of photons per unit volume goes as T 3 and so the ratio

sγ
knγ

=
2π4

45ζ(3)
∼ 3.6 ,

is independent of T as expected because both sγ and nγ are conserved in a reversible adiabatic
expansion.

The maximum value of the function u(ω) is reached for ω = ωm given by means of equation

h̄ωm
kT

=
2πh̄

kTλm
∼ 2.82 ,

while the frequency ω = ωh at the half-energy point in the spectrum (the integration of u(ω) from 0
to ωh corresponds to half of the total energy density) satisfies

h̄ωh
kT

=
2πh̄

kTλh
∼ 3.50 .

Choosing T = T0(1 + z), T0 ∼ 2.73 oK being the present temperature of CMB, it follows

λh ∼ 1.50(1 + z)mm,

εh =
2πh̄

λh
∼ 3.50kT ∼ 1.32× 10−15(1 + z) erg ,

∼ 8.2× 10−4(1 + z) eV .

εh is the energy of the photon with frequency 1/λh.

The number of photons and energy density in CMB follows from (11.22) and (11.23) respectively
and reads

nγ ∼ 420(1 + z)3/cm3 , η =
nB
nγ
∼ 2.7× 10−8 ΩBh

2 ,

while the energy density is

u ∼ 4.2× 10−13 (1 + z)4 erg/cm3

∼ 0.26 (1 + z)4 eV/cm3

∼ nγεh .

The number of baryons is negligible with respect to the number of photons and this implies that
the universe has an enormous entropy compared to its matter content.

108



11.5 Relic neutrinos

Neutrinos are relativistic fermions with vanishing or negligible masses. The equilibrium occupation
number of a gas of neutrinos at temperature Tν is

〈N〉 =
1

e(ε−µ)/kTν + 1
≤ 1 ,

where ε is the energy and µ the chemical potential. Neutrinos and antineutrinos have opposite
chemical potential as a consequence of the fact that they can annihilate, for example through the
reaction
νe + ν̄e → e+ + e− → 2γ. This can be seen in the following way.

The Gibbs function G in a mixture of different particles α1, α2, ... with chemical potential µ1, µ2, ...
is

G = U + pV − TS =
∑
i

niµi ,

ni being the number of particle of type αi. If such particles are in thermal equilibrium through the
reaction

αi + αj ↔ αk ,

then G relaxes to an extremum, that is δG = 0 (chemical equilibrium), if δni = δnj = −δnk and this
implies that

µi + µj − µk = 0 .

In particular, if µi ≡ µk then µj = 0. This is just the case of photons, because they can be absorbed
by a particle α through the reaction α + γ ↔ α, then it follows µγ = 0.

Now, because neutrinos can annihilates through the reaction described above we get
µνe +µν̄e = µe+ +µe− = 2µγ = 0. Similar considerations hold also for other species of neutrinos. The
difference in the number densities of the pairs ν, ν̄ is determined by the difference in their chemical
potentials (eventual masses are the same).

Since the temperature at which the reactions we are going to consider is very high, the chemical
potentials (eventually the masses) can be neglected in comparison to the energy kT . Then we can
put µ = 0 and p = ε. In this way the couple of particles ν, ν̄ gives the following contribution to
number and energy density:

nν =
2

(2πh̄)3

∫ ∞
0

4πp2 dp

ep/kTν + 1
=

3ζ(3)

2

(
kTν
π2h̄

)3

,

uν =
2

(2πh̄)3

∫ ∞
0

4πp3 dp

ep/kTν + 1
=

7

8
aBT

4
ν .

The latter relations are a direct consequence of the identity

1

ex + 1
=

1

ex − 1
− 2

e2x − 1
=⇒

∫ ∞
0

xs−1dx

ex + 1
= Γ(s) (1− 2s−1) ζ(s) .

In a plasma at equilibrium, the contribution to the energy density of a family of neutrinos (ν, ν̄) is
lower by a factor 7/8 with respect to the contribution of a photon. However it has to be remember
that there are three different species of neutrinos, that is (νe, ν̄e), (νµ, ν̄µ), (ντ , ν̄τ ), and so the total
contribution of neutrinos families is uν = (21/8)uγ.
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What we have derived for neutrinos is also valid for a gas of relativistic electrons-positrons pairs,
the only difference is due to the fact that electrons and positrons have both two spin states and so
energy and number densities are doubled. For electrons-positrons gas

ne = 3ζ(3)

(
kTe
π2h̄

)3

, ue =
7

4
aBT

4
e .

As we shall see below, neutrinos νe decouple at energies of the order of 5me, me being the electron
mass, while neutrinos νµ, ντ decouple at energies a little bit higher. Neutrinos νµ, ντ thermalise
through elastic scattering with electrons and positrons, which at these energy are present in a huge
number, while the other massive leptons have been already annihilated or decayed and so only few
of them can be present.

This means that at energies higher than me, all species of neutrinos, electrons and radiation
are all in thermal equilibrium at temperature T = Tγ = Tν = Te. The universe expands, the gas
freezes and so neutrinos decouple. They stop to interact with the gas and their temperature Tν(z)
decreases according to the expansion law of relativistc particles, while the temperature of radiation
rapidly increases when electrons-positrons pairs annihilate and release their energy to the microwave
background.

After the decoupling of neutrinos but before the annihilation of electron-positron pairs, that is at
temperature of the order kT > 2me, the reaction γ+γ ↔ e+ +e− produces a sea of electron-positron
pairs at the temperature T = Tγ. The energy density of such a gas of photons and electron-positron
pairs is given by

u = uγ + ue =
(

1 +
7

4

)
uγ =

11

4
aBT

4 ,

and the total entropy density of such a gas reads

s = sγ + se =
(

1 +
7

4

)
sγ =

11

3
aBT

3 .

Because the annihilation process is reversible, the total entropy in a given comoving volume is
conserved.

Now we indicate by Ta, Va the temperature and the given volume of the gas after annihilation and
by Tb, Vb the same quantities before annihilation (Va and Vb are the same co-moving volume). Before
annihilation we have a gas of photons, electrons and positrons whit entropy Sb = (11/3) aBVbT

3
b ,

while after annihilation we have a gas of photons only, with entropy Sa = (4/3) aBVaT
3
a . Since

entropy is conserved we get

Sb =
11

3
aBVbT

3
b = Sa =

4

3
aBT

3
aV =⇒ VbT

3
b =

4

11
VaT

3
a .

Immediately before annihilation of electron-positron pairs, neutrinos have a temperature T bν = Tb
equal to the one of photons, but since they are already decoupled, they evolve independently of
photons and their entropy is conserved separately. For entropy of neutrinos we get

Vb (T bν )3 = VbT
3
b = Va (T aν )3 =⇒ T aν =

(
Vb
Va

)1/3

Tb =
(

4

11

)1/3

Ta .

Summarising we have that after all possible interactions, the temperature of photons and neutrinos
are related by

Tγ(z) = (1 + z)T0 , Tν(z) =
(

4

11

)1/3

Tγ(z) =
(

4

11

)1/3

(1 + z)T0 ,
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where T0 ∼ 2.73oK is the actual value of temperature of black body radiation in CMB. The corre-
sponding actual value for temperature of neutrinos is Tν = Tν(0) ∼ 1.95oK.

The number of neutrinos in a single family after electron-positron pairs annihilation is

nν =
3ζ(3)

2

(
kTν
π2h̄

)3

=
6ζ(3)

11

(
kTγ
π2h̄

)3

=
3

11
nγ .

At present time we obtain nν ∼ 113/cm3.
Taking into account of three species of neutrinos the total number of pairs is ntotν ∼ 339/cm3 (at

present time) and the total energy density of relativistic matter (radiation and neutrinos) becomes

ur =

[
1 +

21

8

(
4

11

)4/3
]
aBT

4 ∼ 1.68 aBT
4 . (11.24)

The corresponding Ωr parameter is

Ωr =
ur
ρc

=
8πGur
3a2

0H
2
0

∼ 4.22× 10−5h2 .

For non-relativistic matter we have ΩM ∼ 0.3 (ΩB ∼ 0.04) and because ΩM/Ωr varies as 1/(1 + z)
we get that for a suitable value of z, say z = zeq, the mass-radiation densities are equivalent, that is

ΩM

Ωr

= 1 =⇒ 1 + zeq ∼ 2.37× 104 ΩMh
2 .

The matter dominated era starts at z ∼ zeq.

11.5.1 Thermal decoupling of neutrinos

Now we show that νe, ν̄e effectively decoupled at energies higher than me. Near decoupling at
temperature T , the main thermalisation reaction is

ν + ν̄ ↔ e+ + e− ,

which has a cross section (GF is the weak interaction or Fermi constant)

σ ∼ G2
FE

2
ν ∼ 4× 10−44 T 2

10 cm
2 , (11.25)

where for convenience we have introduced the dimensionless quantity T10 by

T =
T10

1010
oK =⇒ T10 = 1010 T/oK .

Number density and collision time are respectively given by

nν = 1.6× 1031 T 3
10 cm

−3 , tc ∼
1

σ nνc
.

Recall that tc is the time necessary to have a reaction of the one considered. During a period t the
number of reactions will be

Nreact ∼
t

tc
∼ σ nνc t . (11.26)

111



Of course, if this number is large then neutrinos are is thermal equilibrium with electrons/radiation,
but when this number is small thermal equilibrium is broken and neutrinos become free. In (11.26)
we can take t equal to the age of the universe at the time of reaction, but also in this case it is clear
that at some time during the expansion Nreact will become smaller that 1, because it would depend
on T 3, which scales as 1/a3 and becomes smaller and smaller.

The age of the universe can be computed using (10.16) because it is still dominated by relativistic
matter, so

t =

√
3

32πGur
∼ 2

T 2
10

sec .

Using this value in (11.26) we get

Nreact ∼ 0.04T 3
10 ,

which is of order ∼ 1 for T10 ∼ 3 which corresponds to kT/me ∼ 5.
After annihilation of electron-positron pairs neutrinos are practically free. They can interact

with protons and neutrons or perform elastic scattering with the few survived massive leptons, but
temperature does not change. The same happens for photons.

11.6 Primordial nucleosynthesis

Here we simply report the main important steps which predict the observed abundance of light
elements in primordial nebulae, which are essentially made up by hydrogen and helium in the ratio
3 : 1 in mass and traces of other light elements (deuterium, lithium,...).

Primordial nucleosynthesis is considered one of the crucial pieces in favour of the SCM, since by the
study of nuclear processes in the background of an expanding cooling universe it yields a remarkable
concordance between theory and experiment. It begins at energies of the order of 100KeV and
lower, but the nuclear reactions which produced the abundances of neutron and protons started at
higher energies.

During the lepton era (below 100 MeV), electrons, neutrinos, photons and nucleons are in equi-
librium. The number density of neutrons nN is different with respect to the one of protons nP
essentially due to the fact that they have different masses. If fact one has

nN
nP

= e−Q/T , Q = (mN −mP )− (µN − µP ) = (mN −mP )− (µe − µνe) ,

mk, µk being respectively mass and chemical potential of the particle considered. Neglecting chemical
potentials one gets Q ∼ 1.3MeV .

If temperatures are higher than few MeV , neutron and protons inter-convert principally through
the weak interactions

N + νe ↔ P + e− , N + e+ ↔ P + ν̄e ,

but at temperatures below 1MeV , the weak interactions are frozen out, electron-positron pairs are
annihilated and neutrons and protons cease to inter-convert. The ratio nN/nP is about 1/6, but
it will increase since neutrons decays into protons by n → p + e− + ν̄. The age of the universe
at this epoch is t ∼ 1 sec (T ∼ 1MeV ), while neutrons have a lifetime τn ∼ 890 sec � t, then
they start gradually to decay until the temperature reaches a value below 100KeV , when primordial
nucleosynthesis begins. At this time the ratio nN/nP is approximatively 1/7.
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Of all the light nuclei (deuterium D, tritium T , helium 3He, 4He, lithium 7Li, beryllium 7Be,
etc...), the most favorable from the energetically point of view is 4He. Then we expect that almost
all neutrons and an equal number of protons are converted into (ionised) atoms of 4He. This means
that

nN
nP

=
1

7
=

2

14
=⇒ nHe

nP
=

1

12
,

where nHe is the number of atoms of 4He. As we see the process ends up with twelve (ionised) atoms
of H per 4He, which in mass corresponds to a ratio of 3 : 1, as observed.

• We have described nucleosynthesis in a very simple way, but of course the situation is more
complicated. First of all, the number density of nucleons is not large enough to produce directly
4He through a four nucleons interaction. The process will proceed by steps as in figure (12).
The final percentages in mass are ∼ 0.75 of H, ∼ 0.25 of 4He and traces amounts of other light
elements (D ∼ 10−5, 3He ∼ 10−5, 17Li ∼ 10−10 atoms per proton).

Heavier elements are not synthesized in this period but in the later universe during supernovae
explosions.

• It has to be observed that, as one might expect, nucleosynthesis do not start at the nuclear
binding energy (of the order of 1MeV ), because there is a huge number of photons per nucleon
and this prevents the process to taking place until energy drops below 100KeV .

• All predictions concerning the abundances of light elements are in good agreement with obser-
vations, but at the same time they increase our confidence in the SM, because all computations
are done by using general relativity, thermodynamics and particle physics.

For example, if the number of neutrinos species is larger than 3, then at a fixed temperature,
energy density of radiation (relativistic particles) will increase and this will give a corresponding
increment of neutrons per proton. As a consequence also the abundance of helium will increase
in contrast with observation. This means that the number of neutrino species has to be 3, has
predicted by standard model of particle physics.

The abundances of the light elements depend essentially on just one free parameter η, that is
the baryon/antibaryon to entropy ratio

η =
nB
s

=
nb − nb̄

s
,

where nb, nb̄ are the numbers of baryons and antibaryon per unit volume, while s is the total
entropy density. η is independent on the expansion because baryon asymmetry nB as well as
entropy density scales as 1/a3 and moreover the baryonic number is conserved. In the early
universe dominated by radiation, using only general relativity and SM physics one can give a
strict constraint on the value of η. In fact, the range of η consistent with deuterium and 3He
primordial abundances is

2.6× 10−10 < η < 6.2× 10−10 .

The value of such a parameter has been recently extracted from CMB from precise measure-
ments of the relative heights of the first two acoustic peaks. It reads

η = 6.1× 10−10

{
+0.3× 10−10

−0.2× 10−10
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Figure 12: primordial nucleosynthesis (figure by V. Mukhanov)

in astonishing agreement with the predicted theoretical result.

The fact that η is not vanishing means that there is an asymmetry between matter and an-
timatter and this gives rise to a serious theoretical problem because, in SM physics there are
no difference between particles and antiparticles as confirmed in collider experiment. For this
reason one expects that baryogenesis creates an equal numbers of baryons and antibaryons, but
of course, during the evolution, some still unknown process had broken this symmetry. I any
case, it is a matter of fact that primordial antimatter is not present in our universe. Possible
explanations of this can be found in (discrete) symmetry violations (baryon number B, charge
conjugation C and parity CP ) or alternatively on a departure from thermal equilibrium.

11.7 Dark matter and dark energy

According to recent experimental data the spatial curvature k is vanishing with high precision (in
agreement with the prediction of inflationary models) and, in contrast with as expected from General
Relativity, the universe is now in an expanding, accelerated phase (the deceleration parameter q0 is
negative). The presence of an effective, positive cosmological constant is then unavoidable. Setting
Ω0 = Ωk + ΩM + ΩΛ, p0 ∼ 0 and disregarding radiation contribution (actually it is negligible), the
Friedmann equation (11.1) becomes

Ω0 = Ωk + ΩM + ΩΛ = 1 ,

where

Ωk = − k

a2
0H

2
0

, ΩM =
8πGρM

3H2
0

≡ ΩB + ΩD , ΩΛ =
Λ

3H2
0

,

Ωk, ΩB, ΩD and ΩΛ being respectively the contributions due to curvature, baryonic matter, dark
matter and dark energy evaluated at present time t0.

The reason for splitting the matter contribution into two parts derives from the fact that only a
very small part of ΩM is due to “ordinary matter”, that is the one we are dealing with every day and
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which is essentially contained in stars (proton, neutron, electron; for simplicity one refers to that as
baryonic matter), while the larger part is due to particles which we “feel” only through gravitational
interaction (one refers to that as dark matter because it is “electromagnetically invisible”). Some
small contribution to dark matter is due to ordinary but invisible matter (black holes, clouds,...), but
the most part is due to particle which interacts only by gravitational and weak interactions. Such
kind of particles are called WIMP (weakly interacting massive particles as neutralinos, axions,...).
Particles of this kind do not carry electric charge and so they do not interact electromagnetically
and do not enter in the formation of stars (could dark matter, CDM).

All recent measures are in good agreement with the so called ΛCDM model, which is based on the
Friedmann solution with cosmological constant Λ, and with the following values for the parameters

Ωk ∼ 0 , ΩM ∼ 0.03 , ΩB ∼ 0.05 , ΩD ∼ 0.25, , ΩΛ ∼ 0.69 .

We see that the most contribution to Ω0 is due to dark matter and dark energy.
Dark energy could be generated by a cosmological constant, but it could be the energy of unknown

cosmological fields or finally it could be an effect due to a modified theory of gravity. In any case,
because all data are in good agreement with ΛCDM model, the equation of state of dark energy has
to be of the kind pΛ ∼ −ρΛ, that is w ∼ −1.

In the ΛCDM model the cosmological constant is fixed ’by hand’ and could be for example
the vacuum energy density of all matter fields, while in other models which considers additional
cosmological fields like quintessence (−1 < w < 1/3) or phantom (w < −1), the dark energy is a
time-dependent contribution related to the energy of such kind of fields. Finally, in modified theories
of gravity, dark energy is a dynamic quantity which emerges from gravitation.

As we have said above, all data are in good agreement with ΛCDM model, but in principle one
could analyse the data by using a different model and in such a case the ratios between the different
kind of matter/energy could change.

11.8 The cosmological constant problem

Quantum field theory provides a non-vanishing vacuum energy density, due to all matter fields
contribution. In the absence of gravitation such an energy can be neglected because it is a constant,
but when gravity is taken into account it has to be carefully considered because it contributes to
gravitation. It is natural to relate the cosmological constant to these vacuum energy of quantum
fields.

Unfortunately, within the framework of quantum field theory, the evaluation of zero-point energy
gives a divergent value and, even if one chooses an ultraviolet cutoff, as it is reasonable, one obtains
a very huge value with respect to the observed one ρobs, in fact

ρvac
ρobs
∼ 1055 , cutoff at electroweak scale,

ρvac
ρobs
∼ 10123 , cutoff at Planck scale.

Dark energy represents about the 70% of the whole energy density in the universe, but nevertheless it
is really small with respect to the vacuum energy provided by quantum field theory. This discrepancy
between theory and observation is the content of the old and unsolved cosmological constant problem.

As a consequence of an unknown mechanism or maybe unknown matter fields, vacuum energy
has to be vanish, but a very small part ρvac → ρΛ > 0. From this point of view, Λ = 0 seams to be
more reasonable and less problematic.

There is also an additional puzzle related to the cosmological constant. This is called the coin-
cidence problem and consists in the fact that the actual values of ρΛ and ρM are of the same order
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of magnitude. The ratio between the contribution to energy density of cosmological constant and
matter changes rapidly as the universe expands, that is ρΛ(t)/ρM(t) ∼ a3(t) and this means that
ρΛ(t)/ρM(t) ∼ 1 only for a very brief period, just the one in which we live.
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12 Perturbations of metric and energy density

Here we assume the energy density at initial time ti (after inflation) to be “nearly but not perfectly”
homogeneous and then we are going to study what kind of consequences this hypothesis will have on
the CMB spectrum. We shall see that small inhomogeneities in the initial energy density will reflect
as anisotropies in CMB.

The first problem consists in the “gauge invariant” classification of perturbations. In fact, energy
density depends on the reference frame. By performing a transformation of coordinates, a homoge-
neous distribution could become inhomogeneous and viceversa, a inhomogeneous distribution could
become homogeneous. Of course we have to take into account both perturbations of the metric and
of the energy distribution, because they are strictly related.

The problem of pertubations in general relativity and cosmology is a very difficult mathematical
task by itself and its connection to CMB is also more difficult to treat in detail and is out of the
aim of present lectures notes. Here we shall limit our analysis to the classification of cosmological
perturbations, independently on their origin, and in Section 13 we shall derive the important Sachs-
Wolfe effect, which is due to scalar perturbations of the metric,

12.1 Classification of perturbations

We start with perturbations of the Friedmann metric and for simplicity we consider a flat universe
only, the extension to the curved case being quite straightforward. We indicate by δgij a small
perturbation of the metric ĝij, which satisfies Friedmann equations with k = 0. Using conformal
time and Euclidean coordinates for the spatial section, one has

dŝ2 = ĝij dx
idxj = a2(η)

(
−dη2 + δab dx

adxb
)
, a, b,= 1, 2, 3, (12.1)

while for the whole metric gij = ĝij + δgij

ds2 = gij dx
idxj = (ĝij + δgij) dx

idxj , δgij � ĝij .

Since at any fixed time the spatial background is homogeneous and isotropic, the perturbation can be
classified into three distinct types, according to their behaviour with respect to the group of spatial
rotation. In fact one has scalar, vector and tensor perturbations.

It is convenient to write the component of the perturbation in the form

δg00 = 2a2 φ ,

δg0a = a2 (∂aB + Sa) , (12.2)

δgab = a2 (2ψ δab + 2∂a∂bE + ∂aF b + ∂bF a + hab) ,

where all “underlined” quantities are scalars, vectors or tensors with respect to spatial rotations and
indices of such quantities are rised or lowered with the Euclidean metric δab (there are no difference
between covariant or controvariant underlined tensors). With the use of such a notations we do not
confuse spatial 3-tensors with spatial parts of 4-tensors. As usual vector and tensors are split in their
invariant components (transverse, traceless) and so the following relations hold:

∂aS
a = 0 , ∂aF

a = 0 , ∂ah
ab = 0 , haa = 0 , hab = hba .

Note that in all above expressions we have ordinary partial derivatives because the spatial section of
the manifold is flat and we are using Euclidean coordinates.
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• We see that scalar perturbations are characterized by the four scalar functions φ, ψ,B,E. They
are induced by the inhomogeneities of the energy density and are the most important because
they exhibit gravitational instability and may lead to the formation of structure in the universe.

• Vector perturbations are described by the two vectors Sa, F a and are related to the rotational
motions of the fluid. They decay very quickly and are not really important from the point of
view of cosmology.

• Tensor perturbations hab have no analog in Newtonian theory. They describe gravitational
waves (in the TT-gauge), which are the degrees of freedom of the gravitational field itself. In
the linear approximation they do not induce any perturbations in the perfect fluid.

12.2 Gauge transformations

By taking into account of all constraints on the quantities φ, ψ,B,E, Sa, F a, hab of course one gets
10 independent functions as the components of gij, but we know that the arbitrariness in the choice
of coordinate system permits to fix other 4 conditions between the components of gij.

We recall that under the infinitesimal transformation x̃k = xk + ξk(x), neglecting higher orders
in ξk, the metric transforms as (see Section 6.5)

g̃ij(x̃) ∼ gij(x)− ∂iξj(x)− ∂jξi(x) , |ξk| � 1 , (12.3)

where ∂k is the derivative with respect to xk. If computed at the same point, g̃ij(x) and gij(x) are
related by

g̃ij(x) ∼ gij(x)−∇iξj(x)−∇jξi(x) , (12.4)

∇k being the covariant derivative related to gij. Now we split both the metrics gij(x) and g̃ij(x) into
background and perturbation parts, that is

gij(x) = ĝij(x) + δgij(x) , g̃ij(x) = ĝij(x) + δg̃ij(x) , (12.5)

where ĝij is the metric considered above, which satisfies Friedmann equations with k = 0 and
homogeneous density distribution. Comparing equations (12.3)-(12.5) and neglecting higher order
terms (δgij as well as ξk are infinitesimal quantities) we obtain

g̃ij(x) = ĝij(x) + δg̃ij(x) ∼ gij(x)−∇iξj(x)−∇jξi(x)

∼ ĝij(x) + δgij(x)− ∇̂iξj(x)− ∇̂jξi(x) , (12.6)

and finally

δg̃ij ∼ δgij − ∇̂iξj(x)− ∇̂jξi(x) .

The latter equation represents the variation in form of the perturbation δgij as a consequence of an
infinitesimal transformation of coordinates. All quantities have to be evaluated at the same point.
We have replaced ∇k with the covariant derivative ∇̂k related to ĝij, because they differ for an
infinitesimal quantity.

Under the particular infinitesimal transformation x̃k = xk + ξk, a scalar function f transform as

f̃(x̃) = f(x) =⇒ f̃(x) ∼ f(x)− ξj(x)∂jf(x) ,
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and as above, if we put f(x) = f̂(x) + δf , f̃(x) = f̂(x) + δf̃ . up to higher order terms we get

δf̃(x) ∼ δf(x)− ξj(x)∂jf(x) . (12.7)

In a similar way we get the trasformation rules for vectors V k and Vk. From

Ṽ k(x̃) =
∂x̃k

∂xj
V j(x) = V k(x) + V j(x)∂jξ

k

Ṽk(x̃) =
∂xj

∂x̃k
Vj(x) ∼ Vk(x)− Vj(x)∂kξ

j

it follows

Ṽ k(x) ∼ V k(x) + V j(x)∂jξ
k − ξj(x)∂jV

k(x) ,

Ṽk(x) ∼ Vk(x)− V j(x)∂kξ
j − ξj(x)∂jVk(x) ,

and finally

δṼ k(x) ∼ δV k(x) + V j(x)∂jξ
k − ξj(x)∂jV

k(x) , (12.8)

δṼk(x) ∼ δVk(x)− Vj(x)∂kξ
j − ξj(x)∂jVk(x) . (12.9)

In the folfowing we shall need also the transformation rules for a generic mixed tensor T ij . We have

T̃ ij (x̃) =
∂x̃i

∂xr
∂xj

∂x̃s
T rs ∼ T ij (x) + T kj ∂kξ

i − T ik ∂jξk ,

and so

δT̃ ij (x) ∼ δT ij (x) + T kj ∂kξ
i − T ik ∂jξk − ξk∂kT ij , (12.10)

Using (12.1) one easily computes the non vanishing components of the corresponding connection.
They read

Γ̂0
ij =

a′(η)

a(η)
δij , Γ̂i0j =

a′(η)

a(η)
δij ,

where the prime is the derivatives with respect to conformal time η. Recalling (12.2) one also gets

δg̃00 ∼ δg00 − 2∇0ξ0 = δg00 − 2∂0ξ0 +
2a′

a
ξ0 = δg00 + 2a ∂η(aξ

0) ,

δg̃0a ∼ δg0a −∇0ξa −∇aξ0 = δg0a − ∂0ξa − ∂aξ0 +
2a′

a
ξa

= δg0a + a2
[
∂a(ξ

0 − ζ ′)− ξ′
a

]
, (12.11)

δg̃ab ∼ δgab −∇aξb −∇bξa = δgab − ∂aξb − ∂bξa +
2a′

a
δabξ0

= δgab − a2

[
2a′

a
ξ0δab + 2∂a∂bζ + ∂aξb + ∂bξa

]
,

where the scalar ζ and the 3-vector ξa are related to the spatial part of ξk ≡ (ξ0, ξa) by

ξi = gijξ
j = a2 ηijξ

j =⇒ ξ0 = −a2ξ0 , ξa = a2 δabξ
b ,

ξa = ξa + δab∂bζ , ∂aξ
a = 0 , ξ

a
= δabξ

b ,

Now we study separately scalar, vector and tensor perturbations.
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12.3 Scalar perturbations

By taking only scalar perturbations into account the metric assumes the form

ds2 = a2(η)
[
−(1− 2φ) dη2 + 2∂aB dxa dη +

(
[1 + 2ψ]δab + 2∂a∂bE

)
dxadxb

]
, (12.12)

but the four scalars function are not independent. In fact, comparing (12.2) and (12.11) and consid-
ering only the scalar components of perturbation we get

φ̃ = φ+
1

a
∂η(aξ

0) , B̃ = B + ξ0 − ζ ′ , ψ̃ = ψ − a′

a
ξ0 , Ẽ = E − ζ , (12.13)

and so we can use the arbitrariness of ξ0 and ζ to fix two constraints between the scalar functions in
the metric. The space of scalar pertubations has two dimensions and can be span by choosing

Φ = φ− 1

a
∂η(aΩ) , Ψ = ψ +

a′

a
Ω , Ω = B − E ′ ,

which are invariant functions under gauge transformations. When we are dealing with “fictious”
perturbations simply due to the choice of coordinates, both previous functions will vanish, but they
will be different from zero in the presence of “physical” perturbations. In this way we are able to
distinguish between fictious and physical perturbations.

A gauge invariant formulation has to be done also for the energy-momentum tensor. We indicate
by ρ(x) = ρ̂(η) + δρ the perturbed energy density, ρ̂(η) being the homogeneous unperturbed one
satisfying the Friedmann equations with the metric ĝij and by uk(x) = ûk(x) + δuk the four velocity
of the fluid. Here ûk ≡ (1/a, 0, 0, 0) (ûk ≡ (−a, 0, 0, 0)) is the velocity of the homogeneous perfect
fluid (recall that −g00 = a(η)2).

By definition ρ is a scalar quantity and so, using (12.7) and (12.13) we obtain

δρ̃ = δρ− ξk∂k ρ̂ = δρ− ξ0ρ̂ ′ = δρ+ (Ω̃− Ω)ρ̂ ′ .

We see that the difference

δρ = δρ− Ωρ̂ ′ = δρ̃− Ω̃ρ̂ ′

does not depend on coordinates and so it characterises in an invariant manner the physical pertur-
bation density.

In a similar way, using (12.9) and (12.13), for the components of the four velocity we get

δũ0 = δu0 − ξk∂k û0 − ûj∂ηξj = δu0 + ∂η(aξ
0) = δu0 + ∂η(a Ω̃− aΩ) ,

δũa = δua − ξk∂k ûa − ûj∂aξj = δua + a∂aξ
0 = δua + a∂a(Ω̃− Ω) ,

from which it follows that both the quantities

δu0 = δũ0 − ∂η(a Ω̃) = δu0 − ∂η(aΩ) ,

δua = δũa − a∂aΩ̃ = δua − a∂aΩ ,

are gauge invariant and so characterise the velocity of the fluid in an invariant way. Note that here
ua = gabu

b are the spatial components of the 4−vector uk.
The arbitrariness in the choice of the two scalars ξ0, ζ, permits to fix two conditions on the scalar

perturbations φ, ψ,B,E and so only two of them will represent physical perturbations.
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12.4 Vector perturbations

By considering only vector perturbations the metric assumes the form

ds2 = a2(η)
[
−dη2 + 2Sadx

adη + (δab + ∂aF b + ∂bF a)dx
adxb

]
,

and comparing (12.2) and (12.11) the transformations for vectors Sa, F a become

S̃a = Sa − ξa
′ , F̃ a = F a − ξa ,

from which trivially follows that the quantity

Va = S̃a − F̃
′
a = Sa − F ′a

is gauge invariant. Of the four independent quantities Sa, F a, only two of them represent physical
peturbations since the other two can be eliminated with a suitable choice of coordinates, that is with
a suitable choice of the transverse 3-vector ξa.

12.5 Tensor perturbations

In the case of tensor perturbations only, the metric is quite simple and reads

ds2 = a2(η)
[
−dη2 + (δab − hab) dxadxb

]
.

The perturbation h̃ab = hab is gauge invariant and represents a gravitational wave.

12.6 Cosmological perturbations

We start from Einstein equations

Gi
j = 8πGT ij , Ĝi

j = 8πG T̂ ij ,

where Ĝi
j is the Einstein tensor in the homogeneous and isotropic background metric ĝij and of course

the energy momentum tensor T̂ ij has the properties

T̂ 0
0 = α(t) , T̂ ab = β(t)δab , T̂ 0

b = T̂ a0 = 0 ,

α, be being scalar functions (−ρ̂, p̂ for a perfect fluid).
By setting Gi

j = Ĝi
j + δGi

j and similarly T ij = T̂ ij + δT ij we have the equation for the perturbation
in the form

δGi
j = 8πG δT ij ,

which is gauge dependent, but it can be written in a gauge invariant form by introducing the “over-
lined” quantities as in the section above,in this way

δGi
j = 8πGδT ij .

The latter equations assume different forms depending on the perturbation one cosiders.
For scalar perturbations, using (12.10) and (12.13) one has

δT 0
0 = δT̃ 0

0 − Ω̃ ∂ηT̂
0
0 = δT 0

0 − Ωα′ , (12.14)

δT 0
a = δT̃ 0

a − [(1/3)T̂ cc − T 0
0 ] ∂a(Ω̃ = δT 0

a − (β − α) ∂aΩ , (12.15)

δT ab = δT̃ ab − Ω̃ ∂ηT̂
a
b = δT ab − Ω δab β

′ . (12.16)
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It is clear that for the tensor Gi
j one obtains similar relations. On the other hand, the perturbation

δGi
j can be explicitly computed because Gi

j is a function of the metric gij and its derivatives only.

This means that under scalar perturbations the invariant quantity δGi
j has to depend only on Φ and

Ψ. A tedious but straightforward calculation gives

∆ Ψ− 3H(Ψ′ +HΦ) = 4πGa2 δT 0
0 , (12.17)

∂a (Ψ′ +HΦ) = 4πGa2 δT 0
a , (12.18)

1

2
(δab∆ − ∂a∂b) (Ψ− Φ)− δab

[
Ψ′′ +H(2Ψ′ + Φ′) + (2H′ +H2)Φ

]
= 4πGa2 δT ab , (12.19)

where H = a′(η)/a(η), ∂a = δab∂b, ∆ = δab∂a∂b is the Laplace operator and δT ij are the quantities
in (12.14)-(12.16) correspondig to scalar perturbations only.

Analog equations to the ones in (12.17)-(12.19) can be obtained for vector and tensor pertur-
bations. In such a cases δGi

j will depend respectively on the gauge invariant quantities Va and hab
introduced in previous section. In fact one has

∆Va = 16πGa2 δT 0
a , δT 0

a = δT 0
a − F b∂b T̂

0
a − T̂ 0

b ∂aF
b , F b = δabF a ,

(∂η + 2H)
(
∂aVb + ∂bVa

)
= −16πG δT ab , δT ab = δT ab − F c∂c T̂

a
b − T̂ ac ∂bF c + T̂ cb ∂cF

a ,

(
∂2η + 2H∂η −∆

)
hab = 16πG δT cb δac .
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13 Anisotropies in CMB

From CMB spectrum we know that the universe was very homogeneous and isotropic at the time
of recombination, but today it has a well developed nonlinear structure. This structure takes the
form of galaxies, clusters and superclusters of galaxies and, on larger scales, of voids, sheets and
filaments of galaxies. However, deep redshift surveys show that, when averaged over a few hundred
megaparsecs, the inhomogeneities in the density distribution remain small. The explanation of such
non linear structures can be found in the primordial inhomogeneities of the energy density and in
the natural gravitational instability due to the fact that gravitation is an attractive force.

Independently of their origin (inflation predicts classical inhomogeneities as a consequence of
quantum fluctuation of the inflaton condensate – see section 13.5), inhomogeneities in the energy
density are necessary in order to accommodate in a reasonable way the observed universe.

We have two kinds of anisotropies of the cosmic microwave background:
i) primary anisotropies due to effects which occur at the last scattering surface and before;
ii) secondary anisotropies due to effects which occur between the last scattering surface and the
observer, such as interactions of the background radiation with hot gas or gravitational potentials,

The structure of CMB anisotropies is principally determined by two phenomena, that is acoustic
oscillations and collisionless damping (diffusion or Silk damping).

Acoustic oscillations. The pressure of the photons in the photon-baryon plasma in the early
universe tends to erase anisotropies, whereas the gravitational attraction of the baryons, moving at
speed of sound, makes them to collapse to form dense haloes. These two effects compete to create
acoustic oscillations which give the microwave background its characteristic peak structure. Roughly
speaking, the peaks correspond to resonances in which the photons decouple when a particular mode
is at its peak amplitude.

The peaks contain interesting physical signatures. For example, the angular scale of the first
peak determines the curvature of the universe, but not its topology. The locations of the peaks also
give important information about the nature of the primordial density perturbations. There are two
fundamental brands of density perturbations called adiabatic and isocurvature perturbations.

In the adiabatic density perturbations the fractional overdensity with respect to the average in
each matter component (baryons, photons, ...) is the same (in the considered spot), while in the
isocurvature density perturbations the sum of all fractional overdensities with respect to the average
is always zero.

Cosmic inflation predicts that the primordial perturbations are adiabatic, while cosmic strings
would produce mostly isocurvature primordial perturbations, but in general one could have a mixture
of both.

In the CMB spectrum adiabatic and isocurvature perturbations produce different peak locations.
More precisely, the isocurvature peaks are located at angular scales (l-values of the peaks, see below)
in the ratio 1:3:5:..., while adiabatic peaks are located at angular scales in the ratio 1:2:3:... Actual
observations of CMB anisotropies are consistent with pure adiabatic primordial density, providing
key support for inflation.

Collisionless damping. In an expanding universe there are two effects which contribute about
equally to the suppression of anisotropies on small scales and give rise to the characteristic exponential
damping tail observed in CMB. Such effects are due to the fact that the mean free path of the
photons increase rapidly, first, because the primordial plasma becomes rarefied and second, because
the depth of the last scattering surface is finite (decoupling of photons and baryons does not happen
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instantaneously, but instead requires an appreciable fraction of the age of the universe up to that
era).

13.1 CMB power spectrum

The (temperature, angular) power spectrum is a function built up with the fluctuations of the tem-
perature in CMB. It relates the anisotropies to important cosmological quantities. One computes the
N−points correlation functions, which correspond to the N−momenta of the ensemble distribution
function and then performs the Fourier transform of such correlation obtainig the power spectrum.
In our case what is really important is the 2−point correlation function and since the fluctuations
depend on angular variables only, the (angular) power spectrum is obtained by a development in
terms of spherical harmonics.

The CMB is observed today on the earth where the gravitational potential is Φ0 = Φ(t0, x
a
0),

t0 being the actual time and xa0 = xa(t0) = 0 the origin of the reference frame. One measures
the spectrum of photons arriving from all directions and deduces the corresponding black body
temperature

T (t0, x
a
0,n) = T0 + δT (n) , T0 =

1

4π

∫
d2nT (t0, x

a
0,n) ∼ 2.7255oK , (13.1)

n(ϑ, ϕ) being the unit vector along the direction of observation, d2n the integration over all directions
and T0 the mean temperature, which corresponds to the one discussed in section 11.4.
Here −90o ≤ ϑ ≤ 90o and 0o ≤ ϕ < 360o are galactic coordinates that determine a specific direction,
which corresponds to a specific point in the CMB (a point on the last scattering surface).

In order to pick out the “underling structure” of anisotropies, one has to compute the so called
correlation functions, which compare the temperatures of all points having a given angular distance
θ. As predicted by inflation, the spectrum of fluctuations is Gaussian and this means that all odd
correlation functions are vanishing, while all the even ones are related to the two-point function

C(θ) ≡
〈
δT (n1)

T0

δT (n2)

T0

〉
,

δT (n)

T0

=
T (n)− T0

T0

< 10−5 , n1 · n2 = cos θ ,

where the brackets 〈〉 denote averaging over all directions n1,n2 satisfying the latter condition above.
Here θ is the angle between the two considered directions (do not confuse it with the galactic coor-
dinate ϑ). We also observe that〈(

T (n1)− T (n2)

T0

)2〉
=

〈(
δT (n1)− δT (n2)

T0

)2〉
= 2C(0)− 2C(θ) ,

C(0) =

〈(
δT (n)

T0

)2〉
,

〈
δT (n)

T0

〉
= 0 ,

C(0) being the autocorrelation temperature function.
The correlation functions are obtained by averaging the temperature fluctuations measured in

all directions on the sky from the earth, the unique vantage point we have access to, but due to
homogeneity and isotropy this average has to be close to the cosmic mean, which corresponds to
the average obtained by all observers in space that measure fluctuations in given directions. This
cosmic mean is determined by correlation functions of the random field of inhomogeneities and is
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the quantity one would have to compute in order to pick up in a correct manner anisotropies and
inhomogeneities of the universe. Of course we can only perform local measurements.

The root-mean-square difference between a local measurement and the cosmic mean is known
as cosmic variance. This difference is due to the poorer statistics of a single observer and depends
on the number of appropriate representatives of density inhomogeneities within a horizon. For this
reason it is quite tiny at small angular scales but substantial at high angular separations (more than
10 degrees).

According to (11.17), at any angular distance ∆ θ corresponds a region of linear size ∆ l on the
last scattering surface. A physical process which creates a perturbation density with length scale
of the order of the particle horizon, during all evolution of the universe, will “generate” only few
observable realisation, that is only few representative points of density inhomogeneity, while physical
processes at small length scales will generate more representative points. This means that statistic
is better at small angular scales.

Cosmic variance is an unavoidable uncertainty, which is present also for an “ideal” experiment in
which one measures temperature in all directions in the sky with arbitrary precision. Of course, for the
real observation additional uncertainty is present due to finite number and precision of measurement.

The fluctuations δT (n) = δT (ϑ, ϕ) as well as the correlation function C(θ) depends on angular
coordinates only and so it is convenient to expand them in spherical harmonics Ylm and Legendre
polynomials Plm

Ylm(ϑ, ϕ) =
1√
4π

√√√√(2l + 1)(l −m)!

(l +m)!
Plm(cosϑ) eimϕ ,

∫ 2π

0
dϕ

∫ π

0
dϑ Y ∗lmYl′m′ = δll′δmm′ ,

by means of

δT (ϑ, ϕ)

T0

=
∑
lm

almYlm(ϑ, ϕ) ,

where as usual the sum over m runs from −l to l. The sum over l runs from 2 to infinity, since the
monopole l = 0, as well as the dipole l = 1 contributions are removed “by hand” from the spectrum
because they do not have cosmological origin (see next section below).

The expansion coefficients alm has vanishing mean value, that is 〈alm〉 = 0, and assuming homo-
geneity and isotropy their correlation fucntion Cl satisfies the condition

〈alma∗l′m′〉 = δll′δm,−m′ Cl , Cl =
〈
|alm|2

〉
.

In this way

C(θ) =

〈
δT (n1)

T0

δT (n2)

T0

〉
=
∑
lm

ClYlm(n1)Yl,−m(n2) =
1

4π

∑
l

(2l + 1)Cl Pl(cos(θ)) .

From this it follows

Cl =
1

4π

∫
d2n1 d

2n2 Pl(n1 · n2)

〈
δT (n1)

T0

δT (n2)

T0

〉
. n1 · n2 = cos θ . (13.2)

The multipole coefficients Cl are real and positive and receive their main contribution from fluctua-
tions on angular scale of the order θ ∼ π/l and the CMB power spectrum defined by l(l + 1)Cl/2π
is about the typical squared temperature fluctuations on this scale. Is is conventional to plot the
latter quantity as a function of l in order to point out the contribution of multipoles to the power
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Figure 13: CMB power spectrum

spectrum (see figure 13). The monopole l = 0 and the dipole l = 1 components are excluded in the
expansion of C(θ) as well as in the power spectrum. The first gives a trivial constant contribution,
while the second depends on the choice of the reference frame. In the temperature power spectrum
measured on the earth, the C1 dipole contribution is different from zero since the earth moves with
respect to the homogeneous-isotropic frame (see next section below).

As we already said above we have access to one vantage point only and so we can perform an
average over all directions, but not over all positions in the universe (cosmic mean). This means
that the observed multipole coefficients on the earth, say Cobs

l are given by (13.2), but without the
brackets, that is

Cobs
l =

1

4π

∫
d2n1 d

2n2 Pl(n1 · n2)
δT (n1)

T0

δT (n2)

T0

.

The difference between the measured value and the hypothetical one obtained by performing the
cosmic mean as in (13.2) read〈(

Cl − Cobs
l

Cl

) (
Cl′ − Cobs

l′

Cl′

)〉
=

2δll′

2l + 1
,

from which we see that the cosmic variance goes to zero when l goes to infinity, and so the average
on all directions from the earth gives reasonable results for small angles only.

• Note that all theoretical calculations make use of cosmic mean and so the comparison between
theoreical previsions and experimental data could be problematic in some cases.

13.2 The dipole anisotropy

This can be easily analysed by looking at the number density of photons in phase space. This
quantity is a scalar with respect to Lorentz transformations, because both the phase space volume
and the number of photons are scalars. Then we have

Nγ(p
′) =

1

e|p′|/kT ′ − 1
= Nγ(p) =

1

e|p|/kT − 1
, (13.3)
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where p′µ = (|p′|,p′) is the 4-momentum of photons in the frame at rest with respect to the cosmic
radiation background, where the equilibrium temperature is T ′ = T0, while pµ = (|p|,p) is the
4-momentum in the frame of the earth, which moves with relative velocity vr with respect to the
cosmic background, along the x1 axis. The 4-momenta are related by the Lorentz transformation

p′µ = Λµ
ν p

µ , Λ =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 , β =
vr
c
, γ =

1√
1− β2

.

from which

|p′| = γ(1 + β cosϑ) |p| , cosϑ =
p1

|p|
.

From (13.3) it follows

T (ϑ) =
T0

γ(1 + β cosϑ)
, (13.4)

T (ϑ) being the temperature measured on the earth in the direction ϑ and T0 the one in (13.1). It
is clear from (13.4) that the temperature of photons measured on the earth depends on the angle
of observation. We expect to find maximum and minimum values in opposite directions due to blue
and red shift, that is Tmax = T0 + δTdip and Tmin = T0 − δTdip.

WMAP satellite experiment has found δTdip ∼ 3.34µoK at galactic coordinates (∼ 264o,∼ 48o).
These results indicate a motion of the solar system with a velocity v ∼ 370km/s. By taking into
account of the motion of the solar system with respect to the center of the galaxy one can deduce a
relative velocity vr ∼ 627Km/s of the local group of galaxies relative to the cosmic background in
the galactic direction (∼ 276o,∼ 30o).

The temperature in (13.4) can be expanded in powers series of β, the expansion coefficients being
functions of Legendre polinomials. The result reads

δT (ϑ)

T0

=
T (ϑ)− T0

T0

= −βP1(cosϑ)− β2
[
1

6
− 2

3
P2(cosϑ)

]
+ ...

Since β � 1, the dominant contribution to the shift of temperature is due to the dipole P1(cosϑ), but
there is also a small quadrupole term which is comparable with the one due to primary anisotropies.

Normally the dipole contribution is removed from the power spectrum of anisotropies because it
is a frame-dependent quantity due to the local motion of the earth. The measure of such a quantity
permits to determine the “absolute” rest frame in which CMB dipole term is vanishing.

13.3 Multipole contributions to CMB anisotropies

The temperature fluctuations in the CMB at higher multipoles l ≥ 2 are interpreted as being mostly
the result of perturbations in the density and the metric of the very early universe and especially at
the surface of the last scattering, even if they do not have exactly the same physical origin. Roughly
speaking, depending on the dominant effect which determines the anisotropies, one distinguishes the
following regions (see figure 13):

• integrated Sachs-Wolfe rise (l < 10, θ > 10o);

• Sachs-Wolfe plateau (10 < l < 100, 10 > θ > 0.1o);
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• acoustic peaks (100 < l < 1000, 0.1 > θ > 0.01o);

• damping tail (l > 1000, θ < 0.01o).

Note however that for l < 100 there are also contributions due to cosmological tensor perturba-
tions in the FLRW metric (primordial gravitational waves). All physical effects responsible for the
anisotropies are really complicated and we refer the interested reader to the literature for a detailed
analysis. Here we only discuss in some detail the Sachs-Wolfe plateau, since for this region it is
possible to do some (quite simple) analytical calculations.

13.4 Sachs-Wolfe effect

It consists in the temperature fluctuations of CMB due to the fact that photons do not propagate in
vacuum, but in the presence of a gravitational potential. As it follows from equivalence principle, the
frequency of photons and as a consequence the temperature, depends on the gravtitational potential.

Such an effect is due to scalar perturbations only and so we have to solve equations (12.17)-
(12.19), where the energy momentum tensor is T ij = T̂ ij + δT ij , T̂

i
j being those of a perturbed perfect

fluid, that is

T̂ ij = (p+ ρ)uiuj + pδij , T̂ 0
0 = −ρ(η) , T̂ ab = δab p(η) .

Note that in contrast with previous section, here ρ, p, uk represent unperturbed quantities.
By definition the perturbed energy tensor reads

T ij = T̂ ij + δT ij = [(p+ δp) + (ρ+ δρ)](ui + δui)(uj + δuj) + (p+ δp)δij ,

and recalling that in the reference frame we are considering uk ≡ (1/a, 0, 0, 0), uk ≡ (−a, 0, 0, 0), at
first order in pertubations we get

δT 0
0 = −δρ , δT 0

a =
1

a
(p+ ρ)δua , δT ab = δp δab .

From (12.14)-(12.16) then it follows

δT 0
0 = −δρ , δT 0

a =
1

a
(p+ ρ)δua , δT ab = δp δab .

Using these equations in (12.19) one trivially gets

∂a∂b(Ψ− Φ) = 0 , a 6= b ,

which has the only acceptable solution Ψ = Φ. Note that the general solution Ψ− Φ = α + βax
a, α

being a constant and βa a constant vector, corresponds to a perturbation if and only if α = βa = 0.
Now equations (12.17)-(12.19) become

∆ Φ− 3H(Φ′ +HΦ) = −4πGa2 δρ , (13.5)

∂a [a(η)Φ′] = 4πGa2 (p+ ρ) δua , (13.6)

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = −4πGa2 δp . (13.7)

It is interesting to note that in a non-expanding universe H = 0 and the first equation above becomes
equal to the Poisson equation.
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In principle, given the equation of state for the fluid, equations above can be solved obtaining the
potential Φ and the perturbation δρ, δp. We refer the interested reader to the literature and continue
to calculate the Sachs-Wolfe effect.

To this aim we consider a gas of photons in the perturbed metric (12.12) (only scalar perturba-
tions) and we fix the coordinates by setting B = E = Ω = 0. This is called longitudinal or conformal
Newtonian gauge. It is possible to show that this choice fix a unique system of coordinates.

Taking the considerations above into account, the metric simplifies to

ds2 = a2(η)
[
−(1− 2Φ)dη2 + (1 + 2Φ) δabdx

adxb
]
, |Φ| � 1 . (13.8)

The photon propagates along a null geodesic, that is

0 =
Dpk
dλ

=
dpk
dλ
− Γrksprp

s =
dpk
dλ
− 1

2
prps∂kgrs , pk =

dxk

dλ
, pkpk = 0 , (13.9)

λ being an affine parameter. From the latter equation on the right-hand side above one gets

[p0]2 =
papa

a2(1− 2Φ)
∼ 1

a2
(1 + 2Φ) papa =

1

a4
|p|2 =⇒

{
p0 = 1

a2 |p| ,
p0 = −(1− 2Φ) |p| ,

where we have set

pa = gabp
b = a2(1 + 2φ)δab p

b , {pa} ≡ (p1, p2, p3) , |p| =
√
δabpapb .

Using the conformal time we also get

dxa

dη
=
dxa

dλ

dλ

dη
=
pa

p0
=

(1 + 2Φ)δabpb
|p|

= na(1− 2Φ) , (13.10)

where na = δabnb = δabpb/|p| is a spatial unit vector which determines the direction of propagation.
In the same way from (13.9) at first order in Φ we get

dpa
dη

=
1

2p0
prps∂agrs = |p|+ a2δbcp

bpc

p0
∂aΦ = 2|p| ∂aΦ . (13.11)

In classical mechanics, the Liouville theorem states that the volume in the phase space of a
Hamiltonian system is invariant under canonical transformations, or, what is the same, it is conserved
along the trajectory of the particle. it is easy to see that such a theorem is valid also in general
relativity. To this aim we consider a one-particle system with coordinates (η, xa) and momentum
(p0, pa). The volume in the phase space d3xd3p = dx1dx2dx3dp1dp2dp3 is invariant under a general
transformation of coordinates. To verify this we set

Aij =
∂x̃i

∂xj
, Bi

j =
∂xi

∂x̃j
, xa → x̃a = x̃a(η̃, xb) , pa → p̃a = Bk

b pk ,

and observe that at a fixed time η̃ the Jacobian of the transformation reads

J =

∣∣∣∣∣∂(x̃1, x̃2, x̃3, p̃1, p̃2, p̃3)

∂(x1, x2, x3, p1, p2, p3)

∣∣∣∣∣ =

∣∣∣∣∣∂x̃a∂xb

∣∣∣∣∣
∣∣∣∣∣∂p̃a∂xb

∣∣∣∣∣ = det

 ∂x̃a
∂xb

∣∣∣∣∣
η̃=const

 det

 ∂x̃a
∂xb

∣∣∣∣∣
η̃=const

 = 1 .

The latter result is due the the fact the pa transforms as a covariant vector and x̃0 = η̃ = const. Since
J is trivial, the phase volume is invariant, that is d3x̃d3p̃ = J d3xd3p = d3xd3p. Now, the validity of
the Liouville theorem directly follows from this result and the principle of equivalence.
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Let us consider an ensemble of noninteracting identical particles. The number of particles dN
with coordinates in the phase-space volume d3xd3p can be written in the form

dN = f(η, xa, pb) d
2xd3p ,

f(η, xa, pb) representing the density of states at time η. Since the number of particle inside the
invariant volume does not change during the evolution, the distribution function has to satisfy the
Liouville equation

df(η, xa(η), pb(η)

dη
=
∂f

∂η
+

∂f

∂xa
dxa

dη
+
∂f

∂pa

dpa
dη

= 0 . (13.12)

This is valid in the absence of particle interactions. If particles interacts, then the total derivative
of f is not vanishing, but equal to a term C(f) which takes into acoount of interaction (Boltzmann
equation).

Here we are interested in the CMB, then we consider a nearly homogeneous isotropic universe
filled by slightly perturbed thermal radiation. For a gas of photons f is the Planck dostribution.
The energy E = ω (h̄ = 1) of a photon depends on the observer and it is equal to p0 when measured
by an observer at rest in a comoving local inertial frame. It can be written in an invariant way by
setting E = ω = pku

k, uk being the velocity of an arbitrary observer.
For such a system the distribution function becomes

f =
2

eω/T − 1
, T = T (xk, na) , c = h̄ = kB = 1 , (13.13)

where T (xk, na) is the effective temperature which depends on position and time of the observer and
on the direction na = pa/|p|. Since our universe is nearly isotropic, T will be nearly the equilibrium
temperature T̂ of the isotropic system, then we set

T (xk, na) = T̂ (η) + δT , δT � T̂ .

The fluctuation δT depends on the observer. This is a direct consequence of the fact that f is a
scalar and ω is the time component of a vector and so the temperature has to transform as ω. By a
change of coordinates xk → x̃k one gets

f(x)→ f̃(x̃) = f(x) =⇒ ω̃(x̃)

T̃ (x̃
=
ω(x)

T (x

In particular, for an infinitesimal change x̃k = xk + ξk, which relates two observers O and Õ at rest
in their reference we get

ω = pku
k = p0u

0 =
p0√
−g00

, ω̃ = p̃kũ
k = p̃0ũ

0 =
p̃0√
−g00

.

Using the transformations laws for the 4-vector pk and definition for the 3-vector la, up to higher
order we get

ω̃ ∼ ω (1 + la ∂ηξ
a) =⇒ T̃ (x̃) =

ω̃

ω
T (x) ∼ T (x) (1 + la ∂ηξ

a) ,

from which it follows

δT̃ = δT − ξ0∂η T̂ + T̂ la ∂ηξ
a ,
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where

δT̃ = T̃ (x)− T̂ (x) , δT = T (x)− T̂ (x) .

Now we have all elements necessary to solve the Liouville equation (13.12) for the distribution function
of the gas of photons in the metric given in (13.8). Using (13.10) and (13.11) we explicitly get

∂f

∂η
+

∂f

∂xa
dxa

dη
+
∂f

∂pa

dpa
dη

=
∂f

∂η
+ (1− 2Φ)na

∂f

∂xa
+ 2|p| ∂Φ

∂xa
∂f

∂pa
= 0 .

Now we use the fact that the function f in (13.13) depends on the variable y = ω/T and up to higher
order

y =
ω

T
=

p0

T
√
−g00

∼ − (1− 2Φ)|p|
a(T̂ + δT )

√
(1− 2Φ

∼ −|p|
aT̂

(
1− Φ− δT

T̂

)
.

The Liouville equation becomes

∂y

∂η
+ (1− 2Φ)na

∂y

∂xa
+ 2|p| ∂Φ

∂xa
∂y

∂pa
= 0 . (13.14)

At zero order in the perturbation this reads(
∂

∂η
+ na

∂

∂xa

)
|p|
aT̂

= 0 =⇒ ∂

∂η
(aT̂ ) = 0 =⇒ T̂ =

const

a
,

which is the result we already have derived in Section 11.3.4.
At first order in the perturbation equation (13.14) gives

0 =

(
∂

∂η
+ na

∂

∂xa

) [
|p|
aT̂

(
Φ +

δT

T̂

)]
+ 2Φna

∂

∂xa
|p|
aT̂
− 2|p| ∂Φ

∂xa
∂

∂pa

|p|
aT̂

=
|p|
aT̂

[(
∂

∂η
+ na

∂

∂xa

) (
Φ +

δT

T̂

)
− 2na

∂Φ

∂xa

]

=
|p|
aT̂

[(
∂

∂η
+ na

∂

∂xa

) (
δT

T̂
− Φ

)
+ 2

∂Φ

∂η

]
,

from which it follows

d

dη

(
δT

T̂
− Φ

)
=

(
∂

∂η
+ na

∂

∂xa

) (
δT

T̂
− Φ

)
= −2

∂Φ

∂η
. (13.15)

The latter equation determines the temperature fluctuations of the microwave background. In the
case of practical interest, the universe is matter-dominated after recombination and the main mode
in Φ is constant. In such a case along all null geodesics we get the equation

δT

T̂
− Φ = const , (13.16)

which describes the influence of the gravitational potential on the microwave background fluctuations.
This is known as the Sachs-Wolfe effect.

To be more rigorous, one would have to consider a slowly variation in time of the potential Φ, due
to the fact that, immediately after ricombination, the radiation is not a completely negligible fraction
of the energy density. As a consequence the last term on the right-hand side in (13.15) is not really
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vanishing, and gives a contribution to δT/T̂ −Φ which corresponds to the integral of ∂ηΦ along the
null geodesic considered. This is known as the early integrated Sachs-Wolfe effect. Another similar
contribution to the temperature fluctuation is induced by the time dependence of Φ when, in recent
epoch, the universe expansion starts to accelerate (dark-matter dominated era). This is known as
the late integrated Sachs-Wolfe effect. It is extimated that the contributions due to the integrated
Sachs-Wolfe effects do not exceed the 20% of the total amplitude of temperature fluctuations and so
for our purposes we can neglect both of them.

13.5 Sachs-Wolfe platou

Now we are going to compute the fluctuation in the temperature of CMB measured on the earth due
to scalar perturbation Φ. From (13.16) we get

δT

T
(Pf ) + Φ(Pf ) =

δT

T
(Pi) + Φ(Pi) , (13.17)

where Pi is the point at which the photons are emitted (a point on the surface of last scattering in a
given direction) and Pf is the point at which the photons are received (the earth). It is understood
that photons run along a geodesic in the direction of observation n and Doppler effects due to
the relative motion of source and receiver are neglected. Moreover, the potential Φ(Pf ) does not
depend on direction and so it can be dropped since it gives an isotropic temperature shift (monopole
contribution). In this limit equation (13.17) is simply an expression of energy conservation.

We shall see that in the case of adiabatic fluctuations in a critical density, matter dominated
universe, the temperature fluctuations are related to the potential Φ(Pi) only. To this aim we recall
that the background temperature T scales as 1/a(t) and a(t) ∼ t2/3(1+w). This means that, as a
consequence of the expansion, there is a temperature fluctuation given by

δT

T
= −δa

a
= − 2

3(1 + w)

δt

t
, p = wρ .

In the Newtonian frame where the proper time reads (see (13.8))

dτ = dt
√

1− 2Φ ∼ (1− Φ) dt ,

we finally obtain

δT

T
∼ 2

3(1 + w)
Φ . (13.18)
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14 Inflation

The standard cosmological model describes to great accuracy the physical processes through which
the universe evolved until the present day. It provides a series of predictions in good agreement with
observation and moreover it indirectly confirms the validity of SM. However there remain outstanding
issues, some of which could be explained in the next future in the framework of SCM, for example
with the help of quantum gravity, but other problems as homogeneity, flatness and horizon certainly
require an extension o SCM. These latter mentioned issue are all related to initial conditions.

All the following considerations are obtained essentially by dimensional manipulations and are
very far to be rigorous.

14.1 Homogeneity, isotropy and initial conditions

We know by observation that at present time t0 the domain of homogeneity and isotropy corresponds
to a hypersurface Σ0 of size l30, with l0 at least as large as the present horizon scale, which roughly
corresponds to the Hubble length L0 ∼ c t0 ∼ 1028 cm. Such a region was originated by expansion
starting from a region Σi at time ti of size l3i given by

li ∼
ai
a0

l0 , ai = a(ti) , a0 = a(t0) , l0 ∼ L0 .

The particle horizon at time ti is of the order dP (ti) ∼ cti (in a radiation dominated flat universe it
is exactly 2cti, see 10.25), and so we obtain

li
dP (ti)

∼ t0ai
tia0

. (14.1)

This ratio can be arbitrarily large depending on ti. If we assume SCM to be valid until the general
relativity is, more or less at Planck scale, then we get a rough estimate of the latter quantity. By
choosing initial data at Planck scale (see Appendix A), that is ti ∼ tPl, Ti ∼ TPl we obtain

t0
ti
∼ t0
tPl
∼ 6× 1060 ,

ai
a0

∼ Ti
T0

∼ TPl
T0

∼ 0.7× 10−32 ,
li

dP (ti)
∼ 1028 .

This means that li is built up with 1028 causally disconnected intervals and so Σi is built up with
(1028)3 = 1084 causally disconnected regions, but nevertheless it had generated a homogeneous and
isotropic domain Σ0 (actually the fractional variation of the energy density does not exceed
δρ/ρ ∼ 10−4).

We talk about the initial conditions problem because we must assume that the energy density
was distributed at the very beginning in more than 1084 casually disconnected regions in a nearly
perfect homogeneous way (see figure 14).

Equation (14.1) can be related to ȧ if we assume that a(t) scales as a power of t as it happens in
matter and radiation dominated ere. With such an assumption we have a/t ∼ ȧ and so we get

li
dP (ti)

∼ t0ai
tia0

∼ ȧi
ȧ0

. (14.2)

The number of casually disconnected regions is so determined by ȧi/ȧ0.

A similar problem can be formulated for the initial Hubble velocities. In fact it is possible to
show that an error in the initial velocities exceeding 10−54% has a dramatic consequence: the universe
either recollapses or becomes empty too early.
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Figure 14: initial conditions (conformal coordinates)

14.2 Flatness problem

Now we are going to study the behaviour of equations in (11.1) from the stability point of view (see
Appendix C). They read

Ω− 1 =
k

a2H2
,

dΩ

da
= (1 + 3w)

Ω(Ω− 1)

a
, (14.3)

where

Ω = Ω(t) =
8πGρ(t)

3H(t)2
, H(t) =

ȧ(t)

a(t)
.

The second equation in (14.3) has three fixed points, that is Ω = 0, Ω = 1, Ω =∞. In this case the
matrix A has only one component ad so, for Ω = 1 we get

A =
d

dΩ

[
(1 + 3w)

Ω(Ω− 1)

a

]
Ω=1

=
1 + 3w

a
.

We see that if 1 + 3w > 0, then Ω = 1 is a repeller and as a consequence the other two points are
attractors, while if 1 + 3w < 0 then Ω = 1 is an attractor and Ω = 0,∞ are repellers. This means
that in a universe in which the strong energy dominance energy condition is satisfied, independently
on the initial values, the system tends to evolve in such a way that Ω → ∞ or Ω → 0, which are
attractors. However, in contrast to these mathematical considerations, all experimental data are in
good agreement with the value Ω ∼ 1, which is compatible with 1 + 3w > 0 if the initial value
Ωi = Ω(ti) was of the order Ωi − 1 ∼ 10−56. In fact we have Ω0 − 1 = k

a2
0H

2
0

= k
ȧ2

0
,

Ωi − 1 = k
a2
iH

2
i

= k
ȧ2
i
,

=⇒ Ω0 − 1

Ωi − 1
=
(
ȧi
ȧ0

)2

∼
(

li
dP (ti)

)2

∼ 1056 . (14.4)

Since Ω0 − 1 ∼ 0, Ωi − 1 has to be really small too. This remarkable degree of fine tuning is known
as the flatness problem, which has no reasonable explanation in SCM.
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14.3 Horizon problem

This is a theoretical problem which arises as a direct consequence of the fact that FLRW cosmology
has a particle horizon dP (t) at any time. In particular, on the last scattering surface there are widely
separated points completely outside each others horizons, but nevertheless the CMB is isotropic to a
high degree of precision. This is related to the fact that the last scattering surface has been generated
by causally disconnected region (see figure 14).

In radiation/matter dominated universe the particle horizon is of the order of Hubble length (see
(10.25) and (10.26)), that is dP (t) ∼ 1/H(t), but in the presence of inflation the first can be much
larger than the latter.

Let us consider a photon moving along a radial geodesic between two arbitrary points P1(t1, r1, ϑ, ϕ)
and P2(t2, r2, ϑ, ϕ). The coordinate distance traveled by the photon reads

∆r12 =
∫ r2

r1

dr√
1− kr2

=
∫ t2

t1

dt

a(t)
,

and the proper distance is obtained by multiplying the latter by the expansion factor a(t).
In a flat, matter dominated universe (see (10.13)) we have

a(t) = a0

(
t

t0

)2/3

, H0 =
2

3t0
,

and so it follows

∆r12 =
2

H0a
3/2
0

(
√
a2 −

√
a1) , a1 = a(t1) , a2 = a(t2) . (14.5)

In particular, if t1 = ti ∼ 0 , a1 ∼ 0 then the latter equation gives the (coordinate) particle horizon
at time t2, that is dP (t2) = a(t2)rP (t2).

Now let be t2 = t0 (today) and t1 = tr the time at recombination (last scattering surface) more
or less for z ∼ 1200. Then in (14.5) we have a2 = a0, a1 = a0/(1 + z) ∼ a0/1200 and therefore

rO(tr) =
2

H0a0

(
1− 1√

1200

)
∼ 2

H0a0

.

rO(tr) represents the coordinate of the photon with respect to the observer at the origin.
On the other hand, the particle horizon at recombination time is obtained again from (14.5) by

choosing a1 = 0 and a2 ∼ a0/1200. It follows

rP (tr) =
2

H0a0

1√
1200

∼ 6× 10−2

H0a0

< rO(tr) .

The comoving distance of a photon in CMB and the observer is larger than the particle horizon at
recombination time. This means that today we can observe photons in CMB which had never been
in casual contact, but nevertheless they have the same temperature to high precision (see figure 15).

14.4 Monopole problem

Near the problems we have described above, there are other problems related to grand unified theories
(GUT). In fact, if such theories are taken seriously, then, in addition to photons and neutrinos, other
relics would be present today. Most well known of such kind of topological defects are magnetic
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Figure 15: casual structure at recombination

monopoles, which are expected in huge quantity, but they have never been detected and for this
reason it is necessary to find some way to dilute their density in the early universe.

Topological defects form when a symmetry is broken and in general they are complicated struc-
tures. Monopoles are point-like, but GUT predict one dimensional (cosmic string), two dimensional
(domain wall) and more complicated topological defects too.

• It has to be observed that inflation was originally proposed in order to explain the absence on
magnetic monopoles in our universe.

14.5 Some considerations about inflation

In order to solve all problems described in previous sections, it is assumed that, at the very beginning,
the universe was is a stage of accelerated expansion when gravity acted as a repulsive force. Such
a very brief period is called inflation. During this stage, the size of the universe had increased
enormously in a period of time of the order t < 10−34 sec.

As an effect of this rapid expansion, a small region of space becomes very large and the spatial
curvature very small making the universe extremely close to flat. In addition, the horizon size was
greatly increased, so that distant points on the CMB actually are in causal contact and unwanted
relics are tremendously diluted, solving the monopole problem.

Note however that quantum fluctuations made it impossible for inflation to smooth out the uni-
verse with perfect precision and for such a reason there is a spectrum of remnant density perturba-
tions. This spectrum turns out to be approximately scale-free, in good agreement with observations
of our current universe.

Now we briefly discuss how an inflationary stage can solve the initial value problems. We have
seen in (14.2) that the number of casually disconnected regions is determined by the ratio ȧ/ȧ0, and
of course, if gravity is always attractive, such a ratio increases its value with time since ä < 0. The
situation completely changes if for some period gravity becomes repulsive, that is ä > 0. This can
be easily accommodated in FLRW by violating the strong dominance energy condition. In such a
case Ω = 1 becomes an attractor and the system tends to reach to that value.
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A period of accelerated expansion is a necessary condition for solving initial value problems,
but whether it is also sufficient depends on the particular model in which this condition is realised.
Moreover, because predictions of SCM are strongly supported by observation, the accelerated ex-
pansion has to stop sufficiently early and in a smooth graceful way, otherwise it would spoil the
success of SCM. The requirement of the generation of primordial fluctuations, necessary for forma-
tion of galaxies, restricts the energy scale of inflation. In simple models inflation should be over
tf ∼ 10−34 − 10−36 sec.

Inflation explains the origin of the big bang. In fact, because it accelerates the expansion, small
initial velocities within a causally connected patch become very large. Furthermore, it can produce
the whole observable universe from a small homogeneous region even if the universe was strongly
inhomogeneous outside this region. This is due to the fact that in an accelerated universe, there
always exists an event horizon given by

dE(t) = a(t)
∫ tmax

t

dt

a(t)
= a(t)

∫ amax

a(t)

da

ȧ a
,

where tmax is the final time and amax = a(tmax). The integral converges even if tmax = ∞ or
amax → ∞ and so dE(t) < ∞. This means that an observer at a generic time t will never influence
the future of the observers which are at a distance l > dE(t). So, at initial time ti (the begin
of inflation), let us consider two concentric bubbles of spatial dimensions di = dE(ti) and 2di and
assume the region inside the big bubble l ≤ 2di to be homogeneous. This means that any point of
the small bubble is surrounded by a homogeneous domain of size at least equal to dE(ti). Due to
the expansion, at time tf (the end of inflation) the small bubble has a physical size df = (af/ai) di,
and the region inside l < df is still homogeneous, because any point of such a region, at time ti was
outside the event horizon of possible non homogeneous domains.

On the other hand, the particle horizon at tf is given by

dP (tf ) = a(tf )
∫ tf

ti

dt

a(t)
= a(tf )

∫ af

ai

da

ȧ a

= a(tf )
∫ amax

ai

da

ȧ a
− a(tf )

∫ amax

af

da

ȧ a
∼ af
ai
dE(ti) .

Because at the end of inflation a(tf ) is very large, the last integral above has been neglected. Then
we see that after inflation the size of the homogeneous bubble df is of the order of the particle horizon
dP (tf ) and this means that all points inside the small bubble are in casual contact.

Thus, instead of considering a homogeneous universe in many causally disconnected regions, we
can begin with a small homogeneous causal domain which inflation blows up to a very large size,
preserving the homogeneity irrespective of the conditions outside this domain.

It can be shown that the condition of homogeneity in the original big bubble can be relaxed,
because inflation demolishes large initial inhomogeneities and produces in any case a homogeneous,
isotropic domain. In order to accommodate CMB anisotropies, we have to impose ȧi/ȧ0 < 10−5. In
fact in this way, writing (14.4) as

Ω0 − 1 = (Ωi − 1)
(
ȧi
ȧ0

)2

,

we see that Ω0 − 1 ∼ 0 even if Ωi − 1 ∼ 1.

The simplest model which provides an accelerated expansion is the de Sitter universe (see section
9.4), in which the factor a(t) and its derivatives increase exponentially. Unfortunately this can only
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be a toy model because it does not provide a graceful exit from inflation, but nevertheless it can give
some interesting insight into its behaviour.

In more realistic models the accelerated phase has to stop very quickly and subsequently the
standard decelerated phase has to begin. That is

ä(t) > 0 , for t < tf ,
ä(t) ∼ 0 , for t = tf ,
ä(t) < 0 , for t > tf .

This behaviour can be realised with a fluid with an equation of state depending on time and violating
the strong dominance energy condition, but only for t < tf , but it can also be obtained with a modified
theory of gravity in which the Einstein-Hilbert Lagrangian density is modified by quadratic terms in
the Riemann tensor. Such kind on models give rise to de Sitter (like) solutions, but unfortunately
they do not provide in a natural way a graceful exit.

Actually, the preferred candidate to drive inflation is a scalar field φ called inflaton. It has energy
and momentum densities given by (spatial derivatives can be neglected){

ρφ(t) = 1 φ̇2 − V (φ) ,

pφ(t) = 1 φ̇2 − V (φ) ,
=⇒ p+ ρ = φ̇2 .

We see that p ∼ −ρ as required by inflation, if φ̇2 � V (φ).
Here we do not enter into the details of inflationary models, but we only recall that one of the

aim of inflation it to eliminate all unwanted particles and in fact it redshifts away all unwanted
relics, such as magnetic monopoles and other topological defects, but at the same time also any
trace of radiation or dust-like matter is similarly redshifted away to nothing. Moreover, inflation is
a supercooling phase in which the temperature drops by a factor of the order 10−5 (from 1027 oK to
1022 oK in some models). Thus, at the end of inflation the universe contains nothing but a cooled
scalar field condensate (the inflaton). Then some questions immediately arise:

• How is the universe reheated?

• How does the matter of which we are made arise?

• How does the hot big bang phase of the universe begin?

The physical mechanism which answer to these questions is not yet completely understood due to
the unknown nature of the inflaton. The reheating after inflation is due to the large energy of the
inflaton which decays into particles and radiation. The temperature returns to the pre-inflationary
value and the radiation dominated era then finally starts.

Inflation gives also rise to primordial inhomogeneities in the density, which, as a consequence of
gravitational instability, generates the observed fluctuations in the CMB, as well as all astrophysical
structures like clusters and superclusters of galaxies, we see on the largest scales in the universe
today.

Before the advent of inflationary cosmology the initial perturbations were postulated and their
spectrum was designed to fit observational data, while, according to cosmic inflation, primordial
perturbations were originated from quantum fluctuations. These fluctuations have substantial am-
plitudes only on scales close to the Planckian length, but during the inflationary stage they are
stretched to galactic scales with nearly unchanged amplitudes. Thus, inflation links the large-scale
structure of the universe to its microphysics. The resulting spectrum of inhomogeneities is not very
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sensitive to the details of any particular inflationary scenario and has nearly universal shape. This
leads to concrete predictions for the spectrum of cosmic microwave background anisotropies. Inflation
dilutes away all matter fields, soon after its onset the universe is in a pure vacuum state.
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15 Appendices

Here we collect some results we use in the lecture notes.

A Planck units

Here we write down all Planck quantities, which are built up with the Planck and other universal
constants. They determine the scale at which quantum gravity effect can not be neglected.

lPl =
√

h̄G
c3

length lPl ∼ 1.616× 10−35m

MPl =
√

h̄c
G

mass MPl ∼ 2.176× 10−8Kg

tPl =
√

h̄G
c5

time tPl ∼ 5.391× 10−44 sec

TPl =
√

h̄c5

k2G
temperature TPl ∼ 1.416× 1032 oK

B Boson-Fermion statistic

In table (5) (left) we have collected some results regarding Boson and Fermion statistic. We have
indicated by the index i the specie of particle (photon, neutrino, antineutrino, etc.) and by ni, ρi, si, pi
the corresponding number density, energy density, entropy density and pressure. T is the equilibrium
temperature. In table (5) (rigth) we have collected the number of spin states gi for all particles we
have considered in the lecture notes. The values of Boltzmann and Planck constants read respectively

k ∼ 8.617× 10−5 eV/oK , h ∼ 4.135× 10−15 eV sec , h̄ ∼ 6.582× 10−16 eV sec .

Relativistic Bosons Relativistic Fermions

ni gi
ζ(3)
π2

(
kT
h̄c

)3
3
4
gi
(
kT
h̄c

)3

ρi gi
π2

30
(kT )4

(h̄c)3
7
8
gi

π2

30
(kT )4

(h̄c)3

si gi
2π2

45

(
kT
h̄c

)3
k 7

8
gi

2π2

45

(
kT
h̄c

)3
k

pi
1
3
ρi

1
3
ρi

specie γ ν ν̄ e− e+

gi 2 1 1 2 2

Table 5: Boson and Fermion statistic number of spin states
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C Autonomous systems

Let us consider a system of first order differential equations of the form

Ẋ =
dX

dt
= F (X) , X = X(x1, x2, ..., xn) , xk = xk(t) .

This is called an autonomous system if the function F does not depend explicitly on t. The particular
solution X = Xc which satisfies

Ẋ
∣∣∣
X=Xc

= F (Xc) = 0 ,

 Ẋ
∣∣∣
X=Xc

= 0 ,

F (Xc) = 0 ,

is called critical or fixed point. The behaviour of the system in a neighbourhood of a critical point
can be analysed by using the linearised system

Ẋ = AX , A = J(Xc) , J(X) =

(
∂F (X)

∂X

)
X=Xc

,

where A is the n × n Jacobian matrix evaluated on the critical point. If all the eigenvalues λk of
the matrix Aij have a non vanishing real part (Reλk 6= 0), then Xc is said a hyperbolic critical point.
Depending on the signs of the real parts of λk, any fixed point can be classified as an attractor (silk),
a repeller (source), a saddle point, etc.

For example, in two dimensions F (x, y) = {f(x, y), g(x, y)} and if (xc, yc) is a fixed point, that is
F (xc, yc) = 0 then

A =
(
∂xf ∂yf
∂xg ∂yg

)
(x,y)=(xc,yc)

.

The critical point is an attractor if both the eigenvalues have negative sign (real part), while it is a
repeller in the opposite case. If the eigenvalues have opposite sign then one has to do with a saddle
point. If the matrix is real, then one has an attractor if TrA < 0 and detA > 0.
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